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Abstract

In vitro cell biology assays are routinely used to study cancer spreading, drug design and
tissue repair. However, previous studies report that results from cell biology assays are
difficult to reproduce. Mathematical models have been widely used to study collective
cell spreading in cell biology assays. The aim of this thesis is to analyse cell biology assays
using mathematical models, to identify some of variability that affects the reproducibil-
ity. In addition, different types of mathematical models are studied to investigate their
suitability. This work is presented as a thesis by published papers and consists of four
related papers.

This work begins by investigating the impact of the initial degree of confluence on the re-
producibility of scratch assays. Scratch assays with six different initial seeding conditions
are performed. To further process the experimental images, we count individual cells and
construct cell density profiles. We then calibrate the solution of the Fisher–Kolmogorov
model to the data of cell density profiles to quantify the cell diffusivity D and proliferation
λ for each initial seeding condition. Our results show that the cell diffusivity D varies
significantly over the six initial seeding conditions. To further investigate the suitability
of the Fisher–Kolmogorov model, we calibrate the solution of the Porous–Fisher model to
the data. The results show that there is still a large variation in D, while the variation is
smaller than that estimated from the Fisher–Kolmogorov model. Based on the results, we
find that the Porous–Fisher model provides a better description of the experiment in our
case, and suggest that the initial seeding condition should be reported in experimental
protocols.

Our first results also show a variation in λ over different initial seeding conditions, which
motivates us to investigate the cell proliferation in cell biology assays. Cell proliferation
is often modelled by the logistic growth model, however, the suitability of this choice is
rarely tested with experimental data. To investigate whether cells proliferate logistically,
we perform both scratch assays and proliferation assays with three different initial seeding
conditions. Experimental images are further processed to construct the cell density infor-
mation. One feature of the logistic growth model is that the per capita growth rate is a
decreasing straight line. Our per capita growth rate profiles, which are approximated from
the experimental data, suggest that cells in scratch assays undergo two–phase growth: a
disturbance phase in which cells do not proliferate logistically, and a logistic growth phase
which takes place after the disturbance phase. For proliferation assays, there is only a
logistic growth phase. Further model calibration to the data of cell density information
shows that simply calibrating the solution of the logistic growth model to experimental
data from scratch assays for the entire duration could result in misleading parameter
estimates. Therefore, we suggest that for scratch assays the disturbance phase should be
identified, and the logistic growth model should be applied only to the growth phase.
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Having investigated the collective cell spreading in cell biology assays using continuum
models, we then extend the proliferation mechanism in lattice–based random walks mod-
els. In these discrete models, cell proliferation is normally modelled by an unbiased nearest
neighbour exclusion process. We introduce a generalised proliferation mechanism which
allows cells to place daughter cells into non–nearest neighbour sites. Whether potential
proliferation events are accepted depends on a crowding function which accounts for the
occupancy of non–nearest neighbour sites. The continuum limit description of our gen-
eralised discrete model leads to a reaction–diffusion reaction. Comparing the solution
of the continuum limit description with the averaged simulation data indicates that in
general the continuum model matches the discrete model well, and the quality of the
continuum–discrete match increases with the size of the template of neighbour sites.

Finally, we apply a lattice–based random walk model to mimic passaging of cell lines.
In the literature, it is reported that cell proliferation changes with passage number, and
seemingly contradictory effects are observed. In our discrete model, we consider both
initial heterogeneity in cell proliferation and passage–induced damage on cell proliferation.
Our simulation results show that due to the competition between the initial heterogeneity
and the degree of the passage–induced damage, it is possible for the average proliferation
rate to either increase or decrease with passage number. To investigate the impact of
passage number on the reproducibility of cell biology assays, we simulate a suite of scratch
assays with cells at different passage numbers. Our results show that although passage
number is normally not reported in experiments, it could significantly affect the closure
rate of the scratched area. Therefore we suggest that passage number should be reported
in experiments to achieve better reproducibility.

We conclude this work by outlining our main findings and contributions from both math-
ematical and experimental perspectives, and discussing the potential to use the combined
mathematical and experimental approach to study other factors that affect the repro-
ducibility of cell biology assays.
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1 Introduction

1.1 Overview

Two–dimensional in vitro cell biology assays are routinely used to study cancer spreading,

drug design and tissue repair [2,7,58,65,76,77]. These assays provide insight into collective

cell spreading, as a result of combined cell migration and cell proliferation. Generally there

are two types of in vitro cell biology assays: (i) proliferation assays (Figure 1.1(a)), and

(ii) scratch assays (Figure 1.1(b)). To perform a proliferation assay, cells grown in a cell

culture are initially distributed on a two–dimensional substrate [111,118]. Consequently,

a confluent monolayer forms [111, 118]. Cells in scratch assays are initiated in the same

way as proliferation assays, except that a scratch is made after cells are initially seeded.

Similarly, the initially scratched area is re–colonised due to motility and proliferation

events [71].

(a) (b)

t = 0h t = 0h

Figure 1.1: Experimental images at initial time. (a) Experimental image of a proliferation assay. (b)
Experimental image of a scratch assay. The scale bar corresponds to 300 µm.

Although in vitro cell biology assays are popular, problems associated with reproducibility

have been reported in previous studies [35,120]. Variables such as experimental equipment

and environment can make reproducibility difficult [35,58,122]. For example, the type of

instruments and the pressure applied when scratching could lead to significantly different

sizes and shapes of the scratched area [35]. To overcome this problem, a few alternative in
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vitro assays have been proposed to reduce sources of variability in experiments [35,58,122].

For example, IncuCyte ZOOMTM System (Figure 1.2) has been developed to perform

both proliferation and scratch assays [29]. To address experimental limitations, IncuCyte

ZOOMTM assays create consistent scratch areas and record high–resolution experimental

images for further analysis [29]. While these alternative assays focus on minimising the

variables in the experimental design [35, 58, 122], the intrinsic variables in cell lines are

still overlooked.

(a) (b)

Figure 1.2: IncuCyte ZOOMTM assays. (a) IncuCyte ZOOMTM System. (b) Trays inside the IncuCyte
ZOOMTM System.

Mathematical models have been playing an important role in understanding mechanisms

in in vitro cell biology assays and predicting experimental observations for over two

decades [14, 76, 77, 100, 104, 109, 115]. In general, there are two forms of mathematical

models to describe the collective cell spreading. The first approach applies continuum

reaction–diffusion equations [76, 77, 100]. In these continuum models, cell migration is

modelled by a diffusion term, and the carrying–capacity limited proliferation is modelled

by a logistic source term [14, 76, 77, 100]. The traditional continuum models are often of

the form
∂C(x, y, t)

∂t
= D∇2C(x, y, t) + λC(x, y, t)

(
1− C(x, y, t)

K

)
, (1.1)

where C(x, y, t) [cells/µm2] is the cell density, x and y are spatial coordinates [µm], t

is time in [h], D [µm2/h] is the cell diffusion coefficient, λ [/h] is the cell proliferation

rate, and K [cells/µm2] is the carrying–capacity [76,77,100]. In one dimension, Equation

(1.1) simplifies to the Fisher–Kolmogorov model [30]. Equation (1.1) assumes that cell

diffusivity is a constant, whereas other studies show that cell diffusivity depends on local

cell density. Generalisations of the Fisher–Kolmogorov model, such as the Porous–Fisher

model, in which cell migration is modelled by a nonlinear diffusion term, have also been

applied to study cases in which cell diffusivity increases with local cell density. It is

interesting to note that for proliferation assays in which cells are uniformly distributed,

Equation (1.1) simplifies to the logistic growth equation [54], given by

dC(t)

dt
= λC(t)

(
1− C(t)

K

)
. (1.2)
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One feature of the logistic growth equation is that it has an exact solution, which is a

sigmoid curve that monotonically increases from the initial cell density to the carrying

capacity K as t→∞. The logistic growth model is often used to study carrying–capacity

limited population growth, such as cell proliferation in scratch assays and proliferation

assays [14,54,76,77,98,100,118].

The other approach to describe collective cell spreading is discrete random walk models.

Based on the types of simulation domain, discrete random walk models can be further

categorised into lattice–based and off–lattice models [28,52,80,109]. For each type of dis-

crete model, individual cells migrate and proliferate depending on a set of rules that are

observed from experiments [80, 109]. For example, in a traditional lattice–based model,

cell migration is often incorporated using an unbiased exclusion process with hard–core

exclusion representing cell–to–cell crowding [109]. Cell proliferation is incorporated by

placing a daughter cell into one of the surrounding sites [109]. To model crowding ef-

fects, any potential migration or proliferation events that would move a cell or place a

daughter cell in an occupied site are aborted [109]. While continuum models predict

results at population scale, discrete models contain details of individual cells [34, 44].

Therefore discrete models are advantageous when comparing with experimental results,

such as images and time–lapse movies. However, discrete models are more computation-

ally expensive, due to the number of realisations required to obtain statistically averaged

results [52,109,111,115].

While continuum and discrete models involve information at different scales, it is inter-

esting to note that the mean–field continuum limit description of discrete models can be

derived under certain circumstances [106, 107, 109]. For example, a traditional lattice–

based random walk model gives rise to Equation (1.1) at the continuum limit [109]. This

allows us to understand how changes in individual cells affect the collective cell behaviour

at the population scale [109]. Since experimental observations often involve information

at both individual and population scales, it has been of great interest to use both discrete

and continuum models to study the collective cell spreading [53,109]. However, it is worth

noting that predictions from discrete models and the corresponding continuum limit de-

scriptions do not always match well [110]. Therefore, it is important to compare the

solution of the continuum limit descriptions with averaged simulation data from discrete

models [110].

Recent studies have used a combination of mathematical and experimental approaches

to quantify various aspects in in vitro cell biology assays [54, 80, 115, 118]. Using both

the Fisher–Kolmogorov model and experimental data from scratch assays, Maini et al.

predict that travelling wave exists in a scratch assay [76, 77]. They also find that the

diffusion coefficient can be estimated based on the travelling wave solution of the Fisher–

Kolmogorov model [76, 77]. Sengers et al. investigate the suitability of mathematical

models for two types of cell lines, and find that the Fisher–Kolmogorov equation is suitable

for only one type of the cell lines [100]. Tremel et al. quantify the in vitro migration and
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proliferation of fibroblast cells, by using the logistic growth equation and the Fisher–

Kolmogorov model to mimic proliferation assays and scratch assays, respectively [118].

Treloar et al. extract multiple types of data from circular barrier assays and apply both

discrete and continuum models to quantify cell diffusivity, cell proliferation, and cell–

to–cell adhesion of melanoma cells [115]. They also find that with different initial cell

numbers, the estimated parameter values are not the same [115]. Johnston et al. use the

Fisher–Kolmogorov model and the edge detection method to quantify the cell diffusivity,

proliferation rate, and carrying capacity of prostate cancer cells from IncuCyte ZOOMTM

assays [54]. Mort et al. apply a lattice–based discrete model to investigate the formation

of diffusion clones, chimeric stripes and belly spots in a mice model [80]. Based on the

simulation predictions, they conclude that a depigmented ventral belly spot in mice likely

arises due to the decreased cell proliferation [80].

The combined mathematical and experimental approach has shown great capability to

quantify key parameters and predict experimental observations, in order to solve problems

associated with in vitro cell biology assays. This approach offers possibilities to look into

one of the main problems in cell biology assays: reproducibility. In the following section,

we identify and discuss four research questions associated with reproducibility that we

will address using mathematical models.

1.2 Research questions

Although alternative in vitro assays have been proposed to improve experimental design

and minimise experimental variability, it is reported that results from cell biology assays

are difficult to reproduce [35, 120]. This suggests that there are overlooked sources of

variability that affect collective cell spreading. In this thesis we analyse cell biology assays

and quantify the roles of cell migration and proliferation using mathematical models, to

identify and investigate some of the variability that affects reproducibility. In particular,

we propose the following four questions:

1. How does the initial degree of confluence affect the reproducibility of in

vitro scratch assays?

In vitro scratch assays are routinely used to study collective cell spreading in cancers,

drug design, and tissue repair [2,7,58,65,76,77]. However, it is reported that results

from scratch assays are difficult to reproduce [35, 120]. This problem is partially

caused by inconsistent experimental equipment and environments [35]. Alternative

assays, such as IncuCyte ZOOMTM assays, are proposed to reduce some sources of

variability in the experimental design [29]. However, some variability, such as the ini-

tial degree of confluence, is still overlooked. The initial degree of confluence describes

the crowdedness of the initial cell population. Most experiments do not report any

quantitative measurements of the initial degree of confluence [37,58,76,77,104]. For
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those experiments in which the initial degree of confluence is reported, the measure-

ment is merely based on a qualitative judgment [13,58].

Previous studies have calibrated solutions of the Fisher–Kolmogorov model to ex-

perimental data of cell density profiles, to obtain the cell diffusivity and cell pro-

liferation rate [115]. The IncuCyte ZOOMTM assay can produce high–resolution

experimental images with consistent scratched area, which can be further processed

to produce cell density profiles [29]. Therefore, to investigate the impact of the

initial degree of confluence, the combined mathematical and experimental approach

allows us to obtain cell density profiles for different initial seeding conditions, and

then estimate the cell diffusivity and cell proliferation rate for each initial seeding

condition.

2. Do cells in cell biology assays proliferate logistically?

Cell proliferation is considered one of the key factors that drive collective cell spread-

ing in in vitro cell biology assays [54,71]. The continuum reaction–diffusion models

that mimic certain features of cell biology assays normally include a logistic source

term to model the carrying–capacity limited proliferation [100, 109, 115]. These

types of models, have been calibrated to experimental data to estimate parameters,

such as proliferation rate [115]. However, the suitability of using the logistic source

term or the logistic growth model is rarely tested using experimental data. A few

studies claim that cells do not always proliferate logistically [66, 124, 130]. For ex-

ample, West et al. find that the growth of a wide range of animal models is best

described by a more general model [124]. Therefore, whether cells in cell biology

assays proliferate logistically still remains unclear.

The IncuCyte ZOOMTM assay can produce high–resolution experimental images,

which can be further processed to produce cell density information [29]. To investi-

gate whether cells proliferate logistically, the solution of the logistic growth model

can be calibrated to experimental data. Then, parameter estimates for different

initial seeding conditions can be compared to test the suitability of choosing this

logistic growth model.

3. How can lattice–based discrete models incorporate a generalised prolif-

eration mechanism in which cells do not proliferate logistically?

Lattice–based random walk models are used to mimic cell migration and cell prolif-

eration processes in in vitro cell biology assays [109,115]. Traditional lattice–based

random walk models involve a nearest–neighbour proliferation mechanism, in which

potential proliferation events are aborted if the target site is occupied [109]. In addi-

tion, daughter cells can only be placed into nearest–neighbour sites [109]. However,

it is biologically unrealistic to abort potential proliferation events solely depending
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on whether a single, randomly chosen nearest–neighbour site is occupied, as cell–

to–cell crowding plays an impotent role in cell proliferation [109]. In addition, the

continuum limit description of this proliferation mechanism leads to the traditional

logistic source term in reaction–diffusion equations, whereas previous studies show

that cells do not always proliferate logistically [66, 124, 130]. Therefore, using the

traditional lattice–based random walk models to mimic cell proliferation which does

not follow the logistic growth could lead to misleading results and affect the out-

comes of in silico experiments.

One way of proposing a more biologically realistic proliferation mechanism is to

consider non–nearest neighbour proliferation events over a larger template of lattice

sites. Instead of checking the occupancy of a single, randomly chosen target site,

the new proliferation mechanism calculates the agent density Ĉ within the tem-

plate. Whether potential proliferation events are accepted depends on a crowding

function f(Ĉ). The continuum limit description of this generalised discrete model

can be derived, and we can compare the solution of the continuum description to

the simulation data from the discrete model.

4. How does cell proliferation change at high passage numbers? How does

this change affect in vitro cell biology assays?

In vitro cell culture is used to grow and supply cells for various types of experiments,

such as cell biology assays [2]. Passaging is a process to further grow cell popula-

tion in cell culture after cells become confluent [8,9]. During the passaging process,

cells are lifted, split into smaller proportions, and re-grown in new cell culture

flasks [8,9]. It is reported that cell characteristics change at high passage numbers,

and seemingly contradictory effects have been observed in experiments of passaging

cell lines [21, 31, 45, 73, 88, 95, 99]. For example, many studies report that cell pro-

liferation decreases with the increasing passage number [31, 45, 95, 99], whereas Lin

et al. find that cell proliferation increases at high passage numbers [73]. Therefore,

the change of cell characteristics associated with the passage number could possibly

lead to the reproducibility problem in in vitro experiments.

Lattice–based random walk models have been used to mimic certain features in in

vitro cell biology assays [109]. However, previous studies of discrete simulations have

not investigated the passaging process. To model the cell culture growth, we run a

simulation until a certain degree of confluence is reached. To model the passaging

process, a small number of cells are chosen randomly, lifted from the current simu-

lation domain, and re-distributed randomly into an empty domain to re-grow. To

model the passage–induced damage, we assume that during the passaging process,

each cell’s proliferation rate is decreased by a random amount. We also simulate a

suite of cell biology assays using cells with different passage numbers, to investigate
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how passaging affects the reproducibility of cell biology assays.

1.3 Aims and outcomes of this thesis

The primary aim of this thesis is to use mathematical models to analyse in vitro cell

biology assays and identify some of variability that affects the reproducibility. Meanwhile,

different mathematical models are studied to investigate whether they are appropriate for

modelling certain features in cell biology assays.

This thesis has four objectives:

• Investigate how the initial degree of confluence affects the parameter estimates of

cell diffusivity and proliferation rate in in vitro scratch assays.

• Investigate the cell proliferation mechanisms in in vitro cell biology assays, using a

combined mathematical and experimental approach.

• Develop a cell proliferation mechanism in lattice–based, random walk models, which

consider more biologically realistic crowding effects.

• Use lattice–based random walk models to investigate the passaging process and how

passaging of cell lines affects the reproducibility of in vitro cell biology assays.

This thesis is presented by publication, with two papers that have been published, one

paper accepted, and one paper submitted in high–quality peer–reviewed journals. The

PhD candidate has contributed significantly and is the primary author of all the four

papers. The work presented in this thesis fulfils the requirements for the award of thesis

by published papers at Queensland University of Technology.

This thesis consists of the four following publications:

• Jin, W., Shah, E. T., Penington, C. J., McCue, S. W., Chopin, L. K., & Simpson,

M. J. (2016). Reproducibility of scratch assays is affected by the initial degree

of confluence: Experiments, modelling and model selection. J. Theor. Biol., 390,

136–145. (Chapter 2)

• Jin, W., Shah, E. T., Penington, C. J., McCue, S. W., Maini, P. K., & Simpson,

M. J. (2017). Logistic proliferation of cells in scratch assays is delayed. Bull. Math.

Biol., 79, 1028–1050. (Chapter 3)

• Jin, W., Penington, C. J., McCue, S. W., & Simpson, M. J. (2016). Stochastic

simulation tools and continuum models for describing two–dimensional collective

cell spreading with universal growth functions. Phys. Biol., 13, 056003. (Chapter

4)
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• Jin, W., Penington, C. J., McCue, S. W., & Simpson, M. J. (2017). A compu-

tational modelling framework to quantify the effects of passaging cell lines. PLOS

ONE. (Chapter 5)

In this thesis each chapter is comprised of a paper, which means that each chapter can

be read individually. To make the style and layout of each chapter consistent, minor

changes have been made to each of the papers, while most of the contents in Chapter 2–5

are exactly the same as the original papers that have been either published or submit-

ted. Consequently, some overlapped contents appear in Background Section and Methods

Section. Chapters 2 to 5, each contain a Background Section that introduces background

knowledge and reviews relevant literature, a Methods Section demonstrating the relevant

experimental and mathematical methods, a Results Section illustrating the experimental

and computational results, and a Discussion Section discussing the results.

In the next section, we outline the structure of this thesis and the novel contributions of

the work for each chapter.

1.4 Structure of this thesis

The structure of this thesis is as follows:

In Chapter 1 we introduce the background of in vitro cell biology assays and review

the experimental and mathematical literature related to this work. We then address the

research questions and aims of this thesis. The structure of this thesis and the outcomes

are also outlined in this chapter.

In Chapter 2 we investigate how the initial degree of confluence affects the reproducibility

of scratch assays. Using a combined mathematical and experimental approach, we perform

scratch assays with six different initial seeding conditions. The experimental data are

further processed to construct cell density profiles. We then use mathematical models,

namely the Fisher–Kolmogorov model and the Porous–Fisher model, to quantify the cell

diffusivity D and proliferation rate λ, and investigate whether cell migration and cell

proliferation change with the initial seeding condition.

The results in Chapter 2 motivate us to further investigate the proliferation mechanisms

in cell biology assays. In the literature, cell proliferation is routinely modelled by the

logistic growth source term in reaction–diffusion equations or the logistic growth model.

However, the suitability of this choice is rarely tested with experimental data. Therefore,

it still remains unclear whether cells proliferate logistically in cell biology assays. Following

the same approach as in Chapter 1, we perform scratch assays and proliferation assays

with three different initial seeding conditions. The experimental images are then further

processed by counting individual cells to construct cell density information. One feature

of the logistic growth model is that the per capita growth rate profile is a straight line.

To identify the growth profile, we also construct the per capita growth rate profiles using
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the cell density information. We then calibrate the solution of the logistic growth model

to the data of cell density information, to quantify the parameter of proliferation rate λ.

Chapter 4 focuses on the development of a traditional lattice–based random walk model for

cell biology assays. We first generalise the proliferation mechanism by imposing a larger

size of the template for neighbour sites in which non–nearest neighbour proliferation is

allowed. We then develop a new mechanism for cells to sense the occupancy of their

neighbour sites, and whether potential proliferation events are accepted depends on a

crowding function associated with the occupancy. We also derive the continuum limit

description for our generalised discrete model. In the Results section, we compare the

match between the discrete model and its continuum limit description. The limitations

and further work are discussed in the Discussion section.

In Chapter 5 we apply a traditional lattice–based random walk model to mimic the

passaging process and investigate its impact on the reproducibility of in vitro cell biology

assays. We first outline the novel passaging mechanism that accounts for the initial

heterogeneity in cell proliferation and the passage–induced damage on cell proliferation.

We then use our discrete model to investigate the seemingly contradictory effects caused by

the passaging of cell lines reported in the literature. To investigate the impact of passage

number on the reproducibility of cell biology assays, we simulate a suite of scratch assays

with cells at different passage numbers and compare the difference in the scratch closure.

We summarise our work in Chapter 6, outlining our aims and main findings. We then

discuss possible future work based on the results achieved and the limitations of our work

in Chapter 2–5.

1.5 Statement of joint authorship

In this section, we outline the contribution of the PhD candidate and the co–authors to

each paper. All co–authors have consented to the presentation of this material in this

thesis.

Chapter 2: Reproducibility of scratch assays is affected by the initial degree

of confluence: Experiments, modelling and model selection

The associated paper for this chapter is:

Jin, W., Shah, E. T., Penington, C. J., McCue, S. W., Chopin, L. K., & Simpson, M.

J. (2016). Reproducibility of scratch assays is affected by the initial degree of confluence:

Experiments, modelling and model selection. J. Theor. Biol., 390, 136–145.

Abstract

Scratch assays are difficult to reproduce. Here we identify a previously overlooked source

of variability which could partially explain this difficulty. We analyse a suite of scratch

assays in which we vary the initial degree of confluence (initial cell density). Our results



Chapter 1. Introduction 10

indicate that the rate of re–colonisation is very sensitive to the initial density. To quantify

the relative roles of cell migration and proliferation, we calibrate the solution of the Fisher–

Kolmogorov model to cell density profiles to provide estimates of the cell diffusivity, D,

and the cell proliferation rate, λ. This procedure indicates that the estimates of D and

λ are very sensitive to the initial density. This dependence suggests that the Fisher–

Kolmogorov model does not accurately represent the details of the collective cell spreading

process, since this model assumes that D and λ are constants that ought to be independent

of the initial density. Since higher initial cell density leads to enhanced spreading, we also

calibrate the solution of the Porous–Fisher model to the data as this model assumes that

the cell flux is an increasing function of the cell density. Estimates of D and λ associated

with the Porous–Fisher model are less sensitive to the initial density, suggesting that the

Porous–Fisher model provides a better description of the experiments.

Statement of joint authorship

The work was divided as follows:

• Jin, W. (Candidate) extracted and further processed experimental data, per-

formed data analysis, computed the solutions of mathematical models, composed

all figures and supplementary material, and critically reviewed and revised the

manuscript.

• Shah, E. T. performed the experiments and wrote the experimental methods.

• Penington, C. J. provided technical assistance, helped interpret the results and

critically reviewed the manuscript.

• McCue, S. W. oversaw and directed the research, provided technical assistance,

helped interpret the results and critically reviewed the manuscript.

• Chopin, L. K. provided assistance with the experiments and biological interpreta-

tions.

• Simpson, M. J. initiated the concept for this paper, oversaw and directed the re-

search, wrote the manuscript, drafted and redrafted the manuscript, wrote the cover

and revision letter, critically reviewed and revised the manuscript and supplemen-

tary material, and acted as the corresponding author.

Chapter 3: Logistic proliferation of cells in scratch assays is delayed

The associated paper for this chapter is:

Jin, W., Shah, E. T., Penington, C. J., McCue, S. W., Maini, P. K., & Simpson, M. J.

(2017). Logistic proliferation of cells in scratch assays is delayed. Bull. Math. Biol., 79,

1028–1050.

Abstract

Scratch assays are used to study how a population of cells re–colonises a vacant region on

a two–dimensional substrate after a cell monolayer is scratched. These experiments are

used in many applications including drug design for the treatment of cancer and chronic

wounds. To provide insights into the mechanisms that drive scratch assays, solutions of
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continuum reaction–diffusion models have been calibrated to data from scratch assays.

These models typically include a logistic source term to describe carrying capacity-limited

proliferation, however the choice of using a logistic source term is often made without

examining whether it is valid. Here we study the proliferation of PC-3 prostate cancer

cells in a scratch assay. All experimental results for the scratch assay are compared with

equivalent results from a proliferation assay where the cell monolayer is not scratched.

Visual inspection of the time evolution of the cell density away from the location of the

scratch reveals a series of sigmoid curves that could be naively calibrated to the solution

of the logistic growth model. However, careful analysis of the per capita growth rate as

a function of density reveals several key differences between the proliferation of cells in

scratch and proliferation assays. Our findings suggest that the logistic growth model is

valid for the entire duration of the proliferation assay. On the other hand, guided by data,

we suggest that there are two phases of proliferation in a scratch assay; at short time we

have a disturbance phase where proliferation is not logistic, and this is followed by a growth

phase where proliferation appears to be logistic. These two phases are observed across

a large number of experiments performed at different initial cell densities. Overall our

study shows that simply calibrating the solution of a continuum model to a scratch assay

might produce misleading parameter estimates, and this issue can be resolved by making

a distinction between the disturbance and growth phases. Repeating our procedure for

other scratch assays will provide insight into the roles of the disturbance and growth

phases for different cell lines and scratch assays performed on different substrates.

Statement of joint authorship

The work was divided as follows:

• Jin, W. (Candidate) extracted and further processed experimental data, per-

formed data analysis, computed the solutions of mathematical models, composed

all figures and supplementary material, wrote the manuscript and supplementary

material, and critically reviewed and revised the manuscript.

• Shah, E. T. performed the experiments and wrote the experimental methods.

• Penington, C. J. provided technical assistance, helped interpret the results and

critically reviewed the manuscript.

• McCue, S. W. oversaw and directed the research, provided technical assistance,

helped interpret the results and critically reviewed the manuscript.

• Maini, P. K. provided technical assistance, helped interpret the results and critically

reviewed the manuscript.

• Simpson, M. J. initiated the concept for this paper, oversaw and directed the re-

search, contributed to the writing of the manuscript, oversaw drafting and redrafting

of the manuscript, wrote the cover and revision letter, critically reviewed and re-

vised the manuscript and supplementary material, and acted as the corresponding

author.
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Chapter 4: Stochastic simulation tools and continuum models for describing

two–dimensional collective cell spreading with universal growth functions

The associated paper for this chapter is:

Jin, W., Penington, C. J., McCue, S. W., & Simpson, M. J. (2016). Stochastic simulation

tools and continuum models for describing two–dimensional collective cell spreading with

universal growth functions. Phys. Biol., 13, 056003.

Abstract

Two–dimensional collective cell migration assays are used to study cancer and tissue

repair. These assays involve combined cell migration and cell proliferation processes, both

of which are modulated by cell–to–cell crowding. Previous discrete models of collective

cell migration assays involve a nearest–neighbour proliferation mechanism where crowding

effects are incorporated by aborting potential proliferation events if the randomly chosen

target site is occupied. There are two limitations of this traditional approach: (i) it

seems unreasonable to abort a potential proliferation event based on the occupancy of

a single, randomly chosen target site; and, (ii) the continuum limit description of this

mechanism leads to the standard logistic growth function, but some experimental evidence

suggests that cells do not always proliferate logistically. Motivated by these observations,

we introduce a generalised proliferation mechanism which allows non–nearest neighbour

proliferation events to take place over a template of r ≥ 1 concentric rings of lattice sites.

Further, the decision to abort potential proliferation events is made using a crowding

function, f(C), which accounts for the density of agents within a group of sites rather than

dealing with the occupancy of a single randomly chosen site. Analysing the continuum

limit description of the stochastic model shows that the standard logistic source term,

λC(1−C), where λ is the proliferation rate, is generalised to a universal growth function,

λCf(C). Comparing the solution of the continuum description with averaged simulation

data indicates that the continuum model performs well for many choices of f(C) and r.

For nonlinear f(C), the quality of the continuum–discrete match increases with r.

Statement of joint authorship

The work was divided as follows:

• Jin, W. (Candidate) implemented the modelling framework and methodology,

computed the numerical simulations, composed all figures and supplementary ma-

terial, wrote the manuscript and supplementary material, and critically reviewed

and revised the manuscript.

• Penington, C. J. provided technical assistance, helped interpret the results and

critically reviewed the manuscript.

• McCue, S. W. oversaw and directed the research, provided technical assistance,

helped interpret the results and critically reviewed the manuscript.

• Simpson, M. J. initiated the concept for this paper, oversaw and directed the re-

search, contributed to the writing of the manuscript, oversaw drafting and redrafting
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of the manuscript, wrote the cover and revision letter, critically reviewed and re-

vised the manuscript and supplementary material, and acted as the corresponding

author.

Chapter 5: A computational modelling framework to quantify the effects of

passaging cell lines

The associated paper for this chapter is:

Jin, W., Penington, C. J., McCue, S. W., & Simpson, M. J. (2017). A computational

modelling framework to quantify the effects of passaging cell lines. PLOS ONE. (In press)

Abstract

In vitro cell culture is routinely used to grow and supply a sufficiently large number of

cells for various types of cell biology experiments. Previous experimental studies report

that cell characteristics evolve as the passage number increases, and various cell lines can

behave differently at high passage numbers. To provide insight into the putative mecha-

nisms that might give rise to these differences, we perform in silico experiments using a

random walk model to mimic the in vitro cell culture process. Our results show that it is

possible for the average proliferation rate to either increase or decrease as the passaging

process takes place, and this is due to a competition between the initial heterogeneity

and the degree to which passaging damages the cells. We also simulate a suite of scratch

assays with cells from near–homogeneous and heterogeneous cell lines, at both high and

low passage numbers. Although it is common in the literature to report experimental

results without disclosing the passage number, our results show that we obtain signif-

icantly different closure rates when performing in silico scratch assays using cells with

different passage numbers. Therefore, we suggest that the passage number should always

be reported to ensure that the experiment is as reproducible as possible. Furthermore,

our modelling also suggests some avenues for further experimental examination that could

be used to validate or refine our simulation results.

Statement of joint authorship

The work was divided as follows:

• Jin, W. (Candidate) implemented the modelling framework, computed numer-

ical the simulations, composed all figures and supplementary material, wrote the

manuscript and supplementary material, and critically reviewed and revised the

manuscript.

• Penington, C. J. provided technical assistance, helped interpret the results and

critically reviewed the manuscript.

• McCue, S. W. oversaw and directed the research, provided technical assistance,

helped interpret the results and critically reviewed the manuscript.
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• Simpson, M. J. initiated the concept for this paper, oversaw and directed the re-

search, contributed to the writing of the manuscript, oversaw drafting and redraft-

ing of the manuscript, wrote the cover letter, critically reviewed and revised the

manuscript and supplementary material, and acted as the corresponding author.



2 Reproducibility of scratch assays is affected by

the initial degree of confluence: Experiments,

modelling and model selection

A paper published in Journal of Theoretical Biology

Jin, W., Shah, E. T., Penington, C. J., McCue, S. W., Chopin, L. K., & Simpson, M.

J. (2016). Reproducibility of scratch assays is affected by the initial degree of confluence:

Experiments, modelling and model selection. J. Theor. Biol., 390, 136–145.

Abstract

Scratch assays are difficult to reproduce. Here we identify a previously overlooked source

of variability which could partially explain this difficulty. We analyse a suite of scratch

assays in which we vary the initial degree of confluence (initial cell density). Our results

indicate that the rate of re–colonisation is very sensitive to the initial density. To quantify

the relative roles of cell migration and proliferation, we calibrate the solution of the Fisher–

Kolmogorov model to cell density profiles to provide estimates of the cell diffusivity, D,

and the cell proliferation rate, λ. This procedure indicates that the estimates of D and

λ are very sensitive to the initial density. This dependence suggests that the Fisher–

Kolmogorov model does not accurately represent the details of the collective cell spreading

process, since this model assumes that D and λ are constants that ought to be independent

of the initial density. Since higher initial cell density leads to enhanced spreading, we also

calibrate the solution of the Porous–Fisher model to the data as this model assumes that

the cell flux is an increasing function of the cell density. Estimates of D and λ associated

with the Porous–Fisher model are less sensitive to the initial density, suggesting that the

Porous–Fisher model provides a better description of the experiments.

2.1 Background

Two–dimensional in vitro cell migration assays are routinely used to investigate the ability

of cell populations to re–colonise an initially–vacant region. The most common type of in

vitro cell migration assay is called a scratch assay, which is performed by: (i) growing a cell

15
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monolayer; (ii) removing a region of the monolayer by scratching it with a sharp–tipped

instrument; and (iii) making observations of the re–colonisation of the initially–vacant,

scratched region [7, 65]. Comparing the rate of scratch closure in an experiment where

cells are exposed to a chemical stimulus to the rate of closure in a control assay provides

insight into the roles of growth factors and putative drug treatments relevant to malignant

spreading and tissue repair [7, 65].

Although scratch assays remain popular, various alternative in vitro assays have been

proposed. These alternatives, including circular barrier assays [122], circular invasion

assays [58] and IncuCyte ZOOMTM assays [29], are often claimed to be superior because of

issues associated with scratch assay reproducibility [35]. The purpose of these alternative

assays is to reduce some source of variability in the experimental design. For example,

standard scratch assays can be performed with various types of instruments (e.g. pipette

tip, razor blade) and with varying degrees of pressure. Each of these variables is thought

to have the potential to affect the results in some way. To address these limitations, the

IncuCyte ZOOMTM real time live cell imaging assays have been developed [29]. IncuCyte

ZOOMTM assays use a mechanical tool, called a WoundMakerTM, to create 96 identically–

sized scratches in each well of a 96–well tissue culture plate. Each WoundMakerTM scratch

has the same dimensions, and is created with the same amount of pressure.

In this work we explore a previously overlooked source of variability that has the potential

to impact the interpretation of various types of cell migration assays. While standard

experimental procedures for many cell migration assays require that a sufficient amount of

time is allowed for the population to become confluent before the experiment is initiated [7,

65], most experiments do not report any quantitative measurements of the initial degree

of confluence [37, 58, 76, 77, 104]. Many experimental protocols simply state that the

monolayer is either fully confluent [58] or 80% confluent [13] prior to making a scratch.

These reports of the degree of confluence are typically based on a qualitative judgment

rather than quantitative measurements. To investigate the significance of this, we perform

a suite of IncuCyte ZOOMTM assays, using PC–3 prostate cancer cells [57], in which

we systematically vary the initial density. A qualitative comparison of the experimental

images suggests that the rate of scratch closure is extremely sensitive to the initial density.

This dependence on the initial density is important since experimental results are almost

always reported without any quantitative measurement of the initial density. This could

explain why scratch assays are difficult to reproduce.

We make quantitative measurements of the IncuCyte ZOOMTM assays by extracting cell

density profiles and calibrating the solution of the Fisher–Kolmogorov model [30, 64],

to that data. This procedure provides an estimate of the cell diffusivity, D, and the

cell proliferation rate, λ, for each initial density considered. This procedure is standard;

however, typical approaches deal with just one initial density [14, 38, 76, 77, 98, 100, 104].

The appropriately calibrated solutions of the Fisher–Kolmogorov equation match our

experimental observations, for each initial density, very well. However, our estimates of D

and λ appear to depend upon the initial cell density, and our estimates of D are extremely
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sensitive. This result has two implications. First, additional mechanisms, unaccounted

for in the Fisher–Kolmogorov model, are likely to be acting in the experimental system.

To explore this possibility we also examine the suitability of some potential extensions of

the Fisher–Kolmogorov model, such as the Porous–Fisher equation [100,104,110,125,126].

Second, our results suggest that previously reported procedures for estimating D and λ

by calibrating the solution of the Fisher–Kolmogorov equation could provide misleading

results.

2.2 Methods

We perform monolayer scratch assays using the IncuCyte ZOOMTM system (Essen Bio-

Science, MI USA). All experiments are performed using the PC–3 prostate cancer cell

line [57] from the American Type Culture Collection (ATCC, Manassas, USA). Cells

are propagated in RPMI 1640 medium (Life Technologies, Australia) in 10% foetal calf

serum (Sigma–Aldrich, Australia), with 100 U/mL penicillin, 100 µg/mL streptomycin

(Life Technologies), in plastic flasks (Corning Life Sciences, Asia Pacific) in 5% CO2

and 95% air in a Panasonic incubator (VWR International) at 37oC. Cells are regularly

screened for Mycoplasma (Nested PCR using primers from Sigma–Aldrich).

Cells grown to approximately 80% confluence are removed from the plastic flask using

TrypLETM (Life Technologies) in phosphate buffered saline (pH 7.4), resuspended in

medium and seeded at various densities in 96–well ImageLock plates (Essen BioScience).

Cells are distributed in the wells as uniformly as possible. We report results for initial

cell densities of 10,000, 12,000, 14,000, 16,000, 18,000 and 20,000 cells per well. After

seeding, cells are grown overnight to allow for attachment and some growth. We use a

WoundMakerTM (Essen BioScience) to create uniform, reproducible scratches in all the

wells of a 96–well plate. To ensure that as many cells are removed from the wound

region as possible, we modify the manufacturer’s protocol by repeating the scratch action

20 times before lifting the WoundMakerTM. After creating the scratch, the medium is

aspirated and the wells are washed twice with fresh medium to remove cells from the

scratched area. Following the washes, 100 µL of fresh medium is added to each well and

the plate is placed into the IncuCyte ZOOMTM apparatus. Images of the collective cell

spreading are recorded every two hours, for 48 hours. For each different cell density, we

perform three identically prepared experimental replicates (n = 3).

We obtain numerical solutions to various parabolic reaction–diffusion models using a finite

difference method [81]. The spatial domain, 0 < x < Lx, is uniformly discretised with

grid spacing δx, and the spatial derivatives are approximated using a central–difference

approximation. Some of the models we consider involve a nonlinear diffusion term, which

is discretised with an arithmetically averaged inter–node diffusivity. For all models con-

sidered, spatial discretisation leads to a system of coupled nonlinear ordinary differen-

tial equations that are integrated through time using a backward–Euler approximation

with constant time steps of duration δt [81]. The systems of coupled nonlinear algebraic
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equations are linearised using Picard (fixed–point) iteration, with absolute convergence

tolerance ε, and solved using the Thomas algorithm [81]. For all results we choose δx, δt

and ε so that our algorithm produces grid–independent results.

2.3 Results

2.3.1 Qualitative assessment of experiments

A subset of the experimental images are presented in Figure 2.1 for the experiments

initiated with 12,000, 16,000 and 20,000 cells per well. Images in Figure 2.1(a), (f)

and (k) show that each experiment is initiated with a clean, sharp scratch. The initial

difference in cell density is visually distinct in the regions well behind the position of

the scratch. The temporal progression of each experiment is shown in the columns of

Figure 2.1. In each case we see evidence of combined cell migration and cell proliferation.

Cells located near the edge of the scratched region move into the vacant region over time.

Cells are also proliferating since we see the cell density behind the location of the scratch

increasing with time. Interestingly, if we compare the final images of each experiment, in

Figure 2.1(e), (j) and (o), a large portion of the initially–vacant wound space in Figure

1(e) remains uncolonised, whereas the total area imaged in Figure 2.1(o) appears to be

colonised by t = 48 h.

Our visual interpretation of these images indicates that the ability of PC–3 cells to re–

colonise the wound space is very sensitive to the initial density of cells. This observation is

important because many in vitro experiments do not report any quantitative measurement

of the initial degree of confluence [35,37,58,76,77], and our results suggest that it would

be very difficult to replicate this kind of experiment unless the initial degree of confluence

is measured and reported.

Although our visual interpretation of the results in Figure 2.1 implies that the rate of

closure is very sensitive to the initial density, it is not obvious at this stage whether the

differences in the rate of re–colonisation are caused by: (i) differences in the initial cell

density alone; (ii) differences in the rate of cell migration; (iii) differences in the rate of cell

proliferation; or (iv) differences in both the rates of cell migration and cell proliferation.

To address this question, we now interpret our experimental results quantitatively by

measuring the temporal evolution of the spatial cell density profiles and using this data

to calibrate a suite of mathematical models to the data.

2.3.2 Quantitative assessment of experiments

We divide each image into 39 equally–spaced columns [18,60,61]. Each column is 50 µm

wide, as shown in Figure 2.2(a). We do not use data from the right most column since the

imaging system superimposes a scale bar in that column which partially obscures certain

cells. We count the numbers of cells in the remaining columns, i = 1, 2, 3, . . . , 38, and
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12,000 16,000 20,000
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h84 = th84 = t t = 48h
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Figure 2.1: A summary of IncuCyte ZOOMTM experiments. Images correspond to an experiment
initiated with: (a)–(e) 12,000; (f)–(j) 16,000; and (k)–(o) 20,000 cells per well. The time that the image
is recorded is indicated on each subfigure and the scale bar corresponds to 300 µm. The images in (a),
(f) and (k), at t = 0 h, show the approximate location of the position of the leading edge (dashed green).
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divide the total number of cells per column by the column area to give an estimate of

the cell density in each column. We repeat this process for each replicate and calculate

the sample mean and sample standard deviation of the cell density in each column for

t = 0, 12, 24, 36 and 48 h (Online Supplementary Material). Plots of the mean cell density,

with error bars indicating the sample deviation, are given in Figure 2.3. In general, we see

that the variability between the different experimental replicates for each initial condition

is small (Online Supplementary Material). In contrast, the evolution of the cell density

profiles with different initial conditions gives vastly different results. For example, the

cell density profiles in Figure 2.3(a), shows that the initial location of the scratch, where

the local density is approximately zero, is evident after t = 48 h. In contrast, the profiles

in Figure 2.3(f) indicate that the population becomes almost uniformly confluent after

t = 48 h. Overall, the general trends in Figure 2.3 show that the experiments with a

higher initial density leads to a more rapid re–colonisation.
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(a)

(c)

(b)

(d)

Figure 2.2: To quantify the cell density profile, each image is divided into vertical columns of width 50
µm, as shown in (a), from which manual cell counting is used to estimate the cell density at positions
x = 25, 75, 125, . . . , 1925 µm. To count and record the locations of individual cells we zoom in to focus
on certain subregions, such as the subregion shown in (b), which corresponds to the rectangle highlighted
in (a). Using the counting features in Adobe Photoshop, we identify individual cells and place a unique
marker on each cell (red disk) as shown in (b). After each image is processed in this way we have
then identified the location and total number of cells in each image, as shown in (c). The average cell
density profile is calculated by averaging results for three identically–prepared experimental replicates.
To quantify the carrying capacity density, K, we count the cell density in two regions at t = 48 h. The
locations of the two regions are indicated in (d). These two regions are located well behind the initial
position of the leading edge. Estimates of K are obtained using three identically–prepared experimental
replicates and the results are averaged to give K = 1.7 × 10−3 cells/µm2. The scale bar in each image
corresponds to 300 µm. These particular experimental images correspond to one of the replicates from
an experiment initialised with 20,000 cells per well. All parameter estimates reported in this caption are
given to two significant figures.
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Figure 2.3: Cell density profiles. Results in (a)–(f) correspond to experiments initiated with 10,000, 12,000, 14,000, 16,000, 18,000 and 20,000 cells per well, respectively.
For each different initial condition, experimental cell density profiles are shown at t = 0, 12, 24, 36 and 48 h. Each experiment was repeated n = 3 times. The average density
corresponds to the sample mean and the error bars indicate the variability, corresponding to the sample standard deviation.
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2.3.3 Measuring the carrying capacity density K

The carrying capacity density, K > 0, is the maximum density for a monolayer of cells.

Comparing various cell density profiles in Figure 2.3, we see that the experiments ini-

tialised with 20,000 cells become more confluent by t = 48 h than the experiments ini-

tialised with smaller numbers of cells. Therefore, to estimate K we focus on the data from

experiments initialised with 20,000 cells at t = 48 h, to ensure that our estimate of K

corresponds to a confluent population. We estimate K by calculating the cell density in

two subregions, each of width 200 µm, located well–behind the initial position of the front,

as indicated in Figure 2.2(d). We count the total number of cells in these two subregions

and divide by the total area. Repeating this procedure for our three identically–prepared

experimental replicates gives: K = 1.71 × 10−3, 1.74 × 10−3 and 1.69 × 10−3 cells/µm2.

Therefore, our estimate is K = 1.7 × 10−3 ± 2.5 × 10−5 cells/µm2, where the variability

is indicated by the sample standard deviation. Since the variability is very small, with

the coefficient of variation just 1.5%, our estimate is precise. Our estimate is consistent

with previously research. For example, Cai et al. report K = 1.0 × 10−3 cells/µm2 for

fibroblasts, whereas Treloar et al. report K = 1.6 × 10−3 cells/µm2 for 3T3 fibroblast

cells in a circular barrier assay.

Our estimate of K is consistent with certain features of the cell density profiles in Figure

2.3 since our measurements of C(x, t) appear to approach K after a sufficiently large

amount of time has elapsed. This is evident in Figure 2.3(e)–(f) where the population

becomes almost uniformly confluent by t = 48 h and we have C(x, t)→ K− as t becomes

sufficiently large. Since our experimental data contains fluctuations (Online Supplemen-

tary Material). and our estimate of K represents an average, we do occasionally observe

estimates of cell density that exceed our estimate of K.

2.3.4 Fisher–Kolmogorov model

The Fisher–Kolmogorov model has been used to describe collective cell spreading in both

in vitro [76, 77, 100, 104] and in vivo [47, 70, 93] contexts. Calibrating the solution of

the Fisher–Kolmogorov model to experimental data can be used to quantify the roles

of cell migration and cell proliferation [76, 77, 100]. Given our estimates of the average

cell density profiles in Figure 2.3 together with our estimate of K, we will calibrate the

solution of the Fisher–Kolmogorov model to our data. In this work we apply

∂C

∂t
= D∂

2C

∂x2
+ λC

[
1−

(
C

K

)]
, (2.1)

on 0 ≤ x ≤ 1900 µm, where D = D is the cell diffusivity and λ is the cell proliferation rate.

The cell proliferation rate is related to the cell doubling time, td = ln(2)/λ. To determine

the appropriate boundary conditions for Equation (2.1), we recall that the diameter of the

96–well plate is 9000 µm whereas the width of view of the experimental images is just 1950

µm. Therefore, the actual distribution of cells in each well extends far beyond the vertical
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boundaries of the images in Figure 2.1. Since the cells are initially distributed uniformly,

and the distribution of cells appears to remain approximate spatially uniform far away

from the edges of the scratch for the duration of the experiment, we impose zero net flux

boundary conditions at both x = 0 µm and x = 1900 µm [11]. The initial condition for

Equation (2.1) is specified using the mean cell density data obtained by direct cell counting

at t = 0 h. The data in Figure 2.3 at t = 0 h gives the average cell density at the center

of each column in Figure 2.2(a), corresponding to x = 25, 75, 125, . . . , 1925 µm, for the

six different experiments with different initial densities. We specify the continuous initial

condition, C(x, 0), for the numerical solution of Equation (2.1) by linearly interpolating

these measurements at t = 0 h.

While our experiments are genuinely two–dimensional, we always consider a special class

of problems where the initial density is, on average, independent of the vertical location

in the field of view. Under these conditions it is standard to quantify the cell density pro-

files by dividing the experimental image into many equally–spaced columns and to report

the cell density using a one–dimensional column–averaged cell density and to calibrate

the solution of a one–dimensional reaction–diffusion equation to that data [18, 60, 61].

Some of our previous analysis has shown that, in general, there can be an error in-

troduced by approximating a two–dimensional nonlinear reaction–diffusion equation by

a vertically–averaged one–dimensional reaction–diffusion equation [107, 108]. However,

when we consider a special initial condition where the density is independent of vertical

location (Figure 2.1), the averaging error vanishes [108].

To estimate D and λ we minimise a least–squares error describing the discrepancy between

the solution of Equation (2.1) and the average cell density profiles. The least–squares error

is given by

E(D,λ) =

38∑
i=1

4∑
j=1

[
Cmodel(xi, tj)− Cdata(xi, tj)

]2
, (2.2)

where Cmodel(x, t) is the numerical solution of Equation (2.1) and Cdata(x, t) is the average

cell density data. The index i indicates the position along the x coordinate where the

cell density is measured so that i = 1, 2, 3, . . . , 38. The index j indicates the time so that

j = 1, 2, 3 and 4 corresponds to t = 12, 24, 36 and 48 h. We denote the least–squares

estimate of D and λ as D̄ and λ̄, respectively, such that E(D̄, λ̄) is a minimum.

In the literature, cell diffusivities are reported to be in the range of 10 to 3000 µm2/h [14,

76,77,100,122]. Similarly, cell doubling times are typically reported to be within the range

of 10–30 h [53]. Therefore, we begin our parameter estimation by conservatively limiting

our search to within 0 ≤ D ≤ 4000 µm2/h and 0 ≤ λ ≤ 0.1 /h. Using numerical solutions

of Equation (2.1), we plot E(D,λ) for each set of experimental data in Figure 2.4(a)–(f).

Each subfigure in Figure 2.4(a)–(f) shows E(D,λ) constructed by considering a grid of

100 equally–spaced intervals of D, and 50 equally–spaced values of λ. Visual inspection

of E(D,λ) in Figure 2.4(a)–(f) confirms that each error surface appears to contain a well–

defined minimum, from which we estimate D̄ and λ̄. After we have obtained our initial
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estimates using the surfaces in Figure 2.4(a)–(f), we refine our estimates by identifying a

subregion surrounding the point (D̄, λ̄), shown in Figure 2.4(a)–(f) as a white rectangle,

and we refine our search within this subregion. Results in Figure 2.4(g)–(l) show a refined

plot of E(D,λ) constructed using a grid of 100 equally–spaced intervals of D and 50

equally–spaced values of λ within the subregions identified in Figure 2.4(a)–(f). The

refined plots of E(D,λ) in Figure 2.4(g)–(l) focus on the subregion with D̄ − 200 ≤ D ≤
D̄ + 200 µm2/h and λ̄− 0.01 ≤ λ ≤ λ̄+ 0.01 /h. Each refined plot of E(D,λ) in Figure

2.4(g)–(l) also appears to contain a well–defined minimum from which we can identify

refined estimates of (D̄, λ̄). Using this approach we found that our refined estimates of D̄

and λ̄ obtained from Figures 2.4(g)–(l) are not very different from the original estimates

identified in Figures 2.4(a)–(f). Therefore, we make no additional refinements, and a

summary of our refined estimates is given in Table 2.1.

To provide an additional check on our estimates of D̄ and λ̄ in Table 2.1, we also used these

estimates, together with our measurements K, as an initial guess for a MATLAB Leven-

berg Marquardt–based calibration algorithm [20]. We found that applying the MATLAB

routine produced parameter estimates that are very similar to those in Table 2.1, so we do

not report any additional results from the MATLAB algorithm here. Instead, we prefer

to manually explore the error surface. This allows us to visualise the shape of the error

surface, providing us with additional qualitative and quantitative information about the

quality of the match between the mathematical model and the experimental data.

Table 2.1: Estimates of D̄ and λ̄ for the Fisher–Kolmogorov model obtained by calibrating the solution
of Equation (2.1) to the average cell density profiles for all six different initial conditions. The right–most
column gives the doubling time, td = ln(2)/λ̄. Emin represents the minimum least-squares error. All
parameter estimates are given to two significant figures.

Initial number of cells D̄ (µm2/h) λ̄ (/h) td (h) Emin ((µm2/h)2)

10,000 310 ± 130 0.044 ± 0.005 15.75 1.8 × 10−6

12,000 250 ± 140 0.044 ± 0.002 15.75 1.3 × 10−6

14,000 720 ± 60 0.048 ± 0.001 14.44 1.5 × 10−6

16,000 570 ± 250 0.049 ± 0.003 14.15 1.6 × 10−6

18,000 760 ± 80 0.054 ± 0.003 12.84 1.9 × 10−6

20,000 1030 ± 200 0.064 ± 0.001 10.83 2.5 × 10−6
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Figure 2.4: (a)–(f) Error surface profiles, E(D,λ), for the Fisher–Kolmogorov model. The error surface profiles, E(D,λ), are constructed using 100 equally–spaced values
of D in 0 ≤ D ≤ 4000 µm2/h, and 50 equally–spaced values of λ in 0 ≤ λ ≤ 0.1 /h. The value of E(D,λ) in (a)–(f) is shown on the left–most colour bar. (g)–(l) Refined
estimates of E(D,λ) centered about the minima identified in (a)–(f) (white rectangle). The value of E(D,λ) in (g)–(l) is shown on the right–most colour bar. The location
of D̄ and λ̄ in each case is shown as a red square. Estimates of (D̄, λ̄) correspond to: (a) (320, 0.043), (b) (240, 0.043), (c) (730, 0.049), (d) (570, 0.049), (e) (730, 0.055), (f)
(1050, 0.063), (g) (310, 0.044), (h) (250, 0.044), (i) (720, 0.048), (j) (570, 0.049), (k) (760, 0.054), (l) (1030, 0.064). All parameter estimates reported in this caption are given to
two significant figures.
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Our estimates of D and λ in Table 2.1 show several interesting trends, the most obvious

being that we obtain very different estimates of D̄ and λ̄ for each initial condition. In

general, both D̄ and λ̄ increase with the initial density of cells. In particular, we have

an approximately 45% variation in λ̄ and an approximately 310 % variation in D̄ across

the different experiments with different initial conditions. Therefore, our estimates of D̄

appear to be more sensitive to variations in the initial density rather than λ̄. We note

that the estimates of D̄ and λ̄ are obtained by calibrating the solution of Equation (2.1)

to the average cell density profiles shown in Figure 2.3. In addition, we also calibrated the

solution of Equation (2.1) to each of the three individual cell density profiles from each

experimental replicate to provide three additional estimates of the cell diffusivity and the

cell proliferation rate for each initial density of cells. By calculating the sample standard

deviation from these additional estimates we also report, in Table 2.1, an estimate of the

variability in our estimates of D̄ and λ̄ between the three experimental replicates for each

different initial cell density. The variability in our estimates of D̄ and λ̄ between each

experimental replicate with the same initial density is much smaller than the variability

we observe between different experiments with different initial cell density.

To demonstrate the quality of match between the experimental data and the calibrated

solution the Fisher–Kolmogorov model, we superimpose, in Figure 2.5, the experimental

data and the calibrated solution of Equation (2.1) for each initial condition. For each of

the six different initial conditions we solve Equation (2.1) numerically setting D = D̄ and

λ = λ̄ using the values reported in Table 2.1. The quality of match between the calibrated

Fisher–Kolmogorov equation and the experimental data is excellent.
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Figure 2.5: Calibrated solutions of Equation (2.1) to the averaged cell density profiles. Results in (a)–(f) show the average cell density for experiments initiated with 10000,
12000, 14000, 16000, 18000 and 20000 cells per well. In each experiment profiles at t = 0, 12, 24, 36 and 48 h are shown. The solid lines correspond to the solution of Equation
(2.1) with the least squares estimates of D̄ and λ̄ from Table 2.1. All results correspond to K = 1.7× 10−3 cells/µm2 and the numerical solution of Equation (2.1) is obtained
with δx = 0.25 µm, δt = 0.2 h and ε = 10−5.
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Our approach of calibrating the Fisher–Kolmogorov model to each data set for the various

initial conditions separately reveals several important insights. For example, had we

followed a standard approach and studied just one initial condition (e.g. [76,77,100]), we

would have identified estimates of D and λ for which our numerical solution of Equation

(2.1) would match the experimental data extremely well. However, had another researcher

attempted to repeat our experiments and parameter estimation procedure, it is likely

that a small change in the initial density could lead to a large change in the estimates

of D̄ and λ̄. This is an important limitation since many cell migration assays neglect to

measure the initial density (e.g. [37,76,77,104]). Therefore, given the extreme sensitivity

of the experimental outcomes to the initial density, it is essential that the initial degree

of confluence ought to be measured and reported if the experiment is to be reproductive.

Our finding, that D̄ and λ̄ appear to depend on the initial density, implies that the

Fisher–Kolmogorov model does not apply to our experimental system. Since the Fisher–

Kolmogorov model has constant coefficients, an implicit assumption in the application

of this model is that D and λ are independent of the cell density. However, we find

that D̄ and λ̄ are very sensitive to the initial density. This motivates us to consider

what kind of additional mechanisms might be relevant. One particular criticism of the

Fisher–Kolmogorov model is that the linear diffusion term neglects to account for any

cell–to–cell adhesion effects [1,25,60,61,83]. It is of interest to note that our experimental

results imply that higher initial density leads to enhanced cell spreading (Figure 2.1).

This is inconsistent with the idea that cell–to–cell adhesion plays an important role in

our experiments, since larger initial cell densities would lead to more frequent cell–to–cell

collisions and adhesion would lead to a reduced collective spreading of the population. To

capture potential adhesive effects, many continuum models take the form of a nonlinear

diffusion mechanism where the cell diffusivity, D, is a decreasing function of C [1, 25, 60,

61, 83]. In contrast, our results imply that larger initial cell density is associated with

increased cell spreading. This motivates us to consider a model in which D is an increasing

function of C.

2.3.5 Porous–Fisher model

Although many studies have examined various theoretical aspects of extensions of the

traditional constant coefficient Fisher–Kolmogorov model (e.g. [22, 40, 43, 125, 126]), less

attention has been devoted to determining whether collective cell spreading is best mod-

elled using the constant coefficient Fisher–Kolmogorov model or a variable coefficient

generalisation of the Fisher–Kolmogorov model. We will now briefly survey the most rel-

evant studies that have begun to explore this question. Maini, McElwain and Leavesley

model the motion of the position of the cell front in an in vitro scratch assay using the

Fisher–Kolmogorov equation [76, 77]. Although they find that the Fisher–Kolmogorov

model is consistent with their experimental observations, they conclude by suggesting

that their analysis could be improved by considering the Porous–Fisher model in which
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the cell flux is governed by a nonlinear diffusion term D = D(C/K), so that the diffu-

sivity increases with C. Different with the Fisher–Kolmogorov model, the Porous–Fisher

model has a characteristic sharp front, which is suitable for scratch assays in which the

vacant area is clearly defined. Sherratt and Murray model the closure of a radial wound

using both the Fisher–Kolmogorov equation and the Porous–Fisher model [104]. Sher-

ratt and Murray find that both reaction–diffusion models can be used to replicate their

experimental observations [104]. Similarly, Sengers et al. collect data from two different

cell types in a series of in vitro cell spreading experiments and calibrate the solutions

of the Fisher–Kolmogorov and Porous–Fisher equations to their data [100]. Sengers et

al. find that the Fisher–Kolmogorov model fits the experimental data for one particular

cell line very well, whereas the Porous–Fisher model fits the experimental data for the

other cell line very well. This suggests that some cell lines might be best described by

the Fisher–Kolmogorov model while others might be best described by the Porous–Fisher

model. While these four previous studies are unique in that they directly compare the

relative performance of the Fisher–Kolmogorov and Porous–Fisher models, we note that

they did not consider the impact of varying the initial density of cells in their experimental

system [76,77,100,104].

We now calibrate the solution of the Porous–Fisher model to our data. For our work we

consider
∂C

∂t
= D

∂

∂x

[(
C

K

)
∂C

∂x

]
+ λC

[
1−

(
C

K

)]
, (2.3)

on 0 ≤ x ≤ 1900 µm. We impose the same initial and boundary conditions used in Section

3.4. The only difference between Equations (2.1) and (2.3) is the nonlinear diffusion

mechanism in Equation (2.3), where D = D(C/K). In particular, both models contain

the same two unknown parameters: D and λ.

To estimate D and λ in Equation (2.3) we followed a similar approach that we use when

working with Equation (2.1) by plotting E(D,λ), given by Equation (2.2), and restricting

the range of D and λ to be the same as before. The error surfaces in Figures 2.4 and

2.6 appear to be different. For example, the error surface in Figure 2.6(a) has a less

well defined minimum than the surface in Figure 2.4(a). The error surface in Figure

2.6(a) contains a valley–shaped region, parallel to the D–axis, whereas the surface in

Figure 2.4(a) does not. Regardless of this difference, we follow the same procedure used

previously to identify D̄ and λ̄ in Figure 2.6(a)–(f). We also refine our estimates by

identifying a subregion about the point (D̄, λ̄) in Figure 2.6(a)–(f) and plotting E(D,λ)

centered about this point in Figure 2.6(g)–(l). Estimates of D̄ and λ̄ from the refined

subregion in Figure 2.6(g)–(l) are given in Table 2.2.

Our estimates of λ̄ for the Porous–Fisher model are very similar to our estimates for the

Fisher–Kolmogorov model, and we observe a variation in λ̄ of approximately 49% between

the different initial conditions. We also observe a variation in our estimates of D̄ for the

Porous–Fisher model of approximately 130%, which is much smaller than the variation in

D̄ for the Fisher–Kolmogorov model. To demonstrate the quality of match between the
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experimental data and the solution the Porous–Fisher model we superimpose, in Figure

2.7, the experimental data and the solution of Equation (2.3) for each initial condition,

and in each case we solve Equation (2.3) numerically with D = D̄ and λ = λ̄ reported in

Table 2.2. The quality of match between the calibrated Porous–Fisher equation and the

experimental data is excellent.

Table 2.2: Estimates of D̄ and λ̄ for the Porous–Fisher model obtained by calibrating the solution of
Equation (2.3) to the average cell density profiles for all six different initial conditions. The right–most
column gives the doubling time, td = ln(2)/λ̄. Emin represents the minimum least-squares error. All
parameter estimates are given to two significant figures.

Initial number of cells D̄ (µm2/h) λ̄ (/h) td (h) Emin ((µm2/h)2)

10,000 1800 ± 1050 0.044 ± 0.005 15.75 1.6 × 10−6

12,000 1300 ± 930 0.043 ± 0.002 16.12 1.4 × 10−6

14,000 3000 ± 190 0.048 ± 0.001 14.44 1.1 × 10−6

16,000 2400 ± 990 0.049 ± 0.003 14.15 1.5 × 10−6

18,000 2800 ± 100 0.054 ± 0.004 12.84 2.3 × 10−6

20,000 2900 ± 620 0.064 ± 0.002 10.83 2.7 × 10−6
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Figure 2.6: (a)–(f) Error surface profiles, E(D,λ), for the Porous–Fisher model. The error surface profiles, E(D,λ), are constructed using 100 equally–spaced values of D in
0 ≤ D ≤ 4000 µm2/h and 50 equally–spaced values of λ in 0 ≤ λ ≤ 0.1 /h. The value of E(D,λ) in (a)–(f) is shown on the left–most colour bar. (g)–(l) Refined estimates of
E(D,λ) centered about the minimum identified in (a)–(f) (white rectangle). The value of E(D,λ) in (g)–(l) is shown on the right–most colour bar. The location of D̄ and λ̄ in
each case is shown as a red square. Estimates of (D̄, λ̄) correspond to: (a) (1800, 0.043), (b) (1300, 0.043), (c) (2900, 0.049), (d) (2300, 0.049), (e) (2800, 0.053), (f) (3000, 0.063),
(g) (1800, 0.044), (h) (1300, 0.043), (i) (3000, 0.048), (j) (2400, 0.049), (k) (2800, 0.054), (l) (2900, 0.064). All parameter estimates reported in this caption are given to two
significant figures.
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Figure 2.7: Calibrated solutions of Equation (2.3) to the averaged cell density profiles. Results in (a)–(f) show the average cell density (circles) for experiments initiated with
10000, 12000, 14000, 16000, 18000 and 20000 cells per well. In each experiment profiles at t = 0, 12, 24, 36 and 48 h are shown. The solid lines correspond to the solution of
Equation (2.3) with the least squares estimates of D and λ from Table 2.2. All results correspond to K = 1.7× 10−3 cells/µm2 and the numerical solution of Equation (2.3) is
obtained with δx = 0.25 µm, δt = 0.2 h and ε = 10−5.



Chapter 2. Reproducibility of scratch assays is affected by the initial degree
of confluence: Experiments, modelling and model selection

34

The question of whether our experimental data is best described by the Fisher–Kolmogorov

or the Porous–Fisher model is a delicate one. Since our estimates of D̄ and λ̄ for

the Porous–Fisher model are less sensitive to the initial density than for the Fisher–

Kolmogorov model, it appears that the Porous–Fisher model provides a better descrip-

tion of our experimental data. Although the Porous–Fisher model is preferable in this

regard, our parameter estimation procedure still implies that D̄ and λ̄ appear to depend

on the initial density of cells for the Porous–Fisher model, suggesting that further model

refinements could be warranted. Some previous studies suggest a further generalisation

of the Porous–Fisher model where the nonlinear diffusivity function is generalised to

D = D(C/K)m [43,104]. This means that setting m = 0 in the generalised Porous–Fisher

model corresponds to the Fisher–Kolmogorov model. We also calibrate solutions of the

Porous–Fisher model to our data with m = 1/2, 2, 3 and 4. The calibrated model provides

a poor match to the data with m = 2, 3 and 4, whereas we observe a good match with

m = 1/2 and m = 1. The variation in D̄ and λ̄ is smaller for m = 1 than for m = 1/2, and

therefore we conclude that the standard Porous–Fisher model with m = 1 outperforms

the generalised Porous–Fisher model with the other values of m that we consider (Sup-

plementary material). We also consider calibrating a model of chemokinesis to our data

(Supplementary material) and demonstrate that this kind of detailed, coupled model, also

has the potential to describe our experimental data.

2.4 Discussion

In this work we explore a previously overlooked source of variability which affects the

reproducibility of scratch assays. In a standard experiment, the initial degree of confluence

is neither measured or varied [7, 65]. To explore the significance of this, we perform a

suite of cell migration assays in which we deliberately vary the initial cell density. Our

results show that the rate of re–colonisation is extremely sensitive to the initial density.

Therefore, if a scratch assay is to be reproducible, the initial density must be measured

and reported.

To quantify the rate of cell migration and proliferation we use a cell counting procedure to

estimate the average cell density profiles and the carrying capacity density, K. Estimates

of D̄ and λ̄ are obtained by calibrating the Fisher–Kolmogorov model to the data for each

initial condition. The calibrated solutions of the Fisher–Kolmogorov model match the

experimental cell density profiles, for each initial condition, very well. However, comparing

estimates of D̄ and λ̄ for different initial conditions shows that different initial conditions

lead to very different estimates of D̄ and λ̄. In particular, λ̄ varies by approximately 45%

whereas D̄ varies by approximately 310% across our six different initial conditions. This

result is novel since previous studies have considered just one initial condition, and our

results show that this standard approach can give very misleading results.

Since our data implies that larger initial cell densities lead to enhanced migration, we

calibrate the Porous–Fisher model, with D(C) = D(C/K), to our data. This exercise
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shows that the Porous–Fisher model matches the evolution of each of our experiments

with estimates of D̄ and λ̄ that are less variable between experiments with different initial

conditions than the standard Fisher–Kolmogorov model, suggesting that the Porous–

Fisher model provides an improved match to our experimental data. To explore further

potential refinements, we also calibrated other reaction–diffusion models to the data,

but we found that these extensions offered no advantage over the Porous–Fisher model

(Supplementary material). Another feature of our analysis is that the error surfaces are

more sensitive to variations in λ than D. This could be associated with the way that

we have imaged and analysed the experiments. Most of the cells in the field of view are

associated with the dense unscratched regions where the dynamics of the experiments

are largely associated with proliferation rather than migration. This means that we

characterise D using data from the scratched region where the density is, by definition,

low, and hence more variable. This could explain why the error surfaces tend to be more

dependent on λ than D.

All of the extensions of the Fisher–Kolmogorov model that we consider deal with intro-

ducing more detail into the flux term of the reaction–diffusion model. We deliberately

choose to focus on the flux term because our estimates of D̄ are far more sensitive to vari-

ations in the initial condition than λ̄ in the proliferation term. In principle, it is possible

to examine other extensions where the proliferation term, λC(1−C/K), is generalised to

λCα(1− [C/K]β)γ , where α, β and γ are real positive constants [119]. We do not pursue

this idea here because the variation in λ̄ for the six different initial conditions is much

smaller compared to the variation in D̄.

In summary, our study reveals insights that have both experimental and mathematical

significance. From an experimental point of view, our results give a partial explanation

about why scratch assays are difficult to reproduce. We recommend that measurements of

the initial cell density must be reported when describing the outcomes of a scratch assay.

From a mathematical point of view we show that a standard approach of calibrating the

solution of the Fisher–Kolmogorov model to a scratch assay with a single initial condition

can produce misleading estimates of D̄ and λ̄. Since our estimates of D̄ and λ̄ appear

to depend on the initial cell density, we suggest that a refined version of this constant

coefficient model is warranted and we show that calibrating the Porous–Fisher model to

our data leads to an improved outcome in this regard.

The results in this study also raise a question, such that whether the information contained

within experiments is sufficient to accurately estimate the parameters that best represent

the cell characteristics. For example, starting with a very high initial cell density and

performing the experiment for a short period of time can lead to less accurate parameter

estimates. Therefore, when calibrating models to experiment data, we suggest that cell

density should be measured at smaller spatial and temporal intervals to obtain more

accurate parameter estimates. In addition, data of individual cell tracking with a small

temporal interval could provide more details of individual cell migration, which helps

identify the cell motility as a function of cell density and any bias in migration direction.
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2.5 Supplementary material

2.5.1 Generalised Porous–Fisher model

In addition to the standard Porous–Fisher model, we also consider a generalisation of the

Porous–Fisher model that can be written as,

∂C

∂t
= D

∂

∂x

[(
C

K

)m ∂C

∂x

]
+ λC

[
1−

(
C

K

)]
, (2.4)

where all terms are the same as in Section 2.3.5 except that we have an additional pa-

rameter m, which we take to be a positive constant [43]. Results in Section 2.3.5 describe

fitting the Porous–Fisher equation to the experimental data for m = 1. Since previous

studies have applied the Porous–Fisher model to experimental data for m = 4 [104], we

repeat the model calibration procedure outlined in the main paper for four additional

cases: m = 1/2, 2, 3 and 4.

Here, we treat the cases of m = 1/2, 2, 3 and 4 separately. Results from the model cali-

bration procedure are presented in Tables 2.3–2.6 and Figures 1 - 8, for m = 1/2, 2, 3 and

4, respectively. In general we find that increased values of m lead to a poorer quality of

match to the experimental data. Comparing our estimates of D̄ for m = 0 and 1 (Section

2.3.4 and 2.3.5) with the additional results here for the intermediate value of m = 1/2

shows that our estimates of D̄ vary by approximately 310% for the Fisher–Kolmogorov

model Section 2.3.4, approximately 130% for the Porous–Fisher model with m = 1 Section

2.3.5 and by approximately 190% for the generalized Porous–Fisher model with m = 1/2.

Therefore, from this point of view, the standard Porous–Fisher model with m = 1 out-

performs both the standard Fisher–Kolmogorov model with m = 0 and the generalised

Porous–Fisher model with m = 1/2. We do not consider any further values of m.
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Figure 2.8: (a)–(f) Error surface profiles, E(D,λ), for the generalised Porous–Fisher model with m = 1/2. The error surface profiles, E(D,λ), are constructed using 100
equally–spaced values of D in 0 ≤ D ≤ 4000 µm2/h and 50 equally–spaced values of λ in 0 ≤ λ ≤ 0.1 /h. The value of E(D,λ) in (a)–(f) is shown on the left–most colour bar.
(g)–(l) Refined estimates of E(D,λ) centered about the minimum identified in (a)–(f) (white rectangle). The value of E(D,λ) in (g)–(l) is shown on the right–most colour
bar. The location of D̄ and λ̄ in each case is shown as a red square. Estimates of (D̄, λ̄) correspond to: (a) (770, 0.043), (b) (610, 0.043), (c) (1500, 0.049), (d) (1200, 0.049), (e)
(1500, 0.053), (f) (1800, 0.063), (g) (780, 0.044), (h) (620, 0.043), (i) (1500, 0.048), (j) (1200, 0.049), (k) (1500, 0.054), (l) (1800, 0.064). All parameter estimates reported in this
caption are given to two significant figures.
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Table 2.3: Least–squares estimates of D̄ and λ̄ for the generalised Porous–Fisher model with m = 1/2.
All parameter estimates are given to two significant figures.

Initial number of cells D̄ (µm2/h) λ̄ (/h) td (h)

10,000 780 ± 340 0.044 ± 0.005 15.75

12,000 620 ± 410 0.043 ± 0.002 16.12

14,000 1500 ± 110 0.048 ± 0.002 14.44

16,000 1200 ± 530 0.049 ± 0.003 14.15

18,000 1500 ± 110 0.054 ± 0.004 12.84

20,000 1800 ± 370 0.064 ± 0.002 10.83
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Figure 2.9: Calibrated solutions of Equation (2.4) (m = 1/2) to the averaged cell density profiles. Results in (a)–(f) show the average cell density for experiments initiated
with 10000, 12000, 14000, 16000, 18000 and 20000 cells per well. In each experiment profiles at t = 0, 12, 24, 36 and 48 h are shown. The solid lines correspond to the solution
of Equation (2.4) (m = 1/2) with the least squares estimates of D and λ from Table 2.3. All results correspond to K = 1.7 × 10−3 cells/µm2 and the numerical solution is
obtained with δx = 0.25 µm, δt = 0.2 h and ε = 10−5.
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Figure 2.10: (a)–(f) Error surface profiles, E(D,λ), for the generalised Porous–Fisher model with m = 2. The error surface profiles, E(D,λ), are constructed using 100
equally–spaced values of D in 0 ≤ D ≤ 50000 µm2/h, and 50 equally–spaced values of λ in 0 ≤ λ ≤ 0.1 /h. The value of E(D,λ) in (a)–(f) is shown on the left–most colour
bar. (g)–(l) Refined estimates of E(D,λ) centered about the minima identified in (a)–(f) (white rectangle). The value of E(D,λ) in (g)–(l) is shown on the right–most colour
bar. The location of D̄ and λ̄ in each case is shown as a red square. Estimates of (D̄, λ̄) correspond to: (a) (8200, 0.043), (b) (5100, 0.043), (c) (10000, 0.049), (d) 6000, 0.049),
(e) (6900, 0.055), (f) (6600, 0.065), (g) (7900, 0.044), (h) (5000, 0.043), (i) (10000, 0.049), (j) (6100, 0.049), (k) (7000, 0.054), (l) (6700, 0.065). All parameter estimates reported
in this caption are given to two significant figures.
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Table 2.4: Least–squares estimates of D̄ and λ̄ for the generalised Porous–Fisher model with m = 2. All
parameter estimates are given to two significant figures.

Initial number of cells D̄ (µm2/h) λ̄ (/h) td (h)

10,000 7900 ± 4600 0.044 ± 0.005 15.75

12,000 5000 ± 3000 0.043 ± 0.002 16.12

14,000 10000 ± 1000 0.049 ± 0.001 14.15

16,000 6100 ± 3000 0.049 ± 0.003 14.15

18,000 7000 ± 500 0.054 ± 0.003 12.84

20,000 6700 ± 1700 0.065 ± 0.003 10.66
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Figure 2.11: Calibrated solutions of Equation (2.4) (m = 2) to the averaged cell density profiles. Results in (a)–(f) show the average cell density for experiments initiated
with 10000, 12000, 14000, 16000, 18000 and 20000 cells per well. In each experiment profiles at t = 0, 12, 24, 36 and 48 h are shown. The solid lines correspond to the solution
of Equation (2.4) (m = 2) with the least squares estimates of D and λ from Table 2.4. All results correspond to K = 1.7 × 10−3 cells/µm2 and the numerical solution is
obtained with δx = 0.25 µm, δt = 0.2 h and ε = 10−5.
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Figure 2.12: (a)–(f) Error surface profiles, E(D,λ), for the generalised Porous–Fisher model with m = 3. The error surface profiles, E(D,λ), are constructed using 100
equally–spaced values of D in 0 ≤ D ≤ 50000 µm2/h and 50 equally–spaced values of λ in 0 ≤ λ ≤ 0.1 /h. The value of E(D,λ) in (a)–(f) is shown on the left–most colour bar.
(g)–(l) Refined estimates of E(D,λ) centered about the minimum identified in (a)–(f) (white rectangle). The value of E(D,λ) in (g)–(l) is shown on the right–most colour bar.
The location of D̄ and λ̄ in each case is shown as a red square. Estimates of (D̄, λ̄) correspond to: (a) (25000, 0.043), (b) (13000, 0.043), (c) (23000, 0.049), (d) (16000, 0.049),
(e) (17000, 0.055), (f) (13000, 0.067), (g) (24000, 0.044), (h) (13000, 0.043), (i) (23000, 0.049), (j) (16000, 0.049), (k) (17000, 0.055), (l) (12000, 0.067). All parameter estimates
reported in this caption are given to two significant figures.
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Table 2.5: Least–squares estimates of D̄ and λ̄ for the generalised Porous–Fisher model with m = 3. All
parameter estimates are given to two significant figures.

Initial number of cells D̄ (µm2/h) λ̄ (/h) td (h)

10,000 24000 ± 18000 0.044 ± 0.005 15.75

12,000 13000 ± 11000 0.043 ± 0.002 16.12

14,000 23000 ± 6700 0.049 ± 0.001 14.15

16,000 16000 ± 8100 0.049 ± 0.004 14.15

18,000 17000 ± 1300 0.055 ± 0.004 12.60

20,000 12000 ± 3800 0.067 ± 0.003 10.35
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Figure 2.13: Calibrated solutions of Equation (2.4) (m = 3) to the averaged cell density profiles. Results in (a)–(f) show the average cell density for experiments initiated
with 10000, 12000, 14000, 16000, 18000 and 20000 cells per well. In each experiment profiles at t = 0, 12, 24, 36 and 48 h are shown. The solid lines correspond to the solution
of Equation (2.4) (m = 3) with the least squares estimates of D and λ from Table 2.5. All results correspond to K = 1.7 × 10−3 cells/µm2 and the numerical solution is
obtained with δx = 0.25 µm, δt = 0.2 h and ε = 10−5.
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Figure 2.14: (a)–(f) Error surface profiles, E(D,λ), for the generalised Porous–Fisher model with m = 4. The error surface profiles, E(D,λ), are constructed using 100
equally–spaced values of D in 0 ≤ D ≤ 50000 µm2/h and 50 equally–spaced values of λ in 0 ≤ λ ≤ 0.1 /h. The value of E(D,λ) in (a)–(f) is shown on the left–most colour bar.
(g)–(l) Refined estimates of E(D,λ) centered about the minimum identified in (a)–(f) (white rectangle). The value of E(D,λ) in (g)–(l) is shown on the right–most colour bar.
The location of D̄ and λ̄ in each case is shown as a red square. Estimates of (D̄, λ̄) correspond to: (a) (41000, 0.043), (b) (37000, 0.043), (c) (50000, 0.051), (d) (26000, 0.049),
(e) (31000, 0.055), (f) (19000, 0.069), (g) (40000, 0.043), (h) (36000, 0.043), (i) (51000, 0.052), (j) (25000, 0.049), (k) (30000, 0.056), (l) (18000, 0.069). All parameter estimates
reported in this caption are given to two significant figures.
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Table 2.6: Least–squares estimates of D̄ and λ̄ for the generalised Porous–Fisher model with m = 4. All
parameter estimates are given to two significant figures.

Initial number of cells D̄ (µm2/h) λ̄ (/h) td (h)

10,000 40000 ± 26000 0.043 ± 0.005 16.12

12,000 36000 ± 22000 0.043 ± 0.001 16.12

14,000 51000 ± 7200 0.052 ± 0.002 13.33

16,000 25000 ± 21000 0.049 ± 0.004 14.15

18,000 30000 ± 4700 0.056 ± 0.004 12.38

20,000 18000 ± 6200 0.069 ± 0.003 10.05
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Figure 2.15: Calibrated solutions of Equation (2.4) (m = 4) to the averaged cell density profiles. Results in (a)–(f) show the average cell density for experiments initiated
with 10000, 12000, 14000, 16000, 18000 and 20000 cells per well. In each experiment profiles at t = 0, 12, 24, 36 and 48 h are shown. The solid lines correspond to the solution
of Equation (2.4) (m = 4) with the least squares estimates of D and λ from Table 2.6. All results correspond to K = 1.7 × 10−3 cells/µm2 and the numerical solution is
obtained with δx = 0.25 µm, δt = 0.2 h and ε = 10−5.
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2.5.2 Chemokinesis model

Our experimental results suggest that larger initial numbers of cells lead to enhanced cell

spreading, and one way to model this kind of observation is to propose a more detailed

reaction–diffusion model whereby the migration of cells is coupled to the availability of

a growth factor which is produced by the cells. To demonstrate this kind of coupling we

consider the following multispecies chemokinesis model,

∂C

∂t
= D

∂

∂x

[(
G

Gmax

)
∂C

∂x

]
+ λC

[
1−

(
C

K

)]
, (2.5)

∂G

∂t
= Dg

∂2G

∂x2
+ αC − βG, (2.6)

where G(x, t) is the density of the growth factor, Gmax = αK/β is the maximum value

of the growth factor concentration, Dg is the diffusivity of the growth factor, α is the

rate at which cells produce growth factor, and β is the decay rate of growth factor. In

this model the diffusivity is an increasing function of the growth factor concentration,

D = D(G/Gmax). Since the monolayer of cells is very shallow, the concentration G(x, t)

is taken to be two–dimensional with dimensions of ng/µm2, which implies that the di-

mensions of α are ng/(cell h). Considering the cell monolayer is shallow comparing with

the dimension of the well plate, in this model we neglect the diffusion of the growth factor

along z axis.

The key difference between Equations (2.5)–(2.6) and Equation (2.4) is that in the

chemokinesis model the flux of cells is proportional to the concentration of the growth

factor whereas in the Porous–Fisher model the flux of cells is proportional to the density

of cells. Unfortunately, calibrating the solution of Equations (2.5)–(2.6) to the experi-

mental observations in Figure 2.3 is far more challenging than dealing with the Fisher–

Kolmogorov or Porous–Fisher models, since the chemokinesis model contains five un-

known parameters whereas the Fisher–Kolmogorov and Porous–Fisher models involve

just two. The difficulties associated with identifying the appropriate parameters in Equa-

tions (2.5)–(2.6) is further complicated by the fact that standard IncuCyte ZOOMTM

assays do not make any measurements regarding the spatial or temporal distribution of

putative growth factors [29]. Therefore, our ability to meaningfully calibrate this more

complicated model to our data is limited by the experimental protocol. Nonetheless, we

will attempt to demonstrate how the solution of Equations (2.5)–(2.6) could be relevant

to our experiment by comparing solutions of this model to our experimental data. To

proceed we do not attempt to calibrate the solution of Equations (2.5)–(2.6) to our data,

nor do we attempt to construct high–dimensional error surface plots of E(D,λ,Dg, α, β).

Instead, we proceed by making some fairly crude assumptions about the likely values

of the parameters. For example we set K = 1.7 × 10−3 cells/µm2 using our previous

measurements, and set λ = 0.05 /h by taking an average of the estimates of λ from

Table 2.1. Previous measurements of diffusivity values for growth factors suggest that

Dg = 5×105 µm2/h [84] and previous measurements of growth factor decay rates suggest

that β = 0.069 /h [113]. Therefore, with these values we attempt, by trial and error, to
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find estimates of D and α for which the solution of Equations (2.5)–(2.6) matches all the

data in Figure 2.3 for all six initial conditions.

We solve Equations (2.5)–(2.6) on 0 < x < 1900 µm, with zero flux boundary conditions

for both C(x, t) and G(x, t) at both x = 0 and x = 1900 µm. The initial condition for

Equation (2.5) was taken to be a linear interpolation of the data in Figure 2.3 at t = 0

h. Since we have no measurements of G(x, t) at any point in space or time, we must also

estimate G(x, 0). Since the diffusivity of growth factor is much faster than the diffusivity

of cells, we assume that the growth factor becomes steady much faster than the cell den-

sity profile and we set G(x, 0) = αC(x, 0)/β for the initial condition. Results in Figure

2.16 compare the solution of Equations (2.5)–(2.6) with D = 2530 µm2 /h and α = 1.78

ng/(cell h).
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Figure 2.16: Solutions of the chemokinesis model, Equations (2.5)–(2.6), superimposed on the averaged cell density profiles. Results in (a)–(f) show the average cell density
for experiments initiated with 10000, 12000, 14000, 16000, 18000 and 20000 cells per well. In each experiment profiles at t = 0, 12, 24, 36 and 48 h are shown. The solid lines
correspond to the solution of Equations (2.5)–(2.6) with K = 1.7× 10−3 cells/µm2, D = 2530 µm2 /h, λ = 0.05 /h, Dg = 5× 105 µm2/h, β = 0.0693 /h and α = 1.78 ng/(cell
h). The numerical solution of Equations (2.5)–(2.6) is obtained with δx = 0.25 µm, δt = 0.2 h and ε = 10−5.
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The match between the solution of Equations (2.5)–(2.6) and the experimental data is

reasonable given that we have attempted to fit all the experimental data for all six dif-

ferent initial conditions using a single reaction–diffusion model with constant coefficients.

Since standard IncuCyte ZOOMTM protocols make no attempt to measure the presence

or spatial distribution of any growth factors present in the experiment [29], it is not

reasonable for us to attempt to perform a detailed parameter estimation for Equations

(2.5)–(2.6). Instead, as a proof–of–concept, we can demonstrate that it is possible, in

principle, to select parameter values in Equations (2.5)–(2.6) for which this more compli-

cated reaction–diffusion model appears to provide a reasonable match to the experimental

data for all initial conditions. However, instead of claiming that Equations (2.5)–(2.6) is a

superior model to the simpler Fisher–Kolmogorov and Porous–Fisher models, it is worth-

while to recall that the chemokinesis model involves five unknown parameters meaning

that to use this kind of model with certainty we would, ideally, prefer to have additional

data describing some aspects of the growth factor dynamics. Unfortunately this kind of

additional data is never collected when using IncuCyte ZOOMTM zoom assays [29].

2.5.3 Relationship between the Fisher–Kolmogorov, Porous–Fisher

and Chemokinesis models

Although we have presented the Fisher–Kolmogorov, Porous–Fisher and Chemokinesis

models as being completely unrelated, these three models are, in fact, related to each

other and it is worthwhile to point out these relationships. The chemokinesis model,

given by Equations (2.5)–(2.6), is related to the standard Fisher–Kolmogorov model in

the limit of Dg/D � (βL2)/D � 1, where L is the width of the experimental window.

Additional numerical simulations (not shown) support this finding which suggests that

we can interpret the Fisher–Kolmogorov model as a limiting case the chemokinesis model.

Furthermore, the standard Porous–Fisher model, Equation (2.4) with m = 1, can also be

thought of as a limiting case of the chemokinesis model when (βL2)/D � Dg/D � 1.

Again, additional numerical simulations (not shown) support this argument. In addition,

we could use the three models to generate surrogate data with some random noise, to

investigate whether the estimated parameters can be fitted back for various initial cell

densities.



3 Logistic proliferation of cells in scratch assays is

delayed

A paper published in Bulletin of Mathematical Biology

Jin, W., Shah, E. T., Penington, C. J., McCue, S. W., Maini, P. K., & Simpson, M. J.

(2017). Logistic proliferation of cells in scratch assays is delayed. Bull. Math. Biol., 79,

1028–1050.

Abstract

Scratch assays are used to study how a population of cells re–colonises a vacant region on

a two–dimensional substrate after a cell monolayer is scratched. These experiments are

used in many applications including drug design for the treatment of cancer and chronic

wounds. To provide insights into the mechanisms that drive scratch assays, solutions of

continuum reaction–diffusion models have been calibrated to data from scratch assays.

These models typically include a logistic source term to describe carrying capacity-limited

proliferation, however the choice of using a logistic source term is often made without

examining whether it is valid. Here we study the proliferation of PC-3 prostate cancer

cells in a scratch assay. All experimental results for the scratch assay are compared with

equivalent results from a proliferation assay where the cell monolayer is not scratched.

Visual inspection of the time evolution of the cell density away from the location of the

scratch reveals a series of sigmoid curves that could be naively calibrated to the solution

of the logistic growth model. However, careful analysis of the per capita growth rate as

a function of density reveals several key differences between the proliferation of cells in

scratch and proliferation assays. Our findings suggest that the logistic growth model is

valid for the entire duration of the proliferation assay. On the other hand, guided by data,

we suggest that there are two phases of proliferation in a scratch assay; at short time we

have a disturbance phase where proliferation is not logistic, and this is followed by a growth

phase where proliferation appears to be logistic. These two phases are observed across

a large number of experiments performed at different initial cell densities. Overall our

study shows that simply calibrating the solution of a continuum model to a scratch assay

might produce misleading parameter estimates, and this issue can be resolved by making

a distinction between the disturbance and growth phases. Repeating our procedure for

53
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other scratch assays will provide insight into the roles of the disturbance and growth

phases for different cell lines and scratch assays performed on different substrates.

3.1 Background

Understanding population dynamics is a fundamental question that has wide relevance

to many biological and ecological processes. For example, the rate of spatial spreading

of invasive species through different ecosystems is driven, in part, by the population dy-

namics and rates of growth of the invasive species [69,82,123]. Population dynamics and

population growth are also central to understanding the spread of infectious diseases. For

example, the spread of Wolbachia into wild mosquito populations is thought to reduce

a wide range of diseases, and the spatial spreading of the mosquito population is partly

driven by the population dynamics of the mosquito population [16]. Similar ideas also

apply to the spreading of tumour cells and the progression of cancer, which is related to

the rates of proliferation of invasive cancer cells [4, 78, 92]. Therefore, improving our un-

derstanding of population dynamics by calibrating mathematical models to experimental

observations of population dynamics is of great interest.

In vitro scratch assays are routinely used to study the ability of cell populations to re–

colonise an initially–vacant region [65,71,115,118]. This re–colonisation occurs as a result

of the combination of cell migration and cell proliferation, and gives rise to moving fronts

of cells that re–colonise the vacant region. Scratch assays provide insights into both cancer

spreading and tissue repair processes [65, 76, 77]. In general, performing a scratch assay

involves three steps: (i) growing a monolayer of cells on a two–dimensional substrate; (ii)

creating a vacant region in the monolayer by scratching it with a sharp–tipped instrument;

and, (iii) imaging the re–colonisation of the scratched region [65, 71]. Another type of in

vitro assay, called a proliferation assay, is performed using the exact same procedure as

a scratch assay, except that the monolayer of cells is not scratched [56, 111, 118]. Cell

proliferation assays allow experimentalists to measure the increase in cell numbers over

time due to proliferation [118].

In the applied mathematics literature, scratch assays have been modelled using continuum

reaction–diffusion equations [14, 49, 54, 76, 77, 98, 100, 102, 103, 106]. In these models, cell

migration is represented by a diffusion term, and carrying–capacity limited proliferation is

represented by a logistic source term. For proliferation assays in which the cell population

is uniformly distributed and no scratch is made, the continuum reaction–diffusion equation

simplifies to the logistic growth equation [14,54,111], given by

dC(t)

dt
= λC(t)

(
1− C(t)

K

)
, (3.1)

where C(t) > 0 is the density of cells, t is time, λ > 0 is the proliferation rate, and K > 0

is the carrying capacity density.
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It is interesting to note that a logistic growth term is often used when modelling scratch

assays or proliferation assays [14,49,54,76,77,98,100,118], yet the suitability of this choice

is rarely, if ever, tested using experimental data. In fact, several studies argue that the

logistic growth equation does not always match experimental data [66, 97, 124, 130]. For

example, Laird examines in vivo tumour growth data and shows that the standard logistic

model does not match experimental data [66]. Similarly, Sarapata and de Pillis find that

the logistic growth model does not always match experimental tumour growth data [97].

West and coworkers investigate the growth patterns of a wide range of animal models [124].

By comparing experimental data with model predictions, they suggest that the growth is

not logistic, and is better described by a more general model. In addition, the results from

our previous study, focusing on scratch assays, suggest that when calibrating solutions of

a logistic–type reaction–diffusion equation to experimental data with varying initial cell

density, there appears to be no unique value of λ for which the logistic growth equation

matches the entire data set for all initial cell densities [49]. One way of interpreting this

result is that the cells in the scratch assay do not proliferate logistically.

In the present work, we use a combined experimental and mathematical approach to

investigate whether the proliferation of cells in a scratch assay can be modelled with

the classical logistic equation. Our approach involves performing a series of proliferation

assays to act as a control so that we can examine whether the process of scratching

the monolayer affects the way that cells proliferate. While many experimental studies

implicitly assume that scratching the monolayer does not affect cell proliferation, others

suggest the process of scratching can trigger certain signalling pathways that may have

some effects on the way that cells proliferate [85, 86]. To investigate these questions, we

perform a suite of scratch assays and proliferation assays using the IncuCyte ZOOMTM

system [54]. For both types of assays, we use the PC–3 prostate cancer cell line [57], and

we consider varying the initial seeding condition so that we can examine the influence of

varying the initial cell density.

To quantitatively test the suitability of the logistic growth model, we extract cell density

information from the experimental images and then estimate the per capita growth rates

from the data for both the scratch assays and the proliferation assays. Our results show

that the evolution in cell density in the proliferation assays appears to be logistic for the

entire duration of the experiment. In contrast, the variation in cell density in the scratch

assays is very different. We observe two phases in the scratch assays: (i) a disturbance

phase at early time, in which the proliferation of cells is not logistic; and, (ii) a classic

logistic growth phase for the remainder of the experiment. These two phases are observed

in all of our experiments, across a wide range of initial cell densities. The differences

how cells proliferate in the scratch assay and the proliferation assay is surprising because

we are making observations well away from the location of the scratch. This finding

that we have two phases of proliferation in scratch assays is significant because many

mathematical studies implicitly assume that cells in scratch assays proliferate logistically

for the entire duration of the experiment [14, 49, 54, 76, 77, 98, 100, 118]. However, our
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finding is that cells located far away from the scratch proliferate very differently to cells

in the proliferation assay.

This manuscript is organised in the following way. First, we describe the experimental

methods, including how we process the experimental images to obtain cell density in-

formation. We then outline the logistic growth model and the least–squares method for

calibrating the model to our data. By presenting information about the evolution of the

cell density and the per capita growth rate, we identify two phases of proliferation in the

scratch assays. These phases are identified by focusing on regions of the scratch assay

that are located well behind the location of the scratch. After calibrating the solution

of the logistic model to the cell density information, our results suggest that the logistic

equation is relevant for the proliferation assays but only for the later phase in the scratch

assays. We conclude this study by discussing some of the limitations, and we outline some

extensions for future work.

3.2 Methods

3.2.1 Experimental Methods

We perform scratch assays and proliferation assays using the IncuCyte ZOOMTM live cell

imaging system (Essen BioScience, MI USA). All experiments are performed using the

PC–3 prostate cancer cell line [57]. These cells, originally purchased from American Type

Culture Collection (Manassas, VA, USA), are a gift from Lisa Chopin (April, 2016). The

cell line is used according to the National Health and Medical Research Council (NHMRC)

National statement on ethical conduct in human research with ethics approval for Queens-

land University of Technology Human Research Ethics Committee (QUT HREC 59644,

Chopin). Cells are propagated in RPMI 1640 medium (Life Technologies, Australia) with

10% foetal calf serum (Sigma–Aldrich, Australia), 100 U/mL penicillin, and 100 µg/mL

streptomycin (Life Technologies), in plastic tissue culture flasks (Corning Life Sciences,

Asia Pacific). Cells are cultured in 5% CO2 and 95% air in a Panasonic incubator (VWR

International) at 37 oC. Cells are regularly screened for Mycoplasma (Nested PCR using

primers from Sigma–Aldrich).

Cell counting is performed using a Neubauer–improved haemocytometer (ProSciTech,

Australia). Cells, grown to approximately 80% confluence, are removed from the flask

using TrypLETM (Life Technologies) in phosphate buffered saline (pH 7.4) and resus-

pended in culture medium ensuring that they are thoroughly mixed. After resuspension,

an aliquot of 10 µL is quickly removed before the cells start to settle. A 1:1 mixture of

cell suspension and 0.4% trypan blue solution (Sigma–Aldrich; a blue stain that is only

absorbed by dead cells) is prepared and 10 µL of the solution is loaded onto the counting

chamber of a clean Neubauer–improved haemocytometer. The counting chamber of a

haemocytometer is delineated by grid lines that identify four chamber areas to be used

in cell counting. The volume of the chamber area is 1×104 mL. Using a microscope, each
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chamber area is viewed, and the live cells that are not coloured in blue are counted. The

cell density is calculated by taking the average of the four readings and multiplying it by

104 and the dilution factor, to obtain the approximate number of cells per mL of the cell

suspension [74].

For the proliferation assays, the cell count is determined and the cells are seeded at

various densities in 96–well ImageLock plates [29]. Cells are distributed in the wells of

the tissue culture plate as uniformly as possible. We report results for initial seeding

densities of approximately 12,000, 16,000 and 20,000 cells per well. After seeding, cells

are grown overnight to allow for attachment and some subsequent growth. The plate is

placed into the IncuCyte ZOOMTM apparatus, and images are recorded every two hours

for a total duration of 48 hours. An example of a set of experimental images from a

proliferation assay is shown in Figure 1(a)–(c). For each initial seeding condition we

perform 16 identically prepared experimental replicates (n = 16).

For the scratch assays, the cell count is determined and the cells are seeded at various

densities in 96–well ImageLock plates different with the proliferation assays [29]. Cells

are distributed in the wells of the tissue culture plate as uniformly as possible. We report

results for initial seeding densities of approximately 12,000, 16,000 and 20,000 cells per

well. After seeding, cells are grown overnight to allow for attachment and some subsequent

growth. We use a WoundMakerTM to create uniform scratches in each well of a 96–well

ImageLock plate [29]. To ensure that all cells are removed from the scratched region,

a modification is made to the manufacturer’s protocol, where the scratching motion is

repeated 20 times over a short duration before lifting the WoundMakerTM. After creating

the scratch, the medium is aspirated and the wells are washed twice with fresh medium

to remove any cells from the scratched area. Following the washes, 100 µL fresh medium

is added to each well and the plate is placed into the IncuCyte ZOOMTM apparatus.

Images of the collective cell spreading are recorded every two hours for a total duration

of 48 hours. An example of a set of experimental images taken from a scratch assay is

shown in Figure 3.1(d)–(f). For each initial seeding condition we perform 16 identically

prepared experiments in different wells of the tissue culture plate (n = 16). Throughout

this work we will refer to these identically prepared experiments in different wells as

different replicates.
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Figure 3.1: Experimental images. (a)–(c) A summary of IncuCyte ZOOMTM experiments for proliferation assays. (d)–(f) A summary of IncuCyte ZOOMTM experiments
for scratch assays. Images show both types of experiments initiated with 16,000 cells per well. The time at which the image is recorded is indicated on each subfigure, and
the scale bar (red line) corresponds to 300µm. The image in (d), at t = 0 hours, shows the approximate location of the position of the leading edges (dashed green). (g)–(i)
To quantify the cell density profile, two rectangles of width 200µm, are superimposed on the experimental image as shown in (g). Manual cell counting is used to estimate
the number of cells in each subregion, and these estimates are converted into an estimate of cell density in these regions at two–hour intervals during the first 18 hours of
the experiment, and then at six–hour intervals during the remaining 30 hours of the experiment. To count individual cells we zoom in to focus on certain subregions, such as
shown in (h), which corresponds to the yellow rectangle highlighted in (g). Using the counting features in Adobe Photoshop [3], we identify individual cells and place a unique
marker on each cell (red disk), as shown in (h). After each image is processed in this way we have identified the total number of cells in the two subregions in the image, as
shown in (i), and then we convert these estimates of cell numbers into an estimate of cell density.
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3.2.2 Experimental Image Processing

New experimental data are generated for this study. To obtain cell density information

from the experimental images, we count the number of cells in two identically sized

subregions that are well behind the location of the scratch, as shown in Figure 3.1(g).

The positions of the two subregions are located about 400 µm behind the scratch, and

each subregion has dimensions 1430 µm × 200 µm. Throughout this work, we refer to

the subregion to the left of the image as subregion 1, and the subregion to the right of the

image as subregion 2. Because the subregions are located well away from the scratched

region, we are able to invoke a simplifying assumption that the dynamic changes in cell

density in these subregions is due to cell proliferation alone (Supplementary material) [54].

We do not use data that are directly adjacent to the left or right sides of the images since

this corresponds to the boundary of the field of view. Cells in each subregion are counted

in Photoshop using the ‘Count Tool’ [3]. After counting the number of cells in each

subregion, we divide the total number of cells by the total area to give an estimate of the

cell density. We repeat this process for each replicate and calculate the sample mean of

the cell density at two–hour intervals during the first 18 hours of the experiment where the

most rapid temporal changes take place. Then, during the last 30 hours of the experiment,

we count cells at six–hour intervals.

One of the assumptions we make when analysing data from the scratch assay is that

the two subregions are sufficiently far away from the edges of the scratch so that there

are no spatial variations in cell density at these locations for the entire duration of the

experiment. This assumption allows us to attribute any changes in cell density in the

subregions to be a result of cell proliferation [54]. Quantitative evidence to support this

assumption is provided in the Supplementary material.

3.2.3 Mathematical Methods

The logistic growth equation, given by Equation (3.1), has an exact solution

C(t) =
KC(0)

(K − C(0)) e−λt + C(0)
, (3.2)

which is a sigmoid curve that monotonically increases from the initial density C(0) to K

as t → ∞. An important feature of the logistic growth model that we will make use of

in this study is that the per capita growth rate, (1/C)(dC/dt) = λ(1− C/K), decreases

linearly with C.

We estimate the two parameters in the logistic growth model, λ and K, by minimising

a least–squares measure of the discrepancy between the solution of the logistic growth
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equation and the average cell density information in our subregions that are located far

away from the scratched region. The least–squares error is given by

E(λ,K) =

I∑
i=1

[
Cmodel(ti)− Cdata(ti)

]2
, (3.3)

where i is an index that indicates the number of time points used from the experimental

data sets and I is the total number of time points used in the calibration procedure. We

calibrate the solution of the logistic growth equation to the average cell density infor-

mation using the MATLAB function lsqcurvefit [79] that is based on the Levenberg–

Marquardt algorithm. For notational simplicity we denote the minimum least–squares

error as Emin = E
(
λ̄, K̄

)
. Each time we use the MATLAB function lsqcurvefit, we

always check that the least–squares estimates of λ̄ and K̄ are independent of the initial

estimate that is required for the iterative algorithm to converge.

3.3 Results

3.3.1 Quantitative assessment of experiments

Initial cell density

Many previous studies that calibrate solutions of mathematical models to experimen-

tal data from proliferation or scratch assays make use of just one initial density of

cells [14,76,77,118]. To provide a more thorough investigation of the suitability of various

mathematical models, we calibrate mathematical models to a suite of experimental data

where the initial density of cells is intentionally varied [49]. To achieve this, our experi-

mental procedure involves placing a different number of cells into each well of the tissue

culture plate. We describe this as varying the initial seeding condition. In this work we

consider three different initial seeding conditions that correspond to placing either: (i)

12,000; (ii) 16,000; or, (iii) 20,000 cells per well. For brevity, we refer to these three

conditions as initial seeding conditions 1, 2 and 3, respectively.

After a particular number of cells are placed into the tissue culture plate, the cells are

incubated overnight to allow them to attach to the plate and begin to proliferate. The

experiments are then performed on the following day. Since the cell density changes

overnight, we will refer to the initial density of cells at the beginning of the experiment

on the following day, as the initial cell density. Therefore the cell population in the

experimental images at t = 0 is associated with the initial cell density. Intuitively, we

expect that the initial cell density in proliferation assays will be greater than the cell

density associated with the initial seeding condition, because the cells have had a period

of time to attach and begin to proliferate.

Before we examine the temporal evolution of cell density in our experiments, we first exam-

ine the variability in the initial cell densities amongst our various experimental replicates.
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This is essential, since the process of placing either 12,000, 16,000 or 20,000 cells in each

well of the tissue culture place is, at best, an approximation. To quantify the variability

in the initial cell density, we count the number of cells in the two subregions, as shown in

Figure 3.1(g), and convert these counts into an estimate of the initial cell density, C(0).

We repeat this procedure for both the proliferation and scratch assays, giving a total of

96 individual estimates of the initial cell density. These 96 estimates of the initial cell

density are reported in Figure 3.2, revealing three features:

1. In general, those experiments initiated with a higher number of cells per well lead

to a higher initial cell density after the overnight attachment and proliferation has

taken place;

2. Within each initial seeding condition, the variability in initial cell density for the

proliferation assays is very similar to the variability in initial cell density for the

scratch assays; and,

3. There is a large variation in the initial cell density within each initial seeding con-

dition.

Of these three features, the variation in the initial cell density within each initial seeding

condition is very important. For example, the highest recorded initial cell density for

initial seeding condition 1 (12,000 cells per well) is greater than the smallest recorded

initial cell density for initial seeding condition 3 (20,000 cells per well). This means that

we ought to take great care when selecting particular experimental replicates from the 96

data sets in Figure 3.2, otherwise our results could be misleading when we try to examine

how the results depend on the initial cell density.

We select three replicates from each initial seeding condition for both the proliferation

and scratch assays so that the initial cell density for the initial seeding condition 3 is

greater than the initial cell density for the initial seeding condition 2, which is greater

than the initial cell density for the initial seeding condition 1. Furthermore, we select

three replicates for both the proliferation and scratch assays from each initial seeding

condition. These choices are made so that the initial cell density for each type of assay

is approximately the same within each seeding condition. To satisfy these constraints we

choose three replicates from each set of 16 experimental replicates. The selected replicates

are indicated in Figure 3.2.



C
h
a
p
ter

3
.

L
o
g
istic

p
ro

lifera
tio

n
o
f

cells
in

scra
tch

a
ssay

s
is

d
elay

ed
6
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
×10-3

1

2

3

In
iti

al
 s

ee
di

ng
 c

on
di

tio
n

Scratch assay
Proliferation assay

Cell density (cells/     µm2)
Figure 3.2: Variation of initial cell densities. Initial cell densities in the 96 replicates of proliferation and scratch assays. Results for the three different initial seeding
conditions are shown. Initial seeding condition 1 corresponds to 12,000 cells per well; initial seeding condition 2 corresponds to 16,000 cell per well; and initial seeding condition
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comparing the spread of estimates of cell density on the horizontal axis. Each blue square represents an individual replicate of the proliferation assay, and each red circle
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Cell density information

Using the previously identified three experimental replicates for each type of assay and

each initial seeding condition (Figure 3.2), we plot the evolution of the cell density as

a function of time for each experimental replicate, as shown in Figure 3.3. We also

superimpose, in Figure 3.3, the evolution of the average cell density for each type of

assay and each initial seeding condition. We see that the differences in initial density

between the proliferation assay and the scratch assay are minimal. The most obvious

trend in the data is that the cell density in both the proliferation assay and the scratch

assay increases dramatically with time, regardless of the initial condition. It is worth

emphasizing that seeding condition 1 involves a relatively small initial cell density, whereas

seeding conditions 2 and 3 are not particularly small. For example, the initial cell density

for initial seeding condition 3 is approximately equal to the cell density for initial seeding

condition 1 after a period of 24 hours has elapsed. Therefore our experimental design

allows us to make a clear distinction between the effects of small cell density, which would

appear more strongly and for longer in initial seeding condition 1 than initial seeding

condition 3, and the effects of early time, which would appear equally in all three initial

seeding conditions. We return to this issue later. It is also worth noting that for in vitro

experiments it is difficult to maintain cells for a long period of time [71]. Therefore, in

Figure 3.3 the cell density does not reach a constant level within the time frame of the

experiment, especially for those with lower initial cell densities.

We note that it could be possible to calibrate the solution of Equation (3.1) to any of the

density curves in Figure 3.3, and this approach has been widely used [14, 111, 116, 118].

However, there is no guarantee that simply fitting the solution of the logistic equation to

this kind of data means that the logistic model describes the underlying mechanism [112].

To provide further insight into whether the logistic model applies to these data, we re-

interpret the data in terms of the per capita growth rate.
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Figure 3.3: Temporal evolution of cell density. Results in (a)–(f) correspond to proliferation and scratch assays initiated with 12,000 (initial seeding condition 1); 16,000
(initial seeding condition 2); and, 20,000 (initial seeding condition 3) cells per well, as indicated. Cell density profiles are shown at two–hour intervals during the first 18 hours,
and at six–hour intervals during the remaining 30 hours of the experiment. For each experiment, we report results for three identically prepared experimental replicates, and
the average of these three data sets is also shown.
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3.3.2 Per capita growth rate

To estimate the per capita growth rate, (1/C)(dC/dt), we use the cell density data in

Figure 3.3 to estimate dC/dt using a finite difference approximation. Our estimate of

dC/dt at the first and last time points is obtained using a forward and backward difference

approximation, respectively, while our estimates at all other time points are obtained using

an appropriate central difference approximation [17]. With these estimates, we plot the

per capita growth rate as a function of the density in Figure 3.4. Results are shown for

both proliferation and scratch assays, for the three initial densities considered.

To interpret our results, it is instructive to recall that the data in Figure 3.3 show that

the cell density, in each type of experiment for all three initial densities of cells, increases

with time. Therefore, when we interpret each plot showing the per capita growth rate as

a function of density in Figure 3.4, it is useful to recall how the data in these plots vary

with time during the experiment. Data for smaller values of C in each subfigure in Figure

3.4 correspond to the early part of the experiment, and hence small t. In contrast, data

for larger values of C in each subfigure in Figure 3.4 correspond to the latter part of the

experiment, and hence larger t.

If the logistic growth model is valid, then we expect that the per capita growth rate will be

a linearly decreasing function of the density. In contrast, other kinds of carrying-capacity

limited growth models, such as the Gompertz law, imply a non-linear relationship [66].

Visual inspection the per capita growth rate data in Figure 3.4 reveals several trends:

1. The relationship between the per capita growth rate and the density in the prolifer-

ation assay is very different to the relationship between the per capita growth rate

and the density in the scratch assay;

2. The relationship between the per capita growth rate for each proliferation assay,

at each initial seeding condition, appears to be reasonably well approximated by a

linearly decreasing function of density; and,

3. The relationship between the per capita growth rate for each scratch assay is more

complicated, with the per capita growth rate increasing with density when the

density is small, and then decreasing with density when the density is sufficiently

large.

These observations suggest that the proliferation of cells in the scratch assay is very

different to the proliferation of cells in a proliferation assay. Because we are examining

the proliferation of cells that are located well away from the scratch, this result implies

that the process of scratching the monolayer can induce non-local effects.

Instead of relying on visual interpretation alone, we now attempt to match the per capita

growth rate data and the logistic growth model by fitting a series of straight lines to

the averaged per capita growth rate data using lsqcurvefit [79]. Results in Figure

3.5 show the least–squares straight line and the coefficient of determination for each
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data set. Results for the proliferation assay (Figure 3.5(a), (c) and (e)) suggest that

the putative linear relationship is reasonable since our straight lines have negative slope

and the coefficient of determination is reasonably high (R2 = 0.50 − 0.87). In contrast,

results for the scratch assay (Figure 3.5(b), (d) and (f)) show that the least–squares

linear regression is a poor match to the data with a very low coefficient of determination

(R2 = 0.04 − 0.16). Indeed, the least–squares straight lines in Figure 3.5(b) and (f) are

particularly troublesome since they have a positive slope which is biologically unrealistic,

suggesting that the quantity λ/K is negative. Therefore, it is clear that the per capita

growth data for the scratch assays does not follow a linearly decreasing straight line for

the entire duration of the experiment, and the commonly–invoked logistic model does not

appear to match these data at all.

The fact that we observe two very different trends in the per capita growth rate data for

the scratch assay motivates us to conjecture that the proliferation of cells in the scratch

assay, far away from the location of the scratch, takes place in two phases. The first phase,

which occurs at early time, involves the per capita growth rate increasing with density.

This trend is the opposite of what we expect if the logistic growth model is valid and

not what we observe in the proliferation assay. The second phase, which occurs at later

time, involves the per capita growth rate decreasing with the density. These two phases

occur consistently across all three initial seeding conditions (Figure 3.4(b), (d) and (f)).

A schematic illustration of the differences observed between the per capita growth rate in

the scratch assay and the proliferation assay is given in Figure 3.6. In this schematic, we

refer to the first phase in the scratch assay as the disturbance phase, and the second phase

in the scratch assay as the growth phase. The per capita growth data in the proliferation

assay appear to be similar to the growth phase of the scratch assay for the entire duration

of the experiment.

In the schematic (Figure 3.6), we suggest that the relationship between the per capita

growth rate and the density during the growth phase is a linearly decreasing function,

which is consistent with the logistic model. To quantitatively examine whether this as-

sumption is valid for our data set we now construct a series of least–squares straight lines

to our averaged per capita growth rate data during the growth phase. To examine this

question, we need to quantitatively distinguish between the end of the first phase and

the beginning of the second phase. We separate the data in Figure 3.5(b), (d) and (f)

into two groups, the disturbance phase for t < 18 hours, and the growth phase for t > 18

18 hours. To examine whether the data in the growth phase appear to be logistic we

determine the least–squares linear relationship using lsqcurvefit [79] for the data in

the growth phase. This least–squares straight line is superimposed on the averaged data

for t ≥ 18 hours in Figure 3.7(b), (d) and (f). Again, a visual comparison of the match

between the linear regression and the data in the growth phase, and the much higher

values of coefficient of determination (R2 = 0.75− 0.91) suggest that the putative linear

relationship is reasonable.
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In summary, we have used the per capita growth rate information in Figure 3.4 to make

a distinction between the disturbance phase and the growth phase in the scratch assay.

These differences are highlighted in the schematic in Figure 3.6. Furthermore, guided

by the observed relationship between the per capita growth rate and the density in the

proliferation assay we assume that the logistic growth model applies and fit a straight

line to the per capita growth rate data and find that the match between the data and

the straight line appears to be reasonable. Similarly, we assume that the logistic growth

model applies to the growth phase in the scratch assay, for t ≥ 18 hours. Fitting a straight

line to the per capita growth data suggests that the logistic growth model is reasonable

in the growth phase for the scratch assay. Now that we have used the per capita growth

rate data to identify the disturbance and growth phases in the scratch assay, as well as

providing evidence that cells proliferate logistically in the growth phase, we re–examine

the cell density profiles with a view to estimating λ and K.
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Figure 3.4: Per capita growth rates as a function of cell density. Results in (a)–(f) correspond to proliferation and scratch assays initiated with 12,000 (initial seeding condition
1); 16,000 (initial seeding condition 2); and, 20,000 (initial seeding condition 3) cells per well, as indicated. Per capita growth rate data is calculated using the data in Figure
3.3. For each experiment, we report results for three identically prepared experimental replicates, and the average of these three experimental replicates is also shown.
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Figure 3.5: Least–squares straight line fit to per capita growth rate data for the entire duration of the experiment. Results in show the average per capita growth rate data
as a function of density for both proliferation and scratch assays initiated with 12,000 (initial seeding condition 1); 16,000 (initial seeding condition 2); and, 20,000 (initial
seeding condition 3) cells per well, as indicated. Black dots correspond to averaged data for the entire duration of the experiment. Solid lines show the least–squares linear
relationship between the averaged per capita growth rate and averaged density, with R2 indicating the coefficient of determination.



C
h
a
p
ter

3
.

L
o
g
istic

p
ro

lifera
tio

n
o
f

cells
in

scra
tch

a
ssay

s
is

d
elay

ed
7
0

C

0

(1
/C

)(
dC

/d
t)

K

Scratch assay

C

0

(1
/C

)(
dC

/d
t)

K

Proliferation assay
Growth phase

)b()a(

Disturbance phase
Growth phase

Figure 3.6: Schematic illustration of the differences between the proliferation and scratch assays. (a) Schematic showing the per capita growth rate as a function of density for
the proliferation assays. (b) Schematic of the per capita growth rate for the scratch assays illustrating two phases of proliferation. The solid blue line indicates the disturbance
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time.
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Figure 3.7: Straight line fit to per capita growth rates in the growth phase. Results in (a)–(f) show the average per capita growth rate data as a function of density for both
proliferation and scratch assays initiated with 12,000 (initial seeding condition 1); 16,000 (initial seeding condition 2); and, 20,000 (initial seeding condition 3) cells per well,
as indicated. Green dots correspond to averaged data in the growth phase (Figure 3.5), and blue dots correspond to averaged data in the disturbance phase (Figure 3.5). The
solid lines show the least–squares linear relationship between the averaged per capita growth rate and averaged density, with R2 indicating the coefficient of determination.
The least–squares straight line is constructed using data from 0–48 hours in the proliferation assays, and using data from 18–48 hours in the scratch assays.
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3.3.3 The logistic growth model

To calibrate the logistic growth model to our data from the proliferation assay, we match

the solution of Equation (3.1) to the averaged data in Figure 3.3(a), (c) and (e) over

the entire duration of the experiment, 0 ≤ t ≤ 48 hours. To calibrate the logistic growth

model to our data from the scratch assay, accounting for the differences in the disturbance

and growth phases, we match the solution of Equation (3.1) to the averaged data in Figure

3.3(b), (d) and (f) during the growth phase only, 18 ≤ t ≤ 48 hours. This provides us

with six estimates of λ̄ and K̄. To demonstrate the quality of the match between the

experimental data and the calibrated logistic model, we superimpose the experimental

data and Equation (3.2) with λ = λ̄ and K = K̄, for each initial seeding condition and

for both assays in Figure 3.8. These results show that the quality of match between the

solution of the calibrated model and the experimental data is excellent. Our estimates of

λ and K are summarised in Tables 3.1 and 3.2 for the proliferation assay and the scratch

assay, respectively. In summary, our estimates of λ vary within the range λ = 0.048−0.067

h−1, and our estimates of K vary within the range K = 1.6 − 2.5 × 10−3 cells/µm2.

Strictly speaking, since λ and K are supposed to be constants in Equation (3.1), the

fact that we see only a relatively small variation in our estimates of these parameters is

encouraging. In particular, we also report, in Tables 3.1 and 3.2, the sample standard

deviation showing the variability of our estimates. Overall, we find that the coefficient of

variation is approximately 10%, which is relatively small when dealing with this kind of

biological data [122].

Table 3.1: Estimates of λ̄ and K̄ for the proliferation assay using data from 0 ≤ t ≤ 48 hours. All
parameter estimates are given to two significant figures. Results are reported as the sample mean and the
uncertainty is quantified in terms of the sample standard deviation.

Initial seeding condition λ̄ (/h) K̄ (cells/µm2)

1 0.052 ± 0.004 2.0 × 10−3 ± 8 × 10−5

2 0.059 ± 0.006 1.8 × 10−3 ± 6 × 10−5

3 0.067 ± 0.009 1.6 × 10−3 ± 2 × 10−5

Average 0.059 ± 0.008 1.8 × 10−3 ± 2 × 10−4

We now explore how our estimates of λ and K are sensitive to whether or not we account

for the differences in the disturbance and growth phases in the scratch assay. We repeat

the same calibration process as described for the results in Figure 3.8, except now we take

the standard, naive approach and calibrate the solution of Equation (3.1) to the averaged

data in Figure 3.3(b), (d) and (f) over the entire duration of the scratch assay, 0 ≤ t ≤ 48

hours. This procedure provides us with three additional estimates of λ̄ and K̄ for the

scratch assay, as summarised in Table 3.3.
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Table 3.2: Estimates of λ̄ and K̄ for the scratch assay using data from 18 ≤ t ≤ 48 hours. All parameter
estimates are given to two significant figures. Results are reported as the sample mean and the uncertainty
is quantified in terms of the sample standard deviation.

Initial seeding condition λ̄ (/h) K̄ (cells/µm2)

1 0.051 ± 0.009 2.1 × 10−3 ± 2 × 10−3

2 0.059 ± 0.02 2.4 × 10−3 ± 1 × 10−3

3 0.048 ± 0.008 2.5 × 10−3 ± 2 × 10−4

Average 0.053 ± 0.005 2.3 × 10−3 ± 2 × 10−4

To demonstrate the quality of the match between the experimental data and the calibrated

logistic model, we superimpose the experimental data and Equation (3.2) with λ = λ̄ and

K = K̄, for each initial seeding condition and for both assays in Figure 3.9. When

we visually compare the quality of the match between the experimental data in Figure

3.8 and Figure 3.9, and the corresponding calibrated solution of the logistic equation,

there does not appear to be any significant difference at all. It is worth noting that

the values of Emin in Figure 3.9(b), (d), and (f) are an order of magnitude greater than

the corresponding values in Figure 3.8(b), (d) and (f). This implies that the match

between the logistic model and the experimental data is improved when we ignore that

data during the disturbance phase. However, at first glance, these differences are visually

indistinguishable when we compare the results in Figure 3.8 and 3.9. In contrast, when

we examine the estimates of K̄ and λ̄ in Table 3.3, the importance of properly accounting

for the disturbance phase in the scratch assay becomes strikingly obvious. For example,

taking this latter approach, our estimates of the carrying capacity vary within the range

K = 1.6 × 10−3 − 2.8 × 107 cells/µm2, and our estimates of the proliferation rate vary

within the range λ = 0.019 − 0.067 h−1. We recall that λ and K are supposed to be

constants in Equation (3.1), and so the fact that this naive calibration process suggests

that the least–squares estimate of the carrying capacity density varies of many order of

magnitude provides a clear illustration that this standard approach to calibrating the

logistic equation to our experimental data is problematic. We note that the results of the

Levenberg–Marquardt algorithm are robust, returning the same least–squares estimates

of λ̄ and K̄ for any positive initial estimate of K and λ in the iterative algorithm [79].

Comparing the ranges of estimates for λ and K in Tables 3.2 and 3.3 shows that the

model calibration procedure is extremely sensitive. For example, our range of estimates

of K when we account for the disturbance phase is smaller than a factor of two amongst

the six estimates. In contrast, when we neglect the disturbance phase, our estimates of K

vary across more than ten orders of magnitude amongst the six estimates. Similarly, our

range of estimates of λ when we account for the disturbance phase is smaller than a factor

of 1.5 among the six estimates. Again, in contrast, when we take a standard approach

and neglect the disturbance phase our estimates of λ vary by more than a factor of three

amongst the six estimates.
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Table 3.3: Estimates of λ̄ and K̄ for the scratch assay using data from 0 ≤ t ≤ 48 hours. All parameter
estimates are given to two significant figures. Results are reported as the sample mean and the uncertainty
is quantified in terms of the sample standard deviation.

Initial seeding condition λ̄ (/h) K̄ (cells/µm2)

1 0.028 ± 0.001 2.8 × 107 ± 1 × 107

2 0.029 ± 0.005 8.7 × 10−3 ± 3 × 106

3 0.019 ± 0.0002 1.6 × 107 ± 6 × 106

Average 0.025 ± 0.006 1.5 × 107 ± 1 × 107
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Figure 3.8: Calibrated solutions of the logistic growth equation using data from the growth phase. Results in (a)–(f) correspond to proliferation and scratch assays initiated
with 12,000 (initial seeding condition 1); 16,000 (initial seeding condition 2); and, 20,000 (initial seeding condition 3) cells per well, as indicated. For each type of experiment
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Figure 3.9: Calibrated solutions of the logistic growth equation using the entire data set. Results in (a)–(f) correspond to proliferation and scratch assays initiated with
12,000 (initial seeding condition 1); 16,000 (initial seeding condition 2); and, 20,000 (initial seeding condition 3) cells per well, as indicated. For each type of experiment the
calibrated solution of the logistic growth equation (solid line) is compared to the entire experimental data set. The least–squares estimates of λ̄ and K̄ are shown.
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3.4 Discussion

In this work we investigate the suitability of the logistic growth model to describe the

proliferation of cells in scratch assays. Scratch assays are routinely used to study the abil-

ity of a population of cells to re–colonise an initially vacant region on a two–dimensional

substrate [65, 71, 116,118]. Most experimental interpretations of scratch assays are made

using relatively straightforward measurements [71]. However, to provide additional in-

sights into the mechanisms involved in the re–colonisation process, some previous studies

have calibrated the solution of a reaction–diffusion equation to data from a scratch as-

say [14, 49, 54, 76, 77, 98, 100, 102, 103, 106]. In these reaction–diffusion equations, it is

commonly assumed that carrying capacity–limited proliferation of cells can be described

by a logistic growth model. However, the suitability of this assumption is rarely examined

beyond the process of simply calibrating the solution of the relevant model to match the

experimental data.

To examine the suitability of the logistic growth model, we perform a series of scratch

assays and proliferation assays for three different initial cell densities. Cell proliferation

assays are prepared in exactly the same way as a scratch assay, except that the monolayer

of cells is not scratched. This allows us to treat the cell proliferation assays as a control

experiment so that we can examine whether the process of artificially scratching the

monolayer of cells affects the way that cells proliferate, even when those cells are located

far away from the scratch. Instead of examining the dynamics of the cell density near

the scratched region where there will be a net flux of cells into the vacant region [49],

we quantify the cell density in two subregions that are located far behind the location

of the scratch, where the cell density is approximately spatially uniform (Supplementary

material). This means that the temporal dynamics of the cell density in these subregions

is due to cell proliferation only [54].

We plot the time evolution of cell density, far away from the initially scratched region, in

both the scratch and proliferation assays. To examine whether our results are sensitive

to the initial density of cells, we repeat each experiment using three different initial

cell densities. Plots of the evolution of the cell density are given over a total duration

of 48 hours, and these plots appear to correspond to a series of sigmoid curves. At

this point it would be possible to simply calibrate the solution of the logistic growth

model to these data to provide an estimate of the proliferation rate, λ, and the carrying

capacity density, K. This is a standard approach that has been used by us [54] and many

others [14, 100, 118]. However, while this standard calibration procedure can be used to

provide estimates of the parameters, this model calibration procedure does not provide

any validation that logistic growth is relevant [112].

Rather than calibrating the logistic growth model to our experimental data, we attempt to

assess the suitability of the logistic growth model by converting the cell density evolution

profiles into plots of the per capita growth rate as a function of density. We find that the
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plots of the per capita growth rate as a function of density reveal several key differences

between the scratch and proliferation assays. If the logistic growth model is valid, then we

expect to see a decreasing linear relationship between the per capita growth rate and the

cell density for the entire duration of the experiment. While the plots of the per capita

growth rate as a function of density for the proliferation assays appear to be consistent

with the logistic model, the per capita growth rate data for the scratch assays are very

different. For the scratch assay data, the per capita growth rate increases with cell density

at low density during the early part of the experiment. This behaviour, which is observed

for all three initial densities of cells in the scratch assays, is the opposite of what we

would expect if the logistic growth model were valid. However, at higher cell densities

during the latter part of the experiment, we observe that the per capita growth rate in

the scratch assays appears to decrease, approximately linearly, with the cell density. This

motivates us to propose that cell proliferation in a scratch assay involves two phases:

(i) a disturbance phase in which proliferation does not follow the logistic growth model

during the early part of the experiment; and, (ii) a growth phase where proliferation is

approximately logistic during the latter part of the experiment. Guided by our per capita

growth rate data, it appears that the disturbance phase in the scratch assays lasts for

approximately 18 hours before the growth phase commences.

To estimate the parameters in the logistic growth model, we calibrate the solution of

the model to our cell proliferation data for the entire duration of the experiment. This

calibration procedure gives estimates of λ and K that are approximately consistent across

the three initial conditions. We then calibrate the solution of the logistic growth model to

the data from the growth phase in the scratch assay. This procedure also gives estimates of

λ and K that are consistent across the three initial conditions, as well as being consistent

with the estimates obtained from the cell proliferation assays. In contrast, if we take a

naive approach and simply calibrate the solution of the logistic growth equation to the

scratch assay data for the entire duration of the experiment, our estimates of λ and K vary

wildly, despite the fact that the match between the experimental data and the calibrated

solution of the logistic growth equation looks very good.

The results of our study strongly suggest that care ought to be taken when applying

a logistic growth model, or a reaction–diffusion equation with a logistic source term,

to describe scratch assays. Simply calibrating a mathematical model to experimental

data might appear to produce an excellent match between the solution of the model and

the experimental data, but this commonly–used procedure does not guarantee that the

model is at all relevant [112]. Our results suggest that cell proliferation is impacted by the

scratching procedure in a scratch assay, and that we require some time to pass before the

disturbance phase ends. This is important because previous applications of logistic growth

models and reaction–diffusion equations with logistic source terms have been calibrated

to data from scratch assays without any regard for the disturbance phase [14,49,54,118].

It is also relevant to note that for the particular cell line we use, the disturbance phase

that we identify lasts for approximately 18 hours. This is important because many scratch
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assays are performed for relatively short periods of time [71] and it is possible that stan-

dard experimental protocols do not allow for a sufficient amount of time to pass for the

disturbance phase to end. Therefore, we suggest that scratch assays should be maintained

for as long as possible so that sufficient time is allowed for the disturbance phase to pass.

It is worthwhile to note, and discuss, the fact that some of the features of our proposed

two–phase growth model appear to be similar to the Allee effect [5, 55, 69, 94, 101, 114].

Typically, Allee growth kinetics are normally invoked to describe some kind of low-density

reduction in proliferation, relative to the logistic model [69,114]. The Allee growth model

is given by
dC(t)

dt
= λC(t)

(
1− C(t)

K

)(
C(t)

A
− 1

)
, (3.4)

where the parameter A is called the Allee threshold. The key difference between the Allee

growth model (Equation (3.4)) and the standard logistic model (Equation (3.1)), is the

inclusion of the third factor on the right hand side of Equation (3.4). The incorporation

of this factor has several consequences: (i) the growth rate is negative for C(t) < A

(assuming C(t) < K); (ii) the growth rate is positive for C(t) > A (assuming C(t) < K);

and, (iii) the relationship between the per capita growth rate and the density is quadratic.

In many previous implementations of Allee growth models, an argument is made that the

growth rate at small densities is reduced, relative to the logistic model, because of some

kind of biological competition [55, 69, 114], corresponding to A � K. Therefore, the

Allee model is often used to represent reduced growth at small densities, C(t) � K.

The experimental data we present in Figures 3.4 and 3.7 are inconsistent with the Allee

model for two reasons. First, the per capita growth data in Figure 3.4 corresponds to a

reduced growth rate at early times during the experiment. This reduction in growth rate

is observed across a range of initial densities, including seeing conditions 2 and 3 which do

not involve small densities, as discussed in Section 3.3.1. Second, the per capita growth

data in Figure 3.7 varies approximately linearly with density during the growth phase,

whereas the Allee model implies that the relationship is quadratic.

One of the limitations of our study is that we have not identified the precise mechanism

that causes the disturbance phase or the mathematical form of the disturbance phase.

However it seems clear that the process of scratching a monolayer of cells has some impact

on the proliferative behaviour of the cells away from the scratch, suggesting that either

chemical or mechanical disturbance is transported throughout the experimental well as

consequence of the scratching action. For example, the washing procedure performed

in scratch assays could lead to shear stress in fluid. Regardless of the mechanism at

play, our procedure of converting the cell density profiles into plots of the per capita

growth rate allows us to identify the result of this disturbance. Another limitation of

our work is that we deal only with one particular cell line, and it is not obvious how our

estimate of the duration of the disturbance phase will translate to other cell lines. In

this work we study the proliferation mechanism by converting the density data into per

capita growth data and exploring whether the relationship between the per capita growth
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and density is approximately described by a linear function. We acknowledge that more

sophisticated statistical techniques could be employed to provide further information [24].

However, since the main aim of this study is to explore the suitability of the logistic growth

model for describing cell proliferation in a scratch assay, we do not pursue these more

advanced statistical techniques here. Instead, we suggest that this could be the topic

of a future study. Moreover, the experimental data in Chapter 2 can be re-visited to

take the disturbance phase into account. Then the Fisher–Kolmogorov model and the

Porous–Fisher model can be calibrated to data in the growth phase only, to investigate if

a better match can be achieved.
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3.5 Supplementary material

3.5.1 Location of the subregions

A key assumption in this work is that the two subregions we choose to quantify temporal

changes in cell density are located sufficiently far away from the scratch that the cell

density is approximately spatially uniform in these locations. To examine this assumption,

following Jin et al. [49], we use the Fisher–Kolmogorov equation, which is given by

∂C

∂t
= D

∂2C

∂x2
+ λC

[
1−

(
C

K

)]
, (3.5)

where C(x, t) is the cell density as a function of position, x, and time, t. Here, D is

the cell diffusivity, λ is the proliferation rate and K is the carrying capacity density.

To match our experiments we have 0 ≤ x ≤ 1850 µm [49], and to mimic the geometry

of our experiments we impose symmetry boundary conditions (∂C/∂x = 0) at both

x = 0 µm and x = 1850 µm [49]. We specify the initial cell density, C(x, 0), by using

manual counting in a series of columns, of width 50 µm, across the image at t = 0 hours.

Dividing the initial number of cells per column by the area of the column gives us an

estimate of C(x, 0). Repeating this procedure across a number of identically prepared

experiments allows us to average our estimates of C(x, 0) to reduce the fluctuations in

the initial density profile.

To solve Equation (3.5) we uniformly discretise the spatial domain with grid spacing

δx [81]. The spatial derivatives are approximated using a central–difference approxima-

tion, which leads to a system of coupled nonlinear ordinary differential equations that

are integrated through time using a backward–Euler approximation with constant time

steps of duration δt [81]. The resulting systems of coupled nonlinear algebraic equations

are linearised using Picard iteration, with absolute convergence tolerance ε, and solved
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using the Thomas algorithm [81]. We always choose δx, δt and ε so that our numerical

algorithm produces grid–independent results.

We present results here for a scratch assay with one particular choice of initial seeding

condition, 16,000 cells per well. Note that the results shown here for this initial seeding

condition are representative of the results for the other two initial seeding conditions that

we consider in the main document. Our estimate for the initial cell density profile from

the experimental data at t = 0 hours is linearly interpolated to match the numerical

discretisation. Using this information, we solve Equation (3.5) with D = 570 µm2/h,

λ = 0.059 /h and K = 2.4× 10−3 cells/µm2, which are representative estimates of λ and

K from the main manuscript, and an estimate of D taken from our previous work [49].

Numerical solutions of Equation (3.5) are shown in Figure 3.10. Here we see that the

initial fluctuations in C(x, 0) smooth out with time relatively quickly. Then, at later

times, we see that there are negligible spatial gradients, ∂C/∂x ≈ 0, at the locations of

the two subregions used to construct the cell density profile. This indicates that the net

flux of cells into these subregions is approximately zero, and hence Equation (3.5) for

C(x, t) simplifies to the logistic growth model for C(t) locally in these subregions that are

located sufficiently far from the scratch. Ideally the two subregions used to count the cells

could be further away from the scratch area. However, the field of view in the IncuCyte

ZOOMTM assays cannot be moved or extended.
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Figure 3.10: The numerical solution of the Fisher-Kolmorogov model for the scratch assay. Numerical
solutions of Equation (3.5) are shown at t = 0, 12, 24, 36, 48 hours, with the arrow showing the direction
of increasing t. The location of the two subregions are shown using the two cyan rectangles, as indicated.
The numerical solution of Equation (3.5) is obtained with D = 570 µm2/h, λ = 0.059 /h, K = 2.4× 10−3

cells/µm2, δx = 0.5 µm, δt = 0.2 h and ε = 10−5.

3.5.2 Experimental data

All raw experimental data used to construct the growth curves in Figure 3.3 are sum-

marised as follows: (i) data for the cell proliferation assay are shown in Tables 3.4–3.6,

corresponding to initial seeding conditions 1-3, respectively; and, (ii) data for the scratch

assay are shown in Tables 3.7–3.9, corresponding to initial seeding condition 1-3, respec-

tively. In Tables 3.4–3.9 we show data from three individual experimental replicates

as well as averaged density data by averaging the three individual replicates from each

experimental condition.
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Table 3.4: Proliferation assay; Initial seeding condition 1

Time (h) 0 2 4 6 8 10 12 14 16 18 24 30 36 42 48

Replicate

Subregion 1 0.30 0.32 0.37 0.40 0.47 0.47 0.54 0.60 0.60 0.61 0.74 0.94 1.15 1.26 1.38

1

Subregion 2 0.21 0.24 0.26 0.28 0.31 0.38 0.37 0.40 0.41 0.44 0.66 0.76 1.01 1.15 1.27

Average 0.25 0.28 0.31 0.34 0.39 0.42 0.45 0.50 0.50 0.52 0.70 0.85 1.08 1.20 1.33

Cell density
Replicate

Subregion 1 0.35 0.38 0.37 0.38 0.44 0.53 0.59 0.60 0.63 0.66 0.85 1.00 1.17 1.28 1.36

(×10−3 cells/µm2)
2

Subregion 2 0.32 0.31 0.32 0.35 0.39 0.41 0.48 0.50 0.54 0.54 0.78 0.96 1.08 1.17 1.32

Average 0.33 0.34 0.35 0.37 0.41 0.47 0.54 0.55 0.58 0.60 0.81 0.98 1.13 1.23 1.34

Replicate
Subregion 1 0.34 0.41 0.41 0.46 0.49 0.54 0.57 0.62 0.67 0.68 0.89 1.00 1.05 1.24 1.36

3
Subregion 2 0.33 0.38 0.37 0.41 0.44 0.49 0.54 0.52 0.61 0.61 0.74 0.95 1.15 1.21 1.38

Average 0.34 0.39 0.39 0.43 0.47 0.52 0.55 0.57 0.64 0.64 0.82 0.98 1.10 1.22 1.37

Average 0.31 0.34 0.35 0.38 0.42 0.47 0.52 0.54 0.58 0.59 0.78 0.94 1.10 1.22 1.35
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Table 3.5: Proliferation assay; Initial seeding condition 2

Time (h) 0 2 4 6 8 10 12 14 16 18 24 30 36 42 48

Replicate

Subregion 1 0.55 0.66 0.71 0.69 0.79 0.87 0.87 0.95 1.01 1.06 1.26 1.41 1.49 1.57 1.59

1

Subregion 2 0.56 0.64 0.66 0.69 0.77 0.81 0.90 0.94 0.94 1.01 1.15 1.35 1.54 1.52 1.61

Average 0.55 0.65 0.69 0.69 0.78 0.84 0.89 0.95 0.97 1.03 1.20 1.38 1.51 1.55 1.60

Cell density
Replicate

Subregion 1 0.57 0.62 0.67 0.72 0.82 0.87 0.88 0.92 0.97 0.98 1.18 1.34 1.37 1.47 1.62

(×10−3 cells/µm2)
2

Subregion 2 0.54 0.58 0.61 0.68 0.66 0.73 0.82 0.82 0.79 0.89 1.10 1.28 1.47 1.40 1.57

Average 0.56 0.60 0.64 0.70 0.74 0.80 0.85 0.87 0.88 0.93 1.14 1.31 1.42 1.44 1.59

Replicate
Subregion 1 0.51 0.54 0.61 0.66 0.74 0.84 0.89 0.94 0.95 0.99 1.21 1.32 1.56 1.57 1.66

3
Subregion 2 0.57 0.58 0.62 0.67 0.73 0.84 0.83 0.85 0.95 0.98 1.12 1.31 1.40 1.51 1.60

Average 0.54 0.56 0.61 0.66 0.73 0.84 0.86 0.90 0.95 0.98 1.16 1.32 1.48 1.54 1.63

Average 0.55 0.60 0.65 0.68 0.75 0.83 0.87 0.90 0.93 0.98 1.17 1.33 1.47 1.51 1.61
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Table 3.6: Proliferation assay; Initial seeding condition 3

Time (h) 0 2 4 6 8 10 12 14 16 18 24 30 36 42 48

Replicate

Subregion 1 0.68 0.75 0.78 0.89 0.87 0.98 1.01 1.04 1.08 1.12 1.32 1.41 1.49 1.47 1.51

1

Subregion 2 0.84 0.82 0.93 0.93 1.00 0.97 1.01 1.16 1.14 1.17 1.27 1.36 1.41 1.43 1.49

Average 0.76 0.78 0.86 0.91 0.94 0.97 1.01 1.10 1.11 1.15 1.29 1.38 1.45 1.45 1.50

Cell density
Replicate

Subregion 1 0.80 0.92 0.88 0.92 0.96 1.03 1.00 1.08 1.10 1.19 1.34 1.50 1.55 1.53 1.51

(×10−3 cells/µm2)
2

Subregion 2 0.75 0.85 0.90 0.91 1.05 1.09 1.08 1.13 1.17 1.18 1.31 1.45 1.44 1.48 1.51

Average 0.77 0.89 0.89 0.91 1.00 1.06 1.04 1.10 1.14 1.18 1.33 1.48 1.49 1.51 1.51

Replicate
Subregion 1 0.75 0.83 0.91 0.99 0.98 1.10 1.16 1.22 1.17 1.26 1.51 1.56 1.59 1.53 1.72

3
Subregion 2 0.83 0.86 0.95 0.99 1.06 1.17 1.23 1.23 1.24 1.20 1.42 1.43 1.51 1.56 1.55

Average 0.79 0.85 0.93 0.99 1.02 1.14 1.20 1.23 1.21 1.23 1.46 1.50 1.55 1.55 1.64

Average 0.77 0.84 0.89 0.94 0.99 1.06 1.08 1.14 1.15 1.19 1.36 1.45 1.50 1.50 1.55
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Table 3.7: Scratch assay; Initial seeding condition 1

Time (h) 0 2 4 6 8 10 12 14 16 18 24 30 36 42 48

Replicate

Subregion 1 0.25 0.26 0.28 0.26 0.29 0.31 0.31 0.35 0.32 0.35 0.43 0.58 0.82 1.00 1.33

1

Subregion 2 0.30 0.31 0.30 0.30 0.33 0.35 0.38 0.41 0.41 0.43 0.53 0.58 0.79 0.91 0.99

Average 0.27 0.29 0.29 0.28 0.31 0.33 0.35 0.38 0.36 0.39 0.48 0.58 0.80 0.96 1.16

Cell density
Replicate

Subregion 1 0.35 0.34 0.37 0.40 0.43 0.44 0.47 0.47 0.48 0.53 0.65 0.76 0.93 1.09 1.18

(×10−3 cells/µm2)
2

Subregion 2 0.25 0.24 0.23 0.25 0.26 0.26 0.26 0.30 0.28 0.33 0.40 0.51 0.71 0.80 0.99

Average 0.30 0.29 0.30 0.32 0.35 0.35 0.37 0.39 0.38 0.43 0.52 0.63 0.82 0.95 1.08

Replicate
Subregion 1 0.40 0.44 0.44 0.47 0.46 0.50 0.54 0.53 0.56 0.56 0.78 0.84 0.96 1.08 1.36

3
Subregion 2 0.23 0.25 0.25 0.30 0.31 0.30 0.32 0.35 0.32 0.33 0.49 0.65 0.72 0.90 1.02

Average 0.32 0.34 0.34 0.39 0.39 0.40 0.43 0.44 0.44 0.45 0.64 0.75 0.84 0.99 1.19

Average 0.30 0.31 0.31 0.33 0.35 0.36 0.38 0.40 0.40 0.42 0.55 0.65 0.82 0.96 1.13
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Table 3.8: Scratch assay; Initial seeding condition 2

Time (h) 0 2 4 6 8 10 12 14 16 18 24 30 36 42 48

Replicate

Subregion 1 0.53 0.57 0.58 0.65 0.64 0.66 0.69 0.74 0.76 0.73 0.92 1.13 1.31 1.53 1.64

1

Subregion 2 0.57 0.56 0.63 0.62 0.67 0.75 0.79 0.77 0.79 0.86 0.88 1.13 1.33 1.62 1.87

Average 0.55 0.57 0.60 0.64 0.66 0.71 0.74 0.75 0.78 0.80 0.90 1.13 1.32 1.58 1.75

Cell density
Replicate

Subregion 1 0.56 0.61 0.67 0.66 0.66 0.77 0.82 0.85 0.82 0.84 1.24 1.38 1.62 1.78 1.98

(×10−3 cells/µm2)
2

Subregion 2 0.51 0.53 0.55 0.59 0.63 0.71 0.73 0.72 0.72 0.74 1.12 1.16 1.36 1.52 1.80

Average 0.54 0.57 0.61 0.62 0.65 0.74 0.77 0.78 0.77 0.79 1.18 1.27 1.49 1.65 1.89

Replicate
Subregion 1 0.57 0.59 0.65 0.64 0.65 0.70 0.74 0.78 0.84 0.96 1.11 1.28 1.51 1.65 1.84

3
Subregion 2 0.49 0.52 0.58 0.60 0.63 0.62 0.66 0.68 0.72 0.77 1.01 1.22 1.54 1.60 1.80

Average 0.53 0.55 0.61 0.62 0.64 0.66 0.70 0.73 0.78 0.86 1.06 1.25 1.52 1.63 1.82

Average 0.54 0.56 0.61 0.63 0.65 0.70 0.74 0.76 0.78 0.82 1.05 1.22 1.44 1.62 1.82
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Table 3.9: Scratch assay; Initial seeding condition 3

Time (h) 0 2 4 6 8 10 12 14 16 18 24 30 36 42 48

Replicate

Subregion 1 0.85 0.84 0.87 0.91 0.98 0.94 1.03 1.07 1.09 1.14 1.30 1.52 1.60 1.66 1.93

1

Subregion 2 0.73 0.75 0.72 0.77 0.82 0.82 0.85 0.89 0.90 1.01 1.14 1.35 1.56 1.68 1.88

Average 0.79 0.79 0.80 0.84 0.90 0.88 0.94 0.98 1.00 1.08 1.22 1.44 1.58 1.67 1.90

Cell density
Replicate

Subregion 1 0.72 0.71 0.75 0.75 0.81 0.83 0.85 0.85 0.93 0.98 1.07 1.37 1.50 1.63 1.82

(×10−3 cells/µm2)
2

Subregion 2 0.79 0.75 0.85 0.82 0.79 0.79 0.82 0.87 0.93 0.96 1.13 1.40 1.57 1.68 1.95

Average 0.76 0.73 0.80 0.78 0.80 0.81 0.83 0.86 0.93 0.97 1.10 1.39 1.54 1.66 1.88

Replicate
Subregion 1 0.75 0.75 0.80 0.79 0.84 0.81 0.87 0.85 0.90 1.00 1.18 1.55 1.64 1.81 1.97

3
Subregion 2 0.86 0.82 0.83 0.85 0.87 0.88 0.89 0.98 1.05 1.09 1.34 1.42 1.53 1.83 1.94

Average 0.80 0.78 0.82 0.82 0.86 0.84 0.88 0.92 0.97 1.05 1.26 1.48 1.59 1.82 1.95

Average 0.78 0.77 0.80 0.81 0.85 0.85 0.89 0.92 0.97 1.03 1.20 1.44 1.57 1.72 1.91
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Abstract

Two–dimensional collective cell migration assays are used to study cancer and tissue

repair. These assays involve combined cell migration and cell proliferation processes, both

of which are modulated by cell–to–cell crowding. Previous discrete models of collective

cell migration assays involve a nearest–neighbour proliferation mechanism where crowding

effects are incorporated by aborting potential proliferation events if the randomly chosen

target site is occupied. There are two limitations of this traditional approach: (i) it

seems unreasonable to abort a potential proliferation event based on the occupancy of

a single, randomly chosen target site; and, (ii) the continuum limit description of this

mechanism leads to the standard logistic growth function, but some experimental evidence

suggests that cells do not always proliferate logistically. Motivated by these observations,

we introduce a generalised proliferation mechanism which allows non–nearest neighbour

proliferation events to take place over a template of r ≥ 1 concentric rings of lattice sites.

Further, the decision to abort potential proliferation events is made using a crowding

function, f(C), which accounts for the density of agents within a group of sites rather than

dealing with the occupancy of a single randomly chosen site. Analysing the continuum

limit description of the stochastic model shows that the standard logistic source term,

λC(1−C), where λ is the proliferation rate, is generalised to a universal growth function,

λCf(C). Comparing the solution of the continuum description with averaged simulation

data indicates that the continuum model performs well for many choices of f(C) and r.

For nonlinear f(C), the quality of the continuum–discrete match increases with r.

89
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4.1 Background

Two–dimensional collective cell migration assays are routinely used to study combined

cell migration and cell proliferation processes [91]. These assays provide insight into

cancer [58] and tissue repair [76]. There are two different kinds of cell migration assays:

(i) Cell proliferation assays, as shown in Figure 4.1(a)–(d), are initiated by uniformly

distributing cells on a two–dimensional substrate. Over time, individual cells undergo

migration and proliferation events, leading to the formation of a confluent monolayer [111,

118]; and, (ii) Scratch assays, as shown in Figure 4.1(e)–(h), are initiated in the same way

as a cell proliferation assay, except that a wound, or scratch is made in the monolayer [49].

In a scratch assay, individual cells undergo motility and proliferation events with the

net result being the spreading of cells into the vacant region [49]. A critical feature of

collective cell migration assays is the role of crowding. At low cell density, individual cells

are relatively free to move and proliferate because of the abundance of free space [14,118].

In contrast, at high cell density, individual cells are strongly influenced by cell–to–cell

crowding, which reduces their ability to move and proliferate [14,118].

There are two different approaches to modelling collective cell migration assays. Firstly, a

continuum reaction–diffusion equation can be applied to mimic certain features of the ex-

periment [76]. Most previous continuum models represent cell migration with a diffusion-

type mechanism, and a logistic source term to represent carrying capacity–limited pro-

liferation [14, 22, 76, 98, 100, 102]. Secondly, a discrete random walk model can be used

to mimic certain features of the experiment [19, 46]. Here, many previous studies rep-

resent cell migration using an unbiased exclusion process [72], which incorporates hard

core exclusion to model cell–to–cell crowding [12, 15, 18, 59, 61, 109]. Cell proliferation is

incorporated by allowing agents to place daughter agents on the lattice, with crowding

effects incorporated by ensuring that potential proliferation events that would place a

daughter agent on an occupied site are aborted [15, 109]. Discrete random walk models

have an advantage over continuum models when it comes to comparing model predictions

with experimental observations. Experimental data involving individual cells can be di-

rectly compared with the predictions of discrete models, whereas continuum models do

not provide direct information about individual cells [34, 44].

Lattice–based random walk models of collective cell migration assays typically involve a

particular mechanism to assess how crowding influences potential proliferation events [12,

15, 59, 109]. Mean field analysis of this traditional proliferation mechanism leads to the

logistic source term in the partial differential equation (PDE) description of the model [15,

109, 111]. In terms of continuum models, carrying–capacity limited proliferation is often

represented using the logistic equation, dC / dt = λ C(1 − C) [14, 22, 76, 98, 100,

102], where λ is the proliferation rate, and the density has been scaled relative to the

carrying capacity. However, there is some awareness that the logistic model does not

always match experimental data. For example, West and colleagues [124] examine data

describing in vivo growth, showing that their data is best described by a generalised
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logistic model, dC/dt = λ C3/4(1 − C1/4). Similarly, Laird [66] examines in vivo tumour

growth data, showing that the dynamics is better described by a Gompertz growth law

than the classic logistic growth model. More recently, our previous analysis of a suite of

scratch assays suggests that when a logistic–type reaction–diffusion equation is calibrated

to match experimental data with a range of initial cell densities, there is no unique choice

of λ for which the logistic model matches the entire data set [49]. One way of interpreting

this result is that cells do not proliferate logistically. While several previous theoretical

studies have analysed generalised logistic growth models, such as dC/dt = λCα(1−Cβ)γ

for arbitrary positive constants α, β and γ [119], it is presently unknown how to implement

this generalised proliferation mechanism in an exclusion process.

The aim of this work is to analyse a discrete model of two-dimensional collective cell mi-

gration assays. In all cases we consider the cell migration to be modelled as an unbiased

nearest neighbour exclusion process where potential migration events occur with proba-

bility Pm per time step of duration τ . This motility mechanism is able to capture certain

features of previous in vitro experimental data [53, 111]. The focus of our work is on the

details of the proliferation mechanism. Potential proliferation events occur with probabil-

ity Pp per time step of duration τ . In the traditional model, the location of the daughter

agent is chosen by randomly selecting a nearest neighbour site. If the randomly selected

target site is vacant, the proliferation event is successful, whereas if the randomly selected

target site is occupied, the proliferation event is aborted [15, 109, 111]. Two extensions

of the standard proliferation model are analysed: (i) we consider non–nearest neighbour

proliferation mechanisms, whereby the crowdedness of any individual agent is influenced

by a larger template on the lattice, and it is possible for the daughter agent to be placed

on a non–nearest neighbour site [27,67]; and, (ii) we adjust the way that we measure the

local density, Ĉ ∈ [0, 1], and implement a new way of deciding whether to abort potential

proliferation events due to crowding by using a more general crowding function, f(C).

We derive the continuum limit PDE description of the generalised discrete model, and

apply both the discrete and continuum models to mimic a suite of cell proliferation and

scratch assays. Our results illustrate several interesting features about the relationship

between the discrete model and the continuum limit description.
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Figure 4.1: Experimental motivation. (a)–(c) Images from a cell proliferation assay, shown at t = 0, 24 and 48 h, respectively [111]. The cell proliferation assay is initiated by
uniformly distributing 25,000 3T3 fibroblast cells into the wells of a 24–well tissue culture plate [111]. The dimension of the field of view is 640 µm × 480 µm, and the spatial
extent of the growing population extends well beyond the field of view [111]. Results in (d) shows the increase in cell density as a function of time obtained by counting the
number of cells in the images in (a)–(c). (e)–(g) Images from a scratch assay, shown at t = 0, 24 and 48 h, respectively [49]. Experiments are initiated by uniformly distributing
16,000 PC–3 cells into the well of a 96-well tissue culture plate [49]. A scratch (dashed green in (e)) is made at t = 0 [49], and the subsequent healing of the wound is observed
with time. The dimension of the field of view is 1900 µm × 1400 µm, and the spatial extent of the population extends well beyond the field of view [49]. The plot in (h) shows
the spatial distribution of cell density obtained by discretising the images into strips of width 50 µm and counting the number of cells per strip. Dividing the number of cells in
each strip by the area of the strip gives an estimate of the cell density. Three plots are given in (h) showing the cell density profile at t = 0, 24 and 48 hours, with the arrows
indicating the direction of increasing time. All scale bars correspond to 300 µm.
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4.2 Discrete mathematical models

We adopt the convention that dimensional variables are primed and non–dimensional

variables are unprimed. A lattice–based random walk model will be used to describe

the collective motion of a population of cells with an average cell diameter of ∆′. The

lattice spacing is taken to be equal to the average cell diameter so that there are, at

most, one agent per site. All simulations are non–dimensional in the sense that they are

performed on a hexagonal lattice with unit lattice spacing, ∆ = 1. These non–dimensional

simulations can be used to model any particular cell population by re–scaling with the

dimensional cell diameter, ∆′. Each lattice site, indexed (i, j) where i, j ∈ Z+, has position

(x, y) =


(
i∆, j∆

√
3/2
)

if j is even,(
(i+ 1/2)∆, j∆

√
3/2
)

if j is odd,

such that 1 ≤ i ≤ I and 1 ≤ j ≤ J . In any single realisation of the model, the occupancy

of site s is denoted Cs, with Cs = 1 if the site is occupied, and Cs = 0 if vacant. Since

site s is associated with a unique index (i, j), we will use Cs and Ci,j interchangeably.

Traditional discrete model : If there are N(t) agents at time t, then during the next time

step of duration τ , N(t) agents are selected independently at random, one at a time with

replacement, and given the opportunity to move [109,111]. The randomly selected agent

attempts to move, with probability Pm, to one of the six nearest neighbour sites (Figure

4.2(a)), with the target site chosen randomly. Motility events are aborted if an agent

attempts to move to an occupied site.

Once N(t) potential motility events are attempted, another N(t) agents are selected

independently, at random, one at a time with replacement, and given the opportunity to

proliferate with probability Pp. The location of the daughter agent is chosen, at random,

from one of the six nearest neighbour sites [15, 109, 111]. If the selected site is occupied,

the potential proliferation event is aborted. In contrast, if the selected site is vacant, a

new daughter agent is placed on that site. After the N(t) potential proliferation events

have been attempted, N(t + τ) is updated [15, 109, 111]. One of the limitations of the

traditional discrete model is that the continuum limit description leads to the traditional

logistic source term [15, 109], however certain experimental observations indicate that

logistic growth is not always appropriate [49, 124]. As such, we consider two extensions

of the discrete proliferation mechanism.

Extension 1 : We first generalise the traditional discrete proliferation mechanism so that

crowding effects are felt over a larger spatial template, and daughter agents can be placed

on non–nearest neighbour sites. The placement of daughter agents on non-nearest neigh-

bour sites is consistent with previous in vitro [67] and in vivo [27] experimental obser-

vations. For example, previous experimental observations show that neural crest cells

proliferate and place daughter cells approximately six cell diameters away from the orig-

inal location of the mother cell [109]. To achieve this, we consider a proliferative agent
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at site s, and we use Nr{s} to denote the set of neighbouring sites, where r ≥ 1 is the

number of concentric rings of sites surrounding s. For example, when r = 1, N1{s} de-

notes the set of six 4.2(a). In contrast, when r = 2, N2{s} also includes the set of the

next nearest–neighbouring sites, as demonstrated in Figure 4.2(e). More generally, the

number of sites in Nr{s} is ZNr = 3r(r+ 1). To implement this extension we first choose

a value of r. For any potential proliferation event, the target site for the placement of

the daughter agent is chosen from Nr{s}. If a randomly chosen target site is vacant, a

daughter agent is placed at that site. If a randomly chosen target site is occupied the

potential proliferation event is aborted.

Extension 2 : Instead of deciding to abort a potential proliferation event depending on

the occupancy of a single randomly chosen site, we consider a more general approach by

assuming that a proliferative agent at site s senses the occupancy of all sites within Nr{s},
and detects a measure of the average occupancy of those sites, Ĉs = (1/ZNr)

∑
s′∈Nr{s}

Cs′ .

This means that Ĉs ∈ [0, 1] is a measure of the crowdedness of the region surrounding

s. We anticipate that using Ĉs to determine whether potential proliferation events are

aborted is more realistic than the traditional model where the decision depends solely

on the occupancy of a single, randomly chosen site. To use Ĉs to determine whether a

potential proliferation event succeeds, we introduce a crowding function, f(C) ∈ [0, 1] with

f(0) = 1 and f(1) = 0. The crowding function accounts for the density of agents within

a group of sites to mimic the effect of cell-to-cell interactions on proliferation [128]. To

incorporate crowding effects we sample a random number, R ∼ U(0, 1). If R < f(Ĉs), a

daughter agent is placed at a randomly chosen vacant site in Nr{s}, whereas if R > f(Ĉs),

the event is aborted. This extension can be applied to different sized templates by varying

r.

Generalised discrete model : We now implement an algorithm that can be used to simulate

both extensions 1 and 2. In this generalised model, a proliferative agent can place a

daughter agent at any vacant target site in Nr{s}, and crowding effects are modeled by

f(C). Therefore, during a potential proliferation event, a randomly selected agent at site

s attempts to proliferate with probability Pp per time step of duration τ . If the agent

is to attempt to proliferate, crowding effects are incorporated by calculating f(Ĉs). If

the potential proliferation event is to succeed, a daughter agent is placed at a randomly

selected vacant site in Nr{s}.

Figure 4.2 shows four different schematic illustrations of the generalised proliferation

mechanism on a hexagonal lattice. In each illustration, three examples are shown in

which sites in Nr{s} are either: (i) all vacant with Ĉs = 0 (Figure 4.2(a), (e), (i) and

(m)); (ii) half occupied with Ĉs = 0.5 (Figure 4.2(b), (f), (j) and (n)); or, (iii) fully

occupied with Ĉs = 1 (Figure 4.2(c), (g), (k) and (o)). The first row (Figure 4.2(a)–(d))

corresponds to the traditional model with r = 1 and f(C) = 1 − C. In this case, with

Ĉs = 0.5, the probability that a potential proliferation event takes place is Pp/2, and the

probability of a particular proliferation event producing a daughter agent at a particular
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site is Pp/6 (Figure 4.2(b)). The second row (Figure 4.2(e)-(h)) corresponds to r = 2 and

f(C) = 1 − C. In this case, with Ĉs = 0.5, the probability that a potential proliferation

event takes place is Pp/2, and the probability of a particular proliferation event producing

a daughter agent at a particular site is Pp/18 (Figure 4.2(f)). Comparing the outcomes

in the first and second row of Figure 4.2 illustrates the first generalisation of the discrete

proliferation mechanism as we are simply applying the same proliferation mechanism,

with the same crowding function, over a larger template of lattice sites.

The schematic illustrations in the third (Figure 4.2(i)–(l)) and fourth (Figure 4.2(m)–(p))

rows of Figure 4.2 show how the outcomes in the first and second rows can be generalised

by choosing different f(C). For example, with f(C) = (1− C)2, agents are less likely to

proliferate than when f(C) = 1− C. With r = 1, Ĉs = 0.5 and f(C) = (1− C)2 (Figure

4.2(j)), the probability that a potential proliferation event takes place is Pp/4, and the

probability of a particular proliferation event producing a daughter agent at a particular

site is Pp/12, and this is very different to the traditional model (Figure 4.2(b)).
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Example 2: Ĉ = 1/2Example 1: Ĉ = 0  Example 3: Ĉ = 1

Probability of proliferating to the highlighted site = Pp/6 Probability of proliferating to the highlighted site = Pp/6 Probability of proliferating to the highlighted site =  0

Probability of proliferating to the highlighted site = Pp/18 Probability of proliferating to the highlighted site = Pp/18 Probability of proliferating to the highlighted site = 0

Crowding function

0

1

1C

f(C)

f(C) = 1 - C
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1C

f(C)

f(C) = 1 - C

0

1

1C

f(C)

f(C) = (1 - C)²

Probability of proliferation = Pp Probability of proliferation = Pp/2 Probability of proliferation = 0 

Probability of proliferation = Pp Probability of proliferation = Pp/2 Probability of proliferation = 0

Probability of proliferating to the highlighted site = Pp/18 Probability of proliferating to the highlighted site = Pp/36 Probability of proliferating to the highlighted site = 0

0

1

1C

f(C)

f(C) = (1 - C)²
Probability of proliferation = Pp Probability of proliferation = Pp/4 Probability of proliferation = 0

Probability of proliferating to the highlighted site = Pp/6 Probability of proliferating to the highlighted site = Pp/12 Probability of proliferating to the highlighted site = 0
Probability of proliferation = Pp Probability of proliferation = Pp/4 Probability of proliferation = 0

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

0

0

0

0

s s s

S S S

S S S
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S S S

Figure 4.2: Schematic representation of the proliferation mechanisms considered in this work. Three examples are illustrated, in the first three columns, for Ĉ = 0, 0.5 and 1,
respectively. In each lattice fragment, the central site s is occupied (red), while some of the neighbouring sites are occupied (red) and others are vacant (white). In all cases we
always consider the outcomes for a potential proliferation event of the agent at the central lattice site. The properties associated with the traditional proliferation mechanism
are illustrated in (a)–(d). The properties associated with the first generalisation, where we consider the same crowding mechanism as the traditional model, but over a larger
template of neighbouring lattice sites, is shown in (e)–(h). The properties associated with the second generalisation, where we consider the same nearest neighbour template
as the traditional model, but we consider a different method of aborting potential proliferation events using f(C), is shown in (i)–(l). The final row, (m)–(p), illustrates how
the two generalisations can be combined. To highlight differences between the generalisations we report: Ĉs; the probability of a successful proliferation event taking place;
and, the probability of a proliferation event successfully depositing a daughter at a particular site, highlighted with a green annulus, in (a)–(c), (e)–(g), (i)–(k) and (m)–(o).
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4.3 Continuum description

While the individual–level details of the generalised discrete proliferation mechanism,

highlighted in Figure 4.2, are very different to the traditional proliferation mechanism, it is

not obvious how these differences affect the collective behaviour of a population of agents.

To investigate this issue, we will derive the mean field continuum limit description of the

discrete models, and then compare the performance of the continuum limit descriptions

with averaged data from repeated discrete simulations.

Traditional model : We first derive the continuum limit description of the traditional

model before considering the more general case. We average the occupancy of site s over

many identically prepared realisations to obtain 〈Cs〉 ∈ [0, 1] [109] and then develop an

approximate discrete conservation statement describing the change in average occupancy

of site s from time t to time t+ τ ,

δ〈Cs〉 =
Pm
6

(1− 〈Cs〉)
∑

s′∈N1{s}

〈Cs′〉 −
Pm
6
〈Cs〉

6−
∑

s′∈N1{s}

〈Cs′〉


+
Pp
6

(1− 〈Cs〉)
∑

s′∈N1{s}

〈Cs′〉, (4.1)

where
∑

s′∈N1{s}

〈Cs′〉 is the sum of the average occupancy of sites in N1{s}. The first and

second terms on the right of Equation (4.1) represent the effects of migration into, and out

of, site s, respectively. The third term on the right of Equation (4.1) represents the effect

of proliferation. To arrive at Equation (4.1), we make the usual mean field assumption

that the occupancy of lattice sites is independent as we interpret the products of terms

like 〈Cs〉 and
∑

s′∈N1{s}

〈Cs′〉 as a net transition probability [15,25,109].

We expand each term in Equation (4.1) as a Taylor series about site s, neglect terms of

O(∆3), and divide both sides of the resulting expression by τ . Identifying 〈Cs〉 with a

smooth function, C(x, y, t), we consider the limit as ∆ → 0 and τ → 0 jointly, with the

ratio ∆2/τ held constant, giving [109]

∂C

∂t
= D∇2C + λC (1− C) , (4.2)

where the diffusivity isD = (Pm/4) lim
∆→0,τ→0

(
∆2/τ

)
, and the proliferation rate is λ = lim

τ→0
(Pp/τ).

To obtain a well–defined continuum limit we require Pp = O(τ) [19, 109]. Equation (4.2)

confirms that the traditional proliferation mechanism is associated with the standard

logistic source term. Furthermore, in one dimension, Equation (4.2) simplifies to the

Fisher–Kolmogorov model [30].

Generalised model : The migration mechanism in the traditional and generalised mod-

els are equivalent, whereas the proliferation mechanism is different. The corresponding
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approximate discrete conservation statement is

δ〈Cs〉 =
Pm
6

(1− 〈Cs〉)
∑

s′∈N1{s}

〈Cs′〉 −
Pm
6
〈Cs〉

6−
∑

s′∈N1{s}

〈Cs′〉


+
Pp

ZNr

(1− 〈Cs〉)
∑

s′∈N1{s}

〈Cs′〉
f
(
〈Ĉs′〉

)
1− 〈Ĉs′〉

, (4.3)

where 〈Ĉs〉 = (1/ZNr)
∑

s′∈Nr{s}

〈Cs′〉. The first two terms on the right of Equation (4.3)

are identical to the corresponding terms in Equation (4.1). The third term on the right

of Equation (4.3) represents the change in occupancy of site s due to proliferation. The

factor f(〈Ĉs′〉)/(1 − 〈Ĉs′〉) is a measure of the crowding at site s′, in terms of f(C),

relative to the probability that sites in the neighbourhood are vacant. Following the same

procedure used previously for the traditional model we obtain,

∂C

∂t
= D∇2C + λCf (C) . (4.4)

Details of the Taylor series expansions used to derive Equation (4.4) are given in the Sup-

plementary material. Comparing Equations (4.2) and (4.4), the population–level impact

of the change in the proliferation mechanism is to alter the per capita growth rate from

the linearly decreasing function of density, λ(1−C), to the more general λf(C). For the

remainder of this work we set f(C) = Cα−1(1 − Cβ)γ , where α, β and γ are positive

constants [119], but many other choices of f(C) are possible.

4.4 Results

Our main result, so far, is to describe how to incorporate a generalised proliferation

mechanism into a discrete two-dimensional model of cell migration and cell proliferation

with crowding effects, and to derive the mean field continuum limit description. However,

at this stage, it is unclear how well the continuum model will predict averaged data from

repeated stochastic simulations of the discrete model. To explore this issue we now apply

the discrete and continuum models to mimic both a cell proliferation assay and a scratch

assay (Figure 4.1). We systematically vary r and f(C) to explore how these choices affect

the performance of the continuum description.

A key parameter in the discrete model is Pp/Pm, which is the relative frequency of prolif-

eration events to motility events for an isolated agent [109]. This ratio can be estimated

from experimentally observable quantities including the doubling time t′d = (τ ′ loge 2)/Pp,

the cell diffusivity D′, and the average cell diameter, ∆′. For typical values: t′d = 24

h [109]; D′ = 1000 µm2/h [111]; and, ∆′ = 24 µm [49], we have Pp/Pm ≈ 0.001. There-

fore, all simulations and analysis in the main document correspond to ∆ = τ = Pm = 1

and Pp = 0.001. These non–dimensional simulations can be used to model a population

of cells with an arbitrary dimensional cell diameter and an arbitrary doubling time by
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re–scaling ∆ and τ with appropriate choices of ∆′ and τ ′, respectively [109]. To ensure

the conclusions drawn from these simulations are applicable to a wide range of cell lines,

we repeat all simulations and analysis for a higher proliferation rate, ∆ = τ = Pm = 1

and Pp = 0.05 (Supplementary material).

Cell proliferation assay. We consider a suite of simulations of a cell proliferation assay

based on the geometry of the images in Figure 4.1(a)–(c). We use a lattice of size I × J
to accommodate a typical population of cells (∆′ = 24 µm [49]). Since the images in

Figure 4.1(a)–(c) show a fixed field of view that is much smaller than the spatial extent of

the real experiment, and the cells in the experiment are distributed uniformly, we apply

zero net flux boundary conditions along all boundaries [54]. Simulations are initiated by

randomly populating each lattice site with a constant probability of 5%, so that there

are, on average, no spatial gradients in agent density across the lattice. Snapshots from

the model, across a range of choices of f(C), are given in Figure 4.3.

To mimic the way that cell proliferation assays are reported [118] (Figure 4.1(d)), we

calculate the time evolution of the total number of agents on the lattice, which, when

divided by the total number of lattice sites, gives the agent density per unit area [109]

〈C〉 =
1

IJ

I∑
i=1

J∑
j=1

Ci,j .

We further average these results over many identically prepared simulations so that we

report relatively smooth data where stochastic fluctuations in the agent density are negli-

gible. To compare averaged simulation data with the solution of the continuum model, we

note that the absence of spatial gradients means that, on average, ∇2C = 0. Therefore,

instead of dealing with a PDE for C(x, y, t), Equation (4.4) simplifies to the ordinary

differential equation (ODE) for C(t) [118]

dC

dT
= Cf(C), (4.5)

where we have written T = tλ. This re–scaling of the time variable allows us to more easily

compare results in the main paper for a standard proliferation rate (Pp/Pm = 0.001) with

additional results for faster proliferation (Pp/Pm = 0.05) (Supplementary material). We

solve Equation (4.5) numerically using a backward Euler approximation with a constant

time step, δt, and Picard linearisation with convergence tolerance, ε.

Results in Figure 4.4(a)–(b) show that when f(C) is linear, the discrete and continuum

density profiles are indistinguishable at this scale for r = 1, 2, 3 and 4. Results in Figure

4.4(c) quantify the discrepancy between the solution of the continuum model and averaged

discrete density data using E = 〈C〉 − C, where 〈C〉 is the average density per unit area

from the discrete simulations and C is the solution of Equation (4.5). In summary, the

evolution of E (Figure 4.4(c)) shows that the error is extremely small, with no discernible

trends for the different choices of r. Additional results in Figures 4.4(d)–(l) show similar
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comparisons for a range of nonlinear f(C) and several choices of r. The averaged discrete

data and the solution of the corresponding continuum model show that, broadly speaking,

the continuum model provides a good prediction of the averaged discrete results but there

are some differences for different choices of r when f(C) is nonlinear. When we compare

the evolution of the density data between Figures 4.4(b), (e), (h) and (k), we see that the

choice of f(C) impacts the evolution of the density profile. Similar comparisons to those

in Figure 4.4 are made in the Supplementary material for a higher initial condition. In

addition to these two different choices of initial condition, we also performed comparisons

for a range of other initial conditions (not shown) and these results confirm that the

trends we observe are relevant regardless of the initial condition.

Although the match between the average discrete data and the solution of the corre-

sponding continuum model in Figure 4.4 is very good, there are some trends that are

not obvious without making these comparisons explicit. For example, results in Figure

4.4(e)–(f), (h)–(i) and (k)–(l) indicate that the performance of the continuum model is

slightly poorer when f(C) is nonlinear compared to the results in Figure 4.4(b)–(c) where

f(C) is linear. However, for all choices of f(C), the performance of the continuum model

improves as r increases. For example, all results with r = 4 lead to an excellent match

regardless of f(C). Therefore, these results indicate that estimating r from experimental

time lapse images, such as those reported by Druckenbrod and Epstein [27], will be im-

portant if we need to decide whether the continuum approximation is sufficient and r is

sufficiently large, or whether we need to use more computationally demanding repeated

simulations of the discrete model, when r is sufficiently small.
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Figure 4.3: Snapshots of simulations for a suite of cell proliferation assays. In each row the distributions of agents at time λt = T = 0, 1, 3, 5, as indicated, are shown along
with the corresponding f(C). Each simulation is initiated by randomly populating a lattice of size I = 28 and J = 24, so that each site is occupied with probability 5%. All
simulations correspond to ∆ = τ = Pm = 1, Pp = 0.001 and r = 4.
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Scratch assay. We also consider a suite of simulations of a scratch assay based on the

geometry of the images in Figure 4.1(e)–(g). Since these images show a fixed field of view

that is much smaller than the spatial extent of the real experiment [49], we apply zero net

flux boundary conditions along all boundaries of the lattice [54]. We model the scratch

assays on a lattice of size I × J that is chosen to accommodate a typical population

of cells (∆′ = 24 µm [49]). To model the initial condition, we randomly populate all

lattice sites with an equal probability of 30%. This initial density is smaller than the

maximum carrying capacity density, and this is consistent with previous experimental

procedures [49]. While we present results for an initial density of 30%, our stochastic

simulation tools and continuum limit description are general, and can deal with any

initial density. To simulate the scratch, we remove all agents from a vertical region, with

a width of 23 cell diameters (Figure 4.1(d)). Snapshots from the discrete model, for a

range of f(C) are shown in Figure 4.5.

Since the initial condition is uniform in the vertical direction, we average the agent pop-

ulation density along each vertical column of lattice sites to obtain

〈Ci〉 =
1

J

J∑
j=1

Ci,j ,

which is then further averaged over many identically prepared discrete simulations to

reduce fluctuations. This procedure allows us to plot the time evolution of the average

agent density as a function of the horizontal coordinate, as shown in Figure 4.1(h) [49,54].

Typical results from the discrete model are shown in Figure 4.6(a)–(c), with the standard

linear f(C), for r = 1 and r = 4, respectively. As time increases, we see the effects of

combined agent motility and agent proliferation as the agent density profiles spreads into

the initially-vacant region. The effects of proliferation can also be observed as the density

profile increases with time towards confluence.

To explore how well the continuum description matches this vertically–averaged discrete

density data, we note that since the initial condition is independent of the vertical location

(Figure 4.1(d)), we can average Equation (4.4) in the vertical direction [49,54] to give,

∂C

∂t
= D

∂2C

∂x2
+ λCf(C). (4.6)

To solve Equation (4.6), we apply no flux boundary condition at both boundaries, and the

initial condition is given by C(x, 0) ≡ 0 within the initially–vacant region, and C(x, 0) ≡
0.30 outside of this region. We solve Equation (4.6) numerically using a central difference

approximation with uniform spacing δx, and the temporal derivative is approximated

using a backward Euler method with a uniform time step, δt. The resulting system of

nonlinear algebraic equations is solved using Picard iteration with convergence tolerance,

ε. The numerical solution of Equation (4.6) is superimposed on the averaged discrete

density profiles in Figure 4.6(b)-(c) for f(C) = 1−C, with r = 1 and r = 4, respectively.
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Figure 4.4: Comparison of averaged simulation data and the solution of the corresponding continuum
model for a cell proliferation assay with: f(C) = 1− C, as shown in (a)–(c); f(C) = 1− C2, as shown in
(d)–(f); f(C) = (1− C)2, as shown in (g)–(i); and f(C) = (1− C2)2, as shown in (j)–(l). Results in (b),
(e), (h) and (k) compare averaged simulation data and the solution of the corresponding continuum model
for a range of 1 ≤ r ≤ 4 where the initial condition corresponds to 5% of sites being randomly occupied.
All simulations are performed on a lattice with I = 28 and J = 24, and results are averaged across
300 identically prepared realisations of the discrete model. Profiles in (c), (f), (i) and (l) quantify the
discrepancy between the solution of the continuum model and the average simulation data. All simulation
results correspond to ∆ = τ = Pm = 1 and Pp = 0.001, and the numerical solution of the continuum
model is obtained with δt = 1× 10−3 and ε = 1× 10−5. In all cases T = λt.
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As with the cell proliferation assay results in Figure 4.4, the quality of the continuum–

discrete match for the scratch assay with f(C) = 1 − C is excellent for all r considered.

Data in Figure 4.6(d)–(l) show similar comparisons for simulations of scratch assays for

a range of nonlinear f(C). Comparing the evolution of C(x, T ) in Figure 4.6 shows how

the choice of f(C) influences the evolution of the scratch assay. Again, as for the cell

proliferation assays, overall we observe a good quality of match between the solution of the

continuum model and the averaged agent density profiles across all choices of f(C) and r

for the scratch assays. However, for nonlinear f(C), we observe some small discrepancies,

and these discrepancies are most pronounced when r = 1. In contrast, the quality of

the continuum–discrete match is excellent for larger r across all choices of f(C) that we

consider. Further comparisons of the performance of the continuum PDE description for

intermediate values of r = 2 and r = 3 are given in the Supplementary material.
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Figure 4.5: Snapshots of simulations for a suite of scratch assays. In each row the distributions of agents at time λt = T = 0, 0.25, 1, 3 are shown along with the corresponding
f(C). Each simulation is initiated by randomly populating a lattice, corresponding to lattice of size I = 80 and J = 68, so that each site is occupied with probability 30%. A
scratch of 23 lattice sites wide is made at T = 0. All simulations correspond to ∆ = τ = Pm = 1, Pp = 0.001 and r = 4.
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4.5 Discussion

Most continuum [14, 22, 76, 98, 100] and discrete [15, 109, 111] models of collective cell

spreading are associated with a logistic growth source term to model cell proliferation.

However, certain in vivo [66, 124] and in vitro [49] evidence suggests that cells do not

always proliferate logistically. Motivated by these observations, we extend the traditional

exclusion process based discrete model of cell proliferation since the continuum limit

description of this traditional model always leads to logistic growth. Our new, gener-

alised discrete model encompasses two extensions. The first extension involves choosing

a variably sized proliferation template so that the target site is chosen from a set of sites

contained within r ≥ 1 concentric rings about the mother agent. The second extension

involves a measure of the crowdedness of the proliferative agent, Ĉs ∈ [0, 1]. A crowding

function, f(C), which incorporates information from a group of neighbouring sites is used

to quantify the influence of crowding. Analysing the mean field continuum limit of the

generalised model shows that the usual logistic source term, λC(1−C), is generalised to

λCf(C). There are several interesting consequences of this generalised mean field PDE,

namely: (i) the traditional logistic source term corresponds to linear f(C); (ii) the size

of the template, r, does not appear in the continuum limit description; and, (iii) without

making explicit comparisons, it is unclear how different choices of f(C) and r affect the

accuracy of the continuum limit description.

To provide insight into how different choices of f(C) and r affect the accuracy of the

continuum limit description, we generate averaged discrete data from the generalised

random walk model for both a cell proliferation and a scratch assay for a typical cell

line with Pp/Pm = 0.001 [111]. Averaged simulation data are generated for a range of

choices of f(C) and r and we find that, overall, the continuum description provides a good

prediction of the average behaviour of the stochastic simulations. While there is a modest

discrepancy in the continuum-discrete match for nonlinear f(C), we find that the quality

of the match improves as r increases. Therefore, to make a distinction between the need for

using repeated stochastic simulations or simply working with the continuum description,

we suggest that experimental time lapse images [27] ought to be used to estimate the size

of the group of cells that a proliferating cell interacts with. This approach would provide

an estimate of r. To ensure that our conclusions are broadly applicable across a wide

range of cell lines, all continuum-discrete comparisons are repeated for a cell line with a

particularly fast proliferation rate Pp/Pm = 0.05 (Supplementary material), and we find

that the same conclusions apply.

There are two features of this study that could warrant further investigation. First,

since the focus of the work is to investigate the role of the proliferation mechanism,

all simulations and analysis invoke the most fundamental unbiased nearest neighbour

exclusion motility mechanism. This mechanism provides a good approximation of the

collective motility of mesenchymal cell lines that are largely unaffected by cell-to-cell
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Figure 4.6: Comparison of averaged simulation data and the solution of the corresponding continuum
model for a scratch assay with: f(C) = 1− C, as shown in (a)–(c); f(C) = 1− C2, as shown in (d)–(f);
f(C) = (1−C)2, as shown in (g)–(i); and f(C) = (1−C2)2, as shown in (j)–(l). Results in (b), (e), (h) and
(k) compare averaged simulation data (solid lines) and the solution of the corresponding continuum model
(dashed lines) for r = 1. In each subfigure, agent density profiles are given at λt = T = 0, 0.25, 0.5, 1, 2, 3,
and the direction of increasing t is shown with the arrows. Results in (c), (f), (i) and (l) show an equivalent
comparison except here we have r = 4. All simulation results are averaged across 100 identically prepared
realisations of the discrete model, with ∆ = τ = Pm = 1 and Pp = 0.001, on a lattice of size I = 80 and
J = 68. The numerical solution of the continuum model is with δx = 0.25, δt = 0.1 and ε = 1× 10−5.



Chapter 4. Stochastic simulation tools and continuum models for describing
two–dimensional collective cell spreading with universal growth functions

108

adhesion [14, 111]. However, if dealing with an epithelial cell line, it would be more rea-

sonable to invoke a motility mechanism that incorporates cell–to–cell adhesion [25, 115].

Under these conditions it would be interesting to extend the present analysis to investi-

gate the performance of the continuum limit description of the generalised proliferation

mechanism with an adhesive motility mechanism [25, 115]. Second, all discrete simu-

lations in this work are lattice–based. While many previous studies have used lattice–

based models to successfully mimic and predict a range of two–dimensional in vitro as-

says [14, 18, 54, 115], all lattice–based models make certain implicit assumptions. For

example, all lattice–based exclusion process models effectively assume that agents are

a fixed size [12, 15, 18, 59, 61, 109], which is clearly an approximation because it is well

known that cell proliferation involves gradual changes in cell volume. An alternative way

to simulate collective cell migration experiments would be to use a lattice–free frame-

work [52, 89]. One of the advantages of using a lattice–free framework is that the model

can be adapted to allow for dynamic cell size changes during a proliferation event. How-

ever, the main limitation of using a lattice–free method to mimic a real experiment is

that the computation time is proportional to N2, where N is the number of agents in the

simulation. This can be prohibitive if we wish to mimic a real in vitro experiment with

many tens of thousands, or hundreds of thousands cells [115]. In contrast, lattice–based

methods are more convenient since the computation time is proportional to N .
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4.6 Supplementary material

4.6.1 Taylor series expansions

In this section we demonstrate how to derive Equation (refPDE2) with r = 1 and arbitrary

f(C). Extending the derivation to deal with r > 1 is straightforward. To begin, we note

that site s, with position (x, y), has six nearest neighbouring sites: site s′1 with position

(x−∆, y); site s′2 with position (x+∆, y); site s′3 with position (x−∆/2, y+∆
√

3/2); site

s′4 with position (x+ ∆/2, y+ ∆
√

3/2); site s′5 with position (x−∆/2, y−∆
√

3/2); and,

site s′6 with position (x + ∆/2, y − ∆
√

3/2). It is useful to first write down expressions

for the average density of these six nearest neighbouring sites expanded in a Taylor series



Chapter 4. Stochastic simulation tools and continuum models for describing
two–dimensional collective cell spreading with universal growth functions

109

about (x, y),

〈Cs′1
〉 = 〈Cs〉 −

∂〈Cs〉
∂x

∆ +
∂2〈Cs〉
∂x2

∆2

2
+O(∆3), (4.7)

〈Cs′2
〉 = 〈Cs〉+

∂〈Cs〉
∂x

∆ +
∂2〈Cs〉
∂x2

∆2

2
+O(∆3), (4.8)

〈Cs′3
〉 = 〈Cs〉 −

∂〈Cs〉
∂x

∆

2
+
∂〈Cs〉
∂y

√
3∆

2
+

[
1

4

∂2〈Cs〉
∂x2

+
3

4

∂2〈Cs〉
∂y2

−
√

3

2

∂2〈Cs〉
∂x∂y

]
∆2

2
+O(∆3),

(4.9)

〈Cs′4
〉 = 〈Cs〉+

∂〈Cs〉
∂x

∆

2
+
∂〈Cs〉
∂y

√
3∆

2
+

[
1

4

∂2〈Cs〉
∂x2

+
3

4

∂2〈Cs〉
∂y2

+

√
3

2

∂2〈Cs〉
∂x∂y

]
∆2

2
+O(∆3),

(4.10)

〈Cs′5
〉 = 〈Cs〉 −

∂〈Cs〉
∂x

∆

2
− ∂〈Cs〉

∂y

√
3∆

2
+

[
1

4

∂2〈Cs〉
∂x2

+
3

4

∂2〈Cs〉
∂y2

+

√
3

2

∂2〈Cs〉
∂x∂y

]
∆2

2
+O(∆3),

(4.11)

〈Cs′6
〉 = 〈Cs〉+

∂〈Cs〉
∂x

∆

2
− ∂〈Cs〉

∂y

√
3∆

2
+

[
1

4

∂2〈Cs〉
∂x2

+
3

4

∂2〈Cs〉
∂y2

−
√

3

2

∂2〈Cs〉
∂x∂y

]
∆2

2
+O(∆3),

(4.12)

where we have truncated terms of O(∆3). From this point on we drop the angle bracket

notation. There are two terms on the right of Equation (4.3) that are associated with

agent motility, and one term on the right of Equation (4.3) that is associated with agent

proliferation. We will deal with these two different types of terms separately.

For agent migration, we need to deal with terms like
∑

s′∈N1{s}

Cs′ , which can be obtained

by summing Equations (4.7)-(4.12) to give

∑
s′∈N1{s}

Cs′ = 6Cs +

(
∂2Cs

∂x2
+
∂2Cs

∂y2

)
3∆2

2
+O(∆3).

For agent proliferation, we need to deal with the terms: f(Ĉs′1
), f(Ĉs′2

), f(Ĉs′3
), f(Ĉs′4

), f(Ĉs′5
)

and f(Ĉs′6
). Here, we will show how to deal with f(Ĉs′1

) and we note that the other terms

are a straightforward extension of these results. First we expand the local density in a

Taylor series about site s

Ĉs′1
=

1

6

∑
s′′∈N1{s′}

Cs′′

= Cs′1
+

(
∂2Cs′1

∂x2
+
∂2Cs′1

∂y2

)
∆2

4
+O(∆3),

= Cs −
∂Cs

∂x
∆ +

(
3
∂2Cs

∂x2
+
∂2Cs

∂y2

)
∆2

4
+O(∆3). (4.13)
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We re-write Equation (4.13) as Ĉs′1
= Cs + C̄, where C̄ = O(∆). Therefore, the crowding

function at site s′1 can be expanded in the following way,

f(Ĉs′1
) = f(Cs + C̄),

= f(Cs) +
df(Cs)

dC
C̄ +

d2f(Cs)

dC2

C̄2

2
+O(∆3). (4.14)

Using Equations (4.13)-(4.14) we obtain a series expansion for f(Ĉs′1
). Repeating this

procedure for f(Ĉs′1
), f(Ĉs′2

), f(Ĉs′3
), f(Ĉs′4

), f(Ĉs′5
) and f(Ĉs′6

), we expand all terms in

Equation (4.3) that are associated with proliferation in a similar way. With all terms in

Equation (4.3) expanded about (x, y), we obtain

δCs = Pm

(
∂2Cs

∂x2
+
∂2Cs

∂y2

)
∆2

4
+ PpCsf(Cs). (4.15)

Following the same procedure outlined in the main manuscript, Equation (4.15) leads to

Equation (4.4).

4.6.2 Additional results for the cell proliferation assays with the

standard proliferation rate

All discrete-continuum comparisons in Figure 4.4 correspond to a cell proliferation assay

with 5% of lattice sites initially occupied. Here, in Figure S1, we present an otherwise

identical set of continuum-discrete comparisons for a different initial condition where all

sites are initially occupied with probability 20%. In comparing the continuum-discrete

comparison in Figure 4.4 with the results here in Figure 4.7 we see that the same trends

regardless of the initial condition.

4.6.3 Additional results for the scratch assays with the standard

proliferation rate

All discrete-continuum comparisons in Figure 4.6 compare the performance of the contin-

uum limit description for the scratch assays for four choices of f(C), and two choices of

r (r = 1 and r = 4) with Pp/Pm = 0.001. Additional comparisons, given here in Figures

4.8–4.11, show further results for intermediate values of r (r = 2, 3) together with r = 1

and r = 4. All other parameters are the same as in Figure 4.6.

4.6.4 Additional results for higher proliferation rate

All discrete-continuum comparisons presented in the main paper are for a standard cell

doubling time, and correspond to non-dimensional discrete simulations with Pp/Pm =

0.001. To be sure that the conclusions drawn from this work are consistent across a wide

range of cell lines, we also present additional results for both the proliferation assay (Figure

4.12–4.14) and the scratch assay (Figure 4.15–4.19) for a cell line with a much faster
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proliferation rate, Pp/Pm = 0.05. In summary, comparing the quality of the continuum-

discrete match in Figure 4.4 with the additional results in Figures 4.12–4.14 confirms that

the same trends and results discussed in the main document are also relevant for the faster

proliferation rate in the cell proliferation assay. Similarly, comparing the quality of the

continuum-discrete match in 4.6 with the additional results in Figures 4.15–4.19 confirms

that the similar trends and results discussed in the main document are also relevant for

the faster proliferation rate in the scratch assay.



Chapter 4. Stochastic simulation tools and continuum models for describing
two–dimensional collective cell spreading with universal growth functions

112

0 1
C

0

1

f(C)

(a)

f(C) = 1 - C

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

T

C

 

 

(b)
0 2 4 6 8 10

−0.008

−0.004

0

0.004

T

E

(c)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

T

C

 

 

(e)
0

1

f(C)

(d)
0 1

C

f(C) = 1 - C²

0 1 2 3 4 5
−0.04

−0.02

0

T

E

(f)

0

1

f(C)

(g)
0 1

C

f(C) = (1 - C)²

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

T

C

 

 

(h)
0 5 10 15 20−0.02

0.02

0.06

T

E

(i)

0

1

f(C)

(j) 0 1C

f(C) = (1 - C²)²

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

T

C

 

 

(k) 0 2 4 6 8 10
−0.04

0

0.04

T

E

(l)

Discrete, r = 1 Discrete, r = 2 Discrete, r = 3 Discrete, r = 4 Continuum

Figure 4.7: Comparison of averaged simulation data and the solution of the corresponding continuum
model for a cell proliferation assay with: f(C) = 1− C, as shown in (a)-(c); f(C) = 1− C2, as shown in
(d)-(f); f(C) = (1 − C)2, as shown in (g)-(i); and f(C) = (1 − C2)2, as shown in (j)-(l). Results in (b),
(e), (h) and (k) compare averaged simulation data and the solution of the corresponding continuum model
for a range of 1 ≤ r ≤ 4 where the initial condition corresponds to 20% of sites being randomly occupied.
All simulations are performed on a lattice with I = 28 and J = 24, and results are averaged across
300 identically prepared realisations of the discrete model. Profiles in (c), (f), (i) and (l) quantify the
discrepancy between the solution of the continuum model and the average simulation data. All simulation
results correspond to ∆ = τ = Pm = 1 and Pp = 0.001, and the numerical solution of the continuum
model is obtained with δt = 1× 10−3 and ε = 1× 10−5. In all cases T = λt.
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Figure 4.8: Comparison of averaged simulation data and the solution of the corresponding continuum model for a scratch assay with f(C) = 1 − C. Results in (a)-(d)
correspond to r = 1, 2, 3 and 4, respectively. Results compare averaged simulation data (solid lines) and the solution of the corresponding continuum model (dashed lines).
In each subfigure, agent density profiles are given at λt = T = 0, 0.25, 0.5, 1, 2, 3, and the arrows show the direction of increasing time. All simulation results are averaged
across 100 identically prepared realisations of the discrete model, with ∆ = τ = Pm = 1 and Pp = 0.001, on a lattice of size I = 80 and J = 68. The numerical solution of the
continuum model is with δx = 0.25, δt = 0.1 and ε = 1× 10−5.
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Figure 4.9: Comparison of averaged simulation data and the solution of the corresponding continuum model for a scratch assay with f(C) = 1 − C2. Results in (a)-(d)
correspond to r = 1, 2, 3 and 4, respectively. Results compare averaged simulation data (solid lines) and the solution of the corresponding continuum model (dashed lines).
In each subfigure, agent density profiles are given at λt = T = 0, 0.25, 0.5, 1, 2, 3, and the arrows show the direction of increasing time. All simulation results are averaged
across 100 identically prepared realisations of the discrete model, with ∆ = τ = Pm = 1 and Pp = 0.001, on a lattice of size I = 80 and J = 68. The numerical solution of the
continuum model is with δx = 0.25, δt = 0.1 and ε = 1× 10−5.
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Figure 4.10: Comparison of averaged simulation data and the solution of the corresponding continuum model for a scratch assay with f(C) = (1 − C)2. Results in (a)-(d)
correspond to r = 1, 2, 3 and 4, respectively. Results compare averaged simulation data (solid lines) and the solution of the corresponding continuum model (dashed lines).
In each subfigure, agent density profiles are given at λt = T = 0, 0.25, 0.5, 1, 2, 3, and the arrows show the direction of increasing time. All simulation results are averaged
across 100 identically prepared realisations of the discrete model, with ∆ = τ = Pm = 1 and Pp = 0.001, on a lattice of size I = 80 and J = 68. The numerical solution of the
continuum model is with δx = 0.25, δt = 0.1 and ε = 1× 10−5.
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Figure 4.11: Comparison of averaged simulation data and the solution of the corresponding continuum model for a scratch assay with f(C) = (1− C2)2. Results in (a)-(d)
correspond to r = 1, 2, 3 and 4, respectively. Results compare averaged simulation data (solid lines) and the solution of the corresponding continuum model (dashed lines).
In each subfigure, agent density profiles are given at λt = T = 0, 0.25, 0.5, 1, 2, 3, and the arrows show the direction of increasing time. All simulation results are averaged
across 100 identically prepared realisations of the discrete model, with ∆ = τ = Pm = 1 and Pp = 0.001, on a lattice of size I = 80 and J = 68. The numerical solution of the
continuum model is with δx = 0.25, δt = 0.1 and ε = 1× 10−5.
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Figure 4.12: Snapshots of simulations for a suite of cell proliferation assays. In each row the distributions of agents at time λt = T = 0, 1, 3, 5, as indicated, are shown along
with the corresponding f(C). Each simulation is initiated by randomly populating a lattice of size I = 28 and J = 24, so that each site is occupied with probability 5%. All
simulations correspond to ∆ = τ = Pm = 1, Pp = 0.05 and r = 4.
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Figure 4.13: Comparison of averaged simulation data and the solution of the corresponding continuum
model for a cell proliferation assay with: f(C) = 1− C, as shown in (a)-(c); f(C) = 1− C2, as shown in
(d)-(f); f(C) = (1 − C)2, as shown in (g)-(i); and f(C) = (1 − C2)2, as shown in (j)-(l). Results in (b),
(e), (h) and (k) compare averaged simulation data and the solution of the corresponding continuum model
for a range of 1 ≤ r ≤ 4 where the initial condition corresponds to 5% of sites being randomly occupied.
All simulations are performed on a lattice with I = 28 and J = 24, and results are averaged across
300 identically prepared realisations of the discrete model. Profiles in (c), (f), (i) and (l) quantify the
discrepancy between the solution of the continuum model and the average simulation data. All simulation
results correspond to ∆ = τ = Pm = 1 and Pp = 0.05, and the numerical solution of the continuum model
is obtained with δt = 1× 10−3 and ε = 1× 10−5. In all cases T = λt.
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Figure 4.14: Comparison of averaged simulation data and the solution of the corresponding continuum
model for a cell proliferation assay with: f(C) = 1− C, as shown in (a)-(c); f(C) = 1− C2, as shown in
(d)-(f); f(C) = (1 − C)2, as shown in (g)-(i); and f(C) = (1 − C2)2, as shown in (j)-(l). Results in (b),
(e), (h) and (k) compare averaged simulation data and the solution of the corresponding continuum model
for a range of 1 ≤ r ≤ 4 where the initial condition corresponds to 20% of sites being randomly occupied.
All simulations are performed on a lattice with I = 28 and J = 24, and results are averaged across
300 identically prepared realisations of the discrete model. Profiles in (c), (f), (i) and (l) quantifies the
discrepancy between the solution of the continuum model and the average simulation data. All simulation
results correspond to ∆ = τ = Pm = 1 and Pp = 0.05, and the numerical solution of the continuum model
is obtained with δt = 1× 10−3 and ε = 1× 10−5. In all cases T = λt.
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Figure 4.15: Snapshots of simulations for a suite of scratch assays. In each row the distributions of agents at time λt = T = 0, 0.25, 1, 3 are shown along with the corresponding
f(C). Each simulation is initiated by randomly populating a lattice, corresponding to lattice of size I = 80 and J = 68, so that each site is occupied with probability 30%. A
scratch of 23 lattice sites wide is made at T = 0. All simulations correspond to ∆ = τ = Pm = 1, Pp = 0.05 and r = 4.
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Figure 4.16: Comparison of averaged simulation data and the solution of the corresponding continuum model for a scratch assay with f(C) = 1 − C. Results in (a)-(d)
compare averaged simulation data (solid lines) and the solution of the corresponding continuum model (dashed lines) for r = 1, 2, 3 and 4, respectively. In each subfigure, agent
density profiles are given at λt = T = 0, 0.25, 0.5, 1.25, 2.5, 5, and the arrows show the direction of increasing time. All simulation results are averaged across 100 identically
prepared realisations of the discrete model, with ∆ = τ = Pm = 1 and Pp = 0.05, and the numerical solution of the continuum model is with δx = 0.25, δt = 0.1 and
ε = 1× 10−5.
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Figure 4.17: Comparison of averaged simulation data and the solution of the corresponding continuum model for a scratch assay with f(C) = 1 − C2. Results in (a)-(d)
compare averaged simulation data (solid lines) and the solution of the corresponding continuum model (dashed lines) for r = 1, 2, 3 and 4, respectively. In each subfigure, agent
density profiles are given at λt = T = 0, 0.25, 0.5, 1.25, 2.5, 5, and the arrows show the direction of increasing time. All simulation results are averaged across 100 identically
prepared realisations of the discrete model, with ∆ = τ = Pm = 1 and Pp = 0.05, and the numerical solution of the continuum model is with δx = 0.25, δt = 0.1 and
ε = 1× 10−5.
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Figure 4.18: Comparison of averaged simulation data and the solution of the corresponding continuum model for a scratch assay with f(C) = (1 − C)2. Results in (a)-(d)
compare averaged simulation data (solid lines) and the solution of the corresponding continuum model (dashed lines) for r = 1, 2, 3 and 4, respectively. In each subfigure, agent
density profiles are given at λt = T = 0, 0.25, 0.5, 1.25, 2.5, 5, and the arrows show the direction of increasing time. All simulation results are averaged across 100 identically
prepared realisations of the discrete model, with ∆ = τ = Pm = 1 and Pp = 0.05, and the numerical solution of the continuum model is with δx = 0.25, δt = 0.1 and
ε = 1× 10−5.
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Figure 4.19: Comparison of averaged simulation data and the solution of the corresponding continuum model for a scratch assay with f(C) = (1− C2)2. Results in (a)-(d)
compare averaged simulation data (solid lines) and the solution of the corresponding continuum model (dashed lines) for r = 1, 2, 3 and 4, respectively. In each subfigure, agent
density profiles are given at λt = T = 0, 0.25, 0.5, 1.25, 2.5, 5, and the arrows show the direction of increasing time. All simulation results are averaged across 100 identically
prepared realisations of the discrete model, with ∆ = τ = Pm = 1 and Pp = 0.05, and the numerical solution of the continuum model is with δx = 0.25, δt = 0.1 and
ε = 1× 10−5.
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Abstract

In vitro cell culture is routinely used to grow and supply a sufficiently large number of

cells for various types of cell biology experiments. Previous experimental studies report

that cell characteristics evolve as the passage number increases, and various cell lines can

behave differently at high passage numbers. To provide insight into the putative mecha-

nisms that might give rise to these differences, we perform in silico experiments using a

random walk model to mimic the in vitro cell culture process. Our results show that it is

possible for the average proliferation rate to either increase or decrease as the passaging

process takes place, and this is due to a competition between the initial heterogeneity

and the degree to which passaging damages the cells. We also simulate a suite of scratch

assays with cells from near–homogeneous and heterogeneous cell lines, at both high and

low passage numbers. Although it is common in the literature to report experimental

results without disclosing the passage number, our results show that we obtain signif-

icantly different closure rates when performing in silico scratch assays using cells with

different passage numbers. Therefore, we suggest that the passage number should always

be reported to ensure that the experiment is as reproducible as possible. Furthermore,

our modelling also suggests some avenues for further experimental examination that could

be used to validate or refine our simulation results.

5.1 Background

In vitro cell culture is routinely used to grow and supply cells for various types of cell

biology experiments [2]. These experiments are used to study a wide range of biological

phenomena including drug design, cancer spreading and tissue repair [32, 49, 63, 121].

According to the American Type Culture Collection (ATCC) protocols, to grow cells

125
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in traditional two–dimensional (2D) in vitro cell culture, cells propagated in a growth

medium are initially seeded as a monolayer in a cell culture flask [8], as shown in Figure

5.1(a). Cells are seeded in a monolayer with a density typically varying from 10–20% of

confluence [8]. Cells are then cultured in an incubator, in an appropriate temperature and

CO2 concentration, and grown until they reach a density of 80%–90% of confluence [8]. To

continue growing the population, cells are lifted, often using trypsin, and split into smaller

proportions. The smaller subpopulations are transferred into new cell culture flasks to

re-grow [8]. This process is referred to as passaging, with passage number indicating

the number of splits [8, 9]. Although passaging is a standard process in 2D cell culture,

the passage number of cells used in experiments is not always reported in experimental

protocols [6, 42,115–117,120].

It is known that passaging can affect cells in a number of ways, and therefore has the

potential to impact the reproducibility of in vitro experiments [120]. There are many

ways in which passaging can affect cells. For example, primary cells, which are directly

isolated from living tissues [41], undergo morphological changes and cumulative damage as

the passage number increases [21,31,45,62,68,88,95,99]. As a result, the cell morphology,

migration rate and proliferation rate can become increasingly varied, which is thought

to increase the heterogeneity in cell lines [31, 45, 68, 95, 99]. Because a range of cell

behaviours could depend on passage number, the passaging process can be a source of

variability that affects the reproducibility of various in vitro experiments, such as 2D

scratch assays [6, 9, 120].

Seemingly contradictory observations have been reported about the effects of passaging

cell lines [31,45,73,95,99]. For example, Hayflick reports that for human diploid cell lines

that are immortalised, cells at high passage numbers demonstrate increased generation

time, gradual cessation of mitotic activities, and accumulation of cellular debris [45]. This

observation of decreased cell proliferation rate is also supported by studies of other cell

lines [31, 95, 99]. However, Lin and coworkers show that the population of LNCaP cells

at passage number 70 is over two times larger than that at passage number 38 after five

days [73]. It has also been stated that for some cell lines, changes due to the passaging

process occur at relatively low passage numbers, whereas for other cell lines the changes

occur at relatively high passage numbers [9]. Therefore, we are motivated to undertake

a mechanistic study to quantify how different variables relevant to the passaging process

might give rise to such seemingly contradictory observations and to explore how these

effects might impact the reproducibility of in vitro experiments.

Although problems associated with high passage numbers are widely acknowledged, the

mechanism of passage–induced changes is not well understood [9, 31, 36, 45, 73, 90, 95, 99,

129]. For example, standard experimental protocols suggest avoiding cells at high passage

numbers, whereas the definition of a ‘high passage number’ is rather vague [9, 90]. On

the other hand, the mechanism that causes the seemingly contradictory observations at

high passage numbers still remains unknown [31, 45, 73, 95, 99]. Computational models

can be useful for exploring mechanisms and trade-offs between various factors. Therefore,
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the problems with high passage numbers invoke us to apply a computational model to

investigate putative mechanisms that could lead to the seemingly contradictory changes.

As far as we are aware, this is the first time that problems with passaging of cell lines are

investigated using a computational approach of this kind.

In this work, we describe a mathematical model that can be used to study the passaging

process in 2D in vitro cell culture [50, 122], particularly for primary cell lines. A key

feature of our model is that we allow individual cells within the population to take on a

range of characteristics, such as variable proliferation rates, and therefore it is natural to

focus on using a discrete model for this purpose [28, 50]. In particular, we are interested

in examining whether the apparently contradictory effects of passaging reported in the

literature can be recapitulated using a fairly straightforward discrete model. After exam-

ining the trade-off between cell heterogeneity and passage–induced damage, we then use

the in silico model to examine how the passaging process might affect the reproducibil-

ity of scratch assays [49, 71]. In this work we focus on the impact of passaging on the

cell proliferation rate, and apply a discrete model to explain how passaging can lead to

either increasing or decreasing proliferation rates, depending on the competing effects of

natural inheritance versus passaging–induced damage. In our model we impose three key

assumptions: (i) the passaging process does not affect the cells’ ability to migrate; (ii)

initially the proliferation rate of each cell is assigned randomly from a normal distribu-

tion; and (iii) when proliferating, daughter cells inherit the same proliferation rate as the

mother cell. Our approach is to focus on two prototype cell populations. The first is

near–homogeneous in the sense that the proliferation rate of the cells is close to constant

throughout the population initially. The second has a distinctively heterogeneous distri-

bution of proliferation rates. For each prototype population, we systematically vary the

amount of damage caused by passaging to investigate the impact of the damage.

5.2 Discrete model

5.2.1 Model framework

We use a discrete random walk model to simulate the passaging process and we refer

to individual random walkers in the model as cells. All simulations are performed on

a hexagonal lattice, with the lattice spacing ∆ taken to be equal to the average cell

diameter [50]. The model includes crowding effects by ensuring that there is, at most,

one cell per lattice site [109]. Each lattice site, indexed (i, j) where i, j ∈ Z+, has position

(x, y) =


(
(i− 1)∆,

√
3(j − 1)∆/2

)
if j is even,(

(i− 1/2)∆,
√

3(j − 1)j∆/2
)

if j is odd,

such that 1 ≤ i ≤ I and 1 ≤ j ≤ J [50]. In any single realisation of the model, the

occupancy of site (i, j) is denoted Ci,j , with Ci,j = 1 if the site is occupied, and Ci,j = 0

if vacant.
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If there are N(t) cells at time t, then during the next time step of duration τ , N(t) cells

are selected independently at random, one at a time with replacement, and given the

opportunity to move [50,109]. The randomly selected cell attempts to move, with proba-

bility Pm, to one of the six nearest neighbour sites, with the target site chosen randomly.

Motility events are aborted if a cell attempts to move to an occupied site. Once N(t)

potential motility events are attempted, another N(t) cells are selected independently, at

random, one at a time with replacement, and given the opportunity to proliferate with

probability Pp. The location of the daughter cell is chosen, at random, from one of the

six nearest neighbour lattice sites [50, 109]. If the selected lattice site is occupied, the

potential proliferation event is aborted. In contrast, if the selected site is vacant, a new

daughter cell is placed on that site. After the N(t) potential proliferation events have

been attempted, N(t+ τ) is updated [50,109].

The discrete models in this study are coded in C++. And the C++ simulation code is

supplied in the Supplementary Material (Section 5.5).

5.2.2 Simulation domain

The domain is a rectangle of dimensions 10 cm by 7.5 cm, which we use to represent the 75

cm2 cell culture flask in Figure 5.1(a). This corresponds to a simulation domain in which

I = 4168 and J = 3610, with ∆ = 24 µm [49]. Therefore, the maximum number of cells

in a 100% confluent monolayer is approximately 15 million. To simplify our visualisation

of the model output, although we always perform simulations on the entire 10 cm by 7.5

cm simulation domain, we visualise a smaller, 2 mm by 2 mm, subregion in the centre of

the simulation domain, as shown in Figure 5.1(b). No flux boundary conditions along the

boundaries of the simulation domain are applied in all cases. For the remainder of this

work, we visualise snapshots of the distribution of cells in the smaller field of view, such

as the results in Figure 5.1(c)–(d).

5.2.3 Initial condition

Simulations are initiated by randomly populating 15% of lattice sites [8]. At each passage

number, the growth of cells in the culture is terminated when 85% confluence is reached.

The migration probability Pm of each cell is held constant. Motivated by experimental

data of the duration of the mitotic phase for individual cells [39], each cell is initially

assigned a random value of Pp, drawn from a normal distribution N (µp, σ) to mimic

the stochasticity in proliferation rate among the initial population. When a proliferation

event takes place, we invoke the simplest mechanism by assuming that both daughter cells

inherit the proliferation rate of the mother cell. For all simulations we set Pm = 0.35,

µp = 0.004, ∆ = 24 µm and τ = 1/12 h so that we are considering cell populations

with a typical cell diameter, cell diffusivity (D ≈ 600 µm2/h) and average proliferation

rate (λ ≈ 0.05 /h) [50, 109]. We consider two prototype cell populations: (i) a near–

homogeneous cell population with a relatively small variance, σ = 1 × 10−4; and (ii)
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Figure 5.1: Schematic illustration of the simulation domain. (a) Photograph of a 75 cm2 cell culture
flask. (b) Schematic of the 10 cm × 7.5 cm simulation domain that represents the 75 cm2 flask. The
orange squares in (a) and (b) indicate the 2 mm × 2 mm field of view. (c) Snapshot of the field of view
at 15% confluence. (d) Snapshot of the field of view at 85% confluence.

a heterogeneous cell population with a larger variance, σ = 1 × 10−3. We choose the

values of the standard deviation σ, so that the proliferation rate distribution is within a

biologically reasonable range, and the degree of heterogeneity in the near–homogeneous

and heterogeneous cell lines are distinguishable.

5.2.4 Passaging

In our simulations passaging takes place immediately after the population grows to 85%

confluence [8]. To split the populations we randomly select a number of cells that is

equivalent to cover 15% of lattice sites. These cells are randomly placed on an empty

simulation domain to mimic the splitting of cells in the passaging process. Note that Pm

is constant for all cells whereas we allow Pp to vary amongst the population and we also

assume that the process of passaging the cells involves some damage [95]. Considering

that the passaging process involves a combination of chemical (e.g. the usage of trypsin)
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and mechanical disturbances known to disrupt normal cell behavior, it is reasonable to

incorporate some kind of damage mechanism into the passage simulations [8,21,31,45,88,

95, 99]. However, the exact cause and the form of the passage–induced damage have not

been established. Therefore any form of the passage–induced damage which illustrates

certain degrees of stochasticity could be a reasonable choice. In this study, we consider

two different degrees of passage–induced damage:

• Small amount of damage: Pp of each cell is decreased by ε, where ε ∼ N (2×10−5, 2×
10−5); and

• Large amount of damage: Pp of each cell is decreased by ε, where ε ∼ N (1×10−4, 1×
10−4).

Each time the population of cells is split, the passage number increases by one. As previous

studies indicate that cell proliferation increases at high passage numbers [73], it is possible

to assume that the passage–induced damage could lead to the increase in proliferation

rate. However, since the aim of this study is to examine the trade-offs between the initial

heterogeneity in cell proliferation and the passage–induced damage, in both scenarios we

only consider non–negative passage–induced damage by changing any negative damage

to zero. This assumption allows us to limit the factors that can increase cell proliferation.

5.3 Results

5.3.1 Passaging cell lines without passage–induced damage

We first investigate how the initial degree of heterogeneity in proliferation rate changes

as the passage number increases. In this first set of results we do not consider any form

of passage–induced damage. We consider a suite of simulations from passage number 0

to 30 and present results for both the near–homogeneous cell line and the heterogeneous

cell line. Snapshots of the field of view at passage number 0 and passage number 30, for

both prototype cell populations, are shown in Figure 5.2(a)–(d) and Figure 5.3(a)–(d),

respectively. In each snapshot, different colours of cells represent different ranges of the

proliferation rate, with red indicating the fastest–proliferating cells and blue showing the

slowest–proliferating cells. At the end of passage number 0 we observe a larger variation

in cell proliferation rate in the heterogeneous cell line than the near–homogeneous cell

line, as we might expect. At the end of passage number 30 we see that there is a dramatic

change in the average proliferation rate of cells in the heterogeneous cell line. This change

is caused by the fact that cells with higher proliferation rates are more likely to produce

daughter cells that directly inherit the higher proliferation rate of the mother cell. There-

fore, we observe a greater proportion of faster–proliferating cells in the heterogeneous cell

line at high passage number. This leads to a larger average value of Pp and a greater

variation in Pp across the whole population of cells in the heterogeneous cells line, as

shown in Figure 5.2(e)–(h) and Figure 5.3(e)–(h), respectively.
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To summarise how the cell proliferation rate changes with passage number, we plot the

evolution of the proliferation rate data from the entire populations as boxplots [79] in

Figure 5.4. The boxplots show the median and quartiles of the distribution of Pp from

the entire population as a function of the passage number. Comparing results in Figure

5.4(a) and Figure 5.4(d) shows that the median Pp increases much faster in the heteroge-

neous cell line than the near–homogeneous cell line. For the near–homogeneous cell line

the distribution of Pp appears to be approximately independent of the passage number

in this case. In contrast, the distribution of Pp for the heterogeneous cell line is strongly

dependent on the passage number. In particular, the median Pp increases, and the dis-

tribution of Pp becomes increasingly negatively skewed as the passage number increases.

Overall, these results suggest that starting with the same average proliferate rate, the

degree of heterogeneity of the cell line alone is enough to lead to very different outcomes

when the two cell lines are sufficiently passaged. Therefore, the initial heterogeneity of

the cell line appears to be important in terms of understanding how passaging affects

properties of cell lines.

In this first set of results, we find that differences in the cell proliferation rate among

the cell population can lead to changes in the overall population behaviour at sufficiently

high passage numbers. We note that in both prototype cell populations, the average

proliferation rate increases with the passage number and this is consistent with some

previous experimental studies [73]. However, most experimental studies report a de-

crease in average proliferation rate with increasing passage number [31, 45, 95, 99]. This

observation motivates us to include a second mechanism in our discrete model, namely

passage–induced damage.
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Figure 5.2: Snapshots of simulations for a near–homogeneous cell line. For each passage number, snapshots at the beginning (15% confluence) and end (85% confluence)
of the experiments are shown. Results in (a)–(d),(i)–(l) and (q)–(t) show snapshots of the field of view at passage number 0 and 30, with ε = 0, ε ∼ N (2 × 10−5, 2 × 10−5)
and ε ∼ N (1 × 10−4, 1 × 10−4), respectively. Results in (e)–(h),(m)–(p) and (u)–(x) show distributions of Pp for the entire domain at passage number 0 and 30, with ε = 0,
ε ∼ N (2×10−5, 2×10−5) and ε ∼ N (1×10−4, 1×10−4), respectively. The distribution of Pp in each subfigure is obtained from one single realisation. The colour bar indicates
Pp for individual cells. P̄p and σp represent the mean and standard deviation of Pp. Each simulation is initiated by randomly populating 15% of lattice sites, on a lattice of
size I = 4168 and J = 3610, with Pp ∼ N (4× 10−3, 1× 10−4) for each cell. All simulations correspond to ∆ = 24 µm, τ = 1/12 h, and Pm = 0.35.
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Figure 5.3: Snapshots of simulations for a heterogeneous cell line. For each passage number, snapshots at the beginning (15% confluence) and end (85% confluence) of the
experiments are shown. Results in (a)–(d),(i)–(l) and (q)–(t) show snapshots of the field of view at passage number 0 and 30, with ε = 0, ε ∼ N (2 × 10−5, 2 × 10−5) and
ε ∼ N (1 × 10−4, 1 × 10−4), respectively. Results in (e)–(h),(m)–(p) and (u)–(x) show distributions of Pp for the entire domain at passage number 0 and 30, with ε = 0,
ε ∼ N (2×10−5, 2×10−5) and ε ∼ N (1×10−4, 1×10−4), respectively. The distribution of Pp in each subfigure is obtained from one single realisation. The colour bar indicates
Pp for individual cells. P̄p and σp represent the mean and standard deviation of Pp. Each simulation is initiated by randomly populating 15% of lattice sites, on a lattice of
size I = 4168 and J = 3610, with Pp ∼ N (4× 10−3, 1× 10−3) for each cell. All simulations correspond to ∆ = 24 µm, τ = 1/12 h, and Pm = 0.35.



C
h
a
p
ter

5
.
In

silico
p
a
ssa

g
in

g
o
f

cell
lin

es
p
rov

id
es

in
sig

h
t

in
to

rep
ro

d
u
cib

ility
o
f

cell
b
io

lo
g
y

ex
p

erim
en

ts
1
3
4

0 10 20 30
Passage number

0

0.004

0.008

P p

0 10 20 30
Passage number

0

0.004

0.008

P p

0 10 20 30
Passage number

0

0.004

0.008

P p

0 10 20 30
Passage number

0

0.004

0.008

P p

0 10 20 30
Passage number

0

0.004

0.008

P p
0 10 20 30

Passage number

0

0.004

0.008

P p

(a) (b) (c)

(d) (e) (f)

No damage Small damage Large damage

Figure 5.4: Distribution of Pp as a function of passage number. Results in (a)–(c) show boxplots of Pp for a near–homogeneous cell line at 85% confluence for: (a) no
damage ε = 0; (b) small amount of damage, ε ∼ N (2 × 10−5, 2 × 10−5); and (c) large amount of damage, ε ∼ N (1 × 10−4, 1 × 10−4). Results in (d)–(f) show boxplots
of Pp for a heterogeneous cell line at 85% confluence for: (d) no damage ε = 0; (e) small amount of damage, ε ∼ N (2 × 10−5, 2 × 10−5); and (f) large amount of damage,
ε ∼ N (1×10−4, 1×10−4). In each subfigure the distribution of Pp at individual passage numbers is obtained from one single realisation. Each simulation is initiated by randomly
populating 15% of lattice sites on a lattice of size I = 4168 and J = 3610, with Pp ∼ N (4× 10−3, 1× 10−4) for the near–homogeneous cell line and Pp ∼ N (4× 10−3, 1× 10−3)
for the heterogeneous cell line. All simulations correspond to ∆ = 24 µm, τ = 1/12 h, and Pm = 0.35.
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5.3.2 Passaging cell lines with passage–induced damage

We now investigate the impact of including passage–induced damage, and we consider

both small and large amounts of damage scenarios. All other features of our simulations

are maintained as described in the section without passage–induced damage. Snapshots

of simulations including small and large amounts of damage, and boxplots showing the

distribution of Pp data are shown in Figure 5.2–5.4. Comparing results in Figure 5.2(a)–

(h) and Figure 5.2(i)–(p) suggests that we observe very similar outcomes when we include

a small amount of damage in the simulations of the near–homogeneous cell line. Similarly,

results in Figure 5.3(a)–(h) and Figure 5.3(i)–(p) suggest that the small amount of damage

has a negligible impact on the passaging process for the heterogenous cell line. In contrast,

with the large amount of damage we see that the proliferation rate decreases by passage

number 30 in the near–homogeneous cell line, as shown in Figure 5.2(q)–(x), whereas

results in Figure 5.3(q)–(x) show that the proliferation rate increases by passage number

30, but the increase in proliferation rate is not as pronounced as in the case where there

is no damage in the heterogenous cell line.

Results in Figure 5.2–5.3 focus on snapshots of the population at passage numbers 0

and 30. Additional results in Figure 5.4(b)–(c) and Figure 5.4(e)–(f) to show how the

distribution of Pp evolves as a function of the passage number. For the near–homogeneous

cell line, the median Pp decreases monotonically with the passage number for both small

and large amounts of damage. In contrast, the median Pp for the heterogeneous cell line

behaves very differently as it increases until approximately passage number 20, and then

decreases with further passaging. These results, combined, provide a simple explanation

for why some previous studies have reported that the proliferation rate can increase with

passage number, as in the case of Figure 5.4(d)–(e), whereas other studies suggest that

the proliferation rate can decrease with passage number, as in the case of Figure 5.4(c).

In fact, our results suggest that it is possible to have a situation where the proliferation

rate both increases and decreases with passage number, as in the case of Figure 5.4(f),

and we observe different trends depending on the passage number. These differences arise

in our model due to a trade-off between the initial heterogeneity of the cell line and the

amount of damage sustained in the passaging process.

5.3.3 Scratch assay with passaged cells

Having demonstrated that the interplay between cell heterogeneity and passage–induced

damage can lead to complicated trends in the relationship between the proliferation rate

and passage number, it is still unclear how these kinds of differences can affect how

we interpret in vitro experiments. To explore this issue we use cells from a range of

passage conditions to mimic a scratch assay [71]. For this purpose we focus on the

geometry associated with experimental images obtained from an IncuCyte ZOOMTM

scratch assay [33, 37, 49, 96, 127], as shown in Figure 5.5. The images, of dimension 1400

µm × 1900 µm, show a fixed field of view that is much smaller than the spatial extent
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of the cells in the scratch assay [50, 51]. To model this situation we apply zero net flux

boundary conditions along all boundaries of the lattice. We use a lattice of size 80 × 68

to accommodate a typical population of cells with ∆ = 24 µm. To initialise the scratch

assay, we randomly populate all lattice sites with an equal probability of 30% [49]. To

simulate the scratch, we remove all cells from a vertical strip of width approximately

550 µm, and we then observe the rate at which the populations spread into the vacant

area. All cells have the same constant value of Pm = 0.35, and we assign values of Pp

by sampling from the various histograms in Figure 5.2 and 5.3. This means that we are

effectively simulating a scratch assay using cells from different cell lines, with different

amounts of passage-induced damage, and from different passage numbers according to

our in silico results of cell culture growth in the previous section.

Snapshots from the discrete model, showing the progression of the scratch assays, are

shown in Figure 5.6–5.7. In general we see that, regardless of the initial cell population,

all of the scratch assays lead to successful closure by approximately 48-72 h, which is

consistent with standard experimental observations [37, 49]. However, close examination

of the results reveals some differences. In particular, visual inspection of the snapshots

suggests that those cell populations with higher initial proliferation rate lead to larger

numbers of cells at later times, and hence more rapid closure of the initially–vacant

space. These trends are subtle, but are most obvious in Figure 5.7 where the population

corresponds to cells taken from passage number 30, with no damage, leading to more

effective re-colonisation of the initially–vacant space than cells from passage number 0.

Since these differences are subtle it may be difficult to detect them when visually compar-

ing results from scratch assays. Therefore, we will now quantify the spatial and temporal

distribution of cells in Figure 5.6–5.7 to provide more information.

Since the initial condition is uniform in the vertical direction [50, 109], we average the

population density in Figure 5.6–5.7 along each vertical column of lattice sites to obtain

〈Ci〉 =
1

J

J∑
j=1

Ci,j .

This quantity is further averaged by considering 100 identically prepared simulations of

the discrete model to reduce fluctuations [50]. This procedure allows us to plot the time

evolution of the average cell density as a function of the horizontal coordinate, as shown in

Figure 5.8 [50]. Results in Figure 5.8(a)–(b) suggest that the evolution of the cell density

profile is practically indistinguishable when we consider cells from the near–homogeneous

cell line that is passaged without damage, as we might expect from the results in Figure

5.4(a). In contrast, comparing results in Figure 5.8(a) with results in Figure 5.8(c) shows

that we observe very different results when damage is included in the passaging process

for the near–homogeneous cell line. When we consider the results in Figure 5.8(d)–(f),

for the heterogeneous cell line, we see that the evolution of the cell density profiles is very

different for all three cases considered.
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Figure 5.5: Experimental images of IncuCyte ZOOMTM scratch assay [49, 51]. The images in (a)–(c) show the closure of the initially scratched region which is highlighted
by the dashed orange lines at t = 0. The red scale bar corresponds to 300 µm.
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Figure 5.6: Snapshots of a suite of scratch assays performed using a near–homogeneous cell line. In each column the distributions of cells at time t = 0, 24, 48, 72 h are shown.
Each simulation is initiated by randomly populating a lattice of size 80 × 68, so that each site is occupied with probability 30%. A scratch of 23 lattice sites wide is made at
t = 0 h. All simulations correspond to ∆ = 24 µm, τ = 1/12 h, and Pm = 0.35. In each row the initial Pp of individual cells is assigned by randomly selecting from the in
silico data in Figure 5.2(f), (h) and (x), respectively.
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Figure 5.7: Snapshots of a suite of scratch assays performed using a heterogeneous cell line. In each column the distributions of cells at time t = 0, 24, 48, 72 h are shown.
Each simulation is initiated by randomly populating a lattice of size 80 × 68, so that each site is occupied with probability 30%. A scratch of 23 lattice sites wide is made at
t = 0 h. All simulations correspond to ∆ = 24 µm, τ = 1/12 h, and Pm = 0.35. In each row the initial Pp of individual cells is assigned by randomly selecting from the in
silico data in Figure 5.3(f), (h) and (x), respectively.
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Figure 5.8: Averaged simulation data showing cell density profiles from the scratch assays. (a)–(c): Cell density profiles for a near–homogeneous cell line. (d)–(f): Cell
density profiles for a heterogeneous cell line. In each subfigure cell density profiles are given at t = 0, 24, 48, 72 h, and the direction of increasing t is shown with the arrows.
All simulation results are averaged across 100 identically prepared realisations of the discrete model, with ∆ = 24 µm, τ = 1/12 h, and Pm = 0.35, on a lattice of size 80 × 68.
In each subfigure the initial Pp of individual cells is assigned by randomly selecting from the corresponding in silico data in Figure 5.2(f), (h), (x), and Figure 5.3(f), (h), and
(x), respectively.
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5.4 Discussion

Passaging of cell lines is an essential processes of growing cells in cell culture [8, 9]. The

passaging process involves both chemical and mechanical disturbances which accumula-

tively change cell characteristics. Problems associated with high passage numbers, such

as the change of cell proliferation, are widely acknowledged. However, the mechanisms

are not well understood [31,36,45,73,90,95,99,129]. Therefore, the aim of this work is to

use a computational approach to provide insight into the putative mechanisms that could

possibly lead to the problems.

In this work, we apply a lattice–based discrete model to investigate and quantify the

impact of passaging cell lines. Although there are many properties of cells that are

affected by the passaging process [21,31,36,45,88,95,99,129], we choose to focus on how

passaging affects the cell proliferation rate. In our model, when a cell proliferates, the

daughter cells directly inherit the same proliferation rate as the mother cell. Furthermore,

we also assume that during the passaging process, the cell proliferation rate is decreased

by some passage–induced damage. For all results presented, we investigate the role of

cell heterogeneity by comparing results where we begin the passaging process with a

hear-homogeneous population of cells where Pp is almost constant, with a heterogeneous

population of cells where Pp varies significantly among the population.

In the literature, previous experimental studies have reported apparently contradictory

results where some studies suggest that the average proliferation rate of cells can increase

at large passage number [73], whereas other studies suggest that the average proliferation

rate of cells can decrease with passage number [31, 45, 95, 99]. We find that by varying

the competition between passage-induced damage and cell heterogeneity, our relatively

straightforward simulation model can predict each of these outcomes.

To study how passage number can affect in vitro experiments, we simulate a suite of

scratch assays using various populations of cells that are harvested from our in silico

passaging process. Our simulation results show that the passage number can lead to

subtle changes in the evolution of the scratch assay and these changes might be very

difficult to detect visually. We provide additional information about how the distribution

of cells in a scratch assay might be influenced by passage number by performing a large

number of realisations and examining the average cell density profiles. These average

cell density profiles make it obvious that the passage number could affect the rate of

scratch closure. This observation, together with the fact that cell passage number is often

unreported in the experimental literature [6, 120], could explain why scratch assays are

notoriously difficult to reproduce [35]. In addition, the results of cell culture growth and

scratch assays indicate that even at the same passage number, the initial heterogeneity

in cell proliferation can give rise to very differently behaving cell populations. Therefore,

separating cell population without reporting the proliferative capacity can also affect the

reproducibility of in vitro experiments. However, the proliferative capacity of cell lines can
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be difficult to measure experimentally, as most of the previous experiments only report

the cell population evolution [45,73], or the duration of the cell cycle [39].

There are several implications of this study that could be of interest to the experimental

community. First, we suggest that the passage number of cell lines should always be

reported. Second, there is a need for more experimental evidence about the impact of

passaging on proliferation rates of various cell lines. For example, careful measurements

of proliferation rates over a sequence of passage numbers would provide more insight into

the variability of key cell properties in cell culture. This type of quantitative information

would be invaluable for understanding reproducibility of standard in vitro experiments.

Third, we acknowledge that our choices of the standard deviation, σ, to define the spread

of the distribution of proliferation rates in the near–homogeneous and heterogeneous cell

lines is rather theoretical. Recently, Haass et al. have devised new experimental methods

that can be used to measure the durations of different phases in cell cycle for a range of

melanoma cell lines [39]. This data could be used used to estimate the properties of the

distribution of cell proliferation rates, such as the mean and standard deviation of the

distribution of proliferation rates. Therefore, we suggest that similar experiments could

be performed to generate proliferation rate distribution over various passage numbers for

a range of different cell lines of interest. This data could then be directly integrated

within our in silico models to examine the interplay between the degree of heterogeneity

and passage–induced damage.

There are also several implications of this study that are of interest to the applied math-

ematics and mathematical biology communities. First, here we focus on the case where

there is heterogeneity in the rate at which individual cells proliferate in the population

but, we treat the motility rate as a constant. This is because most previous experimen-

tal studies have reported differences in the rate of proliferation as a function of passage

number rather than differences in the rate of migration [45,73,99]. However, heterogene-

ity in cell migration rate can also affect the reproducibility of in vitro experiments [95],

especially scratch assays in which cell migration plays a key role in wound closure [49].

An interesting extension of our present study would involve dealing with both variability

in the motility rate and the proliferation rate [87]. Secondly, in our work we make the

most straightforward assumption that daughter cells inherit Pp directly from the mother

cell. It might be more plausible to introduce some stochasticity in the inheritance process

and a reduction in proliferation rate according to the number of divisions of individual

cells. It might also be plausible to incorporate some kind of ageing process where the

proliferation depends on the age structure of the population [10,95]. We have chosen not

to include these additional details as we wish to present a simpler model that is capable

of illustrating a proof–of–principle concept rather than capturing every possible feature of

the underlying biology. Finally, another extension of this work would be to consider the

derivation of an accurate mean–field approximation that could be used to describe the

evolution of the cell density profiles in Figure 5.7. This is a challenging task because all

previous derivations of such mean–field partial differential equations involve populations
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of cells with constant rates [23, 50, 75, 100, 109, 119], whereas we are dealing with a more

realistic heterogeneous population of cells.
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5.5 Supplementary Material

C++ code for cell culture growth

1 #inc lude <cmath>

2 #inc lude <iostream>

3 #inc lude <vector>

4 #inc lude <s t d i o . h>

5 #inc lude <s t d l i b . h>

6 #inc lude <f stream>

7 #inc lude <ctime>

8 #inc lude <s t r i ng>

9 #inc lude <sstream>

10 #inc lude <algor ithm>

11 #inc lude < i t e r a t o r>

12 #inc lude <random>

13

14 us ing namespace std ;

15

16 void migrat ion1 ( const i n t agent row , const i n t agent co l ,

17 const i n t rowN , const i n t colN , i n t ∗ migPos i t ion ) {
18 migPos i t ion [ 0 ] = agent row ;

19 migPos i t ion [ 1 ] = a g e n t c o l ;

20 double P = ( ( double ) rand ( ) / (RAND MAX) ) ; // choose migrat ion d i r e c t i o n s

21 i f ( (P < 1 . 0 / 6 . 0 ) && ( agent row > 0) && ( a g e n t c o l > 0) ) {// Pos i t i on 1

22 migPos i t ion [ 0 ] = migPos i t ion [ 0 ] − 1 ;

23 migPos i t ion [ 1 ] = migPos i t ion [ 1 ] − 1 ;}
24 e l s e i f ( (P >= 1 . 0 / 6 . 0 ) && (P <1.0/3.0) && ( agent row > 0) && ( a g e n t c o l

< colN−1) ) {// Pos i t i on 2

25 migPos i t ion [ 0 ] = migPos i t ion [ 0 ] − 1 ;}
26 e l s e i f ( (P >= 1 . 0 / 3 . 0 ) && (P < 1 . 0 / 2 . 0 ) && ( a g e n t c o l < colN−1) ) {//

Pos i t i on 3

27 migPos i t ion [ 1 ] = migPos i t ion [ 1 ] + 1 ;}
28 e l s e i f ( (P >= 1 . 0 / 2 . 0 ) && (P < 2 . 0 / 3 . 0 ) && ( agent row < rowN−1) && (

a g e n t c o l < colN−1) ) {// Pos i t i on 4

29 migPos i t ion [ 0 ] = migPos i t ion [ 0 ] + 1 ;}
30 e l s e i f ( (P >= 2 . 0 / 3 . 0 ) && (P < 5 . 0 / 6 . 0 ) && ( agent row < rowN−1) && (

a g e n t c o l > 0) ) {// Pos i t i on 5

31 migPos i t ion [ 0 ] = migPos i t ion [ 0 ] + 1 ;

32 migPos i t ion [ 1 ] = migPos i t ion [ 1 ] − 1 ;}
33 e l s e i f ( (P >= 5 . 0 / 6 . 0 ) && ( a g e n t c o l > 0) ) {// Pos i t i on 6

34 migPos i t ion [ 1 ] = migPos i t ion [ 1 ] − 1 ;}
35 }
36

37 void migrat ion2 ( const i n t agent row , const i n t agent co l ,



Chapter 5. In silico passaging of cell lines provides insight into reproducibility
of cell biology experiments

144

38 const i n t rowN , const i n t colN , i n t ∗ migPos i t ion ) {
39 migPos i t ion [ 0 ] = agent row ;

40 migPos i t ion [ 1 ] = a g e n t c o l ;

41 double P = ( ( double ) rand ( ) / (RAND MAX) ) ; // choose migrat ion d i r e c t i o n s

42 i f ( (P < 1 . 0 / 6 . 0 ) && ( agent row > 0) ) {// Pos i t i on 1

43 migPos i t ion [ 0 ] = migPos i t ion [ 0 ] − 1 ;}
44 e l s e i f ( (P >= 1 . 0 / 6 . 0 ) && (P <1.0/3.0) && ( agent row > 0) && ( a g e n t c o l

< colN−1) ) {// Pos i t i on 2

45 migPos i t ion [ 0 ] = migPos i t ion [ 0 ] − 1 ;

46 migPos i t ion [ 1 ] = migPos i t ion [ 1 ] + 1 ;}
47 e l s e i f ( (P >= 1 . 0 / 3 . 0 ) && (P < 1 . 0 / 2 . 0 ) && ( a g e n t c o l < colN−2) ) {//

Pos i t i on 3

48 migPos i t ion [ 1 ] = migPos i t ion [ 1 ] + 1 ;}
49 e l s e i f ( (P >= 1 . 0 / 2 . 0 ) && (P < 2 . 0 / 3 . 0 ) && ( agent row < rowN−1) && (

a g e n t c o l < colN−1) ) {// Pos i t i on 4

50 migPos i t ion [ 0 ] = migPos i t ion [ 0 ] + 1 ;

51 migPos i t ion [ 1 ] = migPos i t ion [ 1 ] + 1 ;}
52 e l s e i f ( (P >= 2 . 0 / 3 . 0 ) && (P < 5 . 0 / 6 . 0 ) && ( agent row < rowN−1) ) {//

Pos i t i on 5

53 migPos i t ion [ 0 ] = migPos i t ion [ 0 ] + 1 ;}
54 e l s e i f ( (P >= 5 . 0 / 6 . 0 ) && ( a g e n t c o l > 0) ) {// Pos i t i on 6

55 migPos i t ion [ 1 ] = migPos i t ion [ 1 ] − 1 ;}
56 }
57

58 void p r o l i f e r a t i o n 1 ( const i n t agent row , const i n t agent co l ,

59 const i n t rowN , const i n t colN , i n t ∗ proPos i t i on ) {
60 proPos i t i on [ 0 ] = agent row ;

61 proPos i t i on [ 1 ] = a g e n t c o l ;

62 double P = ( ( double ) rand ( ) / (RAND MAX) ) ; // choose p r o l i f e r a t i o n

d i r e c t i o n s

63 i f ( (P < 1 . 0 / 6 . 0 ) && ( agent row > 0) && ( a g e n t c o l > 0) ) {// Pos i t i on 1

64 proPos i t i on [ 0 ] = proPos i t i on [ 0 ] − 1 ;

65 proPos i t i on [ 1 ] = proPos i t i on [ 1 ] − 1 ;}
66 e l s e i f ( (P >= 1 . 0 / 6 . 0 ) && (P <1.0/3.0) && ( agent row > 0) && ( a g e n t c o l

< colN−1) ) {// Pos i t i on 2

67 proPos i t i on [ 0 ] = proPos i t i on [ 0 ] − 1 ;}
68 e l s e i f ( (P >= 1 . 0 / 3 . 0 ) && (P < 1 . 0 / 2 . 0 ) && ( a g e n t c o l < colN−1) ) {//

Pos i t i on 3

69 proPos i t i on [ 1 ] = proPos i t i on [ 1 ] + 1 ;}
70 e l s e i f ( (P >= 1 . 0 / 2 . 0 ) && (P < 2 . 0 / 3 . 0 ) && ( agent row < rowN−1) && (

a g e n t c o l < colN−1) ) {// Pos i t i on 4

71 proPos i t i on [ 0 ] = proPos i t i on [ 0 ] + 1 ;}
72 e l s e i f ( (P >= 2 . 0 / 3 . 0 ) && (P < 5 . 0 / 6 . 0 ) && ( agent row < rowN−1) && (

a g e n t c o l > 0) ) {// Pos i t i on 5

73 proPos i t i on [ 0 ] = proPos i t i on [ 0 ] + 1 ;

74 proPos i t i on [ 1 ] = proPos i t i on [ 1 ] − 1 ;}
75 e l s e i f ( (P >= 5 . 0 / 6 . 0 ) && ( a g e n t c o l > 0) ) {// Pos i t i on 6

76 proPos i t i on [ 1 ] = proPos i t i on [ 1 ] − 1 ;}
77 }
78

79 void p r o l i f e r a t i o n 2 ( const i n t agent row , const i n t agent co l ,

80 const i n t rowN , const i n t colN , i n t ∗ proPos i t i on ) {
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81 proPos i t i on [ 0 ] = agent row ;

82 proPos i t i on [ 1 ] = a g e n t c o l ;

83 double P = ( ( double ) rand ( ) / (RAND MAX) ) ; // choose p r o l i f e r a t i o n

d i r e c t i o n s

84 i f ( (P < 1 . 0 / 6 . 0 ) && ( agent row > 0) ) {// Pos i t i on 1

85 proPos i t i on [ 0 ] = proPos i t i on [ 0 ] − 1 ;}
86 e l s e i f ( (P >= 1 . 0 / 6 . 0 ) && (P <1.0/3.0) && ( agent row > 0) && ( a g e n t c o l

< colN−1) ) {// Pos i t i on 2

87 proPos i t i on [ 0 ] = proPos i t i on [ 0 ] − 1 ;

88 proPos i t i on [ 1 ] = proPos i t i on [ 1 ] + 1 ;}
89 e l s e i f ( (P >= 1 . 0 / 3 . 0 ) && (P < 1 . 0 / 2 . 0 ) && ( a g e n t c o l < colN−2) ) {//

Pos i t i on 3

90 proPos i t i on [ 1 ] = proPos i t i on [ 1 ] + 1 ;}
91 e l s e i f ( (P >= 1 . 0 / 2 . 0 ) && (P < 2 . 0 / 3 . 0 ) && ( agent row < rowN−1) && (

a g e n t c o l < colN−1) ) {// Pos i t i on 4

92 proPos i t i on [ 0 ] = proPos i t i on [ 0 ] + 1 ;

93 proPos i t i on [ 1 ] = proPos i t i on [ 1 ] + 1 ;}
94 e l s e i f ( (P >= 2 . 0 / 3 . 0 ) && (P < 5 . 0 / 6 . 0 ) && ( agent row < rowN−1) ) {//

Pos i t i on 5

95 proPos i t i on [ 0 ] = proPos i t i on [ 0 ] + 1 ;}
96 e l s e i f ( (P >= 5 . 0 / 6 . 0 ) && ( a g e n t c o l > 0) ) {// Pos i t i on 6

97 proPos i t i on [ 1 ] = proPos i t i on [ 1 ] − 1 ;}
98 }
99

100 i n t CalTotal ( const i n t rowN , const i n t colN ) {
101 i n t Ntota l ;

102 i f (rowN % 2 == 0) {
103 Ntota l = rowN ∗ colN − rowN/2 ;

104 } e l s e {
105 Ntota l = rowN ∗ colN − (rowN+1) /2 ;

106 }
107 return Ntota l ;

108 }
109

110 i n t main ( i n t argc , char ∗∗ argv ) {
111 srand ( time (NULL) ) ; //random seeds

112 random device rd ;

113 mt19937 generato r ( rd ( ) ) ;

114 // s e t c l o ck

115 c l o c k t TIME;

116 TIME = c lock ( ) ;

117

118 // I n i t i a l i s a t i o n

119 i n t passageI , passageN , t , tau ;

120 double Pm, Pp ;

121 pas sage I = 0 ; // passage index

122 passageN = 30 ; //max passage number

123 tau = 1 ; // time step : 1 ˜ 1/12h

124 t = 0 ; // cur rent time

125 const i n t d = 24 ; // spac ing : 1 ˜ 24mum

126 enum {rowN = 3610 , colN = 4168} ; // f u l l s c a l e

127 //enum {rowN = 362 , colN = 418} ; // s c a l e ˜ 1/10
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128 const i n t Ntota l = CalTotal (rowN , colN ) ;

129 const i n t Nstart = Ntota l ∗ 0 . 1 5 ; // seed ing cond i t i on

130 const i n t Nend = Ntota l ∗ 0 . 8 5 ; //85% con f l u en t

131 s t a t i c vector<vector<int> > domain (rowN , std : : vector<int >(colN ) ) ; //

s imu la t i on domain

132 s t a t i c vector<vector<double> > domain Pp (rowN , std : : vector<double>(colN )

) ; //Pp

133 // s t a t i c vector<vector<int> > domain passage (rowN , std : : vector<int >(colN

) ) ; // passage

134 // vector<vector<int> > domain age (rowN , std : : vector<int >(colN ) ) ; // age

135 // s t a t i c vector<vector<int> > domain generat ion (rowN , std : : vector<int >(

colN ) ) ; // gene ra t i on

136 Pm = 0 . 3 5 ; // migrat ion p r o b a b i l i t y

137 // de fau l t random eng ine generato r ;

138 no rma l d i s t r i bu t i on<double> d i s t r i b u t i o n (4 e−3,1e−3) ; //Pp d i s t r i b u t i o n

139 no rma l d i s t r i bu t i on<double> eps1 (2 e−5,2e−5) ; // eps1 d i s t r i b u t i o n

140 no rma l d i s t r i bu t i on<double> eps2 (1 e−5,1e−6) ; // eps2 d i s t r i b u t i o n

141 i n t pas sageEf f = 0 ;

142 i n t ageEf f = 0 ;

143 double Pd = 1 . 0 ;

144 double Pd2 = 0 . 0 ;

145 double avePp ;

146

147 ofstream f i l e 1 ;

148 ofstream f i l e 2 ;

149 // ofstream f i l e 3 ;

150 // ofstream f i l e 4 ;

151 // ofstream f i l e 5 ;

152 ofstream f i l e 6 ;

153 ofstream f i l e 7 ;

154 // ofstream f i l e 8 ;

155 // ofstream f i l e 9 ;

156 // ofstream f i l e 1 0 ;

157 ofstream f i l e 1 1 ;

158 f i l e 1 . open ( ”domain . csv ” ) ;

159 f i l e 2 . open ( ”domain Pp . csv ” ) ;

160 // f i l e 3 . open (” domain passage . csv ”) ;

161 // f i l e 4 . open (” domain age . csv ”) ;

162 // f i l e 5 . open (” domain generat ion . csv ”) ;

163 f i l e 6 . open ( ”domain2 . csv ” ) ;

164 f i l e 7 . open ( ”domain2 Pp . csv ” ) ;

165 // f i l e 8 . open (” domain2 passage . csv ”) ;

166 // f i l e 9 . open (” domain2 age . csv ”) ;

167 // f i l e 1 0 . open (” domain2 generat ion . csv ”) ;

168 f i l e 1 1 . open ( ” td . csv ” ) ;

169

170 // Seeding

171 i n t agent row , a g e n t c o l ;

172 f o r ( i n t i=Nstart ; i >0; −− i ) {
173 agent row = rand ( ) % rowN ;

174 a g e n t c o l = rand ( ) % colN ;

175 i f ( ( ( rowN−agent row ) % 2 != 0) && ( a g e n t c o l == colN−1) ) {
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176 i = i + 1 ;

177 } e l s e i f ( domain [ agent row ] [ a g e n t c o l ] == 0) {
178 domain [ agent row ] [ a g e n t c o l ] = 1 ;

179 domain Pp [ agent row ] [ a g e n t c o l ] = d i s t r i b u t i o n ( genera to r ) ;

180 i f ( domain Pp [ agent row ] [ a g e n t c o l ] < 0) {
181 domain Pp [ agent row ] [ a g e n t c o l ] = 0 . 0 ;

182 }
183

184 } e l s e {
185 i = i + 1 ;

186 }
187 }
188

189 //Count i n i t i a l c e l l s

190 i n t agent N = 0 ;

191 f o r ( i n t i =0; i<rowN ; ++i ) {
192 f o r ( i n t j =0; j<colN ; ++j ) {
193 i f ( domain [ i ] [ j ] == 1) {
194 agent N = agent N + 1 ;

195 }
196 }
197 }
198 // cout << agent N ;

199

200 // Write to f i l e s

201 f o r ( i n t i =0; i<rowN ; ++i ) {
202 f o r ( i n t j =0; j<colN ; ++j ) {
203 f i l e 1 << domain [ i ] [ j ] ;

204 f i l e 2 << domain Pp [ i ] [ j ] ;

205 // f i l e 3 << domain passage [ i ] [ j ] ;

206 // f i l e 4 << domain age [ i ] [ j ] ;

207 // f i l e 5 << domain generat ion [ i ] [ j ] ;

208 i f ( j < colN−1) {
209 f i l e 1 << ” , ” ;

210 f i l e 2 << ” , ” ;

211 // f i l e 3 << ” , ” ;

212 // f i l e 4 << ” , ” ;

213 // f i l e 5 << ” , ” ;

214 } e l s e {
215 f i l e 1 << ”\n” ;

216 f i l e 2 << ”\n” ;

217 // f i l e 3 << ”\n ” ;

218 // f i l e 4 << ”\n ” ;

219 // f i l e 5 << ”\n ” ;

220 }
221 }
222 }
223

224 t = t + tau ;

225 i n t migPos i t ion [ 2 ] , p roPos i t i on [ 2 ] ;

226 double P;

227
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228 whi l e ( pas sage I <= passageN ) {// check passage number

229 cout << ” passage number #” << passage I << ” , ” ;

230 i n t N = agent N ;

231 cout << ”N(0) = ” << N << endl ;

232

233 // check average Pp

234 avePp = 0 ;

235 f o r ( i n t i =0; i<rowN ; ++i ) {
236 f o r ( i n t j =0; j<colN ; ++j ) {
237 i f ( domain [ i ] [ j ] == 1) {
238 avePp = avePp + domain Pp [ i ] [ j ] ;

239 }
240 }
241 }
242 avePp = avePp/N;

243 cout << avePp << endl ;

244 whi l e (N < Nend) { // check c e l l populat ion

245 // Migrat ion

246 f o r ( i n t i =0; i<N; ++i ) {
247 P = ( ( double ) rand ( ) / (RAND MAX) ) ; // generate a random

number

248 i f (P <= Pm) { // perform migrat ion

249 // s e l e c t a random s i t e

250 i n t i fGhost = 0 ;

251 agent row = rand ( ) % rowN ;

252 a g e n t c o l = rand ( ) % colN ;

253 whi l e ( ( domain [ agent row ] [ a g e n t c o l ] != 1) | | ( i fGhost

== 1) ) { // s e l e c t a random s i t e , stop u n t i l f i n d i n g

an agent

254 agent row = rand ( ) % rowN ;

255 a g e n t c o l = rand ( ) % colN ;

256 }
257 // t e s t ghost node

258 i f ( ( ( rowN−agent row ) % 2 != 0) && ( a g e n t c o l == colN−1)

) {
259 i fGhost = 1 ;

260 }
261 i f ( i fGhost == 0) {
262 i f ( ( rowN−agent row ) % 2 == 0) {
263 migrat ion1 ( agent row , agent co l , rowN , colN ,

migPos i t ion ) ;

264 i f ( domain [ migPos i t ion [ 0 ] ] [ migPos i t ion [ 1 ] ] == 0)

{// i f the new s i t e i s not taken

265 domain [ agent row ] [ a g e n t c o l ] = 0 ; // d e l e t e

the prev ious s i t e

266 domain [ migPos i t ion [ 0 ] ] [ migPos i t ion [ 1 ] ] = 1 ;

//move to the new s i t e

267 /∗ i f ( domain Pp [ migPos i t ion [ 0 ] ] [ migPos i t ion

[ 1 ] ] ! = 0 && domain passage [ migPos i t ion

[ 0 ] ] [ migPos i t ion [ 1 ] ] ! = 0 && domain age [

migPos i t ion [ 0 ] ] [ migPos i t ion [ 1 ] ] ! = 0 &&
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domain generat ion [ migPos i t ion [ 0 ] ] [

migPos i t ion [ 1 ] ] ! = 0) {
268 cout << ” e r r o r mig 1” << endl ;

269 }∗/
270 domain Pp [ migPos i t ion [ 0 ] ] [ migPos i t ion [ 1 ] ] =

domain Pp [ agent row ] [ a g e n t c o l ] ; //move

the corre spond ing Pp

271 // domain passage [ migPos i t ion [ 0 ] ] [ migPos i t ion

[ 1 ] ] = domain passage [ agent row ] [

a g e n t c o l ] ; //move the corre spond ing

passage index

272 // domain age [ migPos i t ion [ 0 ] ] [ migPos i t ion [ 1 ] ]

= domain age [ agent row ] [ a g e n t c o l ] ; //

move the corre spond ing age

273 // domain generat ion [ migPos i t ion [ 0 ] ] [

migPos i t ion [ 1 ] ] = domain generat ion [

agent row ] [ a g e n t c o l ] ; //move the

corre spond ing gene ra t i on

274 domain Pp [ agent row ] [ a g e n t c o l ] = 0 . 0 ; //

d e l e t e the prev ious Pp

275 // domain passage [ agent row ] [ a g e n t c o l ] = 0 ;

// d e l e t e the prev ious passage index

276 // domain age [ agent row ] [ a g e n t c o l ] = 0 ; //

d e l e t e the prev ious age

277 // domain generat ion [ agent row ] [ a g e n t c o l ] =

0 ; // d e l e t e the prev ious gene ra t i on

278 /∗ i f ( domain Pp [ agent row ] [ a g e n t c o l ] !=0 | |
domain passage [ agent row ] [ a g e n t c o l ] !=0

| | domain age [ agent row ] [ a g e n t c o l ] !=0

| | domain generat ion [ agent row ] [

a g e n t c o l ] !=0) {
279 cout << ” e r r o r mig 1” << endl ;

280 }∗/
281 }
282 } e l s e {
283 migrat ion2 ( agent row , agent co l , rowN , colN ,

migPos i t ion ) ;

284 i f ( domain [ migPos i t ion [ 0 ] ] [ migPos i t ion [ 1 ] ] == 0)

{// i f the new s i t e i s not taken

285 domain [ agent row ] [ a g e n t c o l ] = 0 ; // d e l e t e

the prev ious s i t e

286 domain [ migPos i t ion [ 0 ] ] [ migPos i t ion [ 1 ] ] = 1 ;

//move to the new s i t e

287 /∗ i f ( domain Pp [ migPos i t ion [ 0 ] ] [ migPos i t ion

[ 1 ] ] ! = 0 && domain passage [ migPos i t ion

[ 0 ] ] [ migPos i t ion [ 1 ] ] ! = 0 && domain age [

migPos i t ion [ 0 ] ] [ migPos i t ion [ 1 ] ] ! = 0 &&

domain generat ion [ migPos i t ion [ 0 ] ] [

migPos i t ion [ 1 ] ] ! = 0) {
288 cout << ” e r r o r mig 2” << endl ;

289 }∗/
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290 domain Pp [ migPos i t ion [ 0 ] ] [ migPos i t ion [ 1 ] ] =

domain Pp [ agent row ] [ a g e n t c o l ] ; //move

the corre spond ing Pp

291 // domain passage [ migPos i t ion [ 0 ] ] [ migPos i t ion

[ 1 ] ] = domain passage [ agent row ] [

a g e n t c o l ] ; ////move the corre spond ing

passage index

292 // domain age [ migPos i t ion [ 0 ] ] [ migPos i t ion [ 1 ] ]

= domain age [ agent row ] [ a g e n t c o l ] ; //

move the corre spond ing age

293 // domain generat ion [ migPos i t ion [ 0 ] ] [

migPos i t ion [ 1 ] ] = domain generat ion [

agent row ] [ a g e n t c o l ] ; //move the

corre spond ing gene ra t i on

294 domain Pp [ agent row ] [ a g e n t c o l ] = 0 . 0 ; //

d e l e t e the prev ious Pp

295 // domain passage [ agent row ] [ a g e n t c o l ] = 0 ;

// d e l e t e the prev ious passage index

296 // domain age [ agent row ] [ a g e n t c o l ] = 0 ; //

d e l e t e the prev ious age

297 // domain generat ion [ agent row ] [ a g e n t c o l ] =

0 ; // d e l e t e the prev ious age

298 /∗ i f ( domain Pp [ agent row ] [ a g e n t c o l ] !=0 | |
domain passage [ agent row ] [ a g e n t c o l ] !=0

| | domain age [ agent row ] [ a g e n t c o l ] !=0

| | domain generat ion [ agent row ] [

a g e n t c o l ] !=0) {
299 cout << ” e r r o r mig 2” << endl ;

300 }∗/
301 }
302 }
303 } e l s e {
304 i = i − 1 ;

305 }
306

307 }
308 }
309 // P r o l i f e r a t i o n

310 f o r ( i n t i =0; i<N; ++i ) {
311 // s e l e c t a random s i t e

312 i n t i fGhost = 0 ;

313 agent row = rand ( ) % rowN ;

314 a g e n t c o l = rand ( ) % colN ;

315 whi l e ( ( domain [ agent row ] [ a g e n t c o l ] != 1) | | ( i fGhost == 1)

) { // s e l e c t a random s i t e , stop u n t i l f i n d i n g an agent

316 agent row = rand ( ) % rowN ;

317 a g e n t c o l = rand ( ) % colN ;

318 }
319 // t e s t ghost node

320 i f ( ( ( rowN−agent row ) % 2 != 0) && ( a g e n t c o l == colN−1) ) {
321 i fGhost = 1 ;

322 }
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323 i f ( i fGhost == 0)

324 {
325 Pp = domain Pp [ agent row ] [ a g e n t c o l ] ;

326 P = ( ( double ) rand ( ) / (RAND MAX) ) ; // generate random

number

327 i f (P <= Pp) {
328 i f ( ( rowN−agent row ) % 2 == 0) {
329 p r o l i f e r a t i o n 1 ( agent row , agent co l , rowN , colN ,

proPos i t i on ) ;

330 i f ( domain [ p roPos i t i on [ 0 ] ] [ p roPos i t i on [ 1 ] ] == 0)

{// i f the new s i t e i s not taken

331 domain [ p roPos i t i on [ 0 ] ] [ p roPos i t i on [ 1 ] ] = 1 ;

// p r o l i f e r a t e at the new s i t e

332 P = ( ( double ) rand ( ) / (RAND MAX) ) ; //

generate a random number

333 i f ( ageEf f && P<=Pd2) {//damage

334 domain Pp [ proPos i t i on [ 0 ] ] [ p roPos i t i on

[ 1 ] ] = Pp − max( eps2 ( generato r ) ,

0 . 0 ) ;

335 domain Pp [ proPos i t i on [ 0 ] ] [ p roPos i t i on

[ 1 ] ] = max( domain Pp [ proPos i t i on

[ 0 ] ] [ p roPos i t i on [ 1 ] ] , 0 . 0 ) ;

336 domain Pp [ agent row ] [ a g e n t c o l ] =

domain Pp [ proPos i t i on [ 0 ] ] [

p roPos i t i on [ 1 ] ] ;

337 i f ( domain Pp [ agent row ] [ a g e n t c o l ]<0 | |
domain Pp [ agent row ] [ a g e n t c o l ] !=

domain Pp [ proPos i t i on [ 0 ] ] [

p roPos i t i on [ 1 ] ] ) {
338 cout << ” e r r o r ” << endl ;

339 }
340 } e l s e {//no damage

341 domain Pp [ proPos i t i on [ 0 ] ] [ p roPos i t i on

[ 1 ] ] = Pp ; // adopt Pp

342 }
343 // domain passage [ p roPos i t i on [ 0 ] ] [ p roPos i t i on

[ 1 ] ] = pas sage I ; // passage number when

i t was born

344 // domain age [ p roPos i t i on [ 0 ] ] [ p roPos i t i on [ 1 ] ]

= −1; // i n i t i a t e age = −1 so that when

updating c e l l age i t equa l s 0

345 // domain generat ion [ p roPos i t i on [ 0 ] ] [

p roPos i t i on [ 1 ] ] = domain generat ion [

agent row ] [ a g e n t c o l ] + 1 ; //add

gene r t i on

346 // domain generat ion [ agent row ] [ a g e n t c o l ] =

domain generat ion [ agent row ] [ a g e n t c o l ]

+ 1 ; //add gene ra t i on

347 agent N = agent N + 1 ; // update agent

populat ion

348 }
349 } e l s e {
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350 p r o l i f e r a t i o n 2 ( agent row , agent co l , rowN , colN ,

proPos i t i on ) ;

351 i f ( domain [ p roPos i t i on [ 0 ] ] [ p roPos i t i on [ 1 ] ] == 0)

{// i f the new s i t e i s not taken

352 domain [ p roPos i t i on [ 0 ] ] [ p roPos i t i on [ 1 ] ] = 1 ;

// p r o l i f e r a t e at the new s i t e

353 P = ( ( double ) rand ( ) / (RAND MAX) ) ; //

generate a random number

354 i f ( ageEf f && P<=Pd2) {//damage

355 domain Pp [ proPos i t i on [ 0 ] ] [ p roPos i t i on

[ 1 ] ] = Pp − max( eps2 ( generato r ) ,

0 . 0 ) ;

356 domain Pp [ proPos i t i on [ 0 ] ] [ p roPos i t i on

[ 1 ] ] = max( domain Pp [ proPos i t i on

[ 0 ] ] [ p roPos i t i on [ 1 ] ] , 0 . 0 ) ;

357 domain Pp [ agent row ] [ a g e n t c o l ] =

domain Pp [ proPos i t i on [ 0 ] ] [

p roPos i t i on [ 1 ] ] ;

358 i f ( domain Pp [ agent row ] [ a g e n t c o l ]<0 | |
domain Pp [ agent row ] [ a g e n t c o l ] !=

domain Pp [ proPos i t i on [ 0 ] ] [

p roPos i t i on [ 1 ] ] ) {
359 cout << ” e r r o r ” << endl ;

360 }
361 } e l s e {//no damage

362 domain Pp [ proPos i t i on [ 0 ] ] [ p roPos i t i on

[ 1 ] ] = Pp ; // adopt Pp

363 }
364 // domain passage [ p roPos i t i on [ 0 ] ] [ p roPos i t i on

[ 1 ] ] = passage I ; // passage number when

i t was born

365 // domain age [ p roPos i t i on [ 0 ] ] [ p roPos i t i on [ 1 ] ]

= −1; // i n i t i a t e age = −1 so that when

updating c e l l age i t equa l s 0

366 // domain generat ion [ p roPos i t i on [ 0 ] ] [

p roPos i t i on [ 1 ] ] = domain generat ion [

agent row ] [ a g e n t c o l ] + 1 ; //add

gene ra t i on

367 // domain generat ion [ agent row ] [ a g e n t c o l ] =

domain generat ion [ agent row ] [ a g e n t c o l ]

+ 1 ; //add gene ra t i on

368 /∗ i f ( pas sage I !=0)

369 {
370 cout << ”Pp = ” << Pp << endl ;

371 }∗/
372 agent N = agent N + 1 ; // update agent

populat ion

373 }
374 }
375 }
376 } e l s e {
377 i = i − 1 ;
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378 }
379 }
380

381 // update c e l l age

382 /∗ f o r ( i n t i =0; i<rowN ; ++i ) {
383 f o r ( i n t j =0; j<colN ; ++j ) {
384 i f ( domain [ i ] [ j ]==1) { // check i f the re i s a c e l l

385 domain age [ i ] [ j ] = domain age [ i ] [ j ] + tau ;

386 }
387 }
388 }∗/
389

390 N = agent N ; // update c e l l number

391 // cout << ”N(” << t << ”) = ” << N << endl ;

392

393 // Write to f i l e s

394 i f (N >= Nend) {
395 f o r ( i n t i =0; i<rowN ; ++i ) {
396 f o r ( i n t j =0; j<colN ; ++j ) {
397 f i l e 6 << domain [ i ] [ j ] ;

398 f i l e 7 << domain Pp [ i ] [ j ] ;

399 // f i l e 8 << domain passage [ i ] [ j ] ;

400 // f i l e 9 << domain age [ i ] [ j ] ;

401 // f i l e 1 0 << domain generat ion [ i ] [ j ] ;

402 i f ( j < colN−1) {
403 f i l e 6 << ” , ” ;

404 f i l e 7 << ” , ” ;

405 // f i l e 8 << ” , ” ;

406 // f i l e 9 << ” , ” ;

407 // f i l e 1 0 << ” , ” ;

408 } e l s e {
409 f i l e 6 << ”\n” ;

410 f i l e 7 << ”\n” ;

411 // f i l e 8 << ”\n ” ;

412 // f i l e 9 << ”\n ” ;

413 // f i l e 1 0 << ”\n ” ;

414 }
415 }
416 }
417 }
418

419 t = t + tau ;

420

421 }
422 // cout << ” DONE N = ” << agent N << endl ;

423 cout << ”DONE N( ” << ( t−tau ) << ” ) = ” << N << endl ;

424 f i l e 1 1 << ( t−tau ) ;

425 i f ( pas sage I != passageN + 1)

426 {
427 f i l e 1 1 << ” , ” ;

428 }
429
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430 // check average Pp

431 avePp = 0 ;

432 f o r ( i n t i =0; i<rowN ; ++i ) {
433 f o r ( i n t j =0; j<colN ; ++j ) {
434 i f ( domain [ i ] [ j ] == 1) {
435 avePp = avePp + domain Pp [ i ] [ j ] ;

436 }
437 }
438 }
439 avePp = avePp/N;

440 cout << avePp << endl ;

441

442 // Subcu l tur ing

443 pas sage I = passage I + 1 ; // update passage number

444 t = 0 ; // r e s e t time

445 i f ( pas sage I != passageN + 1) {// check i f subcu l tu re

446 agent N = 0 ; // d e l e t e cur rent c e l l number

447 double ∗ Pp temp ;

448 // i n t ∗ passage temp ;

449 // i n t ∗ generat ion temp ;

450 Pp temp = new double [ Nstart ] ;

451 // passage temp = new i n t [ Nstart ] ;

452 // generat ion temp = new i n t [ Nstart ] ;

453 // S e l e c t c e l l s

454 f o r ( i n t i=Nstart ; i >0; −− i ) {
455 agent row = rand ( ) % rowN ;

456 a g e n t c o l = rand ( ) % colN ;

457 i f ( ( ( rowN−agent row ) % 2 != 0) && ( a g e n t c o l == colN−1) ) {
458 i = i + 1 ;

459 } e l s e i f ( domain [ agent row ] [ a g e n t c o l ] == 1) {
460 Pp temp [ Nstart−i ] = domain Pp [

agent row ] [ a g e n t c o l ] ;

461 // passage temp [ Nstart−i ] =

domain passage [ agent row ] [

a g e n t c o l ] ;

462 // age temp [ Nstart−i ] = domain age [

agent row ] [ a g e n t c o l ] ;

463 // generat ion temp [ Nstart−i ] =

domain generat ion [ agent row ] [

a g e n t c o l ] ;

464 } e l s e {
465 i = i + 1 ;

466 }
467 }
468

469 // Delete c e l l s

470 f o r ( i n t i =0; i<rowN ; ++i ) {
471 f o r ( i n t j =0; j<colN ; ++j ) {
472 i f ( domain [ i ] [ j ] == 1) {
473 domain [ i ] [ j ] = 0 ;

474 domain Pp [ i ] [ j ] = 0 . 0 ;

475 // domain passage [ i ] [ j ] = 0 ;
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476 // domain age [ i ] [ j ] = 0 ;

477 // domain generat ion [ i ] [ j ] = 0 ;

478 }
479 }
480 }
481

482 // S h u f f l e & d e l e t e temp va lue s

483 f o r ( i n t i=Nstart ; i >0; −− i ) {
484 agent row = rand ( ) % rowN ;

485 a g e n t c o l = rand ( ) % colN ;

486 i f ( ( ( rowN−agent row ) % 2 != 0) && (

a g e n t c o l == colN−1) ) {
487 i = i + 1 ;

488 } e l s e i f ( domain [ agent row ] [ a g e n t c o l ] ==

0) {
489 domain [ agent row ] [ a g e n t c o l ] = 1 ;

490 P = ( ( double ) rand ( ) / (RAND MAX) ) ; // generate a random

number

491 i f ( pas sageEf f && P<=Pd) {//damage

492 domain Pp [ agent row ] [ a g e n t c o l ] = Pp temp [ Nstart−i ]

− max( eps1 ( genera to r ) , 0 . 0 ) ;

493 // cout << domain Pp [ agent row ] [ a g e n t c o l ] << endl ;

494 domain Pp [ agent row ] [ a g e n t c o l ] = max( domain Pp [

agent row ] [ a g e n t c o l ] , 0 . 0 ) ;

495 i f ( domain Pp [ agent row ] [ a g e n t c o l ] < 0) {
496 cout << ” e r r o r ” << endl ;

497 }
498 } e l s e {//no damage

499 domain Pp [ agent row ] [ a g e n t c o l ] = Pp temp [ Nstart−i ] ;

500 }
501 // domain passage [ agent row ] [ a g e n t c o l ] = passage temp [

Nstart−i ] ;

502 // domain age [ agent row ] [ a g e n t c o l ] = age temp [ Nstart−i ] ;

503 // domain generat ion [ agent row ] [ a g e n t c o l ] =

generat ion temp [ Nstart−i ] ;

504

505 agent N = agent N + 1 ;

506 } e l s e {
507 i = i + 1 ;

508 }
509 }
510

511 // Delete ar rays

512 d e l e t e [ ] Pp temp ;

513 // d e l e t e [ ] passage temp ;

514 // d e l e t e [ ] generat ion temp ;

515

516 // Write to f i l e s

517 f o r ( i n t i =0; i<rowN ; ++i ) {
518 f o r ( i n t j =0; j<colN ; ++j ) {
519 f i l e 1 << domain [ i ] [ j ] ;

520 f i l e 2 << domain Pp [ i ] [ j ] ;
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521 // f i l e 3 << domain passage [ i ] [ j ] ;

522 // f i l e 4 << domain age [ i ] [ j ] ;

523 // f i l e 5 << domain generat ion [ i ] [ j ] ;

524 i f ( j < colN−1) {
525 f i l e 1 << ” , ” ;

526 f i l e 2 << ” , ” ;

527 // f i l e 3 << ” , ” ;

528 // f i l e 4 << ” , ” ;

529 // f i l e 5 << ” , ” ;

530 } e l s e {
531 f i l e 1 << ”\n” ;

532 f i l e 2 << ”\n” ;

533 // f i l e 3 << ”\n ” ;

534 // f i l e 4 << ”\n ” ;

535 // f i l e 5 << ”\n ” ;

536 }
537 }
538 }
539 }
540 }
541

542

543 f i l e 1 . c l o s e ( ) ;

544 f i l e 2 . c l o s e ( ) ;

545 // f i l e 3 . c l o s e ( ) ;

546 // f i l e 4 . c l o s e ( ) ;

547 // f i l e 5 . c l o s e ( ) ;

548 f i l e 6 . c l o s e ( ) ;

549 f i l e 7 . c l o s e ( ) ;

550 // f i l e 8 . c l o s e ( ) ;

551 // f i l e 9 . c l o s e ( ) ;

552 // f i l e 1 0 . c l o s e ( ) ;

553 f i l e 1 1 . c l o s e ( ) ;

554

555 TIME = c lock ( ) − TIME;

556 cout << ” I t takes ”<< ( f l o a t )TIME/CLOCKS PER SEC <<” second ( s ) . ”<< endl ;

557 c in . get ( ) ;

558 re turn 0 ;

559 }
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C++ code for scratch assays

1 #inc lude <cmath>

2 #inc lude <iostream>

3 #inc lude <vector>

4 #inc lude <s t d i o . h>

5 #inc lude <s t d l i b . h>

6 #inc lude <f stream>

7 #inc lude <ctime>

8 #inc lude <s t r i ng>

9 #inc lude <sstream>

10 #inc lude <algor ithm>

11 #inc lude < i t e r a t o r>

12 #inc lude <random>

13

14 us ing namespace std ;

15

16 void migrat ion1 ( const i n t agent row , const i n t agent co l ,

17 const i n t rowN , const i n t colN , i n t ∗ migPos i t ion ) {
18 migPos i t ion [ 0 ] = agent row ;

19 migPos i t ion [ 1 ] = a g e n t c o l ;

20 double P = ( ( double ) rand ( ) / (RAND MAX) ) ; // choose migrat ion d i r e c t i o n s

21 i f ( (P < 1 . 0 / 6 . 0 ) && ( agent row > 0) && ( a g e n t c o l > 0) ) {// Pos i t i on 1

22 migPos i t ion [ 0 ] = migPos i t ion [ 0 ] − 1 ;

23 migPos i t ion [ 1 ] = migPos i t ion [ 1 ] − 1 ;}
24 e l s e i f ( (P >= 1 . 0 / 6 . 0 ) && (P <1.0/3.0) && ( agent row > 0) && ( a g e n t c o l

< colN−1) ) {// Pos i t i on 2

25 migPos i t ion [ 0 ] = migPos i t ion [ 0 ] − 1 ;}
26 e l s e i f ( (P >= 1 . 0 / 3 . 0 ) && (P < 1 . 0 / 2 . 0 ) && ( a g e n t c o l < colN−1) ) {//

Pos i t i on 3

27 migPos i t ion [ 1 ] = migPos i t ion [ 1 ] + 1 ;}
28 e l s e i f ( (P >= 1 . 0 / 2 . 0 ) && (P < 2 . 0 / 3 . 0 ) && ( agent row < rowN−1) && (

a g e n t c o l < colN−1) ) {// Pos i t i on 4

29 migPos i t ion [ 0 ] = migPos i t ion [ 0 ] + 1 ;}
30 e l s e i f ( (P >= 2 . 0 / 3 . 0 ) && (P < 5 . 0 / 6 . 0 ) && ( agent row < rowN−1) && (

a g e n t c o l > 0) ) {// Pos i t i on 5

31 migPos i t ion [ 0 ] = migPos i t ion [ 0 ] + 1 ;

32 migPos i t ion [ 1 ] = migPos i t ion [ 1 ] − 1 ;}
33 e l s e i f ( (P >= 5 . 0 / 6 . 0 ) && ( a g e n t c o l > 0) ) {// Pos i t i on 6

34 migPos i t ion [ 1 ] = migPos i t ion [ 1 ] − 1 ;}
35 }
36

37 void migrat ion2 ( const i n t agent row , const i n t agent co l ,

38 const i n t rowN , const i n t colN , i n t ∗ migPos i t ion ) {
39 migPos i t ion [ 0 ] = agent row ;

40 migPos i t ion [ 1 ] = a g e n t c o l ;

41 double P = ( ( double ) rand ( ) / (RAND MAX) ) ; // choose migrat ion d i r e c t i o n s

42 i f ( (P < 1 . 0 / 6 . 0 ) && ( agent row > 0) ) {// Pos i t i on 1

43 migPos i t ion [ 0 ] = migPos i t ion [ 0 ] − 1 ;}
44 e l s e i f ( (P >= 1 . 0 / 6 . 0 ) && (P <1.0/3.0) && ( agent row > 0) && ( a g e n t c o l

< colN−1) ) {// Pos i t i on 2

45 migPos i t ion [ 0 ] = migPos i t ion [ 0 ] − 1 ;

46 migPos i t ion [ 1 ] = migPos i t ion [ 1 ] + 1 ;}
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47 e l s e i f ( (P >= 1 . 0 / 3 . 0 ) && (P < 1 . 0 / 2 . 0 ) && ( a g e n t c o l < colN−2) ) {//

Pos i t i on 3

48 migPos i t ion [ 1 ] = migPos i t ion [ 1 ] + 1 ;}
49 e l s e i f ( (P >= 1 . 0 / 2 . 0 ) && (P < 2 . 0 / 3 . 0 ) && ( agent row < rowN−1) && (

a g e n t c o l < colN−1) ) {// Pos i t i on 4

50 migPos i t ion [ 0 ] = migPos i t ion [ 0 ] + 1 ;

51 migPos i t ion [ 1 ] = migPos i t ion [ 1 ] + 1 ;}
52 e l s e i f ( (P >= 2 . 0 / 3 . 0 ) && (P < 5 . 0 / 6 . 0 ) && ( agent row < rowN−1) ) {//

Pos i t i on 5

53 migPos i t ion [ 0 ] = migPos i t ion [ 0 ] + 1 ;}
54 e l s e i f ( (P >= 5 . 0 / 6 . 0 ) && ( a g e n t c o l > 0) ) {// Pos i t i on 6

55 migPos i t ion [ 1 ] = migPos i t ion [ 1 ] − 1 ;}
56 }
57

58 void p r o l i f e r a t i o n 1 ( const i n t agent row , const i n t agent co l ,

59 const i n t rowN , const i n t colN , i n t ∗ proPos i t i on ) {
60 proPos i t i on [ 0 ] = agent row ;

61 proPos i t i on [ 1 ] = a g e n t c o l ;

62 double P = ( ( double ) rand ( ) / (RAND MAX) ) ; // choose migrat ion d i r e c t i o n s

63 i f ( (P < 1 . 0 / 6 . 0 ) && ( agent row > 0) && ( a g e n t c o l > 0) ) {// Pos i t i on 1

64 proPos i t i on [ 0 ] = proPos i t i on [ 0 ] − 1 ;

65 proPos i t i on [ 1 ] = proPos i t i on [ 1 ] − 1 ;}
66 e l s e i f ( (P >= 1 . 0 / 6 . 0 ) && (P <1.0/3.0) && ( agent row > 0) && ( a g e n t c o l

< colN−1) ) {// Pos i t i on 2

67 proPos i t i on [ 0 ] = proPos i t i on [ 0 ] − 1 ;}
68 e l s e i f ( (P >= 1 . 0 / 3 . 0 ) && (P < 1 . 0 / 2 . 0 ) && ( a g e n t c o l < colN−1) ) {//

Pos i t i on 3

69 proPos i t i on [ 1 ] = proPos i t i on [ 1 ] + 1 ;}
70 e l s e i f ( (P >= 1 . 0 / 2 . 0 ) && (P < 2 . 0 / 3 . 0 ) && ( agent row < rowN−1) && (

a g e n t c o l < colN−1) ) {// Pos i t i on 4

71 proPos i t i on [ 0 ] = proPos i t i on [ 0 ] + 1 ;}
72 e l s e i f ( (P >= 2 . 0 / 3 . 0 ) && (P < 5 . 0 / 6 . 0 ) && ( agent row < rowN−1) && (

a g e n t c o l > 0) ) {// Pos i t i on 5

73 proPos i t i on [ 0 ] = proPos i t i on [ 0 ] + 1 ;

74 proPos i t i on [ 1 ] = proPos i t i on [ 1 ] − 1 ;}
75 e l s e i f ( (P >= 5 . 0 / 6 . 0 ) && ( a g e n t c o l > 0) ) {// Pos i t i on 6

76 proPos i t i on [ 1 ] = proPos i t i on [ 1 ] − 1 ;}
77 }
78

79 void p r o l i f e r a t i o n 2 ( const i n t agent row , const i n t agent co l ,

80 const i n t rowN , const i n t colN , i n t ∗ proPos i t i on ) {
81 proPos i t i on [ 0 ] = agent row ;

82 proPos i t i on [ 1 ] = a g e n t c o l ;

83 double P = ( ( double ) rand ( ) / (RAND MAX) ) ; // choose migrat ion d i r e c t i o n s

84 i f ( (P < 1 . 0 / 6 . 0 ) && ( agent row > 0) ) {// Pos i t i on 1

85 proPos i t i on [ 0 ] = proPos i t i on [ 0 ] − 1 ;}
86 e l s e i f ( (P >= 1 . 0 / 6 . 0 ) && (P <1.0/3.0) && ( agent row > 0) && ( a g e n t c o l

< colN−1) ) {// Pos i t i on 2

87 proPos i t i on [ 0 ] = proPos i t i on [ 0 ] − 1 ;

88 proPos i t i on [ 1 ] = proPos i t i on [ 1 ] + 1 ;}
89 e l s e i f ( (P >= 1 . 0 / 3 . 0 ) && (P < 1 . 0 / 2 . 0 ) && ( a g e n t c o l < colN−2) ) {//

Pos i t i on 3
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90 proPos i t i on [ 1 ] = proPos i t i on [ 1 ] + 1 ;}
91 e l s e i f ( (P >= 1 . 0 / 2 . 0 ) && (P < 2 . 0 / 3 . 0 ) && ( agent row < rowN−1) && (

a g e n t c o l < colN−1) ) {// Pos i t i on 4

92 proPos i t i on [ 0 ] = proPos i t i on [ 0 ] + 1 ;

93 proPos i t i on [ 1 ] = proPos i t i on [ 1 ] + 1 ;}
94 e l s e i f ( (P >= 2 . 0 / 3 . 0 ) && (P < 5 . 0 / 6 . 0 ) && ( agent row < rowN−1) ) {//

Pos i t i on 5

95 proPos i t i on [ 0 ] = proPos i t i on [ 0 ] + 1 ;}
96 e l s e i f ( (P >= 5 . 0 / 6 . 0 ) && ( a g e n t c o l > 0) ) {// Pos i t i on 6

97 proPos i t i on [ 1 ] = proPos i t i on [ 1 ] − 1 ;}
98 }
99

100 i n t CalTotal ( const i n t rowN , const i n t colN ) {
101 i n t Ntota l ;

102 i f (rowN % 2 == 0) {
103 Ntota l = rowN ∗ colN − rowN/2 ;

104 } e l s e {
105 Ntota l = rowN ∗ colN − (rowN+1) /2 ;

106 }
107 return Ntota l ;

108 }
109

110 void importdata ( const i n t N, double ∗ dataPp ) {
111 i f s t r e a m i f s ( ”Pp . csv ” ) ;

112 char dummy;

113 f o r ( i n t i = 0 ; i < N; ++i ) {
114 i f s >> dataPp [ i ] ;

115 i f ( i < (N − 1) )

116 i f s >> dummy;

117 }
118 }
119

120 i n t main ( i n t argc , char ∗∗ argv ) {
121 srand ( time (NULL) ) ; //random seeds

122 random device rd ;

123 mt19937 generato r ( rd ( ) ) ;

124 // s e t c l o ck

125 c l o c k t TIME;

126 TIME = c lock ( ) ;

127

128 // I n i t i a l i s a t i o n

129 i n t simuNum , sampleNum , t , T, tau , agent row , agent co l , migPos i t ion [ 2 ] ,

p roPos i t i on [ 2 ] ;

130 double Pm, Pp , P, avePp ;

131 simuNum = 1 ; // s imu la t i on index

132 sampleNum = 2 ; // t o t a l s imu la t i on s

133 tau = 1 ; // time step : 1 ˜ 1/12h

134 t = 0 ; // cur rent time

135 T = 864 ; //end time

136 Pm = 0 . 3 5 ;

137 const i n t d = 24 ; // spac ing : 1 ˜ 24mum

138 enum {rowN = 68 , colN = 80} ; // 1400mum by 1900 mum
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139 enum { sCol1 = 29 , sCol2 = 51} ; // s c ra t ch width

140 const i n t Ntota l = CalTotal (rowN , colN ) ;

141 const i n t Nstart = Ntota l ∗ 0 . 3 ; // seed ing cond i t i on

142 cout << ” Ntota l = ” << Ntotal << endl ;

143 cout << ”Nseed = ” << Nstart << endl ;

144 s t a t i c vector<vector<int> > domain (rowN , std : : vector<int >(colN ) ) ; //

s imu la t i on domain

145 s t a t i c vector<vector<double> > domain Pp (rowN , std : : vector<double>(colN )

) ; //Pp

146

147 ofstream f i l e 1 ;

148 ofstream f i l e 2 ;

149 ofstream f i l e 3 ;

150 ofstream f i l e 4 ;

151 ofstream f i l e 5 ;

152 f i l e 1 . open ( ”domain0 . csv ” ) ;

153 f i l e 2 . open ( ”domain24 . csv ” ) ;

154 f i l e 3 . open ( ”domain48 . csv ” ) ;

155 f i l e 4 . open ( ”domain72 . csv ” ) ;

156 f i l e 5 . open ( ”domain96 . csv ” ) ;

157 // Import data

158 i n t s i z e d a t a = 12790529; // s i z e o f import data

159 double ∗ dataPp ;

160 dataPp = new double [ s i z e d a t a ] ;

161 importdata ( s i z e d a t a , dataPp ) ;

162

163 // Seeding

164 f o r ( i n t i = Nstart ; i > 0 ; −− i ) {
165 agent row = rand ( ) % rowN ;

166 a g e n t c o l = rand ( ) % colN ;

167 i f ( ( ( rowN−agent row ) % 2 != 0) && ( a g e n t c o l == colN−1) ) {
168 i = i + 1 ;

169 } e l s e i f ( domain [ agent row ] [ a g e n t c o l ] == 0) {
170 i n t randPp = rand ( ) % s i z e d a t a ;

171 domain [ agent row ] [ a g e n t c o l ] = 1 ;

172 domain Pp [ agent row ] [ a g e n t c o l ] = dataPp [ randPp ] ;

173 } e l s e {
174 i = i + 1 ;

175 }
176 }
177 d e l e t e [ ] dataPp ;

178

179 // Scratch

180 f o r ( i n t i =0; i<rowN ; ++i ) {
181 i f ( ( rowN−agent row ) % 2 == 0) {
182 f o r ( i n t j=sCol1 ; j<=sCol2 ; ++j ) {
183 domain [ i ] [ j ] = 0 ;

184 domain Pp [ i ] [ j ] = 0 . 0 ;

185 }
186 } e l s e {
187 f o r ( i n t j=sCol1 ; j<=sCol2 −1; ++j ) {
188 domain [ i ] [ j ] = 0 ;
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189 domain Pp [ i ] [ j ] = 0 . 0 ;

190 }
191 }
192 }
193

194 //Count i n i t i a l c e l l s

195 i n t agent N = 0 ;

196 avePp = 0 . 0 ;

197 f o r ( i n t i =0; i<rowN ; ++i ) {
198 f o r ( i n t j =0; j<colN ; ++j ) {
199 i f ( domain [ i ] [ j ] == 1) {
200 agent N = agent N + 1 ;

201 avePp = avePp + domain Pp [ i ] [ j ] ;

202 }
203 }
204 }
205 avePp = avePp / ( double ) agent N ;

206

207 // Write to f i l e s

208 f o r ( i n t i =0; i<rowN ; ++i ) {
209 f o r ( i n t j =0; j<colN ; ++j ) {
210 f i l e 1 << domain [ i ] [ j ] ;

211 // f i l e 2 << domain Pp [ i ] [ j ] ;

212 i f ( j < colN−1) {
213 f i l e 1 << ” , ” ;

214 // f i l e 2 << ” , ” ;

215 } e l s e {
216 f i l e 1 << ”\n” ;

217 // f i l e 2 << ”\n ” ;

218 }
219 }
220 }
221

222 t = t + tau ;

223 i n t t imestop = T / t ;

224

225 whi l e (simuNum <= sampleNum) {
226 cout << ”SimuNum ” << simuNum << ” , ” ;

227 cout << ”N(0) = ” << agent N << ” , Average Pp = ” << avePp << endl ;

228 f o r ( i n t t index =0; t index<t imestop ; ++tindex ) { // check time

229 i n t N = agent N ;

230 // Migrat ion

231 f o r ( i n t i =0; i<N; ++i ) {
232 P = ( ( double ) rand ( ) / (RAND MAX) ) ; // generate a random

number

233 i f (P <= Pm) { // perform migrat ion

234 // s e l e c t a random s i t e

235 i n t i fGhost = 0 ;

236 agent row = rand ( ) % rowN ;

237 a g e n t c o l = rand ( ) % colN ;



Chapter 5. In silico passaging of cell lines provides insight into reproducibility
of cell biology experiments

162

238 whi l e ( ( domain [ agent row ] [ a g e n t c o l ] != 1) | | ( i fGhost

== 1) ) { // s e l e c t a random s i t e , stop u n t i l f i n d i n g

an agent

239 agent row = rand ( ) % rowN ;

240 a g e n t c o l = rand ( ) % colN ;

241 }
242 // t e s t ghost node

243 i f ( ( ( rowN−agent row ) % 2 != 0) && ( a g e n t c o l == colN−1)

) {
244 i fGhost = 1 ;

245 }
246 i f ( i fGhost == 0) {
247 i f ( ( rowN−agent row ) % 2 == 0) {
248 migrat ion1 ( agent row , agent co l , rowN , colN ,

migPos i t ion ) ;

249 i f ( domain [ migPos i t ion [ 0 ] ] [ migPos i t ion [ 1 ] ] == 0)

{// i f the new s i t e i s not taken

250 domain [ agent row ] [ a g e n t c o l ] = 0 ; // d e l e t e

the prev ious s i t e

251 domain [ migPos i t ion [ 0 ] ] [ migPos i t ion [ 1 ] ] = 1 ;

//move to the new s i t e

252 domain Pp [ migPos i t ion [ 0 ] ] [ migPos i t ion [ 1 ] ] =

domain Pp [ agent row ] [ a g e n t c o l ] ; //move

the corre spond ing Pp

253 domain Pp [ agent row ] [ a g e n t c o l ] = 0 . 0 ; //

d e l e t e the prev ious Pp

254 }
255 } e l s e {
256 migrat ion2 ( agent row , agent co l , rowN , colN ,

migPos i t ion ) ;

257 i f ( domain [ migPos i t ion [ 0 ] ] [ migPos i t ion [ 1 ] ] == 0)

{// i f the new s i t e i s not taken

258 domain [ agent row ] [ a g e n t c o l ] = 0 ; // d e l e t e

the prev ious s i t e

259 domain [ migPos i t ion [ 0 ] ] [ migPos i t ion [ 1 ] ] = 1 ;

//move to the new s i t e

260 domain Pp [ migPos i t ion [ 0 ] ] [ migPos i t ion [ 1 ] ] =

domain Pp [ agent row ] [ a g e n t c o l ] ; //move

the corre spond ing Pp

261 domain Pp [ agent row ] [ a g e n t c o l ] = 0 . 0 ; //

d e l e t e the prev ious Pp

262 }
263 }
264 } e l s e {
265 i = i − 1 ;

266 }
267 }
268 }
269 // P r o l i f e r a t i o n

270 f o r ( i n t i =0; i<N; ++i ) {
271 // s e l e c t a random s i t e

272 i n t i fGhost = 0 ;
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273 agent row = rand ( ) % rowN ;

274 a g e n t c o l = rand ( ) % colN ;

275 whi l e ( ( domain [ agent row ] [ a g e n t c o l ] != 1) | | ( i fGhost == 1)

) { // s e l e c t a random s i t e , stop u n t i l f i n d i n g an agent

276 agent row = rand ( ) % rowN ;

277 a g e n t c o l = rand ( ) % colN ;

278 }
279 // t e s t ghost node

280 i f ( ( ( rowN−agent row ) % 2 != 0) && ( a g e n t c o l == colN−1) ) {
281 i fGhost = 1 ;

282 }
283 i f ( i fGhost == 0) {
284 Pp = domain Pp [ agent row ] [ a g e n t c o l ] ;

285 P = ( ( double ) rand ( ) / (RAND MAX) ) ; // generate a random

number

286 i f (P <= Pp) {
287 i f ( ( rowN−agent row ) % 2 == 0) {
288 p r o l i f e r a t i o n 1 ( agent row , agent co l , rowN , colN ,

proPos i t i on ) ;

289 i f ( domain [ p roPos i t i on [ 0 ] ] [ p roPos i t i on [ 1 ] ] == 0)

{// i f the new s i t e i s not taken

290 domain [ p roPos i t i on [ 0 ] ] [ p roPos i t i on [ 1 ] ] = 1 ;

// p r o l i f e r a t e at the new s i t e

291 domain Pp [ proPos i t i on [ 0 ] ] [ p roPos i t i on [ 1 ] ] =

Pp ; // adopt Pp

292 agent N = agent N + 1 ; // update agent

populat ion

293 }
294 } e l s e {
295 p r o l i f e r a t i o n 2 ( agent row , agent co l , rowN , colN ,

proPos i t i on ) ;

296 i f ( domain [ p roPos i t i on [ 0 ] ] [ p roPos i t i on [ 1 ] ] == 0)

{// i f the new s i t e i s not taken

297 domain [ p roPos i t i on [ 0 ] ] [ p roPos i t i on [ 1 ] ] = 1 ;

// p r o l i f e r a t e at the new s i t e

298 domain Pp [ proPos i t i on [ 0 ] ] [ p roPos i t i on [ 1 ] ] =

Pp ; // adopt Pp

299 agent N = agent N + 1 ; // update agent

populat ion

300 }
301 }
302 }
303 } e l s e {
304 i = i − 1 ;

305 }
306 }
307 // Write to f i l e s

308 i f ( t == 288) { //24h

309 f o r ( i n t i =0; i<rowN ; ++i ) {
310 f o r ( i n t j =0; j<colN ; ++j ) {
311 f i l e 2 << domain [ i ] [ j ] ;

312 i f ( j < colN−1) {
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313 f i l e 2 << ” , ” ;

314 } e l s e {
315 f i l e 2 << ”\n” ;

316 }
317 }
318 }
319 }
320 i f ( t == 576) { //48h

321 f o r ( i n t i =0; i<rowN ; ++i ) {
322 f o r ( i n t j =0; j<colN ; ++j ) {
323 f i l e 3 << domain [ i ] [ j ] ;

324 i f ( j < colN−1) {
325 f i l e 3 << ” , ” ;

326 } e l s e {
327 f i l e 3 << ”\n” ;

328 }
329 }
330 }
331 }
332 i f ( t == 864) { //72h

333 f o r ( i n t i =0; i<rowN ; ++i ) {
334 f o r ( i n t j =0; j<colN ; ++j ) {
335 f i l e 4 << domain [ i ] [ j ] ;

336 i f ( j < colN−1) {
337 f i l e 4 << ” , ” ;

338 } e l s e {
339 f i l e 4 << ”\n” ;

340 }
341 }
342 }
343 }
344 /∗ i f ( t == 1152) { //96h

345 f o r ( i n t i =0; i<rowN ; ++i ) {
346 f o r ( i n t j =0; j<colN ; ++j ) {
347 f i l e 5 << domain [ i ] [ j ] ;

348 i f ( j < colN−1) {
349 f i l e 5 << ” , ” ;

350 } e l s e {
351 f i l e 5 << ”\n ” ;

352 }
353 }
354 }
355 }∗/
356 t = t + tau ; // forward time

357 }
358

359 cout << ”DONE N = ” << agent N << endl ;

360 simuNum = simuNum + 1 ; // update the s imu la t i on index

361 t = 0 ; // r e s e t time

362

363 i f (simuNum != sampleNum+1) {
364 f o r ( i n t i =0; i<rowN ; ++i ) {



Chapter 5. In silico passaging of cell lines provides insight into reproducibility
of cell biology experiments

165

365 f o r ( i n t j =0; j<colN ; ++j ) {
366 domain [ i ] [ j ] = 0 ;

367 domain Pp [ i ] [ j ] = 0 . 0 ;

368 }
369 }
370 // Import data

371 double ∗ dataPp ;

372 dataPp = new double [ s i z e d a t a ] ;

373 importdata ( s i z e d a t a , dataPp ) ;

374 //Re−seed c e l l s

375 f o r ( i n t i = Nstart ; i > 0 ; −− i ) {
376 agent row = rand ( ) % rowN ;

377 a g e n t c o l = rand ( ) % colN ;

378 i f ( ( ( rowN−agent row ) % 2 != 0) && ( a g e n t c o l ==

colN−1) ) {
379 i = i + 1 ;

380 } e l s e i f ( domain [ agent row ] [ a g e n t c o l ] == 0) {
381 i n t randPp = rand ( ) % s i z e d a t a ;

382 domain [ agent row ] [ a g e n t c o l ] = 1 ;

383 domain Pp [ agent row ] [ a g e n t c o l ] = dataPp [ randPp ] ;

384 } e l s e {
385 i = i + 1 ;

386 }
387 }
388 d e l e t e [ ] dataPp ;

389 // Scratch

390 f o r ( i n t i =0; i<rowN ; ++i ) {
391 i f ( ( rowN−agent row ) % 2 == 0) {
392 f o r ( i n t j=sCol1 ; j<=sCol2 ; ++j ) {
393 domain [ i ] [ j ] = 0 ;

394 domain Pp [ i ] [ j ] = 0 . 0 ;

395 }
396 } e l s e {
397 f o r ( i n t j=sCol1 ; j<=sCol2 −1; ++j ) {
398 domain [ i ] [ j ] = 0 ;

399 domain Pp [ i ] [ j ] = 0 . 0 ;

400 }
401 }
402 }
403 //Count c e l l s

404 agent N = 0 ;

405 avePp = 0 . 0 ;

406 f o r ( i n t i =0; i<rowN ; ++i ) {
407 f o r ( i n t j =0; j<colN ; ++j ) {
408 i f ( domain [ i ] [ j ] == 1) {
409 agent N = agent N + 1 ;

410 avePp = avePp + domain Pp [ i ] [ j ] ;

411 }
412 }
413 }
414 avePp = avePp / ( double ) agent N ;

415 // Write to f i l e s
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416 f o r ( i n t i =0; i<rowN ; ++i ) {
417 f o r ( i n t j =0; j<colN ; ++j ) {
418 f i l e 1 << domain [ i ] [ j ] ;

419 i f ( j < colN−1) {
420 f i l e 1 << ” , ” ;

421 } e l s e {
422 f i l e 1 << ”\n” ;

423 }
424 }
425 }
426 t = t + tau ;

427 }
428 }
429

430 f i l e 1 . c l o s e ( ) ;

431 f i l e 2 . c l o s e ( ) ;

432 f i l e 3 . c l o s e ( ) ;

433 f i l e 4 . c l o s e ( ) ;

434 f i l e 5 . c l o s e ( ) ;

435 TIME = c lock ( ) − TIME;

436 cout << ” I t takes ”<< ( f l o a t )TIME/CLOCKS PER SEC <<” second ( s ) . ”<< endl ;

437 c in . get ( ) ;

438 re turn 0 ;

439 }



6 Conclusions

In this chapter we summarise the results and novel contributions of this work. We then

discuss the broad themes of this work. In addition, we outline possible extensions for

further investigation. Lastly, we remark the significance of our work.

6.1 Summary

In this thesis, we used a combined mathematical and experimental approach to investi-

gate the sources of variability that affect the reproducibility of in vitro cell biology assays.

From the modelling perspective, the overall objective of this work is to characterise the

variability associated with reproducibility and test the suitability of commonly used math-

ematical models. In addition, our improved experimental approach allows us to minimise

the variables in the experimental design.

The objectives of this thesis were to:

• Investigate how the initial degree of confluence affects the parameter estimates of

cell diffusivity and proliferation rate in in vitro scratch assays.

• Investigate the cell proliferation mechanisms in in vitro cell biology assays.

• Develop a cell proliferation mechanism in lattice–based random walk models to in-

clude more biologically realistic crowding effects for in vitro cell biology assays.

• Use lattice–based random walk models to investigate the passaging process and how

passaging of cell lines affects the reproducibility of in vitro cell biology assays.

In Chapter 2 we performed a suite of scratch assays with six different initial seeding

conditions, to investigate how the initial degree of confluence affects the reproducibility

of scratch assays. Using IncuCyte ZOOMTM assays [29], we were able to obtain high-

resolution experimental images with consistent scratch areas. The experimental images

then were further processed to construct cell density profiles for each initial seeding con-

dition. We calibrated the solution of the Fisher–Kolmogorov model to the data of cell
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density profiles, to quantify the cell diffusivity D and proliferation rate λ. The results

showed that cell diffusivity D varies significantly with the initial degree of confluence. Fur-

ther calibration of the Porous–Fisher model to the experimental data showed a smaller

variation in D over the six initial seeding conditions, suggesting that the Porous–Fisher

model might better describe the cell line that we investigated. However, the difference

over the six initial seeding conditions is still considerably large. Therefore we suggested

that when performing scratch assays, the initial seeding condition should be reported so

that the experiments can be better reproduced.

The results in Chapter 2 also showed that cell proliferation rate λ varies over the initial

seeding conditions, which motivated us to think whether cells in scratch assays proliferate

logistically. To investigate this question, we performed a suite of scratch assays with

three different initial seeding conditions in Chapter 3. In addition, we performed a suite

of proliferation assays with the same initial seeding conditions as the control experiment.

We counted individual cells in selected regions that are far from the scratched area, and

plotted the initial cell density for individual replicates. We found that for both scratch

assays and proliferation assays, the variation in the initial cell density for each initial

seeding condition is large. Our largest recorded initial cell density for the smallest initial

seeding condition was larger than the smallest recorded initial cell density for the largest

initial seeding condition. We suggested that it is important to measure the initial cell

density for each replicate.

One feature of the logistic growth model is that the per capita growth rate is a decreasing

straight line. To investigate whether cells proliferate logistically in the scratch assays and

proliferation assays, we constructed the per capita growth rates for each initial seeding

condition. The per capita growth rate profiles suggested that cells in the proliferation

assays follow the logistic growth, while the cell proliferation in the scratch assays is more

complicated. Based on the results, we proposed a two–phase growth profile for scratch

assays: a disturbance phase at early time, in which cell proliferation is not logistic, and a

growth phase at later time, in which cells proliferate logistically. Further data calibration

to the logistic growth model showed that simply calibrating the solution of the logistic

growth model to experimental data of all time from scratch assays could result in biologi-

cally unrealistic parameter estimates. We suggested that when performing scratch assays,

the growth phase should be distinguished from the disturbance phase, and the logistic

growth model should be applied only to the growth phase.

In Chapter 2 and 3 we investigated both cell migration and cell proliferation in cell biology

assays using continuum models. One of our main findings is that cells do not always

proliferate logistically. Apart from continuum models, discrete models also have been used

to mimic certain features of cell biology assays. However, the traditional lattice–based

discrete models involve a cell proliferation mechanism which is based on a simple unbiased

exclusion process. This proliferation mechanism leads to the logistic source term in the

continuum description. Therefore, using the traditional lattice–based discrete models

could lead to misleading predictions and affect the reproducibility of in silico experiments.
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To improve the proliferation mechanism for lattice–based random walk models, in Chapter

4 we first considered crowding effects with a larger spatial template, so that daughter

agents can be placed in non–nearest neighbour sites. We then further generalised the

proliferation process, by assuming that the proliferating agents sense the occupancy of

non–nearest neighbour sites. Whether potential proliferation events succeed depends on

a crowding function which accounts for the occupancy of neighbour sites. The continuum

limit description of this discrete model leads to a reaction–diffusion equation. Comparing

the solution of the continuum description with averaged simulation data illustrated that

generally the continuum description matches the discrete model well. The quality of the

match between the continuum description and the discrete model improves with larger

sizes of template for neighbour sites. We suggest using the generalised discrete model

when investigating non–logistic proliferation and when the size of template of neighbour

cells is small, to better predict experimental observations.

Although lattice–based random walk models have been widely used to mimic certain fea-

tures of in vitro cell biology assays, the passaging process has not been studied using

any type of discrete model. Previous studies revealed that cell characteristics change at

high passage numbers, while the passage number of cells used in experiments is seldom

reported. We anticipated that passage number can be a variable that potentially affects

the reproducibility of various in vitro experiments. In Chapter 5 we used a traditional

lattice–based random walk model to mimic the passaging of cell lines as a part of cell

culture growth. Our model included the initial heterogeneity in cell proliferation and var-

ious amounts of damage during the passaging process. The results showed that depending

on the trade–off between the initial heterogeneity and the passage–induced damage, the

average cell proliferate rate can either decrease or increase at high passage numbers, as

observed in previous experiential studies. We then simulated a suite of scratch assays us-

ing cells at low and high passage numbers, and found that the closure rate of the scratched

area significantly depends on the passage number.

Overall, using a combined mathematical and experimental approach, we identified three

overlooked variables that affect the reproducibility of in vitro cell biology assays, namely

the initial degree of confluence, the two–phase cell proliferation, and the passage number.

Our work highlighted the importance of reporting these three variables in experimental

methods in order to make the experiments more reproducible. In addition, we further

generalised the proliferation mechanism in lattice–based random walk models to predict

experimental observations better.
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6.2 Broad themes

6.2.1 Appropriate mathematical models

In mathematical biology, there are certain standard models for cell migration and cell

proliferation that are widely used. In particular, there is the continuum model:

∂C

∂t
= −∇ · J + f(C), (6.1)

which is a combination of the flux of cells J and the source term f(C). Models of cell

biology assays normally use the Fick’s law

J = −D∇C, (6.2)

to represent cell migration, and the logistic growth model

f(C) = λC

(
1− C

K

)
, (6.3)

to represent cell proliferation. Similarly, there are lattice–based random walk models that

mimic cell migration and cell proliferation using a simple unbiased nearest–neighbour ex-

clusion process. The continuum and discrete models are related, such that the continuum

limit description of the discrete models lead to Equation (1.1).

In reality, these models are not always appropriate, and one of the themes in this thesis

is to explore some simple case studies of these situations. For example, we show that

the linear diffusion term in Equation (1.1) is not appropriate for cell migration in scratch

assays with a certain cell line (Chapter 2). Also, we show that the logistic growth model

is not always appropriate for cell proliferation in scratch assays (Chapter 3). In terms of

mathematical modelling, we explore this theme further by showing that if we change the

rules in a discrete model to better take into account crowding effects, then the resulting

PDE will be different to Equation (1.1).

A simple conclusion is that care must be taken when choosing mathematical models, even

for simple applications. Choosing an inappropriate model would lead to misleading re-

sults, such that experimental observations can not be reproduced by in silico simulations.

Therefore, one should not only consider the quality of match, but also the mechanisms

and model assumptions.

6.2.2 Reproducibility of experiments

The other core theme in this project is reproducibility of in vitro experiments. A startling

result of our study in Chapter 2 is that the diffusion coefficient D of cells in the scratch

assays was not a constant, but in fact depended on the initial seeding condition (or,

in other words, diffusion was not linear). Without this understanding, experiments of
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this type are not completely reproducible, since the initial seeding condition is not even

typically recorded and experiments are not routinely conducted for different initial seeding

conditions.

Our simulation results in Chapter 5 showed that cell proliferation can be significantly

affected by the passaging process. Cell proliferation can either increase or decrease with

the passage number. Even for cells from the same cell line, the proliferation rate can

be very different at different passage numbers. Without reporting the passage number,

experiments can be difficult to reproduce.

Our conclusion is that there are many sources of variability that could affect the repro-

ducibility of in vitro cell biology assays. Some of variability is associated with experimen-

tal design, while others are associated with cell characteristics. It is important to identify

and report those factors in experiments to make them reproducible.

6.3 Future Work

• Investigating how initial degree of confluence affects various cell lines and

their two–phase growth in in vitro scratch assays.

In this thesis we investigated the initial degree of confluence and the proliferation

mechanisms using a combined mathematical and experimental approach. In all the

experiments we used a prostate cancer cell line. However, previous studies show that

different cell lines behave differently in cell biology experiments [88, 100]. There-

fore it is still unclear how the initial degree of confluence would affect other cell

lines, and whether the disturbance phase occurs in other cell lines. To investigate

these questions, we could also use the combined mathematical and experimental

approach. From the experimental point of view, we could perform in vitro scratch

assays with various types of cell lines. Experiments for each cell line contain six

different initial seeding conditions. The experimental images could be processed to

construct cell density profiles, cell density information and per capita growth rate.

For each type of cell line, we then compare the cell density profiles with different ini-

tial seeding conditions, to investigate the differences caused by the initial degree of

confluence. We could also identify the disturbance phase from the per capita growth

rate profiles and investigate when the growth phase starts. From the mathematical

point of view, we could calibrate solutions of various reaction–diffusion equations to

experimental data of cell density profiles and cell density information, to quantify

the parameters and explore the suitability of continuum models for different types

of cell lines.

• Investigating the impact of the shape of scratch on cell migration and

cell proliferation

Wound healing has been studied for decades to understand how cells react after
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being damaged [76, 77, 118]. One of the experimental approaches to mimic wound-

ing healing process is to perform in vitro starch assays [14, 26, 71, 85, 86, 91, 118].

Current experimental techniques can create different shapes of scratch in scratch

assays [91]. This allows us to investigate how different shapes of wound affect cells’

ability to close the scratched area. Using a combined mathematical and experi-

mental approach, we could perform scratch assays with different shapes of scratch,

constructing cell density profiles for each case, and then compare the experimental

results with solutions of mathematical models.

• Investigating the cause of the disturbance phase in in vitro scratch as-

says.

In Chapter 3 we identified the two–phase growth in in vitro scratch assays, namely

a disturbance phase, in which cells do not proliferate logistically, and a logistic

growth phase. We suggested that the disturbance phase needs to be identified and

ignored, by applying the logistic growth model only to the growth phase. However,

the cause of the disturbance phase remains unknown. At this stage it is still com-

pletely unclear whether the disturbance takes place due to mechanical stress [48] or

chemicals secreted by damaged cells [85,86]. A combined mathematical and experi-

mental approach might be applied to investigate the cause of the disturbance phase.

• Exploring the role of cell–to–cell adhesion on the reproducibility of in

vitro scratch assays.

Cell migration is considered one of the key characteristics of cells [109,118]. In the

discrete models we used in this thesis, cell migration is represented by the most

fundamental unbiased nearest–neighbour exclusion mechanism. However, this kind

of mechanism dose not include any information about cell–to–cell adhesion [109].

Cell–to–cell adhesion is an important feature of cells that affects the cell motility

and causes the formation of cell clusters [1,25,52,115]. For some types of cells, such

as epithelial cells, the effect of cell–to–cell adhesion is strong, so that one can not

simply ignore it. Therefore, it is necessary to model cell–to–cell adhesion in the

discrete framework and investigate its impact using a combined mathematical and

experimental approach.

• Extending the lattice–based random walk models for passaging of cell

lines.

We developed a discrete model to mimic the passaging of cell lines in Chapter 5.

In our model we assume that the passaging process only affects cell proliferation.

However, previous studies reported that cells’ ability to migrate also changes at high

passage numbers [45, 95]. In addition, our discrete model assumes that when pro-

liferating, daughter cells simply inherit proliferation rate Pp from their mother cell.

This is biologically unrealistic due to the ageing effect plays an important role in

cell proliferation [95]. To mimic these two features, we could apply passage–induced

damage to individual cells’ motility during the passaging process. The ageing effects
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could be modelled by adding some stochasticity into the proliferation rate Pp when

proliferating. With the extended model of passaging process, we could study the

trade-off between the initial heterogeneity in cell migration and cell proliferation,

the ageing effect, and the passage–induced damage on both cell migration and cell

proliferation.

• Exploring the continuum limit description of lattice–based random walk

models that involve initial heterogeneity in cell proliferation.

Both traditional lattice–based random walk models and our generalised discrete

models in Chapter 4 lead to reaction–diffusion equations at the continuum limit. It

is unclear what kind of continuum model the discrete model for passaging of cell

lines would lead to. In the discrete model, there are initial heterogeneity in cell

proliferation and passage–induced damage during the passaging process. One way

of modelling these factors at the continuum limit is to separate fast proliferating

cells from slow proliferating cells. Consequently, each type of cells has distinctive

average proliferation rate. We anticipate that there will be two continuum equations

for the fast and slow proliferating cells.

• Modelling in vitro cell biology assays using off–lattice models.

While lattice–based random walk models are routinely used to mimic certain fea-

tures in in vitro cell biology assays [80, 109], other studies claim that off–lattice

models are more biologically realistic [28,52,89]. Compared to lattice–based models,

off–lattice models can mimc the change of cell volume during migration and prolifer-

ation. In addition, cells in off–lattice models can migrate or place a daughter cell in

any direction, rather than having only a fixed number of directions in lattice–based

models. In our experimental images we found that cell volume changes during pro-

liferation. In our lattice–based discrete models we compromise this volume change

effect by applying an average cell diameter to all cells. However, this assumption

may not be valid when the variation in cell volume change is large. Therefore, off–

lattice models can provide insight into some features that lattice–based models can

not capture.

• Providing a software package for simulating in vitro cell biology assays

In vitro cell biology assays are routinely used to study cancer spreading, drug design

and tissue repair [2, 7, 58, 65, 76, 77]. Mathematical models that mimic features of

cell biology assays have been applied to predict experimental outcomes [54,80,109].

However, there is a lack of software package that systematically models the whole

process of cell biology assays. For example, traditional lattice–based models for cell

biology assays do not offer the chance to choose cells at different passage numbers.

When using those models, one can not choose different functionalities or modules

to model different features of the experiment. In addition, current models require

knowledge of programming to simulate, which makes them almost impossible for ex-

perimentalists to use. It would be useful to develop a user–friendly software package
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that simulates cell biology assays. The package would allow users to choose different

types of models, features of cells, mechanisms, and output options.

6.4 Final Remarks

In vitro cell biology assays are widely used to investigate various kinds of cell biology

questions. However, there are issues associated with the reproducibility of cell biology as-

says. In this thesis, we identified some of the previously overlooked variability that affects

the reproducibility, and investigated the appropriateness of commonly used mathematical

models that mimic features in cell biology assays.
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biologique. Moscow University Bulletin of Mathematics, 1, 1–25.

[65] Kramer, N., Walzl, A., Unger, C., Rosner, M., Krupitza, G., Hengstschlager, M., &

Dolznig, H. (2013). In vitro cell migration and invasion assays. Mut. Res–Rev. Mutat.,

752, 10–24.

[66] Laird, A. K. (1964). Dynamics of tumour growth. Brit. J. Cancer, 18, 490–502.

[67] Landman, K. A., Cai, A. Q., & Hughes, B. D. (2007). Travelling waves of attached

and detached cells in a wound–healing cell migration assay. Bull. Math. Biol., 69,

2119–2138.

[68] Laurent, L. C., Ulitsky, I., Slavin, I., Tran, H., Schork, A., Morey, R., Lynch, C.,

Harness, J. V., Lee, S., Barrero, M. J., & Ku, S. (2011). Dynamic changes in the copy



Bibliography 181

number of pluripotency and cell proliferation genes in human ESCs and iPSCs during

reprogramming and time in culture. Cell Stem Cell, 8, 106–118.

[69] Lewis, M. A., & Kareiva, P. (1993). Allee dynamics and the spread of invading

organisms. Theor. Pop. Biol., 43, 141–158.

[70] Neal, M. L., Trister, A. D., Ahn, S., Baldock, A., Bridge, C. A., Guyman, L., Lange,

J., Sodt, R., Cloke, T., Lai, A., Coughesy, T. F., Mrugala, M. M., Rockhill, J. K.,

Rockne, R. C., & Swanson, K. R. (2013). Response classification based on a minimal

model of glioblastoma growth is prognostic for clinical outcomes and distinguishes

progression from pseudoprogression. Cancer Res., 73, 2976–2986.

[71] Liang, C. C., Park, A. Y., & Guan, J. L. (2007). In vitro scratch assay: a convenient

and inexpensive method for analysis of cell migration in vitro. Nat. Protoc., 2, 329–333.

[72] Liggett, T. M. (2005). Interacting Particle Systems. New York: Springer.

[73] Lin, H. K., Hu, Y. C., Yang, L., Altuwaijri, S., Chen, Y. T., Kang, H. Y., Chang,

C. (2003). Suppression versus induction of androgen receptor functions by the phos-

phatidylinositol 3–kinase/Akt pathway in prostate cancer LNCaP cells with different

passage numbers. J. Biol. Chem. 278, 50902–50907.

[74] Louis, K. S., & Siegel, A. C. (2011). Cell Viability Analysis Using Trypan Blue:

Manual and Automated Methods. In: J. M. Stoddart (Ed.), Mammalian Cell Viability:

Methods and Protocols (pp. 7–12). Totowa, NJ: Humana Press.

[75] Mahasa, K. J., Ouifki, R., Eladdadi, A., & de Pillis, L. (2016). Mathematical model

of tumor–immune surveillance. J. Theor. Biol., 404, 312–330.

[76] Maini, P. K., McElwain, D. L. S., & Leavesley, D. I. (2004a). Traveling wave model

to interpret a wound-healing cell migration assay for human peritoneal mesothelial

cells. Tissue Eng., 10, 475–482.

[77] Maini, P. K., McElwain, D. L. S., & Leavesley, D. I. (2004b). Travelling waves in a

wound healing assay. Appl. Math. Lett., 17, 575–580.

[78] Mallet, D. G., & De Pillis, L. G. (2006). A cellular automata model of tumor–immune

system interactions. J. Theor. Biol., 239, 334–350.

[79] MathWorks. (2016). Solve nonlinear curve–fitting (data–

fitting) problems in least–squares sense. Retrieved from

http://au.mathworks.com/help/optim/ug/lsqcurvefit.html



Bibliography 182

[80] Mort, R. L., Ross, R. J., Hainey, K. J., Harrison, O. J., Keighren, M. A., Landini,

G., Baker, R. E., Painter, K. J., Jackson, I. J., & Yates, C. A. (2016). Reconciling

diverse mammalian pigmentation patterns with a fundamental mathematical model.

Nat. Commun., 7, 10288.

[81] Morton, K. W., & Mayers, D. F. (2005). Numerical solution of partial differential

equations. Cambridge: Cambridge University Press.

[82] Murray, J. D. (2002). Mathematical Biology I: An Introduction. Heidelberg: Springer.

[83] Nardini, J. T., Chapnick, D. A., Liu, X., & Bortz, D. M. (2015). The effects of

MAPK activity on cell–cell adhesion during wound healing. arXiv, 1506.07081.

[84] Nauman, J. V., Campbell, P. G., Lanni, F., & Anderson, J. L. (2007). Diffusion

of insulin–like growth factor–I and ribonuclease through fibrin gels. Biophys. J., 92,

4444–4450.
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