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Abstract

Migration and proliferation are fundamental functions of cells, and are essential for normal phys-

iological processes including development, tissue renewal and repair, and immune surveillance.

The misregulation of migration and proliferation contributes to many pathological processes,

most notably cancer. Improving the understanding of cell migration and proliferation is there-

fore of great importance. In this thesis we develop and analyse new mathematical models of

cell migration and proliferation, based on new experimental studies using cell cycle indicators to

visualise progression through the cell cycle. Key outcomes include: new mathematical models

that can describe both cell migration and cell cycle dynamics; the application of a multi-stage

model to reconcile the normally-hidden cell synchronisation of subpopulations with the apparent

exponential growth of the total cell population; a rigorous examination of the go-or-grow hy-

pothesis using melanoma cells with cell-cycle-inhibiting drugs; and, a novel mathematical model

for heterogeneous cell proliferation, where the total population consists of a subpopulation of

slow-proliferating cells and a subpopulation of fast-proliferating cells, and switching between

proliferative states occurs by the cellular processes of asymmetric cell division and influence

from surrounding cells.
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CHAPTER 1

Introduction

1.1 Overview

Migration and proliferation are fundamental functions of cells, essential for normal physiological

processes including development, tissue renewal and repair, and immune surveillance [1–5]. Nor-

mally these functions are tightly regulated in vivo by a complex network of intracellular signals

and the extracellular environment, so that migration is coordinated and directed [4, 6, 7] and

proliferation initiates and ceases as required [8–11]. The misregulation of migration and prolif-

eration contributes to many pathological processes, most notably cancer where cells can invade

nearby tissue and proliferate in an uncontrolled manner [12–17]. Consequently, cell migration

and proliferation are subjects of intensive investigation, both experimentally and theoretically.

Experimental studies of migration and proliferation are often performed in two-dimensional

(2-D) cell culture, from which the acquired knowledge may be utilised to understand more com-

plicated three-dimensional (3-D) in vitro and in vivo experiments, while necessarily accounting

for the differences in the microenvironments [18] and the additional modes of migration in 3-

D [19]. Indeed, there are several advantages in employing 2-D cell cultures: the observed cell

migration is partly representative of cell migration in vivo; the assays are amenable to standard

laboratory techniques, including live-cell microscopy; and, the relative ease of image analysis

including cell counting and single-cell tracking [20–22]. Note that 2-D cell cultures require the

cells to be adherent, or anchorage-dependent, meaning that the cells adhere to the surface of the

cell culture flask or plate, which is typical for cell lines derived from animal tissue [23, Section

6.2]. There is no implication here that the cells are generally adhered to each other when in cell

1



Chapter 1. Introduction

M

G1

S

G2

M

Figure 1.1: Schematic of the eukaryotic cell cycle, in-
dicating the colour of FUCCI in each phase. During
very early G1 phase there is no fluorescence as both FUCCI re-
porters are downregulated. As the cell progresses through G1
phase the red FUCCI reporter is upregulated and red fluores-
cence is observed. During the transition from G1 to S phase,
called early S, both the red FUCCI reporter and the green
FUCCI reporter are upregulated producing yellow. As the cell
progresses through S/G2/M phase the red FUCCI reporter is
downregulated and only the green FUCCI reporter is upregu-
lated so that green fluorescence is observed.

culture. Adhesion is typically required for the cells to migrate, and also for regulation of the

cell cycle and therefore proliferation [8].

For most eukaryotic cells, the cell cycle is a sequence of four discrete phases (Figure 1.1),

namely gap 1 (G1), synthesis (S), gap 2 (G2) and mitosis (M). The phases G1, S, and G2

are collectively referred to as interphase, which refers to the part of the cell cycle between cell

divisions. The primary function of the cell cycle is the replication of cellular DNA during S

phase, followed by the division of the replicated chromosomes and cytoplasm into two daughter

cells during M phase [24]. Progression through the cell cycle is tightly regulated in normal cells,

which are subject to density-dependent contact inhibition producing reversible cell-cycle arrest

[25, 26]. In cancer cells, however, the cell cycle is dysregulated [14] resulting in cell populations

with proliferative heterogeneity, exemplified by the heterogeneous cell cycle speeds observed in

tumours of solid cancers [27, 28]. In particular a small subpopulation of slow-proliferating cells

is often present in tumours, and this subpopulation tends to survive anti-cancer drug treatment

and can maintain the tumour by repopulating the fast-proliferating subpopulation [27,29].

Although morphological changes associated with cell division, therefore the transition from

M to G1 (Figure 1.2(a)), can be observed visually with a microscope, such distinct morpholog-

ical changes are not observed during transitions between other cell cycle phases [30]. There-

fore, alternative techniques are required to study these other cell cycle transitions. Fluorescent

ubiquitination-based cell cycle indicator (FUCCI) technology [30] enables visualisation of the

cell cycle progression in individual live cells (Figure 1.1). The FUCCI system consists of two

fluorescent reporters in the cell nucleus: when the cell is in G1 phase the nucleus fluoresces red,

and when the cell is in S/G2/M phase the nucleus fluoresces green. During the G1/S transi-

tion, called early S (eS), both reporters fluoresce and the nucleus appears yellow. Prior to the

development of FUCCI it was difficult, if not impossible, to examine the cell cycle dynamics

of individual cells beyond the M to G1 transition [30]. In contrast, FUCCI allows direct vi-

sualisation, in real time, of progression through the cell cycle. See Figure 1.2(b), which is the

2



Chapter 1. Introduction

(a) (b)

Figure 1.2: Experimental images of a proliferation assay with FUCCI-C8161 melanoma
cells. (a) The phase contrast image reveals little information regarding the cell cycle phase in which each
cell resides. (b) The corresponding FUCCI image provides detailed information on the cell cycle phase
of each cell: red cells are in G1 phase, green cells are in S/G2/M phase, and yellow cells are in eS phase.
Scale bar = 200 µm.

corresponding FUCCI image of Figure 1.2(a). This technology is particularly useful for research

in cancer biology [13,31–33], cell biology [34,35], and stem cell biology [36,37].

Mathematical models describing cell migration and proliferation in a population of cells often

involve reaction-diffusion equations [38] based on the one-dimensional (1-D) Fisher–Kolmogorov–

Petrovskii–Piskunov (FKPP) equation [38,39],

∂s

∂t
= D

∂2s

∂x2
+ λs

(
1− s

K

)
, (1.1)

where x is position, t is time, s(x, t) ≥ 0 is the cell density, D > 0 is the diffusivity, K > 0 is

the carrying-capacity density, and λ > 0 is the intrinsic growth rate. The density dependence

of cell proliferation is described in the FKPP equation with a logistic source term. The FKPP

equation and related adaptations, including stochastic analogues [40,41], have been successfully

used to model cell migration in vitro and in vivo [42–46]. A limitation of the FKPP equation

is that it considers a single population of cells. For a more realistic situation, where the total

population is composed of a number of distinct and interacting subpopulations, it is relevant

to consider a model that involves a system of coupled equations that are often related to the

FKPP equation [44,47].

There are several key assumptions underlying the FKPP equation and related models re-

garding a cell population: cell migration, and therefore the diffusivity D, is independent of

the cell cycle phase; monotonic growth of the total population implies monotonic growth for

subpopulations; and the distribution of cell cycle durations is exponentially distributed. These

3
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assumptions and more can all be tested with cell culture experiments using FUCCI-expressing

cells. Indeed, FUCCI provides access to a large amount of detailed information regarding the

cell cycle which was not previously available, so there exists the potential to combine this data

with the development of novel mathematical models to provide new and interesting insights into

cell migration and proliferation.

In this thesis we begin by developing mathematical models of cell migration with subpopu-

lations based on the cell cycle phases highlighted by FUCCI. Our models are motivated by the

FKPP equation (1.1), and consist of either two or three coupled partial differential equations,

where each equation corresponds to a subpopulation of cells in a particular phase of the cell

cycle that is highlighted by FUCCI. We demonstrate how our models can be used to simulate

the spatial and temporal dynamics in a population of FUCCI cells by modelling our new ex-

perimental data obtained from scratch assays with FUCCI cells. The FKPP equation (1.1) has

travelling wave solutions [38,48], and we show that our model also has travelling wave solutions

and derive analytical expressions for the minimum wave speed and a dispersion relation.

Our analysis of experimental data from cell culture assays with FUCCI cells reveals that the

cell populations have oscillating subpopulations due to partial synchronisation. It is important

to identify the presence of synchronisation, which may affect the experimental reproducibility

of studies that aim to investigate cell cycle-dependent mechanisms such as changes in migration

and drug response. Moreover, while the subpopulations in our assays are oscillatory the total

cell population appears to grow exponentially, and we reconcile these observations using a multi-

stage model of proliferation, which is based on the FKPP equation (1.1) without the diffusive

term.

We then use FUCCI to examine the go-or-grow hypothesis, which states that adherent cells

undergo reversible phenotype switching between migratory and proliferative states, with cells

in the migratory state being more motile than cells in the proliferative state. If the go-or-grow

hypothesis was confirmed it would have important implications for anti-cancer treatments that

employ cell cycle-inhibiting drugs, which can induce cell-cycle arrest. Since an arrested cell is

not proliferative, the cell’s energy could be utilised for migration, potentially leading to an exac-

erbation of metastasis. We examine go-or-grow using 2-D in vitro assays with FUCCI melanoma

cells and cell cycle-inhibiting drugs. Using FUCCI allows us to distinguish between cell migra-

tion in the phases G1 and S/G2/M. We compare migration by analysing the experimental data

using single-cell tracking to calculate mean diffusivities for cells in different cell-cycle phases and

in cell-cycle arrest.

Finally, we present a novel mathematical model of heterogeneous cell proliferation where the
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total population consists of a subpopulation of slow-proliferating cells and a subpopulation of

fast-proliferating cells. The model incorporates two cellular processes, asymmetric cell division

and induced switching between proliferative states, which are important determinants for the

heterogeneity of a cell population. As motivation for our model we provide experimental data

with FUCCI cells which assists in illustrating the induced-switching process, and further FUCCI

data on durations of cell cycle phases that guide our model choice. Our model is based on the

logistic growth term of the FKPP equation (1.1), and consists of a system of two coupled delay

differential equations with distributed time delays and the cell densities as functions of time.

1.2 Research questions

The work presented in this thesis is a combination of new experimental data using FUCCI-

expressing cells, analysis of the data, and the development of novel mathematical models moti-

vated by the data to examine cell migration and proliferation as a function of the cell cycle. In

particular, we address the following four questions.

1. How can we incorporate cell cycle dynamics into a continuum model of cell

migration based on the information provided by FUCCI technology in relation

to the cell cycle phase?

2-D scratch assays are commonly used experimental models to study the invasive and

proliferative behaviour of cancer cells. In combination with FUCCI, these experimental

models can be used to examine the cell cycle dynamics of individual cells as a function of

position within the scratch assay [13, 32, 33]. A major advantage of this method is that

two fundamental phenomena associated with malignant invasion, namely cell proliferation

and cell migration, can be characterised simultaneously. Indeed, FUCCI allows us to

directly examine the spatial and temporal patterns of cell proliferation within a migrating

population. To the best of our knowledge, there are no mathematical models in the

literature that have been previously developed to describe cell migration with FUCCI

technology.

We propose to develop a new mathematical model to predict new cell migration exper-

iments with FUCCI-expressing cells. Our focus is on 2-D cell migration experiments as

this is the most common experimental platform because of convenience, simplicity, and

low cost [21]. 2-D cell migration assays are valuable because they are often used as high-

throughput screening tools in conjunction with more sophisticated preclinical models [21].
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By considering the cells in a particular phase of the cell cycle as indicated by FUCCI to

comprise a distinct subpopulation, we can consider a mathematical model that consists of

a system of coupled differential equations based on the FKPP equation (1.1).

Once we have developed our mathematical model, we will analyse the model for travel-

ling wave solutions. It is well known that travelling wave solutions exist for the FKPP

equation (1.1) [38, 48]. These solutions have the form of a constant shape, monotonically

decreasing, wavefront, which propagates with a minimum speed, cmin = 2
√
λD [38, 48].

Travelling wave solutions are interesting as experimental observations often exhibit mov-

ing fronts that can be thought of as a travelling wave [46]. The speed of a moving cell

front is often the simplest quantitative measurement that can be obtained from an exper-

iment [46, 49]. Therefore, understanding the relationship between the parameters in the

mathematical model and the speed of the travelling wave solution is a useful way to help

parameterise the mathematical model to match experimental observations.

2. Is a cell proliferation assay prepared using standard cell-culture procedures

asynchronous?

Cell proliferation is essential for a range of normal and pathological processes. Many

different mathematical models of proliferation have been proposed [50–56], and a key

assumption often implicit in such models is that the cell population is asynchronous,

meaning that the cells are distributed randomly among the cell cycle phases. In contrast,

a population of cells is synchronous if the cells are in the same cell cycle phase and divide

as a cohort in discrete stages.

We propose to test the assumption of cell asynchronicity with new experimental data from

2-D cell proliferation assays employing FUCCI-expressing cells, using multiple cell lines

and replicates. By considering the subpopulations as indicated by FUCCI, synchronic-

ity would be revealed as oscillations in these subpopulations. Generally, the presence of

synchronisation may affect the reproducibility of experiments that investigate cell-cycle-

dependent mechanisms, such as changes in migration and drug response.

3. What can FUCCI and cell-cycle-inhibiting drugs reveal about the go-or-grow

hypothesis?

The go-or-grow hypothesis proposes that adherent cells reversibly switch between migra-

tory and proliferative phenotypes [57], exhibiting higher motility in the migratory state as

motile cells are not using energy for proliferation [57–61]. Previous experimental investi-

gations of the go-or-grow hypothesis are conflicting, as some studies support the hypoth-
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esis [57,62,63] while others refute it [13,64,65].

We propose to rigorously examine the go-or-grow hypothesis in new 2-D in vitro experi-

ments using FUCCI-expressing melanoma cells. Two key properties of cell lines subject to

go-or-grow would be the ability to switch between invasive and proliferative phenotypes,

and metastatic potential [57]. Studies of tumour heterogeneity in melanoma suggest that

cells may reversibly switch between invasive and proliferative phenotypes [57]. Further,

melanoma is highly metastatic, forms tumours that are very heterogeneous, and is well

known to respond to drugs which induce G1 arrest [66, 67]. Melanoma cells are therefore

a prime candidate for studying the go-or-grow hypothesis [57, 59, 68]. FUCCI allows us

to study cell motility in G1 separately from cell motility in S/G2/M [13, 69, 70]. Specifi-

cally, we can investigate cycling cells for differences in motility when the cells are in G1

compared with S/G2/M. Further, given the potential for an arrested cell to become more

motile, we can use a cell cycle-inhibiting drug to effect G1 arrest, and compare the motility

of the arrested cells with cycling cells. Single-cell tracking can then be used to obtain the

trajectories of cells, from which cell diffusivities can be estimated.

4. How can data from proliferation experiments with FUCCI-expressing cells

motivate the development of a continuum model of heterogeneous cell prolif-

eration?

Cell proliferation is the fundamental function of the cell cycle [10], which is a complex

process regulated by both intracellular signals and the extracellular environment [9]. De-

spite all of the underlying complexity the cell cycle has two basic fates, either progression

or arrest [10]. These two cellular fates form the basis of many mathematical models of

cell proliferation in the literature, typically based on exponential growth [51, 54, 71, 72] or

logistic growth [50, 52–54, 73, 74]. Exponential growth explicitly accounts for progression

only, while logistic growth accounts for progression and density-dependent arrest, which

can result from contact inhibition [75]. An important detail of the cell cycle not explicitly

accounted for in exponential and logistic growth models is the distribution of cell cycle du-

rations, which are always nonzero and exhibit considerable variation between different cell

types and different extracellular environments [76, 77]. The main types of models which

explicitly incorporate cell cycle duration are functional differential equation models [78–81]

and multi-stage models [82–86].

We propose to develop a functional differential equation model for cell proliferation in

which the cell population consists of a slow-proliferating subpopulation and a fast-proliferating
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subpopulation, with cells able to switch between the subpopulations through two cellular

processes, namely asymmetric cell division and induced switching of proliferative states by

surrounding cells. New data from cell proliferation experiments with FUCCI-expressing

cells can be used to inform an appropriate model for cell cycle durations and switching of

proliferative states. While there are mathematical models in the literature that consider

proliferative heterogeneity, they generally lack the flexibility of the proliferative-state dy-

namics that we consider: some models account for one proliferating subpopulation only,

which undergoes asymmetric division, while the other subpopulations are quiescent or dif-

ferentiated [87,88]; other models simply consider subpopulations with different proliferative

states without any cells switching between the subpopulations [89].

1.3 Aims and outcomes of this thesis

The primary aim of this thesis is to investigate how new information revealed by FUCCI tech-

nology in 2-D in vitro cell culture experiments can inform the development of new mathematical

models for cell migration and proliferation. To achieve this aim it is required to perform new

cell culture experiments and analyse the resulting data, develop novel mathematical models

motivated by the data, and analyse the solutions of the mathematical models.

This thesis addresses the following four objectives:

1. Incorporate cell cycle dynamics into a continuum model of cell migration based on the

information provided by FUCCI technology in relation to the cell cycle phase.

2. Investigate whether cell proliferation assays prepared using standard cell-culture proce-

dures are asynchronous, utilising FUCCI technology.

3. Rigorously examine the go-or-grow hypothesis using FUCCI technology and cell-cycle-

inhibiting drugs.

4. Develop a continuum model of heterogeneous cell proliferation motivated by data from

new proliferation experiments with FUCCI-expressing cells.

This thesis is by publication, consisting of three published articles and one manuscript under

review. The Ph.D. candidate contributed significantly to all four manuscripts, recognised by

first authorship of each manuscript. The work presented in this thesis fulfils the requirements

for the award of a thesis by published papers at Queensland University of Technology.

This thesis is comprised of the following four articles:
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1. Vittadello ST, McCue SW, Gunasingh G, Haass NK, Simpson MJ. Mathematical models

for cell migration with real-time cell cycle dynamics. Biophysical Journal. 2018;114:1241–

1253. doi:10.1016/j.bpj.2017.12.041.

2. Vittadello ST, McCue SW, Gunasingh G, Haass NK, Simpson MJ. Mathematical mod-

els incorporating a multi-stage cell cycle replicate normally-hidden inherent synchroniza-

tion in cell proliferation. Journal of the Royal Society Interface. 2019;16:20190382.

doi:10.1098/rsif.2019.0382.

This article is a Report, which is a short contribution with most of the details contained

in the supplemental material.

3. Vittadello ST, McCue SW, Gunasingh G, Haass NK, Simpson MJ. Examining go-or-

grow using fluorescent cell-cycle indicators and cell-cycle-inhibiting drugs. Biophysical

Journal. 2020;118:1243–1247. doi:10.1016/j.bpj.2020.01.036.

This article is a Biophysical Letter, which is a short contribution with most of the details

contained in the supplemental material.

Our cover image was selected for the cover of the 24 March 2020 issue of the Biophysical

Journal:

4. Vittadello ST, McCue SW, Gunasingh G, Haass NK, Simpson MJ. A novel mathematical

model of heterogeneous cell proliferation. arXiv:2003.03024v2 preprint. 2020. https://

arxiv.org/abs/2003.03024v2. Currently under review with the Journal of Mathematical

Biology.
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These four articles are reproduced in Chapters 2–5 of this thesis, except for some standardis-

ation of the formatting and layout. Each of these four chapters is therefore self-contained and

can be read independently of all other chapters. Consequently, there is a degree of overlap be-

tween Chapters 2–5 in regard to the background discussions of the experimental and modelling

literature, and also our experimental methodology.

1.4 Structure of this thesis

The structure of this thesis is as follows.

Chapter 1 forms the introduction for this thesis, and provides an overview of cell migration

and proliferation from both the experimental and modelling perspectives along with a

review of the relevant literature. The research questions are then stated, as are the aims

and outcomes of this thesis.

Chapter 2 contains Article 1, in which we develop a new mathematical model of cell migration

that includes cell cycle dynamics as indicated by FUCCI. We present new experimental

data from scratch assays using FUCCI-expressing melanoma cells, and show that the

predictions of spatial and temporal patterns of cell density in the experiments can be

described by the model. We show numerically that the model exhibits travelling wave

solutions under appropriate conditions, and we derive and confirm an analytical expression

for the minimum wave speed, as well as exploring how the wave speed depends on the

spatial decay rate of the initial condition.

Chapter 3 contains Article 2, in which we present a suite of new experimental data showing

that cell proliferation assays, prepared using standard methods thought to produce asyn-

chronous cell populations, persistently exhibit inherent synchronization. Our experiments

use FUCCI to reveal the normally-hidden cell synchronization, which would never be ob-

served without these cell cycle indicators. On the other hand, our experimental data show

that the total cell population appears to grow exponentially, as in an asynchronous popu-

lation. We reconcile these seemingly inconsistent observations by employing a multi-stage

mathematical model of cell proliferation that can replicate the oscillatory subpopulations.

Chapter 4 contains Article 3, in which we examine go-or-grow in new experiments consisting

of two-dimensional in vitro assays using FUCCI-expressing melanoma cells and cell-cycle-

inhibiting drugs. We analyze the experimental data using single-cell tracking to calculate

mean diffusivities and compare motility between cells in different cell-cycle phases and in

cell-cycle arrest.
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Chapter 5 contains Article 4, in which we present a novel mathematical model for heteroge-

neous cell proliferation where the total population consists of a subpopulation of slow-

proliferating cells and a subpopulation of fast-proliferating cells. The model incorporates

two cellular processes, asymmetric cell division and induced switching between prolifera-

tive states, which are important determinants for the heterogeneity of a cell population.

As motivation for our model we provide experimental data that assists in illustrating the

induced-switching process, and further data on durations of cell cycle phases that guide

our model choice. Our model consists of a system of two coupled nonlinear functional

differential equations with the cell densities as functions of time. The distributed delays

are bounded and allow for the choice of delay kernel. We analyse the model and prove the

non-negativity and boundedness of solutions, the existence and uniqueness of solutions,

and the local stability characteristics of the equilibrium points. Numerical simulations

illustrate and support the theoretical findings.

Chapter 6 forms the conclusion of this thesis, in which we summarise our research findings

from the perspective of our original objectives. We also discuss the possibilities for future

work arising from this research, from both experimental and theoretical perspectives.

1.5 Statement of joint authorship

Here we outline the contributions of the Ph.D. candidate and the co-authors to each article. All

co–authors consent to the presentation of this material in this thesis.

1. Chapter 2: Mathematical models for cell migration with real-time cell cycle

dynamics

The corresponding article is:

Vittadello ST, McCue SW, Gunasingh G, Haass NK, Simpson MJ. Mathematical models

for cell migration with real-time cell cycle dynamics. Biophysical Journal. 2018;114:1241–

1253. doi:10.1016/j.bpj.2017.12.041.

Abstract

The fluorescent ubiquitination-based cell cycle indicator, also known as FUCCI, allows

the visualization of the G1 and S/G2/M cell cycle phases of individual cells. FUCCI

consists of two fluorescent probes, so that cells in the G1 phase fluoresce red and cells

in the S/G2/M phase fluoresce green. FUCCI reveals real-time information about cell

cycle dynamics of individual cells, and can be used to explore how the cell cycle relates
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to the location of individual cells, local cell density, and different cellular microenviron-

ments. In particular, FUCCI is used in experimental studies examining cell migration,

such as malignant invasion and wound healing. Here we present, to our knowledge, new

mathematical models that can describe cell migration and cell cycle dynamics as indi-

cated by FUCCI. The fundamental model describes the two cell cycle phases, G1 and

S/G2/M, which FUCCI directly labels. The extended model includes a third phase, early

S, which FUCCI indirectly labels. We present experimental data from scratch assays using

FUCCI-transduced melanoma cells, and show that the predictions of spatial and temporal

patterns of cell density in the experiments can be described by the fundamental model.

We obtain numerical solutions of both the fundamental and extended models, which can

take the form of traveling waves. These solutions are mathematically interesting because

they are a combination of moving wavefronts and moving pulses. We derive and confirm

a simple analytical expression for the minimum wave speed, as well as exploring how the

wave speed depends on the spatial decay rate of the initial condition.

Statement of joint authorship:

� Vittadello ST (Candidate): performed the experiments, analysed the data, in-

terpreted the data, analysed the mathematical model, implemented the numerical

algorithm, composed all figures, wrote the manuscript, edited the manuscript

� McCue SW: interpreted the data, contributed analytic tools, edited the manuscript

� Gunasingh G: designed the experiments, oversaw the experimentation, interpreted

the data, contributed analytic tools, edited the manuscript

� Haass NK: designed the project, directed the project, designed the experiments, in-

terpreted the data, edited the manuscript

� Simpson MJ: devised the concept for the project, designed the project, directed the

project, devised the mathematical model, devised the numerical algorithm, inter-

preted the data, edited the manuscript, prepared the cover letter, acted as corre-

sponding author

2. Chapter 3: Mathematical models incorporating a multi-stage cell cycle repli-

cate normally-hidden inherent synchronization in cell proliferation

The corresponding article is:

Vittadello ST, McCue SW, Gunasingh G, Haass NK, Simpson MJ. Mathematical mod-

els incorporating a multi-stage cell cycle replicate normally-hidden inherent synchroniza-
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tion in cell proliferation. Journal of the Royal Society Interface. 2019;16:20190382.

doi:10.1098/rsif.2019.0382.

Abstract

We present a suite of experimental data showing that cell proliferation assays, prepared

using standard methods thought to produce asynchronous cell populations, persistently

exhibit inherent synchronization. Our experiments use fluorescent cell cycle indicators to

reveal the normally hidden cell synchronization, by highlighting oscillatory subpopulations

within the total cell population. These oscillatory subpopulations would never be observed

without these cell cycle indicators. On the other hand, our experimental data show that the

total cell population appears to grow exponentially, as in an asynchronous population. We

reconcile these seemingly inconsistent observations by employing a multi-stage mathemat-

ical model of cell proliferation that can replicate the oscillatory subpopulations. Our study

has important implications for understanding and improving experimental reproducibil-

ity. In particular, inherent synchronization may affect the experimental reproducibility of

studies aiming to investigate cell cycle-dependent mechanisms, including changes in mi-

gration and drug response.

Statement of joint authorship:

� Vittadello ST (Candidate): devised the concept for the project, designed the

project, performed the experiments, analysed the data, interpreted the data, anal-

ysed the mathematical model, devised and implemented the numerical algorithms,

composed all figures, wrote the manuscript, edited the manuscript

� McCue SW: interpreted the data, edited the manuscript

� Gunasingh G: designed the experiments, oversaw the experimentation, interpreted

the data, edited the manuscript

� Haass NK: designed the project, directed the project, designed the experiments, in-

terpreted the data, edited the manuscript

� Simpson MJ: devised the concept for the project, designed the project, directed the

project, devised the mathematical model, interpreted the data, edited the manuscript,

prepared the cover letter, acted as corresponding author

3. Chapter 4: Examining go-or-grow using fluorescent cell-cycle indicators and

cell-cycle-inhibiting drugs

The corresponding article is:
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Vittadello ST, McCue SW, Gunasingh G, Haass NK, Simpson MJ. Mathematical models

for cell migration with real-time cell cycle dynamics. Biophysical Journal. 2020;118:1243–

1247. doi:10.1016/j.bpj.2020.01.036.
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Abstract

The go-or-grow hypothesis states that adherent cells undergo reversible phenotype switch-

ing between migratory and proliferative states, with cells in the migratory state being more

motile than cells in the proliferative state. Here, we examine go-or-grow in two-dimensional

in vitro assays using melanoma cells with fluorescent cell-cycle indicators and cell-cycle-

inhibiting drugs. We analyze the experimental data using single-cell tracking to calculate

mean diffusivities and compare motility between cells in different cell-cycle phases and in

cell-cycle arrest. Unequivocally, our analysis does not support the go-or-grow hypothesis.

We present clear evidence that cell motility is independent of the cell-cycle phase and that

nonproliferative arrested cells have the same motility as cycling cells.

Statement of joint authorship:

� Vittadello ST (Candidate): designed the project, performed the experiments,

interpreted the data, devised the mathematical analysis of the data, analysed the

data, composed all figures, wrote the manuscript, edited the manuscript, prepared

the cover letter, acted as corresponding author

� McCue SW: interpreted the data, edited the manuscript

� Gunasingh G: designed the project, designed the experiments, oversaw the experi-

mentation, interpreted the data, edited the manuscript

� Haass NK: devised the concept for the project, designed the project, directed the

project, designed the experiments, interpreted the data, edited the manuscript

� Simpson MJ: devised the concept for the project, designed the project, directed the

project, interpreted the data, edited the manuscript

4. Chapter 5: A novel mathematical model of heterogeneous cell proliferation

The corresponding article is:

Vittadello ST, McCue SW, Gunasingh G, Haass NK, Simpson MJ. A novel mathematical

model of heterogeneous cell proliferation. arXiv:2003.03024v2 preprint. 2020. Currently

under review with the Journal of Mathematical Biology.

Abstract

We present a novel mathematical model of heterogeneous cell proliferation where the total

population consists of a subpopulation of slow-proliferating cells and a subpopulation of

fastproliferating cells. The model incorporates two cellular processes, asymmetric cell divi-

sion and induced switching between proliferative states, which are important determinants
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for the heterogeneity of a cell population. As motivation for our model we provide exper-

imental data that assist in illustrating the induced-switching process, and further data

on durations of cell cycle phases that guide our model choice. Our model consists of a

system of two coupled delay differential equations with distributed time delays and the cell

densities as functions of time. The distributed delays are bounded and allow for the choice

of delay kernel. We analyse the model and prove the non-negativity and boundedness of

solutions, the existence and uniqueness of solutions, and the local stability characteristics

of the equilibrium points. We find that the parameters for induced switching are bifur-

cation parameters and therefore determine the overall dynamics of the model. Numerical

simulations illustrate and support the theoretical findings.

Statement of joint authorship:

� Vittadello ST (Candidate): devised the concept for the project, designed the

project, directed the project, performed the experiments, analysed the data, inter-

preted the data, devised the mathematical model, analysed the mathematical model,

devised and implemented the numerical algorithm, composed all figures, wrote the

manuscript, edited the manuscript, prepared the cover letter, acted as corresponding

author

� McCue SW: interpreted the data, edited the manuscript

� Gunasingh G: designed the experiments, oversaw the experimentation, interpreted

the data, edited the manuscript

� Haass NK: designed the experiments, directed the project, interpreted the data, edited

the manuscript

� Simpson MJ: interpreted the data, directed the project, edited the manuscript
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Mathematical models for cell migration with real-time cell cycle dynamics

An article published in Biophysical Journal

Vittadello ST, McCue SW, Gunasingh G, Haass NK, Simpson MJ. Mathematical models for

cell migration with real-time cell cycle dynamics. Biophysical Journal. 2018; 114:1241–1253.

Abstract

The fluorescent ubiquitination-based cell cycle indicator, also known as FUCCI, allows the vi-

sualisation of the G1 and S/G2/M cell cycle phases of individual cells. FUCCI consists of two

fluorescent probes, so that cells in the G1 phase fluoresce red and cells in the S/G2/M phase

fluoresce green. FUCCI reveals real-time information about cell cycle dynamics of individual

cells, and can be used to explore how the cell cycle relates to the location of individual cells,

local cell density, and different cellular microenvironments. In particular, FUCCI is used in

experimental studies examining cell migration, such as malignant invasion and wound healing.

Here we present, to our knowledge, new mathematical models that can describe cell migration

and cell cycle dynamics as indicated by FUCCI. The fundamental model describes the two cell

cycle phases, G1 and S/G2/M, which FUCCI directly labels. The extended model includes a

third phase, early S, which FUCCI indirectly labels. We present experimental data from scratch

assays using FUCCI-transduced melanoma cells, and show that the predictions of spatial and

temporal patterns of cell density in the experiments can be described by the fundamental model.

We obtain numerical solutions of both the fundamental and extended models, which can take

the form of traveling waves. These solutions are mathematically interesting because they are a
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combination of moving wavefronts and moving pulses. We derive and confirm a simple analytical

expression for the minimum wave speed, as well as exploring how the wave speed depends on

the spatial decay rate of the initial condition.

2.1 Introduction

The cell cycle consists of a sequence of four distinct phases, namely: gap 1 (G1), synthesis (S),

gap 2 (G2), and the mitotic (M) phase [90]. The phases G1, S and G2 are collectively referred

to as “interphase”, and involve cell growth and preparation for division. After interphase,

the cell enters the mitotic phase and divides into two daughter cells. Although morphological

changes associated with cell division can be observed visually during the transition from M to

G1, such distinct morphological changes are not possible during transitions between other cell

cycle phases [30]. Therefore, different techniques are required to study these other cell cycle

transitions.

Since 2008, fluorescent ubiquitination-based cell cycle indicator (FUCCI) technology [30] has

enabled the visualisation of the cell cycle progression from G1 to S/G2/M in individual cells.

The FUCCI system consists of two fluorescent probes in the cell nucleus, or cytoplasm, which

emit red fluorescence when the cell is in the G1 phase, or green fluorescence when the cell is

in the S/G2/M phase. Before the development of FUCCI it was difficult, if not impossible,

to examine the cell cycle dynamics of individual cells beyond the M to G1 transition [30]. In

contrast, FUCCI allows direct visualisation, in real time, of transitions in the cell cycle. This

technology is particularly useful for research in cancer biology [13, 31–33], cell biology [34, 35],

and stem cell biology [36,37].

3-D spheroids and 2-D scratch assays are commonly used experimental models to study the

invasive and proliferative behaviour of cancer cells. In combination with FUCCI, these experi-

mental models can be used to examine the cell cycle dynamics of individual cells as a function

of position within the spheroid or scratch assay [13,32,33]. A major advantage of this method is

that two fundamental phenomena associated with malignant invasion, namely cell proliferation

and cell migration, can be characterised simultaneously. Previous methods to examine the roles

of cell migration and cell proliferation involve pretreating cells with antimitotic drugs, such as

mitomycin-C [91]. A major limitation of these previous methods is that the application of the

antimitotic drug is thought to suppress proliferation without interrupting migration. However,

this assumption is questionable, and rarely examined [92]. The development of FUCCI tech-

nology obviates the need for such crude methods to isolate the roles of cell migration and cell

proliferation. Instead, FUCCI allows us to directly examine the spatial and temporal patterns
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of cell proliferation within a migrating population. To the best of our knowledge, there are no

mathematical models in the literature that have been developed to describe cell migration with

FUCCI technology. The focus of this work is on cell migration, by which we mean a moving

front of a population of cells. These moving fronts are composed of a large number of individual

cells that do not maintain cell-to-cell contacts. The formation of the moving front of cells is

driven by a combination of cell motility and cell proliferation.

Cell migration involves diffusion, arising from random cell motility, and proliferation of

cells [92]. Mathematical models describing these processes in a population of cells tend to involve

reaction-diffusion equations [93], which are often based on the Fisher–Kolmogorov–Petrovskii–

Piskunov (FKPP) equation [38,39],

∂s

∂t
= D

∂2s

∂x2
+ λs(1− s), (2.1)

where s(x, t) > 0 is the cell density, D > 0 is the diffusion coefficient, and λ > 0 is the

proliferation rate. Here, the dimensional cell density is scaled by the dimensional carrying

capacity density, so that the maximum non-dimensional cell density is s(x, t) = 1. Carrying

capacity limited proliferation of cells is described in Equation (2.1) with a logistic source term.

Equation (2.1) has been successfully adapted to model many biological processes, such as in vitro

cell migration [42,45,46]. A limitation of Equation (2.1) is that it considers a single population

of cells. For a more realistic situation, where the total population is composed of a number of

distinct, interacting subpopulations, it is relevant to consider a model that involves a system of

coupled equations that are often related to Equation (2.1) [47].

The existence of travelling wave solutions for the FKPP equation is well known [38, 48].

Constant shape, monotonically decreasing wavefront travelling wave solutions propagate with

a minimum speed, cmin = 2
√
λD [38, 48]. Travelling wave solutions are of interest, because

experimental observations tend to exhibit moving fronts that can be thought of as a travelling

wave [46]. The speed of a moving cell front is often the simplest quantitative measurement

that can be obtained from an experiment [46,94]. Therefore, understanding the relationship be-

tween the parameters in the mathematical model and the speed of the travelling wave solution

is a useful way to help parameterise the mathematical model to match experimental observa-

tions. Travelling wave solutions have also been observed in other mathematical models of cell

migration [46, 47, 94, 95], as well as other reaction-diffusion models related to biological pro-

cesses [96–99]. Most travelling wave solutions take the form of moving wavefronts, which have

a monotone profile. Another type of travelling wave solution is a pulse, which is characterised

by a nonmonotone profile [96,100].
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Chapter 2. Mathematical models for cell migration with real-time cell cycle dynamics

Here we present, to our knowledge, a new mathematical model of cell migration, which

incorporates cell cycle dynamics based on the information provided by FUCCI technology in

relation to the cell cycle phase. We consider the cells in a particular phase of the cell cycle to

make up a distinct subpopulation, so our model consists of a system of coupled partial differential

equations. To motivate our generalisation of Equation (2.1), we pay careful attention to the

underlying biological features. This leads us to develop two different mathematical descriptions

of cell migration with FUCCI technology:

� Fundamental FUCCI model: In the most fundamental format, FUCCI highlights a

subpopulation of cells in the G1 phase as being red, and another subpopulation of cells in

the S/G2/M phase as being green. Motivated by the ability to distinguish between these

two phases of the cell cycle, we develop a mathematical model with two subpopulations:

vr(x, t) and vg(x, t). Here, the vr(x, t) subpopulation corresponds to the red cells and

the vg(x, t) subpopulation corresponds to the green cells. We refer to this model as the

fundamental model.

� Extended FUCCI model: In some experimental descriptions, cell biologists identify

an additional subpopulation that corresponds to the situation where both of the red and

green probes are active simultaneously, giving rise to a third subpopulation that appears

to be yellow. This overlap of the red and green fluorescence occurs during the early S,

or eS, phase. Using experimental images, we find that the yellow subpopulation is more

difficult to reliably identify than either the red or green subpopulations, as only a very

small proportion of the cell population appear to be distinctly yellow. This is, in some

sense, expected, because the yellow subpopulation results from the transient overlap of the

G1 phase (red) and the S/G2/M phase (green). Despite this difficulty, we also develop

another mathematical model which is capable of representing the three subpopulations:

ur(x, t) is the red subpopulation, uy(x, t) is the yellow subpopulation, and ug(x, t) is the

green subpopulation. We refer to this model as the extended model.

The fundamental and extended models are both related to the FKPP model with the dependent

variable s(x, t). To summarise the similarities and differences between the fundamental and

extended models, the FKPP model, and the relationship between these mathematical models

and the underlying biology, we report the dependent variables and their biological interpretation

in Table 2.1.

In this work, we present information relating to both the fundamental and the extended
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Table 2.1: Summary and comparison of the fundamental and extended models and the FKPP model.

Model
Equation Dependent

Biological interpretation
reference variables

FKPP Equation (2.1) s(x, t) Total cell density is a function of position x and time t

Fundamental

FUCCI
Equations (2.2) to (2.3)

vr(x, t) Cell density for cells in G1 (red) phase is a function of position x and time t

vg(x, t) Cell density for cells in S/G2/M (green) phase is a function of position x and time t

s(x, t) Total cell density, s(x, t) = vr(x, t) + vg(x, t), is a function of position x and time t

Extended

FUCCI
Equations (2.4) to (2.6)

ur(x, t) Cell density for cells in G1 (red) phase is a function of position x and time t

uy(x, t) Cell density for cells in eS (yellow) phase is a function of position x and time t

ug(x, t) Cell density for cells in S/G2/M (green) phase is a function of position x and time t

s(x, t) Total cell density, s(x, t) = ur(x, t) +uy(x, t) +ug(x, t), is a function of position x and time t
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Chapter 2. Mathematical models for cell migration with real-time cell cycle dynamics

models, but we focus on developing, to our knowledge, new mathematical analysis of the fun-

damental FUCCI model. Furthermore, we quantitatively apply the fundamental model, to our

knowledge, to new experimental data. There are two types of parameters in our model, namely

transition rates between phases of the cell cycle, and diffusion coefficients describing the rate

of cell migration. The transition rates between phases of the cell cycle are estimated using

experimental data from Haass et al. [13], who report data relating to the time spent in each

phase of the cell cycle. Using new experimental data in the form of images of scratch assays of

FUCCI-transduced melanoma cells, we extract quantitative information about cell density as a

function of position and time, and compare these quantitative data with the predictions of our

fundamental model. Because this is, to our knowledge, the first time that a mathematical model

has been used to predict a cell migration experiment with FUCCI-transduced cells, we focus

on 2-D cell migration experiments as this is the most common experimental platform because

of convenience, simplicity, and low cost [21]. 2-D cell migration assays are valuable because

they are often used as high-throughput screening tools in conjunction with more sophisticated

preclinical models [21]. In addition to showing how these mathematical models can be used to

predict the 2-D experiments, numerical solutions of the mathematical model show the forma-

tion of travelling wave solutions that are a combination of coupled wavefronts and pulses. We

also derive an analytical expression for the minimum wave speed of the travelling waves, and

we explore how these results are different from those of the standard FKPP equation, given in

Equation (2.1).

This article is organised as follows. In the Materials and Methods, we detail the experimen-

tal protocol used to perform the scratch assays using FUCCI-transduced melanoma cells. We

also outline the numerical analysis of our mathematical models. In the Results and Discussion,

we present and discuss our mathematical models, and compare numerical solutions of the fun-

damental model with new data from scratch assays of melanoma cells. We then analyse our

models numerically for travelling wave solutions, and for the fundamental model we derive an

analytical expression for the minimum wave speed.
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2.2 Materials and methods

2.2.1 Experiments

2.2.1.1 Cell culture

The human melanoma cell lines C8161 (kindly provided by Mary Hendrix, Chicago, IL, USA),

1205Lu and WM983C (both kindly provided by Meenhard Herlyn, Philadelphia, PA, USA) were

genotypically characterized [101–104], grown as described [105] (using 4% fetal bovine serum

instead of 2%), and authenticated by STR fingerprinting (QIMR Berghofer Medical Research

Institute, Herston, Australia).

2.2.1.2 Fluorescent ubiquitination-based cell cycle indicator (FUCCI)

To generate stable melanoma cell lines expressing the FUCCI constructs, mKO2-hCdt1 (30-

120) and mAG-hGem (1-110) [30] were subcloned into a replication-defective, self-inactivating

lentiviral expression vector system as previously described [105]. The lentivirus was produced

by co-transfection of human embryonic kidney 293T cells. High-titer viral solutions for mKO2-

hCdt1 (30/120) and mAG-hGem (1/110) were prepared and used for co-transduction into the

melanoma cell lines, and subclones were generated by single cell sorting [13,32,106].

2.2.1.3 Wound healing migration assay

Experiments were performed using the three melanoma cell lines C8161, 1205Lu and WM983C.

For each cell line, three independent experiments were performed. FUCCI-transduced melanoma

cells from each cell line were seeded in a 6-well plate to subconfluence. The seeding density was

adjusted according to the doubling time for the cell line. The monolayer was scraped with a

p200 pipette tip, and images were taken at regular time intervals.

2.2.2 Mathematical model

2.2.2.1 Numerical solutions

Numerical solutions of Equations (2.2) to (2.3) and Equations (2.4) to (2.6) are obtained on a

domain, 0 ≤ x ≤ L, with grid spacing ∆x, and with uniform time steps of duration ∆t. The

details are in Supporting Material 1.

In this study, the initial condition takes one of three forms, depending on the purpose of the

modelling exercise:
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� Modelling a scratch assay: The first set of modelling results involves using the fun-

damental mathematical model to mimic a set of experimental data from a scratch assay.

For this purpose, we take images from the experiment, manually count numbers of cells

in each phase of the cell cycle, and use these numbers to specify vr(x, 0) and vg(x, 0). To

simulate the experiment, we solve the governing equation numerically on a finite domain,

0 ≤ x ≤ L, where L is chosen to match the physical dimension of the experimental image.

� Exploring the minimum wave speed of travelling wave solutions: The second set

of modelling results involves studying long-time numerical solutions of the mathematical

model to examine the possibility of travelling wave solutions. To ensure that we focus on

the most biologically relevant travelling-wave solutions, we apply initial conditions with

compact support. Further details are provided in the Results and Discussion.

� Dispersion relation: Having demonstrated the existence of travelling wave solutions, we

then analyse how the long-time travelling wave speed depends on the decay rate of the

initial condition for the fundamental model. Further details are provided in the Results

and Discussion.

2.3 Results and Discussion

2.3.1 Experimental data

Our experimental data come from 2-D scratch assays performed with FUCCI-transduced melanoma

cells. In particular, we use the C8161, 1205Lu and WM983C melanoma cell lines [13]. Here we

provide analysis for the C8161 and 1205Lu cell lines, which have very different cell cycle dy-

namics. We use these two cell lines to demonstrate that our model can predict the cell density

for cell lines with a wide range of transition rates. The analysis for the WM983C cell line is in

Figure 2.5. The WM983C cell line has cell cycle dynamics intermediate between the C8161 and

1205Lu cell lines.

In these experiments, melanoma cells migrate into a gap created by scratching the cell

monolayer, and cell proliferation acts to increase the density of the monolayer. Still images of

the scratch assays are obtained at four time points after the scratch is made: 0, 6, 12 and, 18

h for the C8161 cell line, see Figure 2.1(A–D); 0, 16, 32, and 48 h for the 1205Lu cell line, see

Figure 2.2(A–D); and 0, 16, 32, and 48 h for the WM983C cell line, see Figure 2.5(A–D). From

these images, the nuclei of individual cells can be observed as red (G1 phase), yellow (eS phase)

or green (S/G2/M phase). Over the time period of the experiments, the cells migrate into the

gap, and cell proliferation is evident from the increasing density of cells behind the moving front.

24



Chapter 2. Mathematical models for cell migration with real-time cell cycle dynamics

A notable feature of each of the images is that very few cells appear to be distinctly yellow.

Almost all of the yellow cells appear to be either partly green and yellow, or partly red and

yellow. This ambiguity motivates us to work with the fundamental mathematical model, which

treats the yellow eS phase as part of the red G1 and green S/G2/M phases.

Although the images in Figures 2.1(A–D), 2.2(A–D), and 2.5(A–D) provide some quantitative

data about these particular scratch assays for these particular cell lines, the purpose of using

a mathematical model is to provide significant generalisations beyond what is possible when

working purely with experiments. For example, if we use this kind of data to parameterise a

mathematical model, then we ought to be able to use the parameterised mathematical model

to make predictions about varying different aspects of the experiment, such as changing the

width of the scratch, the timescale of the experiment, or the initial density of the monolayer.

To parameterise our mathematical model we require cell density data from the experiment.

Although cells are free to move in two dimensions, the geometry of the experiment is such that

the cell density is spatially uniform in the vertical, y, direction. We therefore quantify the cell

density as a function of horizontal position, x, at various times, t [107]. Overall, this geometrical

simplification allows us to describe the cell density data as a function of one spatial coordinate

only, and we can therefore use a 1-D mathematical model to describe this kind of data [107].

To obtain cell density data from the images in Figures 2.1(A–D), 2.2(A–D), and 2.5(A–D),

we divide each image into a series of vertical columns, each of width 50µm. We manually count

the number of cells of each colour in each column. As previously discussed, there is some degree

of ambiguity in classifying a cell as yellow, as almost all of the yellow cells appear to be a mixture

of either red and yellow, or a mixture of green and yellow. This ambiguity is probably due to the

fact that yellow arises from the transient overlap of red and green fluorescence. Consequently, we

take the most straightforward approach and classify all of the cells as being either red or green.

In this way we can work with just two subpopulations. Given the cell counts, we divide each

cell count in each column by the area of that column to give the dimensional, column-averaged,

cell density. These estimates of dimensional cell density are then converted into estimates of

non-dimensional cell density by dividing through by the carrying capacity density, K. These

data are provided in the Supporting Material. To estimate K [108], we assume that the cells

are uniformly sized disks, and that the maximum monolayer density corresponds to hexagonal

packing of cells. Hexagonal close packing corresponds to one cell at each vertex of the hexagon,

and one cell at the centre of the hexagon, meaning that the hexagon contains the equivalent of

three cells. The area of the hexagon is 3
√

3R2/2, where R is the circumradius. If the radius of

the cells is a then, because R = 2a, the carrying capacity is given by K = 1/(2
√

3a2). The cell
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Figure 2.1: Comparison of experimental data and the fundamental model for a scratch
assay of FUCCI-transduced C8161 melanoma cells. (A–D) Still images of a scratch assay with
FUCCI-transduced C8161 melanoma cells at time 0 h, 6 h, 12 h and 18 h, respectively. Scale bar 150µm.
(E) Schematic of the fundamental model with two subpopulations indicating the transitions between the
cell cycle phases indicated by FUCCI. (F) Schematic of the extended model with three subpopulations
indicating the transitions between the cell cycle phases indicated by FUCCI. (G) Estimated transition
rates from one cell cycle phase to the next for the fundamental model with two subpopulations, based
on data from the C8161 cell line from Figure 1C in [13]. (H) Estimated transition rates from one cell
cycle phase to the next for the extended model with three subpopulations, based on data from the C8161
cell line from Figure 1C in [13]. (I–L) Experimental non-dimensional cell density data at 0 h, 6 h, 12
h and 18 h, respectively (based on images (A–D)). The cell density is treated as a function of x and t
only, owing to the fact that the initial density does not depend on the vertical coordinate, y. (M–P)
Numerical solutions of the fundamental model, Equations (2.2) to (2.3), at 0 h, 6 h, 12 h and 18 h.
The numerical solutions are obtained with ∆x = 0.1µm, ∆t = 0.1 h, L = 1542µm, diffusion coefficients
Dr = Dg = 400µm2 h−1, transition rates κr = 0.084 h−1 and κg = 0.079 h−1, and initial conditions the
same as for the experimental data.
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Figure 2.2: Comparison of experimental data and the fundamental model for a scratch
assay of FUCCI-transduced 1205Lu melanoma cells. (A–D) Still images of a scratch assay with
FUCCI-transduced 1205Lu melanoma cells at time 0 h, 16 h, 32 h and 48 h, respectively. Scale bar is
200µm. (E) Estimated transition rates from one cell cycle phase to the next for the fundamental model
with two subpopulations, based on data from the 1205Lu cell line from Figure 1C in [13]. (F) Estimated
transition rates from one cell cycle phase to the next for the extended model with three subpopulations,
based on data from the 1205Lu cell line from Figure 1C in [13]. (G–J) Experimental non-dimensional cell
density data at 0 h, 16 h, 32 h and 48 h, respectively (based on images (A–D)). The cell density is treated
as a function of x and t only, owing to the fact that the initial density does not depend on the vertical
coordinate, y. (K–N) Numerical solutions of the fundamental model, Equations (2.2) to (2.3), at 0 h, 16
h, 32 h and 48 h. The numerical solutions are obtained with ∆x = 0.1µm, ∆t = 0.1 h, L = 1254µm,
diffusion coefficients Dr = Dg = 400µm2 h−1, transition rates κr = 0.035 h−1 and κg = 0.058 h−1, and
initial conditions the same as for the experimental data.
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diameter of C8161 melanoma cells is approximately 17µm [109]. So, with a = 8.5µm we have

K = 0.004 cellsµm−2, to one significant figure. We use the same value of K for the 1205Lu and

WM983C melanoma cell lines, as with a microscope we observe that the cells from the three cell

lines are of similar size.

Figure 2.1(I–L) shows the resulting experimental cell density profiles for C8161 cells at 0, 6,

12, and 18 h, respectively. Figure 2.2(G–J) shows the resulting experimental cell density profiles

for 1205Lu cells at 0, 16, 32, and 48, respectively. Similar profiles for the WM983C cells are

in Figure 2.5(G–J). These figures provide quantitative information about how the population

of cells migrates into the gap, while simultaneously proliferating to increase the density of the

spreading monolayer, as we observed qualitatively in Figures 2.1(A–D), 2.2(A–D), and 2.5(A–

D). These cell density profiles, however, quantify the cell density of each subpopulation, and

allow the changes in cell density over time to be determined quantitatively, which is not possible

through visual interpretation of the images.

Movies of scratch assays associated with the three cell lines considered in this work are

provided in Supporting Material.

2.3.2 Model development

We now describe the FUCCI scratch assays using the fundamental model. As previously ex-

plained, cells in the experiment move in two dimensions. However, the geometry of the experi-

ment means that the cell density is spatially uniform in the vertical, y, direction. Therefore, we

can model the experiment with a 1-D model, where the independent variables are time, t, and

the horizontal coordinate, x [107].

As summarised in the Introduction, in the FUCCI system, red and green fluorescent proteins

are fused to different regulators of the cell cycle so that a cell in G1 phase fluoresces red, and

a cell in S/G2/M phase fluoresces green. During the cell cycle transition from G1 phase to S

phase, referred to as eS phase, the red FUCCI signal decreases and the green FUCCI signal

increases, producing varying shades of yellow fluorescence, ranging from darker yellow to lighter

yellow. The indication of the eS (yellow) phase is therefore secondary, as it arises from the

overlap of red and green fluorescence. In the experimental images, it is difficult to identify the

cells in eS phase as very few cells appear distinctly yellow, rather appearing shades of either red

or green. For these reasons, our fundamental mathematical model is

∂vr
∂t

= Dr
∂2vr
∂x2

− κrvr + 2κgvg(1− s), (2.2)

∂vg
∂t

= Dg
∂2vg
∂x2

− κgvg(1− s) + κrvr, (2.3)
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where vr(x, t) and vg(x, t) are the non-dimensional cell densities of the coupled subpopulations

corresponding to the G1 (red) and S/G2/M (green) phases of the cell cycle, respectively. The

total density is s(x, t) = vr(x, t) + vg(x, t). The rate at which cells in the G1 phase transition

to the S/G2/M phase is κr, and the rate at which cells in the S/G2/M phase transition to the

G1 phase is κg. The diffusion coefficients are Dr for cells in phase G1, and Dg for cells in phase

S/G2/M. Although we are free to choose any realistic values for the diffusion coefficients, it is

pertinent to set Dr = Dg, because we are considering subpopulations of cells of the same type

which differ only with respect to their cell cycle phase. Indeed, cells from various melanoma

cell lines, including C8161, 1205Lu and WM983C, appear to migrate independently of the cell

cycle phases. For example, see the data in Figure 6 and Figure S3 in [13]. We will employ

this biologically motivated simplifying assumption at various points in our analysis. Note that

in Equation (2.2), the factor of two in the positive source term corresponds to a cell in phase

S/G2/M undergoing division to produce two daughter cells in the phase G1, thereby doubling

the local density.

Despite the challenges associated with the observation of the yellow eS phase, we also consider

a mathematical model for three coupled subpopulations corresponding to G1, eS and S/G2/M.

We refer to this model as our extended model:

∂ur
∂t

= Dr
∂2ur
∂x2

− krur + 2kgug(1− s), (2.4)

∂uy
∂t

= Dy
∂2uy
∂x2

− kyuy + krur, (2.5)

∂ug
∂t

= Dg
∂2ug
∂x2

− kgug(1− s) + kyuy. (2.6)

Here, ur(x, t), uy(x, t) and ug(x, t) are the non-dimensional cell densities of the coupled sub-

populations corresponding to the G1 (red), eS (yellow) and S/G2/M (green) phases of the cell

cycle, respectively, with total cell density s(x, t) = ur(x, t) + uy(x, t) + ug(x, t). The G1 to eS

transition rate is kr, the eS to S/G2/M transition rate is ky and the S/G2/M to G1 transition

rate is kg. The diffusion coefficients are Dr for cells in phase G1, Dy for cells in phase eS, and

Dg for cells in phase S/G2/M. Once again, we have no restriction on the choice of the values for

the diffusion coefficients. The subpopulations consist of cells of the same type, they are only in

different phases of the cell cycle. So, as discussed above for the fundamental model, the most

obvious choice is to set Dr = Dy = Dg. As in Equation (2.2), the factor of two in Equation (2.4)

corresponds to a cell in phase S/G2/M undergoing division to produce two daughter cells in the

phase G1.
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2.3.3 Model application

We illustrate our mathematical model in Figures 2.1, 2.2, and 2.5, where we compare experimen-

tal data for scratch assays of FUCCI-transduced melanoma cells with the fundamental model

Equations (2.2) to (2.3). Figure 2.1 corresponds to the C8161 melanoma cell line, Figure 2.2 to

the 1205Lu melanoma cell line, and Figure 2.5 to the WM983C melanoma cell line.

Figure 2.1(E) describes, schematically, the fundamental model with two subpopulations,

indicating the transitions between the cell cycle phases indicated by FUCCI. We denote the

transitions between the cell cycle phases as

Tr : G1
κr−→ S/G2/M and Tg : S/G2/M

κg−→ G1, (2.7)

where κr is the G1 to S/G2/M transition rate, and κg is the S/G2/M to G1 transition rate.

Figure 2.1(F) is a similar schematic for the extended model with three subpopulations, where

we denote the transitions between the cell cycle phases as

Tr : G1
kr−→ eS, Ty : eS

ky−→ S/G2/M and Tg : S/G2/M
kg−→ G1, (2.8)

where kr, ky and kg are the G1 to eS, eS to S/G2/M and S/G2/M to G1 transition rates,

respectively.

The estimated transition rates from one cell cycle phase to the next phase are based on

FUCCI data for the C8161, 1205Lu and WM983C melanoma cell lines from Figure 1C in [13].

These data report the duration of time spent in each cell cycle phase for at least 20 individual

cells. To estimate the transition rate from one cell cycle phase to the next, we first calculate

the arithmetic mean of the data in [13], giving the mean times: tr for the G1 phase, ty for

the eS phase, and tg for the S/G2/M phase. We then estimate the transition rates for the

extended model as kr = (ln 2)/tr for the G1 to eS transition, ky = (ln 2)/ty for the eS to

S/G2/M transition, and kg = (ln 2)/tg for the S/G2/M to G1 transition. The factor of ln 2

arises since this data corresponds to cells in a low density environment, and so the cells are

likely to be proliferating exponentially. To obtain estimates of the transition rates for the

fundamental model, we assume that half of the time spent in the eS phase contributes to the

time spent in the G1 phase, and the other half of the time spent in the eS phase contributes to

the time spent in the S/G2/M phase. This means that we have κr = (ln 2)/(tr + ty/2) for the

G1 to S/G2/M transition, and κg = (ln 2)/(tg + ty/2) for the S/G2/M to G1 transition. The

estimated transition rates for the fundamental and extended models are shown in Figure 2.1(G–
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H), respectively, for the C8161 cell line, in Figure 2.2(E–F), respectively, for the 1205Lu cell line,

and in Figure 2.5(E–F), respectively, for the WM983C cell line. We can express the transition

rates for the fundamental model in terms of those for the extended model as κr = 2krky/(kr+2ky)

and κg = 2kgky/(kg + 2ky).

Previous studies examining the migration of various melanoma cell lines suggest that the

diffusion coefficients lie within the range 100–500µm2h−1 [110, 111]. Therefore, we will take an

intermediate value and assume that the diffusivity of our melanoma cell lines is approximately

400µm2h−1.

For comparison with the experimental data for C8161 cells in Figure 2.1(I–L), we show

the numerical solutions of the fundamental model, Equations (2.2) to (2.3), in Figure 2.1(M–

P). Overall, the numerical solutions of Equations (2.2) to (2.3) in Figure 2.1(M–P) compare

well with the corresponding experimental data in Figure 2.1(I–L). As time increases, the so-

lution of the mathematical model shows the cell density profile spreading into the gap, and

the cell density of each subpopulation increases throughout the domain due to proliferation.

The relative size of each subpopulation also compares well between the numerical solutions and

experimental data. Similarly, for comparison with the experimental data for 1205Lu cells in

Figure 2.2(G–J), we show the numerical solutions of the fundamental model, Equations (2.2)

to (2.3), in Figure 2.2(K–N). Once again, the numerical solutions of Equations (2.2) to (2.3) in

Figure 2.2(K–N) compare well with the corresponding experimental data in Figure 2.2(G–J). A

similar comparison for the WM983C cell line is in Figure 2.5.

We note that other studies use partial differential equations to model scratch assays [46,47,

107]. None of these previous models, however, include the cell cycle phases of cells. Our results

show potential for our model to successfully describe cell migration and proliferation along with

cell cycle dynamics. With our model we can easily simulate experiments which would otherwise

be expensive and time consuming. In particular, we can simulate experiments over longer periods

of time, with different scratch widths, and with different parameters to accommodate different

cell lines. Our model also provides quantitative data such as cell densities at any time and

position within the domain.

2.3.4 Analysis

2.3.4.1 Numerical solutions

A key feature that can be observed in scratch assays initialised with a sufficiently wide scratch is

the formation of a moving front of cells [46]. This is important, because similar observations are

relevant to malignant invasion and wound healing [46]. The need to understand the key factors
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that drive moving fronts of cells, motivates an analysis of our models for scenarios in which a

single front propagates along a wide domain.

We now simulate solutions of our models on a much wider domain using a different initial

condition to examine the existence of travelling wave solutions. There are many choices of initial

condition; however, for the fundamental model, we set

vr(x, 0) = vg(x, 0) =


0.5, 0 ≤ x < ξ,

0, ξ ≤ x ≤ L,
(2.9)

and for the extended model we set

ur(x, 0) =


0.4, 0 ≤ x < ξ,

0, ξ ≤ x ≤ L,
uy(x, 0) = ug(x, 0) =


0.3, 0 ≤ x < ξ,

0, ξ ≤ x ≤ L,
(2.10)

where the choice of the constant ξ is not critical. Since the transition rates κr and κg have similar

values for a given cell line, the subpopulations corresponding to G1 and S/G2/M will have similar

densities in a population of freely cycling cells, so an initial condition for the fundamental model

with equal densities for the two subpopulations is biologically reasonable. Correspondingly, the

transition rates kr, ky, and kg have similar values for a given cell line, so an initial condition

for the extended model with similar densities for the three subpopulations is also biologically

reasonable, noting that the yellow cells are due to the overlap of red and green fluorescence

so are not all visually identifiable from the images. Because we use a numerical approach to

explore travelling wave solutions, we set L to be sufficiently large so that the moving front does

not interact with the boundary at x = L.

For this purpose, we obtain numerical solutions of the fundamental model, Equations (2.2)

to (2.3), with typical solutions presented in Figure 2.3(A). These results suggest that the so-

lutions develop into an interesting travelling wave profile, where the density of cells in the G1

phase forms a moving pulse, whereas the density of cells in the S/G2/M phase forms a moving

wavefront. Furthermore, the total cell density profile also moves as a wavefront profile. Anal-

ogous solutions of the extended model, Equations (2.4) to (2.6), are shown in Figure 2.3(B),

which have similar features except that there is an additional pulse arising from cells in the eS

phase. We find that the existence of these travelling waves is robust, and does not depend on

the values of the diffusion coefficients. Figure 2.6 shows solutions of the fundamental model for

Dg 6= Dr.

The appearance of travelling wave solutions that take the form of a wavefront is not un-
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Figure 2.3: Numerical solutions demonstrating travelling wave behaviour for the funda-
mental and extended models. (A) Numerical solutions of the fundamental model, Equations (2.2)
to (2.3), obtained with ∆x = 1µm, ∆t = 1 h, L = 8000µm, Dr = Dg = 400µm2 h−1, κr = κg = 0.08 h−1,
and the initial condition given by Equation (2.9) with ξ = 10. (B) Numerical solutions of the
extended model, Equations (2.4) to (2.6), obtained with ∆x = 1µm, ∆t = 1 h, L = 8000µm,
Dr = Dy = Dg = 400µm2 h−1, kr = ky = kg = 0.13 h−1, and the initial condition given by Equa-
tion (2.10) with ξ = 10.

expected, as the partial differential equations in our model are related to the FKPP equa-

tion, Equation (2.1), which is well-known to exhibit travelling-wave solutions with a wavefront

form [38,48]. It is particularly interesting, however, that our model also exhibits travelling wave

solutions with the form of a pulse, which are not observed for the FKPP equation. The pulses

arise because only the cells near to the leading edge, where s(x, t) < 1, have the opportunity to

cycle from S/G2/M to G1, which involves cell division and can be inhibited by crowding effects.

Behind the wavefront where s(x, t) approaches unity, cells do not have enough space to divide,

and so these cells remain in the S/G2/M phase.

2.3.4.2 Travelling wave analysis of the fundamental model

We now analyse the fundamental model, Equations (2.2) to (2.3), with the aim of understanding

how the parameters in the model relate to the speed of the travelling wave solutions. To simplify

our analysis we non-dimensionalise the problem by defining the new variables t∗ = κgt and

x∗ = x
√
κg/Dr, and the parameters

D =
Dg
Dr

and κ =
κr
κg
, (2.11)

to give the corresponding non-dimensional model

∂vr
∂t

=
∂2vr
∂x2

− κvr + 2vg(1− s), (2.12)
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∂vg
∂t

= D∂
2vg
∂x2

− vg(1− s) + κvr, (2.13)

in which the asterisks have been omitted for notational simplicity.

To examine the travelling wave solutions, we define the travelling wave coordinate, z = x−ct,

where c > 0 is the wave speed associated with a travelling wave that propagates in the positive

x-direction. We seek solutions of Equations (2.12) to (2.13) of the form vr(x, t) = U(z) and

vg(x, t) = V (z). Such solutions, if they exist, correspond to travelling wave solutions. Substi-

tuting U(z) and V (z) into Equations (2.12) to (2.13) gives the system of ordinary differential

equations

U ′′ + cU ′ − κU + 2V (1− U − V ) = 0, (2.14)

V ′′ +
c

D
V ′ +

κ

D
U − 1

D
V (1− U − V ) = 0. (2.15)

We want to find travelling-wave solutions which satisfy the conditions

U > 0, lim
z→−∞

U(z) = 0 and lim
z→∞

U(z) = 0, (2.16)

V > 0, lim
z→−∞

V (z) = 1 and lim
z→∞

V (z) = 0. (2.17)

Letting W = U ′ and X = V ′, we can write Equations (2.14) to (2.15) as a system of first-order

equations:

U ′ = W, (2.18)

V ′ = X, (2.19)

W ′ = −cW + κU − 2V (1− U − V ), (2.20)

X ′ = − c

D
X − κ

D
U +

1

D
V (1− U − V ). (2.21)

The equilibrium points of Equations (2.18) to (2.21) are (0, 0, 0, 0) and (0, 1, 0, 0). Of all the

solutions to Equations (2.18) to (2.21) in the four-dimensional phase space, (U, V,W,X), we

seek a heteroclinic orbit from (0, 1, 0, 0) to (0, 0, 0, 0) which has the physically-relevant property

that U > 0 and V > 0.
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The Jacobian of Equations (2.18) to (2.21) evaluated at (0, 0, 0, 0) is


0 0 1 0

0 0 0 1

κ −2 −c 0

−κ/D 1/D 0 −c/D

 . (2.22)

The eigenvalues of Equation (2.22) are the solutions of the corresponding characteristic equation

Dλ4 + c(D + 1)λ3 + (c2 − 1−Dκ)λ2 − c(1 + κ)λ− κ = 0. (2.23)

To establish a condition for physically relevant travelling-wave solutions, where U > 0 and

V > 0, we examine whether the solutions of Equation (2.23) are either complex or real. The

analytical solutions of this quartic equation [112] are quite complicated when D 6= 1. Because

we are considering subpopulations of the same cell type which differ only with respect to cell

cycle phase, the biologically relevant case is when the two diffusion coefficients are equal, leading

to D = 1. In this case, by defining

α±(κ, c) = 2κ+ c2 + 2± 2
√
κ2 + 6κ+ 1, (2.24)

we can express the solutions of the quartic simply as

λ±1 = −1

2
c± 1

2

√
α−(κ, c) and λ±2 = −1

2
c± 1

2

√
α+(κ, c). (2.25)

The eigenvalues λ+
2 and λ−2 are always real, and λ+

1 and λ−1 are real when α−(κ, c) ≥

0. If α−(κ, c) < 0, however, then λ+
1 and λ−1 are complex eigenvalues which yield solutions

with oscillatory behaviour, which necessarily involves negative cell densities. Because we are

interested in travelling wave solutions for which U and V remain positive, we shall therefore

require that α−(κ, c) ≥ 0. It is then reasonable to suspect that, for a given κ ≥ 0, the value of c

such that α−(κ, c) = 0 is the minimum wave speed for the travelling waves, which we denote as

cmin(κ) =

√
−2κ− 2 + 2

√
κ2 + 6κ+ 1. (2.26)

The minimum wave speed is bounded above, and in fact cmin(κ)→ 2− as κ→∞.

Equation (2.26) shows that the minimum speed of the travelling wave solution depends on

κ, which is the ratio of the time the cells spend in phase S/G2/M to the time the cells spend in
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phase G1. In other words, the minimum wave speed depends on the cell cycle dynamics of the

particular cells under consideration. We observe here that α−(κ, c) ≥ 0 is a necessary condition

for the existence of travelling waves. We have not demonstrated, however, that this condition

is sufficient for the existence of travelling waves. This would require a formal proof of existence

for the travelling waves, which is beyond the scope of this work.

Observe that if κ > 0 and c ≥ cmin then λ+
1 , λ−1 and λ−2 are real and negative, and λ+

2 is

real and positive. Therefore, the equilibrium point (0, 0, 0, 0) is hyperbolic and has a 3-D stable

manifold and a 1-D unstable manifold. The presence of a stable manifold at the point (0, 0, 0, 0)

is necessary for the existence of a heteroclinic orbit and the real eigenvalues allow for this orbit

to correspond to physically relevant travelling wave solutions with U > 0, V > 0. This analysis

does not constitute a formal proof of existence for the travelling waves, however it does show

that our observations are consistent with their existence.

The Jacobian of the system Equations (2.18) to (2.21) evaluated at (0, 1, 0, 0) is


0 0 1 0

0 0 0 1

κ+ 2 2 −c 0

−(κ+ 1)/D −1/D 0 −c/D

 . (2.27)

The eigenvalues of Equation (2.27) are the solutions of the corresponding characteristic equation

Dλ4 + c(D + 1)λ3 + (c2 + 1−Dκ− 2D)λ2 − c(1 + κ)λ+ κ = 0. (2.28)

Once again, the analytical solutions of this quartic equation [112] are quite complicated when

D 6= 1. For the biologically-relevant case D = 1, however, the solutions are

λ±3 =
1

2

(
− c±

√
c2 + 4

)
and λ±4 =

1

2

(
− c±

√
c2 + 4κ

)
. (2.29)

If κ > 0 then λ−3 and λ−4 are real and negative, and λ+
3 and λ+

4 are real and positive. Therefore,

the equilibrium point (0, 1, 0, 0) is hyperbolic and has a 2-D stable manifold and a 2-D unstable

manifold. The existence of an unstable manifold at the point is necessary for the presence of a

travelling wave solution.

Figure 2.4(A) compares cmin(κ) in Equation (2.26) with the wave speed estimates obtained

from the numerical solutions of the partial differential equations [94]. The numerical solutions

are obtained using initial conditions with compact support, so we would expect the resulting

travelling waves to have the minimum wave speed [38]. We observe that the numerically esti-
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Figure 2.4: Minimum wave speed and the dispersion relation. (A) Comparison of cmin(κ) from
Equation (2.26) with the numerically-estimated wave speed for s(x, t) = vr(x, t) + vg(x, t). Numerical
solutions of Equations (2.12) to (2.13) are obtained with ∆x = 0.1, ∆t = 0.001 and D = 1. Further, the
initial condition is Equation (2.9) with ξ = 10. For κ = 0 there is no travelling wave, so we set c = 0.
The numerical solutions are considered beginning with κ = 0.06, and then with increasing values of κ
from 0.25 to 3, with increments of 0.25. From these numerical solutions we estimate the wave speed for
s(x, t) = vr(x, t) + vg(x, t) by using linear interpolation to find the position corresponding to s(x, t) = 0.5
on the wave for various times [94]. (B) Asymptotic expansions for cmin(κ) as κ → 0 and κ → ∞. (C)
Comparison of c from Equation (2.35) with the wavespeed estimated using numerical solutions and with
cmin from Equation (2.26). Solutions are given for κ = 1 (blue) and κ = 2 (red). The continuous curves
show c from Equation (2.35). The dots represent the wave speed from numerical solutions obtained with
∆x = 0.1, ∆t = 0.001, D = 1, and initial conditions of the form Equation (2.36) with a = 0.1, 0.2, 0.5,
1, 1.5 and 2. The dotted horizontal lines show cmin from Equation (2.26).

mated wave speed is consistent with Equation (2.26) over the range of κ we consider. Therefore,

we have numerical evidence to strongly support the claim that the minimum speed is given by

Equation (2.26).

In Figure 2.4(B) we show the asymptotic expansions of Equation (2.26) as κ→ 0 and κ→∞:

cmin(κ) = 2κ
1
2 − 2κ

3
2 + 5κ

5
2 +O

(
κ

7
2

)
as κ→ 0, (2.30)

cmin(κ) = 2− 2

κ
+

5

κ2
+O

(
1

κ3

)
as κ→∞. (2.31)
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Thus, cmin(κ) behaves like 2κ
1
2 when κ is small and like 2− 2/κ when κ is large. We discuss the

connection with the FKPP equation in the Conclusion.

2.3.4.3 Dispersion relation

Here we investigate the relationship between the initial conditions for Equations (2.12) to (2.13)

with D = 1, and the speed of the resulting travelling wave solution. Our approach is to examine

the leading edge of the travelling wave, assuming that the initial conditions at infinity have an

exponential form [38].

At the leading edge of the evolving waves, s(x, t) = vr(x, t)+vg(x, t)� 1, so we can linearise

Equations (2.12) to (2.13) to give

∂ṽr
∂t

=
∂2ṽr
∂x2

− κṽr + 2ṽg, (2.32)

∂ṽg
∂t

=
∂2ṽg
∂x2

− ṽg + κṽr. (2.33)

Assuming initial conditions of the form ṽr(x, 0) ∼ Ae−ax and ṽg(x, 0) ∼ Be−bx as x → ∞

for arbitrary positive constants a, b, A and B, we seek travelling wave solutions satisfying

Equations (2.32) to (2.33) of the form

ṽr(x, t) = Ae−a(x−ct) and ṽg(x, t) = Be−b(x−ct), (2.34)

corresponding to the leading edges of the pulse and wavefront solutions, respectively. Substitut-

ing Equation (2.34) into Equations (2.32) to (2.33) and solving for c gives

c = a− 1

a
+

1

2a
(1− κ+

√
κ2 + 6κ+ 1). (2.35)

The dispersion relation, Equation (2.35), depends only on a and κ, so we can obtain the travelling

wave solutions with the form Equation (2.34) from initial conditions of the form

vr(x, 0) = 0 and vg(x, 0) =


1, 0 ≤ x < ξ,

e−a(x−ξ), ξ ≤ x ≤ L,
(2.36)

for constants ξ and a > 0. Note that for large a, this initial condition for vg is approximately

a Heaviside function. For a given κ, we observe that the minimum wave speed according to

the dispersion relation, Equation (2.35), is equal to the minimum wave speed cmin, given by

Equation (2.26).
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In Figure 2.4(C) we compare c from Equation (2.35) with estimates of the wave speed

from numerical solutions of the governing partial differential equations, and with cmin from

Equation (2.26). The value of c given by the dispersion relation tends to infinity as both a→ 0

and a → ∞, and has a unique minimum value for a given κ. The dispersion relation for the

FKPP equation has similar properties [38]. For a given κ, the numerical estimates of the wave

speed agree with Equation (2.35) for increasing values of a > 0, until the minimum wave speed is

obtained. As we further increase a, the numerical estimates of the wave speed remain constant,

at the minimum value of the wave speed. Once again, the dispersion relation for the FKPP

equation has similar properties [38].

2.4 Conclusion

Here we present, to our knowledge, the first mathematical model of cell migration that can

be used to quantitatively describe experiments using FUCCI technology, which highlights the

spatial and temporal distribution of individual cells in different parts of the cell cycle. The

fundamental model consists of two coupled partial differential equations, each of which governs

the subpopulations of cells corresponding to the two phases of the cell cycle that are directly

labelled by FUCCI. Our study suggests that the model can describe cell migration and cell

proliferation in a way that highlights the spatial and temporal distribution of two subpopulations.

In particular, we show that the model can describe the dynamics of scratch assays performed

with cells highlighted by FUCCI. This is a useful outcome, as scratch assays are routinely

employed to study cell migration, for example in the context of malignant invasion [107] and

wound healing [46]. Although a typical scratch assay may require several days to grow cells,

and to perform and record the experiment, our model can simulate such an experiment on a

single desktop computer in a few seconds. In addition, we can easily vary the parameters in our

model to simulate experiments over any period of time, any scratch width, any geometry, and

any cell line, provided that we have some information about the amount of time that is spent in

each phase of the cell cycle. Therefore, this kind of computational modelling tool can provide

valuable information to assist in the design and interpretation of these kinds of experiments

conducted with FUCCI.

In this work, we use numerical results to demonstrate the existence of travelling wave solu-

tions. Furthermore, our analysis shows that the minimum wave speed depends on the ratio of

the time spent in each of the G1 and S/G2/M phases. Another outcome of this study is that we

derive an analytical expression for the minimum wave speed as a function of this ratio which,
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in dimensional variables, can be written as

cmin =

√
2Dr

(
− κr − κg +

√
κr

2 + 6κrκg + κ2
g

)
. (2.37)

This relationship is based on the biologically reasonable assumption that Dr = Dg, where Dr is

the diffusion coefficient for cells in phase G1 and Dg is the diffusion coefficient for cells in phase

S/G2/M. Further, κr is the transition rate from G1 to S/G2/M and κg is the transition rate from

S/G2/M to G1. It then follows from Equations (2.30) to (2.31) that cmin ∼ 2
√
κrDr(1− κr/κg)

as κr/κg → 0, and cmin ∼ 2
√
κgDg(1 − κg/κr) as κg/κr → 0. Therefore, when κr/κg � 1, so

that cells spend much more time in phase G1 compared with phase S/G2/M, the minimum wave

speed obtained from our fundamental FUCCI model, Equations (2.2) to (2.3), approaches the

minimum wave speed obtained from the FKPP equation, Equation (2.1). A similar observation

holds for the case κg/κr � 1, corresponding to the situation where the cells spend much more

time in phase S/G2/M compared with phase G1.

Travelling wave solutions are of great practical interest as cell migration tends to exhibit

travelling wave characteristics [46]. The analytical expression we derive for the minimum wave

speed is of practical interest, as a moving front of cells can be thought of as acting like a

travelling wave solution, so our expression can provide a prediction for the speed of the moving

front in experimental studies. The travelling wave solutions of the fundamental model are

mathematically interesting because they are a combination of moving wavefronts and moving

pulses. Monotonically decreasing wavefront solutions are well known for the FKPP equation,

and because our models are related to the FKPP equation, it is not surprising that wavefront

solutions are also observed in our study. It is interesting, however, that travelling wave solutions

of our models involve pulses, which are not features of the travelling wave solutions of the FKPP

equation.

There are many possibilities for future work arising from this study. An area of particular

interest would involve using our models to quantitatively study how the migration of melanoma

cells and the cell cycle for melanoma cells are affected by the application of particular melanoma

drugs. Indeed, there is still much to learn regarding the effects of introduced drugs on melanoma

cell activity [13]. These kinds of drugs often act to arrest the cell cycle, thereby preventing

melanoma proliferation. Another feature that could be examined is the role of contact inhibition

and cell cycle arrest, because it is accepted that cells in relatively high-density environments can

undergo cell cycle arrest. Indeed, our model does not account for this phenomenon, because we

are interested in low to moderate cell densities. Another way that this study could be extended is

to consider additional phases of the cell cycle. This is of interest because a very recent extension
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of FUCCI technology, referred to as FUCCI4 [113], highlights all four cell cycle phases G1, S,

G2 and M. If extended to four coupled partial differential equations, our modelling framework

could be used to quantitatively describe cell migration where individual cells are highlighted

using FUCCI4.
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2.5 Supplementary Material

2.5.1 Numerical solutions of the mathematical model

The numerical solutions of Equations (2.2) to (2.3) and Equations (2.4) to (2.6) are obtained

using an implicit finite difference approximation. In particular, we use a central difference

approximation for the spatial derivative term, and a backward Euler approximation for the

temporal derivative [114]. The spatial domain, 0 ≤ x ≤ L, is uniformly discretised with grid

spacing ∆x. No-flux boundary conditions are implemented at both x = 0 and x = L. The

temporal domain is uniformly discretised with time steps of duration ∆t. The resulting non-

linear system of equations is solved using the Thomas algorithm [114], applying Picard iteration

at each time step until the maximum absolute change in the given dependent variable across the

spatial grid is less than a specified tolerance, ε.

2.5.2 Comparison of experimental data and the fundamental model for a scratch

assay of FUCCI-transduced WM983C melanoma cells.

In Fig 2.5 we present experimental data for the WM983C melanoma cell line, together with

corresponding numerical solutions of the fundamental model. The numerical solutions compare

well with the experimental data.

2.5.3 Numerical solutions demonstrating travelling wave behaviour for the

fundamental model when D 6= 1.

In Fig 2.6 we present numerical solutions of the fundamental model, Equations (2.2) to (2.3),

with D 6= 1. In Fig 2.6A, D = 0.5, and in Fig 2.6B, D = 2. These solutions are qualitatively

the same as for D = 1, see Fig 2.3, demonstrating that the existence of these travelling waves is

robust, and does not depend on the value of Dg/Dr.
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Figure 2.5: Comparison of experimental data and the fundamental model for a scratch
assay of FUCCI-transduced WM983C melanoma cells. (A)–(D) Still images of a scratch assay
with FUCCI-transduced WM983C melanoma cells at time 0 h, 16 h, 32 h and 48 h, respectively. Scale bar
is 200µm. (E) Estimated transition rates from one cell cycle phase to the next for the fundamental model
with two subpopulations, based on data from the WM983C cell line from Fig 1C in [13]. (F) Estimated
transition rates from one cell cycle phase to the next for the extended model with three subpopulations,
based on data from the WM983C cell line from Fig 1C in [13]. (G)–(J) Experimental non-dimensional cell
density data at 0 h, 16 h, 32 h and 48 h, respectively (based on images (A)–(D)). The cell density is treated
as a function of x and t only, owing to the fact that the initial density does not depend on the vertical
coordinate, y. (K)–(N) Numerical solutions of the fundamental model, Equations (2.2) to (2.3), at 0 h,
16 h, 32 h and 48 h. The numerical solutions are obtained with ∆x = 0.1µm, ∆t = 0.1 h, L = 1254µm,
diffusion coefficients Dr = Dg = 400µm2 h−1, transition rates κr = 0.080 h−1 and κg = 0.062 h−1, and
initial conditions the same as for the experimental data.
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Figure 2.6: Numerical solutions of the fundamental model, Equations (2.2) to (2.3), demon-
strating travelling wave behaviour with D 6= 1. (A) Solutions obtained with ∆x = 0.1µm,
∆t = 0.1 h, L = 8000µm, Dr = 400µm2 h−1,Dg = 200µm2 h−1, κr = κg = 0.08 h−1, and the initial
condition given by Equation (2.9) with ξ = 10. (B) Solutions obtained with ∆x = 0.1µm, ∆t = 0.1 h,
L = 8000µm, Dr = 200µm2 h−1,Dg = 400µm2 h−1, κr = κg = 0.08 h−1, and the initial condition given
by Equation (2.9) with ξ = 10.
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CHAPTER 3

Mathematical models incorporating a multi-stage cell cycle replicate

normally-hidden inherent synchronisation in cell proliferation

An article published as a Report in the Journal of the Royal Society Interface

Vittadello ST, McCue SW, Gunasingh G, Haass NK, Simpson MJ. Mathematical models in-

corporating a multi-stage cell cycle replicate normally-hidden inherent synchronisation in cell

proliferation. Journal of the Royal Society Interface. 2019; 16:20190382.

Abstract

We present a suite of experimental data showing that cell proliferation assays, prepared us-

ing standard methods thought to produce asynchronous cell populations, persistently exhibit

inherent synchronisation. Our experiments use fluorescent cell cycle indicators to reveal the

normally-hidden cell synchronisation by highlighting oscillatory subpopulations within the total

cell population. These oscillatory subpopulations would never be observed without these cell

cycle indicators. On the other hand, our experimental data show that the total cell population

appears to grow exponentially, as in an asynchronous population. We reconcile these seemingly

inconsistent observations by employing a multi-stage mathematical model of cell proliferation

that can replicate the oscillatory subpopulations. Our study has important implications for un-

derstanding and improving experimental reproducibility. In particular, inherent synchronisation

may affect the experimental reproducibility of studies aiming to investigate cell cycle-dependent

mechanisms, including changes in migration and drug response.
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normally-hidden inherent synchronisation in cell proliferation

3.1 Introduction

Cell proliferation is essential for a range of normal and pathological processes. Many different

mathematical models of proliferation have been proposed [50–56]. It is often assumed that cells

proliferate exponentially,

dM(t)

dt
= λM(t), M(t) = M(0)eλt, (3.1)

where M(t) is the number of cells at time t and λ > 0 is the proliferation rate.

The eukaryotic cell cycle consists of four phases in sequence, namely gap 1 (G1), synthe-

sis (S), gap 2 (G2) and mitosis (M) (Figure 3.1(a)). A key assumption implicit in Equa-

tion (3.1) is that the cell population is asynchronous, meaning that the cells are distributed

randomly among the cell cycle phases (Figure 3.1(b)), yielding a constant per capita growth

rate, (1/M(t)) dM(t)/dt = λ. In contrast, a population of cells is synchronous if the cells are in

the same cell cycle phase (Figure 3.1(c)), or partially synchronous if only a subpopulation of cells

is synchronous (Figure 3.1(d)). In this case, the synchronous cells divide as a cohort in discrete

stages producing a variable per capita growth rate. In addition to the implicit assumption of

asynchronicity, classical exponential growth models, and generalisations thereof [115], do not

account for subpopulations, and predict monotonic population growth.

Here we provide new experimental data from two-dimensional cell proliferation assays in

which the cell growth appears exponential as in Equation (3.1). Unexpectedly, however, we

observe oscillatory subpopulations arising from a phenomenon we refer to as inherent synchro-

nisation. We reveal the normally-hidden inherent synchronisation by identifying subpopula-

tions based on cell cycle phase, employing fluorescent ubiquitination-based cell cycle indicator

(FUCCI) [30]. FUCCI enables visualisation of the cell cycle of individual live cells via two

sensors: when the cell is in G1 the nucleus fluoresces red, and when the cell is in S/G2/M the

nucleus fluoresces green. During the G1/S transition, called early S (eS), both sensors fluo-

resce and the nucleus appears yellow (Figure 3.1(a)). We explain these seemingly inconsistent

observations by applying a multi-stage mathematical model for cell proliferation.

Previous studies of cell synchronisation utilising FUCCI induce the synchronisation using

methods including serum starvation, cell cycle-inhibiting drugs, environmental pH, or contact

inhibition [13, 33, 116–119]. Our assays are prepared using a standard method [33] normally

thought to produce asynchronous populations, and we take utmost care to ensure that there

is no induced synchronisation in our cell cultures due to serum starvation, low pH, or contact

inhibition (Supporting Information 1). Over three cell lines and four independent experiments,
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Figure 3.1: C8161 experimental data and multi-stage model solution. (a) The cell cycle, indi-
cating the colour of FUCCI in each phase. (b)–(d) Asynchronous, synchronous and partially synchronous
cells. (e)–(h) Images of a proliferation assay with FUCCI-C8161 cells. Scale bar 200 µm. (i) M(t). Linear
regression of lnM(t) versus t gives R2 = 0.99. (j) R(t), Y (t) and G(t). (k) Q(t). Experimental data are
shown as discs and the model solutions as curves.
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however, we consistently observe inherent synchronisation.

Neglecting synchronous subpopulations can have important implications for experiment re-

producibility. For example, the accurate experimental evaluation of cell cycle-inhibiting drugs

is highly dependent on the cell cycle distribution of the cell population [33, 120]. In a partially

synchronous population, the drug may have a delayed or advanced effect compared with an asyn-

chronous population, depending on the cell cycle position of the synchronous cells. Generally,

the presence of synchronisation may affect the reproducibility of experiments that investigate

cell cycle-dependent mechanisms, such as changes in migration and drug response. Revealing

any synchronisation with quantitative techniques like FUCCI will lead to a better understanding

of these mechanisms.

3.2 Results

3.2.1 Experimental data

Our experimental data are time-series images from two-dimensional proliferation assays using

three melanoma cell lines C8161, WM983C and 1205Lu [13, 84, 85], which have mean cell-cycle

durations of approximately 18, 27 and 36 h, respectively [13]. Four independent experiments

are performed for each cell line. Live-cell images are acquired at 15 minute intervals over 48 h.

Images from one position in a single well of a FUCCI-C8161 proliferation assay at 7, 16,

25 and 34 h show red, yellow or green nuclei corresponding to the phases G1, eS or S/G2/M

(Figure 3.1(e)–(h)). We quantify the population growth by counting the total number of cells in

each image (Supporting Information 1), to give M(t) at time t (Figure 3.1(i)). The total number

of cells appears to grow exponentially over 48 h, supported by the best fit of Equation (3.1)

(Supporting Information 1) since we have R2 = 0.99 from the linear regression of lnM(t) versus

t. The temporal variations in the numbers of cells in the subpopulations R(t), Y (t) and G(t) with

red, yellow or green nuclei (Figure 3.1(j)), where M(t) = R(t)+Y (t)+G(t), are oscillatory. In an

asynchronous population, the subpopulations would exhibit monotone growth. The oscillations

we observe, however, reveal that the cells are partially synchronous.

To explore the inherent synchronisation further, we group cells in eS and S/G2/M together,

since eS is part of S, and consider the ratio Q(t) = R(t)/
(
Y (t) + G(t)

)
(Figure 3.1(k)). Syn-

chronisation is clearly evident in the oscillatory nature of Q(t). Note the troughs at 7 and 25 h

and the peaks at 16 and 34 h are separated by 18 h, which is the approximate cell cycle time for

C8161. We can visualise the oscillations in these two subpopulations (Figure 3.1(e)–(h)), where

the ratio of the number of red cells to the number of yellow and green cells is lower at 7 and 25
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h and higher at 16 and 34 h. Equation (3.1) and related generalisations [115] cannot account

for the oscillations in these subpopulations. Similar observations are made for further examples

of this cell line, and the two additional cell lines (Supporting Information 1). We quantitatively

confirm the presence of oscillations in Q(t), arising from inherent synchronisation, for all 90

data sets by calculating the discrete Fourier transform of the Q(t) signal, and identifying the

distinct dominant frequencies (Supporting Information 1). These results confirm that all 90

experimental replicates display oscillatory subpopulations that are inconsistent with traditional

exponential and logistic growth models.

3.2.2 Multi-stage mathematical model

We employ a multi-stage model of cell proliferation [86] which can describe synchronous popu-

lations. The model assumes that the cell cycle durations follow a hypoexponential distribution,

which consists of a series of independent exponential distributions with different rates. To apply

this model we partition the cell cycle into k stages, Pi for i = 1, . . . , k, where the duration

of each Pi is exponentially distributed with mean µi. If T is the mean cell cycle time then∑k
i=1 µi = T . The stages Pi do not necessarily correspond to phases of the cell cycle, but

instead are a mathematical device which allows control over the variance of cell-cycle phase du-

rations in the multi-stage model, whereby more stages correspond to less variance in the phase

durations for a cell population. If we let the transition rates be λi = 1/µi and consider the

partitioned cell cycle P1
λ1−→ P2

λ2−→ · · ·
λk−1−−−→ Pk

λk−→ 2P1, we arrive at a system of differential

equations describing the mean population Mi(t) in each stage [86]:

dMi(t)

dt
=


2λkMk(t)− λ1M1(t), for i = 1,

λi−1Mi−1(t)− λiMi(t), for i = 2, . . . , k.

(3.2)

Note that M(t) =
∑k

i=1Mi(t). If k = 1, Equation (3.2) simplifies to Equation (3.1). Within the

48 h duration of our experiments, none of the cell lines exhibits contact inhibition of proliferation,

consistent with the typical loss of contact inhibition in cancer cells [14]. Consequently, a carrying

capacity is not incorporated into the model.

We solve Equation (3.2) numerically with the forward Euler method, and estimate the pa-

rameters by fitting the solution to our experimental data (Supporting Information 1). Using 18

stages for each of the three cell cycle phases described by FUCCI, giving k = 54, we obtain M(t)

(Figure 3.1(i)), R(t), Y (t), G(t) (Figure 3.1(j)) and Q(t) (Figure 3.1(k)) which all correspond

well with the experimental data. In particular, the multi-stage model replicates the oscillations
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in R(t), Y (t), G(t) and Q(t), a feature that is not possible with traditional exponential models.

While the multi-stage model can replicate the oscillatory subpopulations, the model is unable

to predict all features of the inherent synchronisation in a cell proliferation experiment due to

variable initial conditions, as the inherent synchronisation is a stochastic phenomenon which

likely arises from cell division and intercellular interactions. The model can, however, be used

to predict general features of the inherent synchronisation of each cell line.

3.3 Conclusion

Our new experimental data demonstrate that cell populations may appear to grow exponen-

tially despite subpopulations exhibiting oscillatory growth arising from normally-hidden inher-

ent synchronisation. We use standard experimental methods thought to produce asynchronous

populations; however, all of our proliferation assays exhibit inherent synchronisation. We use

FUCCI to track cell-cycle progression, which is necessary to confirm cell synchronisation. As the

standard exponential growth model cannot account for subpopulations with oscillating growth,

we use a multi-stage mathematical model of cell proliferation to replicate oscillations in popula-

tion growth. Our results are important because revealing any synchronisation will help to better

understand cell cycle-dependent mechanisms, such as changes in migration and drug response.

Without quantitative techniques like FUCCI to probe the cell cycle, synchronisation and its

effects on experimental outcomes and reproducibility may remain hidden.

3.4 Data accessibility

All experimental data are available in the electronic supplementary material documents.

All algorithms required to replicate this work are available on GitHub at

https://github.com/ProfMJSimpson/Vittadello2019.

3.5 Supplementary Material

3.5.1 Experimental

Here we provide details of the experimental methodology that we use for our cell proliferation

experiments involving three melanoma cell lines.

3.5.1.1 Cell culture

The human melanoma cell lines C8161 (kindly provided by Mary Hendrix, Chicago, IL, USA),

WM983C and 1205Lu (both kindly provided by Meenhard Herlyn, Philadelphia, PA, USA) were
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genotypically characterised [101–104], grown as described [105] (using 4% fetal bovine serum

instead of 2%), and authenticated by STR fingerprinting (QIMR Berghofer Medical Research

Institute, Herston, Australia).

We maintain the cell cultures to prevent any induced synchronisation from cell cycle arrest

in G1 phase. In general, such induced synchronisation can occur through various experimental

conditions, namely contact inhibition of proliferation at relatively high population densities [119],

decreased pH of the growth medium due to the concentration of acidic cell-metabolites such as

lactic acid [118], and reduced availability of nutrients such as serum [33]. We prevent induced

synchronisation by passaging the cells every three days, and on the day prior to setting up an

experiment, to maintain a subconfluent cell density and a fresh growth medium, so that the cell

culture conditions are never such that they cause G1 arrest.

3.5.1.2 Proliferation experiments

Cells are seeded from subconfluent culture flasks onto a 24-well plate at a density of 104 cells

cm−2, with 2.5 ml of medium per well, which is 2.5 times the volume of the standard protocol.

After incubating the plate for 24 h at 37◦C with 5% CO2, live-cell images are acquired at 15

minute intervals over 48 h at six different positions of the well. Four independent experiments

are performed for each cell line.

Our preliminary experiments used a standard 1 ml of medium in each well, however the

cells started to arrest in G1 around 48 hours after seeding, which is likely due to decreased pH

of the medium from the lactic acid concentration. We therefore performed a large number of

preliminary tests in an attempt to prevent the cells from arresting in G1 during the experiment,

and we found that this is possible by increasing the volume of medium in each well to the

reasonable maximum of 2.5 ml, given the volume of each well is 3 ml. The result of the increased

volume of medium is that the cells do not begin to arrest in G1 until close to 72 hours following

seeding, which provides us with almost 48 hours of imaging using cells that have minimal G1

arrest.

3.5.1.3 Fluorescent ubiquitination-based cell cycle indicator (FUCCI)

To generate stable melanoma cell lines expressing the FUCCI constructs, mKO2-hCdt1 (30-

120) and mAG-hGem (1-110) [30] were subcloned into a replication-defective, self-inactivating

lentiviral expression vector system as previously described [105]. The lentivirus was produced

by co-transfection of human embryonic kidney 293T cells. High-titer viral solutions for mKO2-

hCdt1 (30/120) and mAG-hGem (1/110) were prepared and used for co-transduction into the
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melanoma cell lines, and subclones were generated by single cell sorting [13,32,106].

3.5.2 Image processing and analysis

The microscopy data consist of multi-channel time-series stacks which are processed and analysed

automatically with Fiji/ImageJ and MATLAB as described below.

3.5.2.1 Preprocessing

To maximise the accuracy in identifying particles, which in our case are cell nuclei, we enhance

the quality of the microscopy images using ImageJ as follows.

1. Import the time-series stack with the Bio-Formats Importer plugin, splitting the red and

green channels.

2. Apply five iterations of Subtract Background with rolling-ball radius of 5 pixels.

3. Apply Enhance Contrast with the Equalize Histogram option selected.

4. Apply the Gaussian Blur filter with sigma = 1.

3.5.2.2 Segmentation

We now identify the particles in the processed images using ImageJ.

1. Apply Auto-thresholding using the Yen method, selecting the option to ‘calculate the

threshold for each image’.

2. The resulting binary images are then refined by applying:

(a) Watershed;

(b) Fill Holes;

(c) Open, with iterations = 10 and count = 5;

(d) Watershed.

3.5.2.3 Analysis

For every image in the segmented binary time-series stacks we count the number of particles in

each of the red and green channels using ImageJ. We then use MATLAB to determine which

particles are yellow.
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1. For each of the red and green channels, apply Analyze Particles in ImageJ with sizes in the

range 5–∞ pixels2 and the option ‘limit to threshold’ selected. Output the stack position

and the centroid of every particle in each channel.

2. We now need to determine which particles are red, yellow or green. A particle is red if it

appears in the red channel, and there is no corresponding particle in the green channel.

Similarly, a particle is green if it appears in the green channel, and there is no corresponding

particle in the red channel. A particle is then yellow if it appears in both the red and green

channels. Identifying whether a particle appears in both the red and green channels is

complicated by the possible alteration of the shape of the particle during image processing.

While we process every image in exactly the same way, the original microscopy images may

have different signal-to-noise ratios between the red and green channels. Consequently,

there may be a difference in the shape of a particle depending on the channel in which

it is viewed, and thereby a difference in the centroid of the particle in each channel. We

therefore use MATLAB to determine which particles are red, yellow or green, using the

stack position and centroid of each particle, as follows.

(a) We first find the yellow particles using the stack position and centroid of each particle,

so choose a particle, in turn, from the red channel.

(b) Search the green channel for a corresponding particle such that the Euclidean distance

between the centroids of the two particles is not greater than 3 pixels, noting that

the pixel size in our images is 1.8150 µm. This distance allows for a location error of

the centroids of the red and green particles, whereby the centroids may be translated

up to one pixel from the original centroid of the yellow particle in the unprocessed

images. Placing the original yellow centroid at the centre of a 3 × 3 grid of pixels,

the red and green centroids from the processed images may be located at any of the

nine pixels in the grid.

(c) Once all of the yellow particles are found, the red particles are all of the particles

in the red channel which are not yellow. Similarly, the green particles are all of the

particles in the green channel which are not yellow.
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3.5.3 Parameterisation of the exponential model

To estimate the parameters of the exponential model Equation (3.1) when fitting the model

solution to the experimental data for the total number of cells, we use the the fit function and

exp1 model [121] in MATLAB. The parameter estimates, with 95% confidence intervals, are:

� C8161 cell line - Figure 3.1(i)

M(0) = 524.3 (515.1, 533.4) and λ = 0.03504 h−1 (0.03456, 0.03551).

� C8161 cell line - Figure 3.3(e)

M(0) = 386.4 (382.2, 390.5) and λ = 0.0316 h−1 (0.0313, 0.0319).

� C8161 cell line - Figure 3.4(e)

M(0) = 401 (393.8, 408.2) and λ = 0.03573 h−1 (0.03525, 0.03622).

� WM983C cell line - Figure 3.5(e)

M(0) = 247.7 (244.3, 251.2) and λ = 0.02541 h−1 (0.02501, 0.02581).

� WM983C cell line - Figure 3.6(e)

M(0) = 366.4 (362.8, 370) and λ = 0.01917 h−1 (0.01888, 0.01946).

� WM983C cell line - Figure 3.7(e)

M(0) = 158 (155.4, 160.7) and λ = 0.0175 h−1 (0.01699, 0.01801).

� 1205Lu cell line - Figure 3.8(e)

M(0) = 215.9 (214.1, 217.7) and λ = 0.01932 h−1 (0.01907, 0.01958).

� 1205Lu cell line - Figure 3.9(e)

M(0) = 249.1 (246.5, 251.7) and λ = 0.01934 h−1 (0.01903, 0.01965).

� 1205Lu cell line - Figure 3.10(e)

M(0) = 266.6 (263.6, 269.6) and λ = 0.01926 h−1 (0.01893, 0.0196).
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3.5.4 Parameterisation of the multi-stage mathematical model

Here we describe our methodology for estimating the parameters of the multi-stage mathematical

model Equation (3.2) and fitting the model solution to the experimental data.

3.5.4.1 Method for parameter estimation

The multi-stage model requires specification of the number of stages, the transition rates from

each stage to the successive stage, and the initial population in each stage. In this work, we aim

to achieve the best fit of the model to our data while keeping the number of model parameters

with distinct values to a minimum.

We partition the phases G1, eS and S/G2/M into the same number of stages, N . The mean

durations of the phases G1, eS and S/G2/M are denoted by Lr, Ly and Lg, respectively. The

transition rates between successive stages are set equal within each phase to N/Lr in G1, N/Ly

in eS, and N/Lg in S/G2/M. For each i = 1, . . . , N we denote the mean number of cells at time t

in stage i of G1 as Ri(t), of eS as Yi(t), and of S/G2/M as Gi(t). Therefore, R(t) =
∑N

i=1Ri(t),

Y (t) =
∑N

i=1 Yi(t), and G(t) =
∑N

i=1Gi(t). The parameters that we need to estimate are the

components of the vector

x = [R1(0) . . . RN (0) Y1(0) . . . YN (0) G1(0) . . . GN (0) Lr Ly Lg ]. (S1)

The parameters in Equation (S1) are either numbers of cells or phase durations, which are all

non-negative, so we require our optimisation algorithm to accept bound constraints. To find es-

timates for these parameters we use the MATLAB nonlinear least-squares solver lsqnonlin [122]

with the trust-region-reflective algorithm [123], which allows for bound constraints of the param-

eters. In the following, a dependent variable has the subscript ‘model’ or ‘data’ to distinguish

between model and data values of the variable. With non-negative weights w2, . . . , w7, we define

the vector objective function

F(x) = [ f1(x) w2f2(x) w3f3(x) w4f4(x) w5f5(x) w6f6(x) w7f7(x) ] (S2)

as the concatenation of the weight-scaled vectors

f1(x) =
[ (
Qmodel(x)−Qdata

)
(t1) . . . (Qmodel(x)−Qdata)(tn)

]
, (S3)

f2(x) =
[ (
Rmodel(x)−Rdata

)
(t1) . . .

(
Rmodel(x)−Rdata

)
(tn)

]
, (S4)

f3(x) =
[ (
Ymodel(x)− Ydata

)
(t1) . . .

(
Ymodel(x)− Ydata

)
(tn)

]
, (S5)
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f4(x) =
[ (
Gmodel(x)−Gdata

)
(t1) . . .

(
Gmodel(x)−Gdata

)
(tn)

]
, (S6)

f5(x) =
[ (
Gmodel(x)−Gdata

)
(tn)

]
, (S7)

f6(x) =
[
T − Lr − Ly − Lg

]
, (S8)

f7(x) =
[ (
Mmodel(x)−Mdata

)
(t1) . . .

(
Mmodel(x)−Mdata

)
(tn)

]
, (S9)

where:

1. Qmodel(x) is the ratio of the number of cells in G1 to the number of cells in eS/S/G2/M,

from the model solution;

2. Qdata is the ratio of the number of cells in G1 to the number of cells in eS/S/G2/M, from

the data;

3. Rmodel(x), Ymodel(x) and Gmodel(x) are the subpopulations of cells in G1, eS and S/G2/M,

respectively, from the model solution;

4. Rdata, Ydata and Gdata are the subpopulations of cells in G1, eS and S/G2/M, respectively,

from the data;

5. Mmodel(x) is the total cell population, from the model solution;

6. Mdata is the total cell population, from the data;

7. t1 < · · · < tn are the data time points over 48 hours;

8. T is the cell cycle time.

The vector f1 is used to fit the model to the ratio data, and the vectors f2, . . . , f4 are used to

fit the model to the three subpopulations corresponding to G1, eS and S/G2/M. The vector f5

fits the model to the S/G2/M subpopulation data at the final time point, and is only required

if the cells are starting to arrest in G1 near the end of the experiment due to the decreased pH

of the growth medium. The vector f6 constrains the estimated phase durations to sum to the

expected cell cycle time, and is generally required only when there are an insufficient number of

oscillations in Qdata(t) to bound the estimated cell-phase durations to physically realistic values.

The vector f7 is used to fit the model to the total population data, and is often not required as

a good fit usually follows from fitting to the subpopulations.

Note that the weights in the objective function Equation (S2) are specified prior to optimising

the estimates of the parameters in Equation (S1). The weights differ between data sets in order

to obtain the best fit of the multi-stage model to each data set.
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3.5.4.2 Specific estimated parameters

Here we provide a summary of the estimated parameters of the multi-stage model Equation (3.2)

corresponding to Figure 1, along with additional data sets from the C8161 (Figures 3.3–3.4),

WM983C (Figures 3.5–3.7) and 1205Lu (Figure 3.8–3.10) cell lines. The correspondence between

these figures and the data sets in Figures 3.5.5.1–3.5.5.2 is:

� Figure 3.1 - First plot in Well 1 of Experiment 2, Figures 3.5.5.1 and 3.5.5.1;

� Figure 3.3 - Second plot in Well 1 of Experiment 1, Figures 3.5.5.1 and 3.5.5.1;

� Figure 3.4 - First plot in Well 1 of Experiment 3, Figures 3.5.5.1 and 3.5.5.1;

� Figure 3.5 - Second plot in Well 1 of Experiment 4, Figures 3.5.5.1 and 3.5.5.2;

� Figure 3.6 - Fourth plot in Well 1 of Experiment 1, Figures 3.5.5.1 and 3.5.5.2;

� Figure 3.7 - Third plot in Well 1 of Experiment 2, Figures 3.5.5.1 and 3.5.5.2;

� Figure 3.8 - First plot in Well 1 of Experiment 4, Figures 3.5.5.2 and 3.5.5.2;

� Figure 3.9 - Fourth plot in Well 1 Experiment 4, Figures 3.5.5.2 and 3.5.5.2;

� Figure 3.10 - Fifth plot in Well 2 of Experiment 4, Figures 3.5.5.2 and 3.5.5.2.

3.5.4.2.1 C8161 cell line - Figure 3.1 The experimentally-determined mean cell cycle

time for C8161 is approximately T = 18 h [13]. We partition each cell cycle phase into N = 18

stages, giving a total of k = 54 stages for the complete cell cycle. In each phase we set the first

half of the stages, totalling 9 stages, to have equal numbers of cells, and the second half of the

stages to have equal numbers of cells. We therefore only require a total of six distinct population

parameters.

The vector objective function is F(x) = [ f1(x) 10−4f2(x) 10−4f3(x) 10−4f4(x) 10−3f5(x) ].

Starting with the parameters Ri(0) = Yi(0) = Gi(0) = 0.5 for i = 1, . . . , N , and Lr = Ly = Lg =

6, we obtain the parameterisation

Ri(0) =


15.48 for i = 1, . . . , 9,

12.93 for i = 10, . . . , 18,

Gi(0) =


2.51 for i = 1, . . . , 9,

3.48 for i = 10, . . . , 18,

Yi(0) =


12.94 for i = 1, . . . , 9,

5.41 for i = 10, . . . , 18,

Lr = 6.14 h,

Ly = 7.43 h,

Lg = 4.42 h.

(S10)
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All parameter estimates given in this document are presented to two decimal places. Note that

Lr + Ly + Lg = 17.99 h, in good agreement with the observed cell cycle time of 18 h.

3.5.4.2.2 C8161 cell line, different numbers of stages - Figure 3.2 In Figure 3.2 we

compare solutions of the multi-stage model for N = 2, 6, 10 and 14 stages per phase, with the

ratio Qdata. In fitting the model solution we use the same parameters as for Figure 3.1, except

0 12 24 36 48

0.5

1

Time, t (h)

Q
(t

)

Figure 3.2: Q(t) for C8161 experimental data and multi-stage model solutions with different
numbers of stages. Experimental data are shown as discs and the model solutions as curves. The model
solutions with 2, 6, 10 and 14 stages are the black, green, orange and purple curves, respectively.

the number of stages differ. For each number of stages, in each phase we set the first half of the

stages to have equal numbers of cells and the second half of the stages to have equal numbers

of cells, so that we therefore only require a total of 6 distinct population parameters. Starting

with the parameters Ri(0) = Yi(0) = Gi(0) = 0.5 for i = 1, . . . , N , and Lr = Ly = Lg = 6, the

parameterisation for N = 14 is

Ri(0) =


17.89 for i = 1, . . . , 9,

18.62 for i = 10, . . . , 18,

Gi(0) =


2.39 for i = 1, . . . , 9,

5.78 for i = 10, . . . , 18,

Yi(0) =


16.28 for i = 1, . . . , 9,

6.77 for i = 10, . . . , 18,

Lr = 6.17 h,

Ly = 7.27 h,

Lg = 4.64 h,

(S11)
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the parameterisation for N = 10 is

Ri(0) =


16.60 for i = 1, . . . , 9,

33.58 for i = 10, . . . , 18,

Gi(0) =


0 for i = 1, . . . , 9,

12.81 for i = 10, . . . , 18,

Yi(0) =


20.81 for i = 1, . . . , 9,

9.61 for i = 10, . . . , 18,

Lr = 6.22 h,

Ly = 7.06 h,

Lg = 4.92 h,

(S12)

the parameterisation for N = 6 is

Ri(0) =


16.42 for i = 1, . . . , 9,

66.47 for i = 10, . . . , 18,

Gi(0) =


0 for i = 1, . . . , 9,

26.34 for i = 10, . . . , 18,

Yi(0) =


44.97 for i = 1, . . . , 9,

0 for i = 10, . . . , 18,

Lr = 6.28 h,

Ly = 6.81 h,

Lg = 5.21 h,

(S13)

and the parameterisation for N = 2 is

Ri(0) =


195.22 for i = 1, . . . , 9,

107.41 for i = 10, . . . , 18,

Gi(0) =


0 for i = 1, . . . , 9,

0 for i = 10, . . . , 18,

Yi(0) =


241.05 for i = 1, . . . , 9,

0 for i = 10, . . . , 18,

Lr = 6.91 h,

Ly = 7.11 h,

Lg = 5.79 h.

(S14)

The corresponding solutions of the multi-stage model are shown in Figure 3.2.

Considering parameterisations of the model whereby in each phase we set the first half of the

stages to have equal numbers of cells and the second half of the stages to have equal numbers

of cells, the oscillations decay at a faster rate for a smaller number of stages per phase. A

higher number of stages produces a hypoexponential distribution with lower variance, resulting

in oscillations which are sustained for longer. Consequently, fewer than 18 stages per phase

results in a model solution with a poorer fit.
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3.5.4.2.3 C8161 cell line - Figure 3.3 The experimentally-determined mean cell cycle

time for C8161 is approximately T = 18 h [13]. We partition each cell cycle phase into N = 40

stages, giving a total of k = 120 stages for the complete cell cycle. In each phase we set the

first half of the stages, totalling 20 stages, to have equal numbers of cells, and the second half

of the stages to have equal numbers of cells. We therefore only require a total of six distinct

population parameters.

The vector objective function is F(x) = [ f1(x) 10−3f2(x) 10−3f3(x) 10−3f4(x) ]. Trialling

different parameters chosen randomly and uniformly from (0.1, 1) for Ri(0), Yi(0) and Gi(0),

and from (4, 8) for Lr, Ly and Lg, we obtain the parameterisation

Ri(0) =


2.56 for i = 1, . . . , 20,

1.99 for i = 21, . . . , 40,

Gi(0) =


0.90 for i = 1, . . . , 20,

0.98 for i = 21, . . . , 40,

Yi(0) =


5.37 for i = 1, . . . , 20,

4.13 for i = 21, . . . , 40,

Lr = 5.47 h,

Ly = 8.67 h,

Lg = 4.57 h.

(S15)

Note that Lr +Ly +Lg = 18.71 h, in good agreement with the observed cell cycle time of 18 h.
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Figure 3.3: C8161 experimental data and multi-stage model solution. (a)–(d) Images of a
proliferation assay with FUCCI-C8161 cells. Scale bar 200 µm. (e) M(t). Linear regression of lnM(t)
versus t provides R2. (f) R(t), Y (t) and G(t). (g) Q(t). Experimental data are shown as discs and the
model solutions as curves.
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3.5.4.2.4 C8161 cell line - Figure 3.4 The experimentally-determined mean cell cycle

time for C8161 is approximately T = 18 h [13]. We partition each cell cycle phase into N = 40

stages, giving a total of k = 120 stages for the complete cell cycle. In each phase we set the

first half of the stages, totalling 20 stages, to have equal numbers of cells, and the second half

of the stages to have equal numbers of cells. We therefore only require a total of six distinct

population parameters.

The vector objective function is F(x) = [ f1(x) 10−4f2(x) 10−4f3(x) 10−4f4(x) 10−3f5(x) ].

Trialling different parameters chosen randomly and uniformly from (0.1, 1) for Ri(0), Yi(0) and

Gi(0), and from (4, 8) for Lr, Ly and Lg, we obtain the parameterisation

Ri(0) =


3.21 for i = 1, . . . , 20,

4.44 for i = 21, . . . , 40,

Gi(0) =


1.31 for i = 1, . . . , 20,

1.34 for i = 21, . . . , 40,

Yi(0) =


5.03 for i = 1, . . . , 20,

2.59 for i = 21, . . . , 40,

Lr = 6.29 h,

Ly = 7.30 h,

Lg = 4.47 h.

(S16)

Note that Lr +Ly +Lg = 18.06 h, in good agreement with the observed cell cycle time of 18 h.
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Figure 3.4: C8161 experimental data and multi-stage model solution. (a)–(d) Images of a
proliferation assay with FUCCI-C8161 cells. Scale bar 200 µm. (e) M(t). Linear regression of lnM(t)
versus t provides R2. (f) R(t), Y (t) and G(t). (g) Q(t). Experimental data are shown as discs and the
model solutions as curves.
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3.5.4.2.5 WM983C cell line - Figure 3.5 The experimentally-determined mean cell cycle

time for WM983C is T = 27 h [13]. We partition each cell cycle phase into N = 10 stages,

giving a total of k = 30 stages for the complete cell cycle. From the start of each phase we set

every 2 successive stages to have equal numbers of cells. We therefore only require a total of 15

distinct population parameters.

The vector objective function is F(x) = [ f1(x) 10−3f2(x) 10−3f3(x) 10−3f4(x) 10 f6(x) ].

Starting with the parameters

Ri(0) =



0 for i = 1, 2,

0 for i = 3, 4,

29.23 for i = 5, 6,

19.66 for i = 7, 8,

0 for i = 9, 10,

Gi(0) =



11.04 for i = 1, 2,

0 for i = 3, 4,

4.29 for i = 5, 6,

24.41 for i = 7, 8,

0 for i = 9, 10,

Yi(0) =



33.02 for i = 1, 2,

0 for i = 3, 4,

0 for i = 5, 6,

0 for i = 7, 8,

0 for i = 9, 10,

Lr = 10.28 h,

Ly = 3.87 h,

Lg = 12.85 h,

(S17)

we obtain the same parameterisation Equation (S17). Note that Lr + Ly + Lg = 27.00 h, in

good agreement with the observed cell cycle time of 27 h.
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Figure 3.5: WM983C experimental data and multi-stage model solution. (a)–(d) Images of a
proliferation assay with FUCCI-WM983C cells. Scale bar 200 µm. (e) M(t). Linear regression of lnM(t)
versus t provides R2. (f) R(t), Y (t) and G(t). (g) Q(t). Experimental data are shown as discs and the
model solutions as curves.
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3.5.4.2.6 WM983C cell line - Figure 3.6 The experimentally-determined mean cell cycle

time for WM983C is T = 27 h [13]. We partition each cell cycle phase into N = 10 stages,

giving a total of k = 30 stages for the complete cell cycle. From the start of each phase we set

every 5 successive stages to have equal numbers of cells. We therefore only require a total of 6

distinct population parameters.

The vector objective function is F(x) = [ f1(x) 10−3f2(x) 10−3f3(x) 10−3f4(x) 10−3f7(x) ].

Trialling different parameters chosen randomly and uniformly from (0.1, 1) for Ri(0), Yi(0) and

Gi(0), and from (4, 20) for Lr, Ly and Lg, we obtain the parameterisation

Ri(0) =


12.82 for i = 1, . . . , 5,

13.13 for i = 6, . . . , 10,

Gi(0) =


18.10 for i = 1, . . . , 5,

7.51 for i = 6, . . . , 10,

Yi(0) =


7.86 for i = 1, . . . , 5,

8.47 for i = 6, . . . , 10,

Lr = 9.06 h,

Ly = 6.50 h,

Lg = 15.79 h.

(S18)

Note that Lr +Ly +Lg = 31.35 h, in good agreement with the observed cell cycle time of 27 h.
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Figure 3.6: WM983C experimental data and multi-stage model solution. (a)–(d) Images of a
proliferation assay with FUCCI-WM983C cells. Scale bar 200 µm. (e) M(t). Linear regression of lnM(t)
versus t provides R2. (f) R(t), Y (t) and G(t). (g) Q(t). Experimental data are shown as discs and the
model solutions as curves.
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3.5.4.2.7 WM983C cell line - Figure 3.7 The experimentally-determined mean cell cycle

time for WM983C is T = 27 h [13]. We partition each cell cycle phase into N = 20 stages,

giving a total of k = 60 stages for the complete cell cycle. From the start of each phase we set

every 10 successive stages to have equal numbers of cells. We therefore only require a total of 6

distinct population parameters.

The vector objective function is F(x) = [ f1(x) 10−3f2(x) 10−3f3(x) 10−3f4(x) 10−2f5(x) ].

Trialling different parameters chosen randomly and uniformly from (0.1, 1) for Ri(0), Yi(0) and

Gi(0), and from (4, 20) for Lr, Ly and Lg, we obtain the parameterisation

Ri(0) =


3.47 for i = 1, . . . , 10,

2.35 for i = 11, . . . , 20,

Gi(0) =


2.68 for i = 1, . . . , 10,

1.64 for i = 11, . . . , 20,

Yi(0) =


1.10 for i = 1, . . . , 10,

2.09 for i = 10, . . . , 20,

Lr = 9.22 h,

Ly = 5.46 h,

Lg = 14.44 h.

(S19)

Note that Lr +Ly +Lg = 29.12 h, in good agreement with the observed cell cycle time of 27 h.
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Figure 3.7: WM983C experimental data and multi-stage model solution. (a)–(d) Images of a
proliferation assay with FUCCI-WM983C cells. Scale bar 200 µm. (e) M(t). Linear regression of lnM(t)
versus t provides R2. (f) R(t), Y (t) and G(t). (g) Q(t). Experimental data are shown as discs and the
model solutions as curves.
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3.5.4.2.8 1205Lu cell line - Figure 3.8 The experimentally-determined mean cell cycle

time for 1205Lu is T = 36 h [13]. We partition each cell cycle phase into N = 20 stages, giving

a total of k = 60 stages for the complete cell cycle. From the start of each phase we set every 5

successive stages to have equal numbers of cells. We therefore only require a total of 12 distinct

population parameters.

The vector objective function is F(x) = [ f1(x) 10−2f2(x) 10−2f3(x) 10−2f4(x) 0.5 f6(x) ].

Starting with the parameters

Ri(0) =



0.27 for i = 1, . . . , 5,

0 for i = 6, . . . , 10,

21.78 for i = 11, . . . , 15,

0 for i = 16, . . . , 20,

Gi(0) =



3.15 for i = 1, . . . , 5,

5.17 for i = 6, . . . , 10,

2.08 for i = 11, . . . , 15,

0.45 for i = 16, . . . , 20,

Yi(0) =



4.73 for i = 1, . . . , 5,

5.39 for i = 6, . . . , 10,

0 for i = 11, . . . , 15,

2.49 for i = 16, . . . , 20,

Lr = 20.97 h,

Ly = 10.07 h,

Lg = 10.52 h,

(S20)

we obtain the parameterisation

Ri(0) =



0 for i = 1, . . . , 5,

13.79 for i = 6, . . . , 10,

5.73 for i = 11, . . . , 15,

4.19 for i = 16, . . . , 20,

Gi(0) =



2.31 for i = 1, . . . , 5,

0 for i = 6, . . . , 10,

3.52 for i = 11, . . . , 15,

0.63 for i = 16, . . . , 20,

Yi(0) =



9.39 for i = 1, . . . , 5,

0 for i = 6, . . . , 10,

0 for i = 11, . . . , 15,

5.04 for i = 16, . . . , 20,

Lr = 19.61 h,

Ly = 7.99 h,

Lg = 10.76 h,

(S21)

Note that Lr +Ly +Lg = 38.36 h, in good agreement with the observed cell cycle time of 36 h.
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Figure 3.8: 1205Lu experimental data and multi-stage model solution. (a)–(d) Images of a
proliferation assay with FUCCI-1205Lu cells. Scale bar 200 µm. (e) M(t). Linear regression of lnM(t)
versus t provides R2. (f) R(t), Y (t) and G(t). (g) Q(t). Experimental data are shown as discs and the
model solutions as curves.
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3.5.4.2.9 1205Lu cell line - Figure 3.9 The experimentally-determined mean cell cycle

time for 1205Lu is T = 36 h [13]. We partition each cell cycle phase into N = 20 stages, giving

a total of k = 60 stages for the complete cell cycle. From the start of each phase we set every 4

successive stages to have equal numbers of cells. We therefore only require a total of 15 distinct

population parameters.

The vector objective function is F(x) = [ f1(x) 10−2f2(x) 10−2f3(x) 10−2f4(x) 0.6 f6(x) ].

Trialling different parameters chosen randomly and uniformly from (0.1, 1) for Ri(0), Yi(0) and

Gi(0), and from (4, 20) for Lr, Ly and Lg, we obtain the parameterisation

Ri(0) =



0 for i = 1, . . . , 4,

23.75 for i = 5, . . . , 8,

0 for i = 9, . . . , 12,

13.54 for i = 13, . . . , 16,

0.92 for i = 17, . . . , 20,

Gi(0) =



9.94 for i = 1, . . . , 4,

0 for i = 5, . . . , 8,

3.24 for i = 9, . . . , 12,

1.46 for i = 13, . . . , 16,

0 for i = 17, . . . , 20,

Yi(0) =



12.55 for i = 1, . . . , 4,

0 for i = 5, . . . , 8,

0 for i = 9, . . . , 12,

0 for i = 13, . . . , 16,

0.67 for i = 17, . . . , 20,

Lr = 19.20 h,

Ly = 7.98 h,

Lg = 10.89 h,

(S21)

Note that Lr +Ly +Lg = 38.07 h, in good agreement with the observed cell cycle time of 36 h.
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Figure 3.9: 1205Lu experimental data and multi-stage model solution. (a)–(d) Images of a
proliferation assay with FUCCI-1205Lu cells. Scale bar 200 µm. (e) M(t). Linear regression of lnM(t)
versus t provides R2. (f) R(t), Y (t) and G(t). (g) Q(t). Experimental data are shown as discs and the
model solutions as curves.
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3.5.4.2.10 1205Lu cell line - Figure 3.10 The experimentally-determined mean cell cycle

time for 1205Lu is T = 36 h [13]. We partition each cell cycle phase into N = 12 stages, giving

a total of k = 36 stages for the complete cell cycle. From the start of each phase we set every 3

successive stages to have equal numbers of cells. We therefore only require a total of 12 distinct

population parameters.

The vector objective function is F(x) = [ f1(x) 3×10−3f2(x) 3×10−3f3(x) 3×10−3f4(x) 0.2 f6(x) ].

Trialling different parameters chosen randomly and uniformly from (0.1, 1) for Ri(0), Yi(0) and

Gi(0), and from (4, 20) for Lr, Ly and Lg, we obtain the parameterisation

Ri(0) =



0 for i = 1, . . . , 3,

24.89 for i = 4, . . . , 6,

25.23 for i = 7, . . . , 9,

0 for i = 10, . . . , 12,

Gi(0) =



2.68 for i = 1, . . . , 3,

20.35 for i = 4, . . . , 6,

0 for i = 7, . . . , 9,

0 for i = 10, . . . , 12,

Yi(0) =



20.14 for i = 1, . . . , 3,

0 for i = 4, . . . , 6,

0 for i = 7, . . . , 9,

0 for i = 10, . . . , 12,

Lr = 19.18 h,

Ly = 9.08 h,

Lg = 10.99 h,

(S22)

Note that Lr +Ly +Lg = 39.25 h, in good agreement with the observed cell cycle time of 36 h.
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Figure 3.10: 1205Lu experimental data and multi-stage model solution. (a)–(d) Images of a
proliferation assay with FUCCI-1205Lu cells. Scale bar 200 µm. (e) M(t). Linear regression of lnM(t)
versus t provides R2. (f) R(t), Y (t) and G(t). (g) Q(t). Experimental data are shown as discs and the
model solutions as curves.
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3.5.5 All experimental data

Here we provide all of our new experimental data in the following forms:

� The total number of cells M(t);

� The ratio Q(t) of the number of cells in G1 to the combined number of cells in eS and

S/G2/M;

� The discrete Fourier transform of Q(t).

These data are obtained from the three cell lines C8161, WM983C and 1205Lu, and four inde-

pendent experiments. In Experiments 1–3 we use one well of a 24-well plate, and in Experiment

4 we use two wells of a 24-well plate. From each well we obtain time-series stacks at six different

positions. These data are available in Supporting Information 2–4, in the form of the number

of cells in each phase, G1, eS and S/G2/M, at each time point.

In every experiment, the population growth M(t) appears to be exponential, and the ratio

Q(t) reveals the presence of inherent synchronisation. In a given well, the six different positions

can exhibit different degrees of inherent synchronisation. Further, the synchronisation can be

out of phase between the different positions in a given well, and between the different wells.

Note that for some of the data there are a couple of consecutive time points which show a

much higher total number of cells than expected, and a corresponding lower ratio in the ratio

data. This is due to a large decrease in the signal-to-noise ratio in the green channel at these

time points. The specific cause of this is unknown, however fluorescence microscopy is subject

to such variations in the signal-to-noise ratio at times. As there is such a large reduction in the

signal-to-noise ratio, it is not possible to reduce the unwanted noise without compromising the

signal quality.

We provide the discrete Fourier transforms of Q(t) for every data set to quantitatively demon-

strate the existence of oscillating subpopulations in our experimental data. The transforms are

obtained using the fast Fourier transform fft function [124] in MATLAB, without spectral in-

terpolation. For clarity, we would like the amplitude of the Fourier transform to be zero at zero

frequency, so we apply the transform to the time series Q(t) − Q(t), where Q(t) is the mean

value of the time series. The transformed data are presented as single-sided spectra showing the

magnitude of the Fourier transform, A(f), as a function of frequency, f , where 0 h−1 ≤ f ≤ 2

h−1. Note that the Nyquist frequency is 2 h−1.

The Fourier transforms all show dominant frequencies corresponding to periods of either 16,

24 or 48 h, which clearly indicate the presence of oscillations in Q(t) for each of our data sets,
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in accordance with the existence of inherent synchronisation. These periods are a reasonable

approximation of the experimental cell-cycle durations of the cell lines. To increase the resolution

of the frequencies, and thereby obtain better estimates of the periods of the oscillations, a time

interval between the time-series images which is less than 15 minutes is required.
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3.5.5.1 C8161 cell line
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Figure 3.11: C8161 experimental data. Total number of cells M(t). Each of the six rows corresponds
to a different position in the specified well.
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Figure 3.12: C8161 experimental data. Ratio Q(t) of the number of cells in G1 to the number of
cells in eS and S/G2/M. Each of the six rows corresponds to a different position in the specified well.
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Figure 3.13: C8161 experimental data. Magnitude of the Fourier transform, A(f), of the ratio
Q(t)−Q(t), as a function of frequency, f . Each of the six rows corresponds to a different position in the
specified well.
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3.5.5.2 WM983C cell line
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Figure 3.14: WM983C experimental data. Total number of cells M(t). Each of the six rows
corresponds to a different position in the specified well.
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Figure 3.15: WM983C experimental data. Ratio Q(t) of the number of cells in G1 to the number
of cells in eS and S/G2/M. Each of the six rows corresponds to a different position in the specified well.
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Figure 3.16: WM983C experimental data. Magnitude of the Fourier transform, A(f), of the ratio
Q(t)−Q(t), as a function of frequency, f . Each of the six rows corresponds to a different position in the
specified well.
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Figure 3.17: 1205Lu experimental data. Total number of cells M(t). Each of the six rows corre-
sponds to a different position in the specified well.
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Figure 3.18: 1205Lu experimental data. Ratio Q(t) of the number of cells in G1 to the number of
cells in eS and S/G2/M. Each of the six rows corresponds to a different position in the specified well.
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Figure 3.19: 1205Lu experimental data. Magnitude of the Fourier transform, A(f), of the ratio
Q(t)−Q(t), as a function of frequency, f . Each of the six rows corresponds to a different position in the
specified well.
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CHAPTER 4

Examining go-or-grow using fluorescent cell-cycle indicators and cell

cycle-inhibiting drugs

An article published as a Letter in Biophysical Journal

Vittadello ST, McCue SW, Gunasingh G, Haass NK, Simpson MJ. Examining go-or-grow using

fluorescent cell-cycle indicators and cell cycle-inhibiting drugs. Biophysical Journal. 2020;118:1243–

1247.

Our cover image was selected for the cover of the 24 March 2020 issue of the Biophysical Journal.

Abstract

The go-or-grow hypothesis states that adherent cells undergo reversible phenotype switching

between migratory and proliferative states, with cells in the migratory state being more motile

than cells in the proliferative state. Here we examine go-or-grow in 2-D in vitro assays using

melanoma cells with fluorescent cell-cycle indicators and cell cycle-inhibiting drugs. We analyse

the experimental data using single-cell tracking to calculate mean diffusivities, and compare

motility between cells in different cell-cycle phases and in cell-cycle arrest. Unequivocally, our

analysis does not support the go-or-grow hypothesis. We present clear evidence that cell motility

is independent of the cell-cycle phase, and non-proliferative arrested cells have the same motility

as cycling cells.
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4.1 Introduction

The go-or-grow hypothesis, also referred to as the phenotype switching model or the migra-

tion/proliferation dichotomy, proposes that adherent cells reversibly switch between migratory

and proliferative phenotypes [57], exhibiting higher motility in the migratory state as motile

cells are not using energy for proliferation [57–61]. Previous experimental investigations of the

go-or-grow hypothesis are conflicting, as some studies support the hypothesis [57, 62, 63] while

others refute it [13,64,65].

Go-or-grow was initially proposed as an explanation for the apparent mutual exclusivity of

migration and proliferation for astrocytoma cells, first in 2-D in vitro experiments [63], and

later for in vivo investigations [62]. In these early studies, claims for evidence of go-or-grow are

based on the comparison of the subpopulation of cells at the perimeter of the cell population,

where cells are considered to be invasive, with the subpopulation of cells in the central region,

where cells are considered non-invasive. Data suggest that the proliferation rate is lower at the

perimeter and higher in the centre, leading to the assertion that the more migratory cells are

less proliferative. The experimental data, however, only indicate that the subpopulation at the

perimeter is less proliferative as a whole compared with the centre, and therefore we cannot

conclude definitively that the more migratory cells are less proliferative.

To test for evidence of go-or-grow it is necessary to look at the single-cell level, as in subse-

quent studies [13,64,65], where single-cell tracking is used with single-cell migration measured in

terms of the net displacement of the cell trajectory. These three studies, none of which support

go-or-grow, involve 2-D and 3-D in vitro experiments with medulloblastoma cells [65], 2-D in

vitro experiments with mesothelioma, melanoma, and lung cancer cells [64], and 2-D and 3-D

in vitro experiments with melanoma cells [13]. Studies of tumour heterogeneity in melanoma

suggest that cells may reversibly switch between invasive and proliferative phenotypes [57]. As

melanoma is highly metastatic, forms tumours that are very heterogeneous, and is well known

to respond to MAPK inhibitors which induce G1 arrest [66, 67], melanoma cells are a prime

candidate for studying the go-or-grow hypothesis.

Confirmation of go-or-grow would have important implications for anti-cancer treatments

employing cell cycle-inhibiting drugs. For most eukaryotic cells, the cell cycle is a sequence of

four discrete phases (Fig. 4.1a), namely gap 1 (G1), synthesis (S), gap 2 (G2) and mitosis (M).

Cell-cycle arrest (Fig. 4.1d), which occurs when progression through the cell cycle halts [24],

can be induced by cell cycle-inhibiting drugs [13, 33, 120]. An arrested cell is not proliferative,

so the cell’s energy could be utilised for migration, potentially leading to an exacerbation of
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Figure 4.1: Experimental data and mean diffusivities. (a) The cell cycle, indicating the colour of
FUCCI in each phase. (b)–(c) Experimental images of cycling C8161 cells; cell counts at 0 and 48 h are
331 and 1878, respectively. (d) The cell cycle, indicating the colour of FUCCI in each phase together with
arrest in G1. (e)–(f) Experimental images of C8161 cells in G1 arrest (30 nM trametinib); cell counts at
0 and 48 h are 261 and 469, respectively. (g)–(i) 50 cell trajectories of G1 cycling, S/G2/M cycling and
G1-arrested (30 nM trametinib) C8161 cells, respectively. (j)–(l) No difference in mean diffusivity, 〈D〉,
for C8161, WM983C and 1205Lu cells, respectively. For each 2-h time interval, 〈D〉 is the mean of all
individual diffusivities D corresponding to cells with trajectories within the time interval. In each case
we show 〈D〉, and report the variability using 〈D〉 plus or minus the sample standard deviation. Data
for each experimental condition are offset with respect to the time-interval axis for clarity. Scale bar 200
µm.
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metastasis [59].

The go-or-grow hypothesis also has important implications for mathematical models of collec-

tive cell invasion in a population of migratory and proliferative cells. Such models of cell invasion

are often based on the Fisher–Kolmogorov–Petrovskii–Piskunov (FKPP) equation [38,39,51,74],

∂u

∂t
= D

∂2u

∂x2
+ λu

(
1− u

K

)
, (4.1)

where x is position, t is time, u(x, t) > 0 is cell density, D > 0 is the diffusivity, λ > 0 is the

proliferation rate, and K > 0 is the carrying-capacity density. Eq. (4.1) and related adaptations,

including stochastic analogues [40, 41], have been successfully used to model cell migration in

vitro and in vivo [43–46,85]. A key assumption underlying these models is that D is independent

of the cell-cycle phase, which may not hold if cells are subject to go-or-grow as then a cycling,

therefore non-arrested, cell may become less motile as it progresses through the cell cycle and

nears cell division [13].

In this work we rigorously examine the go-or-grow hypothesis for adherent melanoma cells,

for which phenotype switching between migratory and proliferative states is proposed to oc-

cur [57]. We use melanoma cell lines in this study as melanoma is the prototype for the pheno-

type switching model and is highly responsive to G1 arrest-inducing MEK inhibitors, such as

trametinib. Melanoma cells are therefore an ideal candidate for studying go-or-grow [57,59,68].

Our experimental data are obtained from single-cell tracking in 2-D in vitro assays. We conduct

our experiments in 2-D as it is the natural situation in which to commence a new experimental

study, before utilising the knowledge gained in more complicated 3-D or in vivo experiments.

Indeed, experimental studies of cell migration are often conducted in 2-D in vitro assays for

several reasons: the observed cell migration is partly representative of cell migration in vivo;

the assays are amenable to standard laboratory techniques, such as live-cell microscopy; and the

relative ease of image analysis, such as cell counting and single-cell tracking [20–22]. Further,

cell migration in 3-D may be affected by the properties of a 3-D matrix, which is not present

in 2-D assays. For example, cell migration in 3-D through constricting pores can damage the

nucleus and thereby cause a delay in cell division as the nucleus undergoes repair, which could

be interpreted incorrectly as evidence for go-or-grow [125].

We employ fluorescent ubiquitination-based cell cycle indicator (FUCCI) [30], which consists

of two reporters enabling visualisation of the cell cycle of individual live cells: when the cell

is in G1 the nucleus fluoresces red, and when the cell is in S/G2/M the nucleus fluoresces

green (Fig. 4.1(a)). During early S, called eS, both of the red and green reporters are active

producing yellow. FUCCI allows us to study cell motility in G1 separately from cell motility in
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S/G2/M [13,69,70,85]. Specifically, we investigate cycling cells for differences in motility when

the cells are in G1 compared with S/G2/M. Further, given the potential for an arrested cell to

become more motile, we use a cell cycle-inhibiting drug to effect G1 arrest, and compare the

motility of the arrested cells with cycling cells. Note that FUCCI does not provide delineation

of S, G2, and M, so our motility measurements for these phases are combined into S/G2/M.

Our methodology for examining go-or-grow is novel in a number of ways. We induce G1

arrest in cells to determine whether non-proliferative cells have higher motility than cycling

cells. We use experimental data to show that our three cell lines have distinctly different cell-

cycle durations, ratios of duration in G1 to S/G2/M, and migration characteristics, all of which

may affect motility under the go-or-grow hypothesis. Importantly, the data set we generate and

analyse is large: for each cell line and experimental condition we randomly sample 50 single-cell

trajectories for analysis out of more than 103 trajectories. In total, we analyse 450 carefully-

collected trajectories for evidence of go-or-grow. Using these trajectories we carefully estimate

diffusivities by first accounting for anisotropy in the cell migration, so that our estimates are

based on time frames for which the cells are undergoing free diffusion.

4.2 Results and Discussion

Our data consist of time-series images, acquired every 15 min for 48 h, from 2-D proliferation

assays using the melanoma cell lines C8161, WM983C and 1205Lu [13,82,84,85], which have re-

spective mean cell-cycle durations of approximately 21, 23 and 37 h [13]. The cell lines have very

different ratios of durations in G1 to S/G2/M (Supplementary Material). Fig. 4.1(b)–(c) shows

images of an assay with cycling C8161 cells at 0 and 48 h, illustrating the red, yellow and green

nuclei corresponding to cells in G1, eS and S/G2/M, respectively. For comparison, Fig. 4.1(e)–

(f) shows images of an assay with G1-arrested C8161 cells treated with the cell cycle-inhibiting

drug trametinib (30 nM), illustrating that most cells are arrested in G1, appearing red. We use

the lowest possible concentration of trametinib to induce G1 arrest for the experiment duration

to minimise other effects. Consequently, each cell eventually returns to cycling, illustrated by

the small proportion of green cells (Fig. 4.1(e)–(f)). These few green cells will eventually divide

with both daughter cells arresting in G1. We quantitatively confirm the G1 arrest by comparing

the cell counts between the experiments with cycling cells and arrested cells. For the cycling

cells there is a 5.7-fold increase in the number of cells over 48 h (Fig. 4.1(b)–(c)), whereas there

is only a 1.8-fold increase in the number of arrested cells over 48 h (Fig. 4.1(e)–(f)). The 1.8-fold

increase in the population of G1-arrested cells is expected as we use the lowest possible concen-

tration of trametinib. Consequently, a small subpopulation of cells may not be arrested at the
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start of the experiment, and cells may recommence cycling during the experiment, producing a

small increase in the population.

For each cell line, we employ single-cell tracking to obtain 50 trajectories of cells for each

experimental condition: (i) G1 cycling; (ii) S/G2/M cycling; and (iii) G1 arrest. Each trajectory

is selected randomly without replacement from the set of all trajectories for a given cell line and

experimental condition. For the cycling cells, trajectories are recorded for the complete duration

of the G1 or S/G2/M phase. For the G1-arrested cells, the duration of the trajectory corresponds

to the maximum duration that the cell is arrested within the 48-h duration of the experiment

(Supplementary Material).

In Fig. 4.1(g)–(i) we visualise the trajectories for cycling C8161 in G1 and S/G2/M, and

C8161 in G1-arrest. The trajectories are translated so that their initial positions are at the

origin. The trajectories of the G1-arrested cells are generally much longer than those for the

cycling cells, as the arrested cells reside in G1 for a much longer duration than cycling cells

reside in G1 or S/G2/M. Specifically, the approximate mean duration of cycling C8161 cells in

G1 is 5 h, in S/G2/M is 6 h [13], and for cells in G1 arrest during the 48 h of the experiment

is 34 h (Supplementary Material). Therefore, to easily compare the trajectories of G1-arrested

cells with cycling cells in G1, we show within the inset the truncated trajectories of the G1

arrested cells. The trajectories are truncated to a duration equal to the mean duration of the

corresponding trajectories for cycling cells in G1. Based on these data, the migration is isotropic,

without any drift, and independent of the cell cycle phase. We now quantify these observations.

For each cell line and experimental condition, we find that the cell migration is isotropic and

directional persistence dissipates within a relatively short lag time of 1 h (Supplementary Mate-

rial). From each individual cell trajectory we estimate D, using the mean square displacement

as a function of lag time, within 2-h time intervals. The intervals begin at the initial point of the

trajectory, t = 0 h, with successive intervals offset by 1 h. We always use lag times from 1–2 h

to guarantee the absence of persistence (Supplementary Material). We then calculate the mean

diffusivity 〈D〉 for each time interval by averaging our estimates of D for those trajectories that

extend to the end of that interval.

Fig. 4.1(j)–(l) shows, for each cell line, 〈D〉 for successive time intervals. From these data

we arrive at clear conclusions (Supplementary Material), none of which are consistent with the

go-or-grow hypothesis:

� For each cell line and experimental condition, there is little variation in 〈D〉 over time, indi-

cating that there is no appreciable change in motility during each cell-cycle phase and during

G1 arrest (Supplementary Material).
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� For each cell line, there is little variation in 〈D〉 between cycling cells in G1, cycling cells

in S/G2/M, and G1-arrested cells. The lack of variability in 〈D〉 is remarkable, and clearly

demonstrates that cells in G1 are not more motile than cells in S/G2/M, and that G1-arrested

cells at no time become more migratory than the cycling cells.

� Even though our three cell lines have very different proliferation and migration characteristics

(Supplementary Material), our estimate of 〈D〉 is remarkably consistent across the three very

different cell lines.

In summary, our analysis of cell migration in 2-D assays using three melanoma cell lines

does not support the go-or-grow hypothesis. We find that cell motility is independent of the

cell-cycle phase, so that the implication from go-or-grow that cells are more motile in G1 than

in S/G2/M when they are nearing cell division is not supported by our data. Notably, there is

no change in cell motility when we effect drug-induced G1 arrest in the cells, again displaying a

lack of support for the go-or-grow hypothesis.

4.3 Supplementary Material

4.3.1 Materials and Methods

4.3.1.1 Experiments

Our experimental data consist of microscopy time-series images of two-dimensional cell prolif-

eration assays using the three melanoma cell lines C8161, WM983C and 1205Lu [13, 82, 84, 85],

which have cell cycle durations of approximately 21, 23 and 37 h, respectively [13]. Here we

discuss in detail our experimental set-up and analysis of the time-series images.

4.3.1.1.1 Cell culture The human melanoma cell lines C8161 (kindly provided by Mary

Hendrix, Chicago, IL, USA), WM983C and 1205Lu (both kindly provided by Meenhard Herlyn,

Philadelphia, PA, USA) were genotypically characterised [101–104], grown as described in [106],

and authenticated by STR fingerprinting (QIMR Berghofer Medical Research Institute, Herston,

Australia).

We maintain the cell cultures to prevent any induced synchronisation from cell cycle arrest

in G1 phase. In general, such induced synchronisation can occur through various culture con-

ditions, namely contact inhibition of proliferation at relatively high population densities [119],

decreased pH of the growth medium due to the concentration of acidic cell-metabolites such as

lactic acid [118], and reduced availability of nutrients such as serum [33]. We prevent induced
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synchronisation by passaging the cells every three days, and on the day prior to setting up an

experiment, to maintain a subconfluent cell density and a fresh growth medium.

4.3.1.1.2 Fluorescent ubiquitination-based cell cycle indicator To generate stable

melanoma cell lines expressing the FUCCI constructs, mKO2-hCdt1 (30-120) and mAG-hGem

(1-110) [30] were subcloned into a replication-defective, self-inactivating lentiviral expression

vector system as previously described [105]. The lentivirus was produced by co-transfection of

human embryonic kidney 293T cells. High-titer viral solutions for mKO2-hCdt1 (30/120) and

mAG-hGem (1/110) were prepared and used for co-transduction into the melanoma cell lines,

and subclones were generated by single-cell sorting [13,32,106].

4.3.1.1.3 Proliferation assay: cycling cells Cells are seeded from subconfluent culture

flasks onto a 24-well plate at a density of 104 cells cm−2, with 2.5 ml of medium per well, which

is 2.5 times the volume of the standard protocol. After incubating the plate for 24 h at 37 ◦C

with 5% CO2, live-cell images are acquired at 15 min intervals over 48 h at six different positions

within the well. For each cell line we performed four independent experiments, with one technical

replicate in three experiments and two technical replicates in the fourth experiment. Therefore,

for each cell line we have 30 sets of time-series images.

Our preliminary experiments used a standard 1 ml of medium in each well, however the cells

started to arrest in G1 around 48 h after seeding, which is likely due to decreased pH of the

medium from the lactic acid concentration. G1 arrest is visually obvious when viewing a time

series of images of FUCCI cells as the cycling cells are either green or become green according to

the duration of G1, while the G1-arrested cells remain red. We therefore performed preliminary

tests in an attempt to prevent the cells from arresting in G1 during the experiment, and found

that this is possible by increasing the volume of medium in each well to the workable maximum

of 2.5 ml, given the volume of each well is 3 ml. The result of the increased volume of medium is

that the cells do not begin to arrest in G1 until around 72 h following seeding, which provides us

with almost 48 h of imaging using cells that have minimal G1 arrest. Our definition of minimal

G1 arrest is that there is no visually detectable arrest due to culture conditions, such as low

extracellular pH, throughout the time series images except perhaps within the last hour of the

experiment.

4.3.1.1.4 Proliferation assay: G1-arrested cells The experimental set up is identical to

that for the cycling cells, except that the MEK inhibitor trametinib, which causes G1 cell-cycle

arrest, is added at a concentration of 30 nM. Trametinib is added 3.5 h after seeding, to allow
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the cells to attach to the plate before becoming affected by the drug. In order to minimise

other effects of trametinib we employ the minimum concentration of the drug that causes G1

arrest. Preliminary testing found that the optimal concentration for our cell lines is 30 nM. For

each cell line, we performed two independent experiments, with two technical replicates in each

experiment. Therefore, for each cell line we have 24 sets of time-series images.

4.3.1.1.5 Summary of experimental conditions Our experiments provide nine experi-

mental conditions with which to examine the go-or-grow hypothesis:

(1) C8161 in G1, cycling

(2) C8161 in S/G2/M, cy-

cling

(3) C8161 in G1, arrested

(4) WM983C in G1, cycling

(5) WM983C in S/G2/M, cy-

cling

(6) WM983C in G1, arrested

(7) 1205Lu in G1, cycling

(8) 1205Lu in S/G2/M, cy-

cling

(9) 1205Lu in G1, arrested

4.3.1.2 Image processing and analysis

Our microscopy data consist of multi-channel time-series stacks of images obtained from 2-D

proliferation assays. FUCCI cells in G1 phase appear in the red channel and in S/G2/M phase

appear in the green channel. We consider nine experimental conditions: namely, for each of

the three cell lines C8161, WM983C and 1205Lu we have cycling cells in G1, cycling cells in

S/G2/M, and arrested cells in G1.

It is standard terminology in the microscopy field to refer to an object of interest, such as

the image of a cell or cell nucleus, within a microscopy image as a spot [126, 127]. Note that

the spots in the red and green channels of our microscopy images correspond to the cell nuclei

and not to the whole cell. Nevertheless, throughout this document we refer to the red and green

spots interchangeably as cell nuclei or cells.

The microscopy data are processed and analysed with Fiji/ImageJ and MATLAB with as

much automation as possible. Two main procedures are required. The first procedure is to

determine, in each image, the centroids of the spots corresponding to cells in the G1, eS and

S/G2/M phases. This requires images which have been processed and segmented to remove as

much of the background noise as possible. The second procedure is to obtain 50 cell trajectories

for each of the nine experimental conditions using single-cell tracking, and to then use the

spot centroids from the first procedure to authenticate the spots identified from tracking. The

authentication is used to remove spots in the trajectories which correspond to background noise

rather than a cell, and to remove spots from the G1 (red) and S/G2/M (green) trajectories
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which are actually yellow and therefore appear in both of the red and green channels.

4.3.1.2.1 Centroids of cells The first procedure, which is completely automated within

ImageJ and MATLAB, is to identify the spots in the images which correspond to cells and

not background noise. This is achieved by preprocessing the images to maximise the signal-to-

noise ratio, then thresholding the images to remove the remaining background noise, and finally

determining the centroids of all spots in the images. The following describes this in detail.

Preprocessing: To maximise the accuracy in identifying spots, which in our case are images

of cell nuclei, we enhance the quality of the microscopy images using ImageJ as follows.

1. Import the time-series stack with the Bio-Formats Importer plug-in, splitting the red

and green channels.

2. Apply five iterations of Subtract Background with rolling-ball radius of 5 pixels.

3. Apply Enhance Contrast with the Equalize Histogram option selected.

4. Apply the Gaussian Blur filter with sigma = 1.

Segmentation: We now identify the spots in the processed images using ImageJ.

1. Apply Auto-thresholding using the Yen method, selecting the option to “calculate

the threshold for each image”.

2. The resulting binary images are then refined by applying the following commands in

the prescribed order.

(a) Watershed.

(b) Fill Holes.

(c) Open, with iterations = 10 and count = 5.

(d) Watershed.

Analysis: For every image in the segmented binary time-series stacks we count the number

of spots in each of the red and green channels using ImageJ. We then use MATLAB to

determine which spots are yellow.

1. For each of the red and green channels, apply Analyze Particles in ImageJ with size

range 5–∞ pixels2 and the option “limit to threshold” selected. Output the stack

position and the centroid of every spot in each channel.

2. We now need to determine which spots are red, yellow or green. A spot is red

if it appears in the red channel and there is no corresponding spot in the green
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channel. Similarly, a spot is green if it appears in the green channel and there is no

corresponding spot in the red channel. A spot is then yellow if it appears in both of

the red and green channels.

Identifying whether a spot is yellow, and therefore appearing in both of the red and

green channels, is complicated by the possible alteration of the shape of the spot

during image processing. While we process every image in exactly the same way, the

original microscopy images may have different signal-to-noise ratios between the red

and green channels. Consequently, there may be a subtle difference in the shape of a

spot depending on the channel in which it is viewed, and thereby a difference in the

centroid of the spot in each channel.

We therefore use MATLAB to determine which spots are red, yellow or green, using

the stack position and centroid of each spot. The first step is to locate the yellow spots

by choosing each red spot in turn and searching the green channel for a corresponding

spot in the same stack position as the red spot. Once the yellow spots are identified,

the remaining spots are either red or green. Details of this procedure follow below.

(a) Choose a spot from the red channel and then search the green channel, in the

same stack position as the red spot, for a corresponding spot such that the

Euclidean distance between the centroids of the two spots is not greater than

3 pixels, noting that the pixel size in our images is 1.8150 µm. This distance

allows for a location error of the centroids of the red and green spots, whereby

the centroids may be translated up to one pixel from the original centroid of the

yellow spot in the unprocessed images. Placing the original yellow centroid at

the centre of a 3×3 grid of pixels, the red and green centroids from the processed

images may be located at any of the nine pixels in the grid. If the green channel

has a spot within the specified distance of the red spot then the spot is yellow.

(b) Once all of the yellow spots are found, the red spots are all of the spots in the

red channel which are not yellow. Similarly, the green spots are all of the spots

in the green channel which are not yellow.

4.3.1.2.2 Single-cell tracking For each of the nine experimental conditions we require 50

cell trajectories, which we obtain from one randomly-chosen time series, of which there are

30 time-series for cycling cells and 24 time series for G1-arrested cells. We employ single-cell

tracking to obtain the trajectories from the red and green channels of our time-series images.

The tracking is performed with images which are not thresholded to remove background noise,
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as thresholding produces binary images in which the spots have lost most of the distinctive

features which are required for tracking. Consequently, it is necessary to determine which of the

spots identified by the tracking software correspond to cells rather than background noise, and

we achieve this by comparing the positions of the tracked spots with the cell centroids that are

obtained from thresholded images.

Cell tracking is performed with the TrackMate plug-in for ImageJ [128], using the default

settings unless otherwise specified. The tracking is mostly automated within ImageJ, so that the

trajectories are identified automatically with TrackMate, however when we select a trajectory

for further analysis we manually correct any segmentation or tracking errors. The cell-tracking

process is described in detail below.

Preprocessing: Within ImageJ, we first prepare the microscopy images for tracking, which

includes reducing background noise in the images.

1. Import the time-series stack with the Bio-Formats Importer plug-in, splitting the red

and green channels.

2. Apply five iterations of Subtract Background with rolling-ball radius of 5 pixels.

3. For the green channel, apply Enhance Contrast with no options selected, other than

to process all slices.

4. For the red channel, modify the Brightness/Contrast settings by applying Reset to

restore them to the original values, then apply Set with the “Minimum displayed

value” equal to 0 and the “Maximum displayed value” equal to 90. Then select

Apply to apply the LUT (lookup table) to all stack slices.

Tracking: We use the TrackMate plug-in to find all trajectories in the time-series images, with

the following settings.

1. Segmentation is by the Laplacian of Gaussian detection (LoG) algorithm, with the

settings detailed in Table 4.1, and we use neither the median filter nor sub-pixel

localisation.

2. We do not filter any spots with initial thresholding of spot quality.

3. For the spot tracker, we use the Linear Assignment Problem (LAP) tracker with the

settings detailed in Table 4.1.

4.3.1.2.3 Trajectory selection Once all of the trajectories in the time series of an exper-

imental condition are identified, we randomly choose trajectories without replacement until 50
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trajectories are selected which satisfy prescribed requirements. The requirements for deciding

whether to keep or discard a chosen trajectory depend on the particular experimental condition.

Cycling cells in G1 or S/G2/M: If the chosen trajectory consists of the complete phase

under consideration, therefore either G1 or S/G2/M, then we keep the trajectory. If the

trajectory does not consist of the complete phase, such as the trajectory leaves the image

area, begins prior to the first frame, or ends after the last frame, then we discard it. If

the chosen trajectory has a segmentation or tracking error, and can be manually edited to

produce the full trajectory, then we keep it, otherwise we discard it. As our cell culture

conditions ensure minimal G1 arrest, and we randomly choose 50 trajectories from more

than 103 trajectories throughout the complete time series, there is little probability of

choosing a cell which is in G1 arrest rather than a cycling cell in G1.

G1-arrested cells: We need to be able to distinguish between a cell that is arrested in G1 and

a cycling cell that is in G1. For each cell line, the time-series images for the G1-arrested

cells indicate that almost all of the cells are in G1 phase at a given time, which is very

distinct from the cycling cells for which there are cells in all phases of the cell cycle at any

given time. It is reasonable to conclude that a randomly-chosen trajectory of a cell from

a time series of G1-arrested cells is associated with a G1-arrested cell. Therefore, we keep

a chosen trajectory unless it leaves the image area within a duration less than 2 h, as a

trajectory of duration less than this is not suitable for our analysis. Most trajectories of

G1-arrested cells are much longer than 2 h. If the chosen trajectory has a segmentation

or tracking error then we manually edit it.
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Table 4.1: Settings for the ImageJ plugin TrackMate, for each experimental condition. The LoG detector settings are for spot segmentation, and
the frame-to-frame linking and track segment gap-closing settings are for spot tracking.

C8161

G1

C8161

S/G2/M

C8161

G1 arrest

WM983C

G1

WM983C

S/G2/M

WM983C

G1 arrest

1205Lu

G1

1205Lu

S/G2/M

1205Lu

G1 arrest

LoG detector settings:

Estimated blob diameter (µm) 14 19 22 28 30 26 16 20 26

Threshold 900 300 900 400 200 900 1200 400 900

Frame-to-frame linking:

Maximum distance (µm) 50 50 50 50 50 50 50 50 50

Feature penalties - estimated

diameter
2 0 2 2 1 2 0 0 2

Feature penalties - total

intensity
2 0 2 2 1 2 0 0 2

Feature penalties - visibility 1 0 1 1 1 1 0 0 1

Feature penalties - quality 2 0 2 2 1 2 0 0 2

Track segment gap-closing:

Maximum distance (µm) 50 50 50 50 50 50 50 50 50

Maximum frame gap 1 1 1 1 1 1 1 1 1
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4.3.1.2.4 Trajectory authentication Each selected trajectory consists of a sequence of

spots from either the red or the green channel. Since cells in eS phase appear in both of the red

and green channels, and we only want trajectories corresponding to cells in the G1 or S/G2/M

phases, we need to remove any spots from the trajectories which are yellow. This is accomplished

in MATLAB by comparing the spot positions from tracking with the known centroids of the

cells in G1, eS and S/G2/M obtained previously from the thresholded images. Since we are

comparing the coordinates of each spot with the centroids of the cells in the same stack position

of the time series, it is important to note that while ImageJ usually numbers the frames of a

time series starting at one, TrackMate uses frame numbering beginning at zero, so it may be

necessary to renumber the frames for each spot of a trajectory to ensure comparison within the

same frame.

We set a tolerance of 10 µm when comparing the spot coordinates with the centroids to allow

for the variability associated with estimating positions of spots within images which have been

processed differently. Given that the cells have diameters much larger than 10 µm, for example

C8161 cells have a typical diameter of more than 16 µm [109], the tolerance is relatively small

but large enough to find the cell corresponding to a spot.

G1 trajectories: Here we detail the authentication of G1 trajectories.

1. Given a trajectory in the red channel, choose each spot in the trajectory in turn.

2. Calculate the Euclidean distance between the coordinates of the spot and the cen-

troids of the cells in the red channel that are in the same stack position as the spot.

If there is a cell in eS phase that is within 10 µm of the spot then we identify the

spot as yellow, otherwise the spot corresponds to a cell in G1.

3. Note that any spots identified as yellow will occur towards the end of the trajectory

in forward time, corresponding to the cell transitioning from G1 to eS. Therefore, we

need to truncate the trajectory so that it corresponds only to the cell in G1 phase.

Given that spots corresponding to cells in eS may not always appear yellow due to

fluctuations in fluorescence intensity in either channel, we additionally identify a red

spot as yellow if it is immediately between two previously identified yellow spots. So,

to remove all yellow spots from the trajectory we begin at the final time point of the

trajectory and progress backwards in time, removing spots which are yellow including

any spots which are immediately between two previously identified yellow spots. The

process terminates when a sequence of two red spots is reached, neither of which are

identified as yellow.
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S/G2/M trajectories: Here we detail the authentication of S/G2/M trajectories.

1. Given a trajectory in the green channel, choose each spot in the trajectory in turn.

2. Calculate the Euclidean distance between the coordinates of the spot and the cen-

troids of the cells in the green channel that are in the same stack position as the spot.

If there is a cell in eS phase that is within 10 µm of the spot then we identify the

spot as yellow, otherwise the spot corresponds to a cell in S/G2/M.

3. Note that any spots identified as yellow will occur towards the beginning of the

trajectory in forward time, corresponding to the cell transitioning from eS to S/G2/M.

Therefore, we need to truncate the trajectory so that it corresponds only to the cell in

S/G2/M phase. Given that spots corresponding to cells in eS may not always appear

yellow due to fluctuations in fluorescence intensity in either channel, we additionally

identify a green spot as yellow if it is immediately between two previously identified

yellow spots. So, to remove all yellow spots from the trajectory we begin at the initial

time point of the trajectory and progress forwards in time, removing spots which are

yellow including any spots which are immediately between two previously identified

yellow spots. The process terminates when a sequence of two green spots is reached,

neither of which are identified as yellow.

4.3.2 Data analysis

Here we provide the detailed analysis of the trajectory data for the C8161, WM983C and 1205Lu

cell lines.

4.3.2.1 Cell-cycle characteristics of each cell line

In Table 4.2 we provide for each cell line the mean durations of G1 phase, S/G2/M phase, and

the total cell cycle for cycling cells [13], and the mean duration of induced G1 arrest (30nM

trametinib).

The G1-arrest duration corresponds to the mean duration that the cells are arrested in G1

during the 48 h of the experiment. Note that the cells are likely to be arrested for longer than

we can observe during 48 h, so the mean duration that we report corresponds to our observations

during the experiment and not necessarily to the total duration for which the cells are arrested.

Comparing the long durations of G1 arrest with the relatively short G1 durations of the cycling

cells provides quantitative confirmation of the cell-cycle arrest. Indeed, in Figure 4.2 we show

histograms of the durations of G1 arrest for the 50 cells of each cell line.
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C8161 WM983C 1205Lu

G1-arrest duration (h) 34± 15 34± 15 42± 11

G1 duration (h) 5± 3 6± 2 18± 9

S/G2/M duration (h) 6± 2 8± 3 10± 4

Total cell-cycle duration (h) 21± 8 23± 10 37± 16

Ratio of G1 to S/G2/M durations 0.9 0.7 1.8

Ratio of G1 to total durations 0.3 0.2 0.5

Ratio of S/G2/M to total durations 0.3 0.4 0.3

Table 4.2: Cell-cycle characteristics for the C8161, WM983C and 1205Lu cell lines. Data
for the cycling cells are from [13], and correspond to 20 cells for each cell line. Data for the G1-arrested
cells (30 nM trametinib) are from our current study, and correspond to 50 cells for each cell line. The
duration of each cell cycle phase and cell cycle arrest is the mean for the corresponding cell population,
and the error is one standard deviation from the mean. The data for the G1-arrest durations correspond
to the durations that the cells are arrested during the 48 h of the experiments.
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Figure 4.2: Histograms of the durations of G1 arrest (30 nM trametinib) for each cell line.
Each histogram corresponds to 50 cells. The vertical red bars indicate the mean durations.

The data demonstrate that the three cell lines have very different cell-cycle characteristics.

In particular, the cell-cycle durations increase in the order C8161, WM983C and 1205Lu. Note

that 1205Lu has a relatively long cell cycle, which corresponds to the relatively slow proliferation

rate that is observed for this cell line. Further, the ratio of G1 to S/G2/M durations illustrates

that C8161 cells spend around the same amount of time in G1 and S/G2/M, WM983C cells

spend more time in S/G2/M than G1, and 1205Lu cells spend more time in G1 than S/G2/M,

highlighting that these cell lines have very different cell cycles.

4.3.2.2 Cell trajectories

Figure 4.3 shows trajectories for the WM983C and 1205Lu cell lines, similar to the trajectories

for C8161 in Figure 1(g)–(i) in the main document. The insets for Figures 4.3(c) and (f) show

the truncated trajectories for comparison with the cycling cells in G1 given in Figures 4.3(a)

and (d), respectively. The duration of the truncated trajectories is equal to the mean duration

of the corresponding trajectories of the cycling cells in G1.
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Figure 4.3: Cell trajectories of the WM983C and 1205Lu cell lines. (a)–(c) 50 cell trajectories
of G1 cycling, S/G2/M cycling and G1-arrested (30 nM trametinib) WM983C cells, respectively. (d)–(f)
50 cell trajectories of G1 cycling, S/G2/M cycling and G1-arrested (30 nM trametinib) 1205Lu cells,
respectively.

4.3.2.3 Cell migration: directionality

We investigate whether the cell migration has directionality by identifying any global anisotropy

or directional autocorrelation of the cell trajectories. To reliably identify the presence or absence

of anisotropy in cell migration, it is necessary to test for directionality with more than one

measure [129,130]. We employ the mean drift velocity and the moment of inertia tensor, which

demonstrate that cell migration is globally isotropic for all experimental conditions. We then

consider the directional persistence of individual cells over short time intervals, which may not be

revealed by measures of global anisotropy, using the temporal velocity autocorrelation function.

4.3.2.3.1 Drift velocity The drift velocity is the mean velocity of the cell from the initial

to the final position, and is a measure of the directionality of the trajectory. Specifically, the

drift velocity is given by

v = (vx, vy), vx =
x(tf)− x(ti)

tf − ti
, vy =

y(tf)− y(ti)

tf − ti
, (S1)
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where (x(t), y(t)) is the cell position at time t, ti is the time at the initial cell position, and tf is

the time at the final cell position. By determining the drift velocities in the x- and y-directions

for all trajectories, and then finding the corresponding mean values, we can quantify whether

the migrating cells have global directionality. If the mean drift velocity of a cell population is

non-zero, then to estimate the diffusivities it is first necessary to subtract the drift from the

original cell displacement [74].

Figure 4.4 shows histograms of the drift velocities, and in Table 4.3 we statistically charac-

terise the drift velocity data using the mean, median, standard deviation (SD), mean absolute

deviation (MAD), the p-value of the one-sample t-test, the p-value of the one-sample sign test,

kurtosis, skewness, and the p-value of the Anderson-Darling test for normality.

We use the one-sample t-test to determine whether the mean of each drift-velocity component

differs statistically from a population with mean of 0 µm h−1. With a cut-off of 0.05 for statistical

significance, the p-values indicate that, except in the case of vx for WM983C in S/G2/M, the

results are not statistically significant. Regarding vx for WM983C in S/G2/M, we find that the

results are not statistically significant with a cut-off of 0.05 when we hypothesise a population

mean of -0.3 µm h−1. Over the complete 48 h of the experiments, a drift of magnitude 0.3 µm

h−1 corresponds to a displacement of magnitude 14.4 µm, which is less than the diameter of a

typical melanoma cell, such as 16.44 µm for C8161 [109]. Therefore, we conclude that there is

no drift in any of our migration experiments. We arrive at the same conclusion with a similar

analysis using the one-sample sign test and the median of each drift-velocity component.

Kurtosis is a measure of how light-tailed or heavy-tailed a distribution is relative to the

normal distribution. The value of the kurtosis for a normal distribution is 3, which indicates

that our drift-velocity data are generally heavy-tailed.

Skewness is a measure of the asymmetry of a distribution, so that a symmetric distribution

such as the normal distribution has a skewness of zero. Our drift-velocity data generally have

skewness values that differ from zero, indicating that the data have a degree of asymmetry.

The Anderson-Darling test provides a measure for whether each set of drift-velocity data is

a sample from a normal distribution. Assuming that the sample data are normally distributed,

the calculated p-value is the conditional probability of observing data at least as extreme as the

sample data under consideration. Therefore, the p-value is a measure of the strength of evidence

against the assumption that the sample data are from a normal distribution. Applying the test

to our data, with a cut-off of 0.05 for statistical significance, we conclude that around half of the

data sets are unlikely to be sampled from a normal distribution. We therefore cannot assume

in general that the drift-velocity data are distributed normally.

105



Chapter 4. Examining go-or-grow using fluorescent cell-cycle indicators and cell

cycle-inhibiting drugs

200−20

C8161 - G1

v
x
 (mm h-1)

0

26

C
ou

n
t

(a)

200−20

C8161 - G1

v
y
 (mm h-1)

0

26

C
ou

n
t

(b)

200−20

C8161 - S/G2/M

v
x
 (mm h-1)

0

26

C
ou

n
t

(c)

200−20

C8161 - S/G2/M

v
y
 (mm h-1)

0

26

C
ou

n
t

(d)

200−20

C8161 - G1 arrest (trunc.)

v
x
 (mm h-1)

0

26

C
ou

n
t

(e)

200−20

C8161 - G1 arrest (trunc.)

v
y
 (mm h-1)

0

26

C
ou

n
t

(f)

200−20

WM983C - G1

v
x
 (mm h-1)

0

26

C
ou

n
t

(g)

200−20

WM983C - G1

v
y
 (mm h-1)

0

26

C
ou

n
t

(h)

200−20

WM983C - S/G2/M

v
x
 (mm h-1)

0

26

C
ou

n
t

(i)

200−20

WM983C - S/G2/M

v
y
 (mm h-1)

0

26

C
ou

n
t

(j)

200−20

WM983C - G1 arrest (trunc.)

v
x
 (mm h-1)

0

26

C
ou

n
t

(k)

200−20

WM983C - G1 arrest (trunc.)

v
y
 (mm h-1)

0

26

C
ou

n
t

(l)

200−20

1205Lu - G1

v
x
 (mm h-1)

0

26

C
ou

n
t

(m)

200−20

1205Lu - G1

v
y
 (mm h-1)

0

26

C
ou

n
t

(n)

200−20

1205Lu - S/G2/M

v
x
 (mm h-1)

0

26

C
ou

n
t

(o)

200−20

1205Lu - S/G2/M

v
y
 (mm h-1)

0

26

C
ou

n
t

(p)

200−20

1205Lu - G1 arrest (trunc.)

v
x
 (mm h-1)

0

26

C
ou

n
t

(q)

200−20

1205Lu - G1 arrest (trunc.)

v
y
 (mm h-1)

0

26

C
ou

n
t

(r)

Figure 4.4: Drift velocity. (a) vx for C8161 - G1. (b) vy for C8161 - G1. (c) vx for C8161 - S/G2/M.
(d) vy for C8161 - S/G2/M. (e) vx for C8161 - G1 arrest (30nM trametinib). (f) vy for C8161 - G1 arrest
(30nM trametinib). (g) vx for WM983C - G1. (h) vy for WM983C - G1. (i) vx for WM983C - S/G2/M.
(j) vy for WM983C - S/G2/M. (k) vx for WM983C - G1 arrest (30nM trametinib). (l) vy for WM983C
- G1 arrest (30nM trametinib). (m) vx for 1205Lu - G1. (n) vy for 1205Lu - G1. (o) vx for 1205Lu
- S/G2/M. (p) vy for 1205Lu - S/G2/M. (q) vx for 1205Lu - G1 arrest (30nM trametinib). (r) vy for
1205Lu - G1 arrest (30nM trametinib). The vertical red bars indicate the mean drift velocity.
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Table 4.3: Statistical characterisation of the drift-velocity data.

Mean

(µm h−1)

Median

(µm h−1)

Standard

deviation

(µm h−1)

Mean

absolute

deviation

(µm h−1)

One-

sample

t-test

p-value

One-

sample

sign test

p-value

Kurtosis Skewness Anderson-

Darling

test

p-value

C8161 - G1
vx 0.20 -0.15 4.1 3.3 1.0 0.74 3.0 0.20 0.95

vy -0.79 0.33 4.3 3.3 0.20 0.89 3.6 -0.73 0.0012

C8161 - S/G2/M
vx 0.59 0.16 4.2 3.0 0.33 0.89 4.4 -0.083 0.019

vy -0.71 0.00 5.3 3.7 0.34 0.65 5.5 0.40 0.0054

C8161 - G1 arrest

(truncated)

vx 0.24 -0.16 2.8 2.1 0.55 1.0 4.7 0.81 0.30

vy -0.50 -0.059 3.5 2.6 0.32 0.77 4.8 0.064 0.15

WM983C - G1
vx -0.66 -0.40 2.9 2.1 0.11 0.39 4.9 -0.76 0.20

vy 0.52 0.54 2.5 1.8 0.15 0.67 6.0 0.23 0.058

WM983C - S/G2/M
vx -0.90 -0.57 2.2 1.5 0.0060 0.0021 10 -1.4 0.0014

vy -0.56 0.051 2.3 1.6 0.088 1.0 7.0 -1.7 0.00050

WM983C - G1 arrest

(truncated)

vx 0.33 -0.21 2.9 2.2 0.43 0.67 5.2 1.1 0.023

vy 0.21 0.32 3.9 2.6 0.71 0.47 5.3 0.51 0.0027

1205Lu - G1
vx 0.43 0.21 3.8 2.7 0.43 0.57 5.5 0.81 0.0091

vy 0.33 -0.068 4.2 2.9 0.58 0.67 7.0 1.5 0.011

1205Lu - S/G2/M
vx 0.24 -0.068 3.3 2.7 0.61 1.0 2.9 0.35 0.49

vy 0.084 0.057 3.7 2.6 0.87 1.0 4.9 -0.60 0.024

1205Lu - G1 arrest

(truncated)

vx 0.13 0.27 1.7 1.4 0.61 0.48 3.9 -0.62 0.79

vy -0.017 0.055 2.3 1.8 0.96 0.78 2.7 -0.15 0.61
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4.3.2.3.2 Moment of inertia tensor The moment of inertia tensor I can be used to reliably

identify anisotropy in cell migration [129–131]. Here we consider the mean moment of inertia

tensor I, which quantifies the anisotropy of the mean of all cell trajectories.

For the 50 trajectories of each experimental condition we consider all of the displacements

that occur during the 15 min time interval between images in the time series. We denote these

displacements by (xi, yi), for i = 1, . . . , N , where N is the total number of displacements. With

the start point at the origin, we consider a unit mass at the end point of each displacement.

The two-dimensional mean moment of inertia tensor is then given by

I =

Ixx Ixy

Iyx Iyy

 , where Ixx =
N∑
i=1

y2
i , Ixy = Iyx = −

N∑
i=1

xiyi and Iyy =
N∑
i=1

x2
i . (S2)

The eigenvalues λ1 and λ2 of I, which are the principal moments of inertia, indicate directionality

in cell migration. By convention λ1 ≥ λ2, so that λ1 = λ2 corresponds to isotropy, and λ1 > λ2

corresponds to anisotropy. The ratio λ1/λ2 ≥ 1 therefore quantifies the degree of anisotropy, or

directionality, in cell migration. Table 4.4 provides the ratio λ1/λ2 for cycling cells in G1 and

S/G2/M, and for cells arrested in G1 with trametinib (30 nM), for each of the three cell lines.

The results indicate that λ1/λ2 is almost equal to one for all experimental conditions, hence we

λ1/λ2

C8161 - G1 1.18± 0.09

C8161 - S/G2/M 1.39± 0.12

C8161 - G1 arrest 1.10± 0.05

C8161 - G1 arrest (truncated) 1.03± 0.07

WM983C - G1 1.15± 0.07

WM983C - S/G2/M 1.06± 0.08

WM983C - G1 arrest 1.22± 0.06

WM983C - G1 arrest (truncated) 1.29± 0.10

1205Lu - G1 1.04± 0.04

1205Lu - S/G2/M 1.32± 0.07

1205Lu - G1 arrest 1.03± 0.03

1205Lu - G1 arrest (truncated) 1.06± 0.06

Table 4.4: Ratio of the eigenvalues for the mean moment of inertia tensor. The error estimates
are obtained by bootstrapping the sets of x- and y-displacements, each with 104 iterations, and calculating
λ1/λ2 for each re-sampled data set, whereby the error is then taken as the standard deviation of the 104

values of λ1/λ2.

conclude that the cell migration is essentially globally isotropic for all conditions. This result

is consistent with the finding of no drift in all experiments. We also include the results for the
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G1-arrested cells over the full 48 h of the experiments, which show that there is no anisotropy

over the complete experiment duration.

The error estimates in Table 4.4 are obtained by bootstrapping the set of all x-displacements

and the set of all y-displacements, each with 104 iterations. Each re-sampling of the displace-

ments is used to calculate I and λ1/λ2. The standard deviation of the 104 values of λ1/λ2 is

then taken to be the error.

4.3.2.3.3 Temporal velocity autocorrelation function The temporal velocity autocor-

relation function (TVAF) provides a measure for directional persistence of cell migration [132–

134]. We say that the velocity v(t) of a cell at time t is equal to the mean velocity of the cell

between the time points t and t + ∆t, where t is a time point of the experimental time-series

images and ∆t is the time interval between images, here 15 min. If r(t) is the position of the

cell at time t, then we have v(t) =
(
r(t+ ∆t)− r(t)

)
/∆t. The TVAF is given by

Cv(τ) =
〈
v(t+ τ) · v(t)

〉
, (S3)

where, for a given lag time τ , the averaging is over all possible time points t of a cell trajectory

and over all cell trajectories. The normalised, and dimensionless, TVAF is

Ĉv(τ) =
Cv(τ)

Cv(0)
=

〈
v(t+ τ) · v(t)

〉〈
v(t) · v(t)

〉 . (S4)

For a population of cells in which the migration can be described as a random walk, Ĉv will be 1

at τ = 0 and 0 for all τ > 0, revealing no correlation in cell migration. A persistent random walk

is revealed by a continuously decaying profile for Ĉv, since the correlation reduces over time.

To estimate the decorrelation time for the persistence, we fit to Ĉv either a single exponential

function, f1, or a sum of two exponential functions, f2, which we write generally as

fn(τ) =

n∑
i=1

Aie
−τ/Ti , for n = 1 or 2, (S5)

and constants Ai and Ti, where the latter are the decorrelation times. When n = 2 we adopt

the convention that T1 < T2. We estimate the decorrelation times Ti by fitting Equation (S5)

to Ĉv in Equation (S4) evaluated with experimental data, using the fit function and either the

exp1 or the exp2 models [121] in MATLAB. A best fit is obtained with n = 2 for the cell lines

C8161 and 1205Lu, and n = 1 for the WM983C cell line, shown in Figure 4.5 and Table 4.5.

Therefore, for the cell lines C8161 and 1205Lu, a sum of two exponential functions is found to
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T1 (h) T2 (h)

C8161 - G1 0.10± 0.03 4± 1

C8161 - S/G2/M 0.18± 0.02 3± 3

C8161 - G1 arrest (truncated) 0.010± 0.003 4.0± 0.6

WM983C - G1 0.11± 0.01 -

WM983C - S/G2/M 0.010± 0.001 -

WM983C - G1 arrest (truncated) 0.09± 0.01 -

1205Lu - G1 0.13± 0.01 2.2± 0.7

1205Lu - S/G2/M 0.003± 0.003 0.15± 0.08

1205Lu - G1 arrest (truncated) 0.006± 0.003 0.15± 0.02

Table 4.5: Estimated decorrelation times of directional persistence. The temporal velocity
autocorrelation function data is fit with a sum of two exponential functions for C8161 and 1205Lu, and is
fit with a single exponential function for WM983C. The error estimates are obtained by a bootstrapping
process which produces 104 estimates of Ĉv, from which decorrelation times are estimated by fitting Equa-
tion (S5). The error is then taken to be the standard deviation of the 104 estimates for the decorrelation
times.

fit the TVAF data best, whereas for the WM983C cell line, a best fit is obtained with a single

exponential function.

Both the exponential model and the sum of two exponentials model have previously been

observed as the functional forms for the TVAF in adherent cell migration on two-dimensional

surfaces [134,135]. Our results suggest that the WM983C cells exhibit a single slow decorrelation

time, while the C8161 and 1205Lu cells exhibit both a slow and a fast decorrelation time. For

the 1205Lu cell line, the G1-arrested cells appear to decorrelate faster than the cycling cells in

G1. These observations illustrate that similar cell types, in this case melanoma cells, can have

distinctly different migratory behaviour both with and without drug-induced cell cycle arrest.

The estimated error in the decorrelation times, indicated in Table 4.5, is obtained using

a bootstrapping process. For each lag time τ , we re-sample the data set {v(t + τ) · v(t) |

for all possible t } with replacement, to give a re-sampled data set of the same size. Using the

mean values of each of these re-sampled data sets, we calculate Ĉv and then fit Equation (S5),

thereby obtaining new estimates for the decorrelation times. The re-sampling process is per-

formed 104 times to obtain 104 estimates for the decorrelation times, and the standard deviation

of these estimates is taken to be the error in the original estimates of the decorrelation times.

Fitting a function which is a sum of two exponentials to data is well known to be ill-

conditioned [136]. Consequently, the estimated errors in the decorrelation times may be propor-

tionally larger when using a model which is the sum of two exponentials compared with a single

exponential model. This has minimal consequence for our purposes as we only need an estimate

110



Chapter 4. Examining go-or-grow using fluorescent cell-cycle indicators and cell

cycle-inhibiting drugs

(a)

Ĉ
v
(τ)

0

1

τ (h)

0 54321

C8161 - G1

(b)

C8161 - S/G2/M

Ĉ
v
(τ)

0

1

τ (h)

0 4321

(c)

C8161 - G1 arrest
(truncated)

τ (h)

0 54321

Ĉ
v
(τ)

0

1

τ (h)

0 12963

WM983C - S/G2/M

τ (h)

0 8642

WM983C - G1

(d)

Ĉ
v
(τ)

0

1
(e)

Ĉ
v
(τ)

0

1

τ (h)

0 8642

WM983C - G1 arrest
(truncated)

(f)

Ĉ
v
(τ)

0

1

τ (h)

0 12963

1205Lu - S/G2/M

τ (h)

0 161284

1205Lu - G1 arrest
(truncated)

τ (h)

0 161284

1205Lu - G1

(g)

Ĉ
v
(τ)

0

1
(h)

Ĉ
v
(τ)

0

1
(i)

Ĉ
v
(τ)

0

1

Figure 4.5: Best fit of the exponential function, f1, or the sum of two exponential functions,
f2, in Equation (S5) to the normalised temporal velocity autocorrelation function, Ĉv(τ),
in Equation (S4) evaluated with experimental data. (a)–(c) G1 cycling, S/G2/M cycling, and
truncated G1-arrested (30nM trametinib) C8161 cells, respectively, for which f2 fits best. (d)–(f) G1
cycling, S/G2/M cycling, and truncated G1-arrested (30nM trametinib) WM983C cells, respectively, for
which f1 fits best. (g)–(i) G1 cycling, S/G2/M cycling, and truncated G1-arrested (30nM trametinib)
1205Lu cells, respectively, for which f2 fits best. The black discs correspond to the data and the blue
curves to the best fit of f1 or f2.

of the decorrelation times as a guide for the smallest lag time after which the cell migration is

essentially random, allowing us to then estimate diffusivities.

Based on the decorrelation times in Table 4.5, we note that most of the correlation is lost

within 1 h, for all cell lines. While 1205Lu and particularly C8161 each have an associated slow

decorrelation time which results in residual correlation beyond 1 h, it is not practical to use

longer lag times for estimating the diffusivities due to the limitations imposed by the durations

of the G1 and S/G2/M phases. Any residual correlation beyond a lag time of 1 h, however, is

relatively small and would have minimal consequence for our estimation of diffusivities.
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4.3.2.4 Cell migration: diffusivities

The migration of an adherent cell tends to exhibit directional persistence, as we demonstrate

with the temporal velocity autocorrelation function (TVAF) applied to our three melanoma cell

lines. Cell migration is therefore often modelled as a persistent random walk (PRW) [74,137,138].

There are, however, numerous experimental studies that do not support the PRW as a model

for cell migration, as the characteristics of the observed migration differ from predictions of the

PRW models [61,134,135,139]. In particular, PRW models predict that the TVAF has a simple

exponential form [134, 135]. For our cell lines, however, only one cell line has a TVAF with an

exponential form, while the other two cell lines have a TVAF with the form of a sum of two

exponentials. Therefore, we do not employ a PRW model to estimate diffusivities. Rather, our

diffusivity estimates are obtained over time periods for which the directional persistence is lost

and the cells are undergoing free diffusion.

We estimate the diffusivities using the mean square displacement (MSD), which has various

definitions [140–142]. Here we discuss our methodology in detail. Consider a cell trajectory in

2-D obtained from a time series of N images, where ∆t is the time interval between successive

positions. In our case, ∆t = 0.25 h. We denote the sequence of cell positions as { ri }Ni=1. Let

1 ≤ M ≤ N − 1 be the integer such that M∆t is the specified minimum lag time. For the lag

time τn = n∆t, where n = M, . . . , N − 1, there are N −n non-zero forward displacements along

the cell trajectory. The MSD, denoted ρ(τn), is given by

ρ(τn) =
1

N − n

N−n∑
i=1

‖ri+n − ri‖2. (S6)

We have established that our cell migration experiments are globally isotropic, and that the

directional persistence of the cells dissipates within 1 h. Therefore, we may regard the cell

migration as free diffusion for lag times of at least 1 h, which corresponds to M = 4. We may

then estimate the diffusivity D of the cell by fitting the equation [141]

ρ(τ) = 4Dτ , for lag time τ , (S7)

to the set of data points {
(
τn, ρ(τn)

)
| n = M, . . . , N − 1 }. We fit Equation (S7) to our data

using the fitlm linear regression function in MATLAB [143] with no constant term, therefore

passing through the origin.

For each cell line and experimental condition we have 50 cell trajectories. For each trajectory

we calculate D, using the minimum lag time of 1 h, within the 2-h time intervals 0–2 h, 1–3
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h, 2–4 h and so on, successively offset by 1 h up until the end of the trajectory. To illustrate

the variability in D for the 50 cell trajectories for each cell line and experimental condition

we show in Figure 4.6 the histograms of D within the time interval 0–2 h. For each 2-h time
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Figure 4.6: Histograms of the diffusivities D within the time interval 0–2 h for each cell
line and experimental condition. Each histogram corresponds to 50 cell trajectories. The vertical
red bars indicate 〈D〉.

interval we then calculate the mean diffusivity 〈D〉 from the individual D corresponding to all

trajectories that extend to the end of the interval. Note that the mean may be taken over fewer

than 50 trajectories due to the differing durations of the trajectories. Figure 1(j)–(l) in the main

document shows a comparison of 〈D〉 as a function of time interval between cycling cells in G1,

cycling cells in S/G2/M, and G1-arrested cells (30 nM trametinib), for each of the cell lines

C8161, WM983C and 1205Lu.

For each cell line we have three independent samples of diffusivities corresponding to three

experimental conditions: cycling cells in G1, cycling cells in S/G2/M, and G1-arrested cells (30

nM trametinib). To compare the mean diffusivities between each pair of diffusivity samples

we employ the permutation test, which is a non-parametric significance test which makes no
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assumptions about the population distributions such as normality and equal variance. For each

cell line we are interested in three null hypotheses, H0, where we denote the mean diffusivities

of cycling cells in G1 as 〈D〉G1, of cycling cells in S/G2/M as 〈D〉S/G2/M, and of G1-arrested

cells as 〈D〉G1-arrest:

1. H0 : 〈D〉G1 = 〈D〉S/G2/M, that is, the mean diffusivities are the same for cells in G1

and cells in S/G2/M. Since we are interested in whether the mean diffusivities are equal,

we test if 〈D〉G1 is significantly greater than 〈D〉S/G2/M and if 〈D〉S/G2/M is significantly

greater than 〈D〉G1, which is therefore a two-sided test.

2. H0 : 〈D〉G1 ≥ 〈D〉G1-arrest, that is, the mean diffusivity for G1-arrested cells is not larger

than the mean diffusivity for cycling cells in G1. Since the G1-arrested cells are not

progressing through the cell cycle, the go-or-grow hypothesis suggests that they may be

more motile, with correspondingly larger mean diffusivities, than the cycling cells. So we

test whether 〈D〉G1-arrest is significantly greater than 〈D〉G1, which is therefore a one-sided

test.

3. H0 : 〈D〉S/G2/M ≥ 〈D〉G1-arrest, that is, the mean diffusivity for G1-arrested cells is not

larger than the mean diffusivity for cycling cells in S/G2/M. Since the G1-arrested cells

are not progressing through the cell cycle, the go-or-grow hypothesis suggests that they

may be more motile, with correspondingly larger mean diffusivities, than the cycling cells.

So we test whether 〈D〉G1-arrest is significantly greater than 〈D〉S/G2/M, which is therefore

a one-sided test.

In Table 4.6 we provide the p-values, with the corresponding effect sizes in parentheses, obtained

from the permutation test for each time interval. The effect size is defined as the magnitude of the

difference of the two sample means divided by the mean of the two sample standard deviations.

If we use a threshold of 0.01 for statistical significance, we note that in almost all cases the

p-values indicate a lack of significance, so we cannot reject the corresponding null hypotheses.

These tests don’t prove that the null hypotheses are true, however we are unable to reject

them based on our current data. For WM983C the hypothesis tests indicate that 〈D〉G1-arrest is

significantly greater than 〈D〉G1 for two of the eight time intervals, and 〈D〉G1-arrest is significantly

greater than 〈D〉S/G2/M for three of the eight time intervals. The particular threshold of 0.01 for

statistical significance is arbitrary, and there is increasing support to employ a threshold of 0.005

for new scientific discoveries in order to reduce false positives and improve the reproducibility of

research [144]. If we employ a threshold of 0.005 for statistical significance then the hypothesis

tests indicate that, for WM983C, 〈D〉G1-arrest is not significantly greater than 〈D〉G1 for any time
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interval, and 〈D〉G1-arrest is significantly greater than 〈D〉S/G2/M for only two of the eight time

intervals. While statistical significance can be a helpful guide, the ultimate interest in biology

must be the biological importance of an effect [145], on which significance testing provides no

information. In our case, the significance testing indicates an effect in only a relatively few

time intervals for WM983C. The data in Figure 1(j)–(l) and Figure 4.6 demonstrate that the

mean diffusivities for each cell line are remarkably similar between the different experimental

conditions, where typically one mean diffusivity is within one standard deviation of another mean

diffusivity. Therefore, there appears to be no biological difference between the mean diffusivities

of the three experimental conditions.

We conclude that:

� For each cell line and experimental condition, 〈D〉 has little variation over time, hence

motility is essentially constant during each cell-cycle phase and during G1 arrest.

� For each cell line there is remarkably little variation in 〈D〉 between cycling cells in G1,

cycling cells in S/G2/M, and G1-arrested cells. Therefore, cell motility is the same whether

the cells are in G1, S/G2/M or G1-arrested.

� The three cell lines have very different proliferation and migration characteristics, however

〈D〉 is remarkably consistent across the cell lines.

In Figure 4.7 we show 〈D〉 as a function of time interval over the full 48 h of the experiments

for all three cell lines in G1-arrest (30 nM trametinib). The data in Figure 4.7 demonstrate the

remarkably low variability of 〈D〉 over the experimental duration of 48 h. For each cell line, the

cells are arrested in G1 and so are not in a proliferative state, however we observe essentially no

change in motility over two days.
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Time interval (h) 0–2 1–3 2–4 3–5 4–6 5–7 6–8 7–9

C8161

H0 : 〈D〉G1 = 〈D〉S/G2/M

0.11

(0.34)

0.57

(0.12)

0.63

(0.12)

0.44

(0.26)

0.89

(0.077)
- - -

H0 : 〈D〉G1 ≥ 〈D〉G1-arrest
1.0

(0.80)

1.0

(0.83)

1.0

(0.64)

1.0

(0.64)

0.76

(0.22)
- - -

H0 : 〈D〉S/G2/M ≥ 〈D〉G1-arrest
0.99

(0.47)

1.0

(0.64)

1.0

(0.72)

0.95

(0.46)

0.77

(0.26)
- - -

WM983C

H0 : 〈D〉G1 = 〈D〉S/G2/M

0.77

(0.063)

0.92

(0.021)

0.49

(0.14)

0.18

(0.29)

0.86

(0.039)

0.68

(0.099)

0.094

(0.39)

0.50

(0.18)

H0 : 〈D〉G1 ≥ 〈D〉G1-arrest
0.046

(0.35)

0.11

(0.27)

0.055

(0.35)

0.12

(0.25)

0.0069

(0.56)

0.021

(0.50)

0.40

(0.080)

0.0065

(0.67)

H0 : 〈D〉S/G2/M ≥ 〈D〉G1-arrest
0.11

(0.27)

0.099

(0.29)

0.012

(0.48)

0.0035

(0.59)

0.0054

(0.54)

0.025

(0.41)

0.038

(0.41)

0.0046

(0.58)

1205Lu

H0 : 〈D〉G1 = 〈D〉S/G2/M

0.42

(0.17)

0.94

(0.016)

0.83

(0.043)

0.59

(0.13)

0.27

(0.25)

0.50

(0.19)

0.92

(0.023)

0.34

(0.22)

H0 : 〈D〉G1 ≥ 〈D〉G1-arrest
1.0

(0.55)

1.0

(0.58)

0.90

(0.28)

0.80

(0.21)

0.88

(0.26)

0.97

(0.37)

1.0

(0.69)

1.0

(0.85)

H0 : 〈D〉S/G2/M ≥ 〈D〉G1-arrest
0.99

(0.44)

1.0

(0.57)

0.91

(0.28)

0.86

(0.25)

0.62

(0.11)

0.90

(0.29)

1.0

(0.70)

1.0

(0.9)

Table 4.6: Permutation tests on mean diffusivities 〈D〉 for the C8161, WM983C and 1205Lu cell lines. For each experimental condition, cycling G1,
cycling S/G2/M and G1 arrest, and relevant time interval, we provide the p-value and corresponding effect size (in parentheses) obtained from the permutation
test.
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Figure 4.7: Mean diffusivities for C8161, WM983C and 1205Lu in G1 arrest (30nM tram-
etinib) over 48 h. (a)–(c) 〈D〉 for C8161, WM983C and 1205Lu, respectively, for the range of time
intervals over the full experiment duration of 48 h. In each case we show 〈D〉, and report the variability
using 〈D〉 plus or minus the sample standard deviation.
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A novel mathematical model of heterogeneous cell proliferation
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with the Journal of Mathematical Biology.

Abstract

We present a novel mathematical model of heterogeneous cell proliferation where the total

population consists of a subpopulation of slow-proliferating cells and a subpopulation of fast-

proliferating cells. The model incorporates two cellular processes, asymmetric cell division and

induced switching between proliferative states, which are important determinants for the het-

erogeneity of a cell population. As motivation for our model we provide experimental data that

illustrate the induced-switching process. Our model consists of a system of two coupled delay

differential equations with distributed time delays and the cell densities as functions of time.

The distributed delays are bounded and allow for the choice of delay kernel. We analyse the

model and prove the non-negativity and boundedness of solutions, the existence and unique-

ness of solutions, and the local stability characteristics of the equilibrium points. We find that

the parameters for induced switching are bifurcation parameters and therefore determine the

long-term behaviour of the model. Numerical simulations illustrate and support the theoretical

findings, and demonstrate the primary importance of transient dynamics for understanding the

evolution of many experimental cell populations.
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5.1 Introduction

Cell proliferation is the fundamental function of the cell cycle [10], which is a complex process

regulated by both intracellular signals and the extracellular environment [9]. Such complexity

necessitates that mathematical models of cell proliferation are often restricted to details that

are most pertinent to the experimental situation under consideration. The main requirement

is that the model must account for progression through the cell cycle in a manner relevant to

the cell population and the surrounding environment. Despite all of the underlying complexity

the cell cycle has two basic fates, either progression or arrest [10]. These two cellular fates

form the basis of many mathematical models of cell proliferation in the literature, typically

based on exponential growth [51, 54, 71, 72] or logistic growth [50, 52–54, 73, 74]. Exponential

growth explicitly accounts for progression only, while logistic growth accounts for progression

and density-dependent arrest, which can result from contact inhibition [75].

An important detail of the cell cycle not explicitly accounted for in exponential and logistic

growth models is the duration of the cell cycle, which is always nonzero and exhibits considerable

variation between different cell types and different extracellular environments [76, 77, 82, 146].

From a modelling perspective the cell cycle duration is a positive time delay between two se-

quential cell proliferation events. There are two main types of models which incorporate time

delays: one involves functional differential equations [78–81,147–150], of which delay differential

equations are a specific type; and multi-stage models [82–86]. Models incorporating time delays

are consistent with the kinetics of cell proliferation, and can result in a better qualitative and

quantitative fit of the model to experimental data [79]. The inclusion of a time delay must be

based on whether the improved model fit outweighs the increase in model complexity arising

from additional parameters and, for functional differential equations, an infinite-dimensional

state space. Models with time delays are particularly relevant when the transient dynamics of a

cell population are of interest, especially when modelling slow-proliferating cells. We briefly note

that age-structured models [151–155], which are related to delay differential equations, provide

another approach to incorporating realistic cell cycle durations into models of cell population

growth.

In this article we introduce a delay differential equation model for cell proliferation in which

the cell population consists of a slow-proliferating subpopulation and a fast-proliferating sub-

population. The cells can switch between the proliferative states of slow and fast proliferation

through two cellular processes: asymmetric cell division and induced switching of proliferative

states by surrounding cells. Our model is motivated by the proliferative heterogeneity, with
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respect to cell cycle duration, of tumours, which are often composed of a large proportion of

fast-proliferating cells and a small proportion of slow-proliferating cells which can repopulate the

fast-proliferating subpopulation [27,29]. The slow-proliferating subpopulation is sometimes con-

sidered to be quiescent, or arrested, however it is possible that this subpopulation is actually in a

very-slow-proliferating state [156,157]. Experimental studies have found slow-proliferating cells

with cell cycle durations greater than four weeks, whereas the predominant fast-proliferating

cells have cell cycle durations of around 48 hours [28].

In the literature there are various mathematical models that consider proliferative hetero-

geneity. Some models account for one proliferating subpopulation [150], which may undergo

asymmetric division [87, 88], while the other subpopulations are quiescent or differentiated.

Other models consider subpopulations with different proliferative states without any cells switch-

ing between the subpopulations [89]. Our model, and our mathematical analysis of the model,

are novel in several ways: (1) for each subpopulation we model a distribution of cell cycle du-

rations using a distributed delay with an arbitrary delay kernel on a bounded interval, which

allows us to freely choose an appropriate proliferative state for each subpopulation; (2) cells

can switch between the slow- and fast-proliferating subpopulations through two important pro-

cesses, either during cell division or induced by surrounding cells; (3) we provide formal proofs

of existence, uniqueness, non-negativity, and boundedness of the solutions for our model under

appropriate initial conditions; (4) the local stability of all equilibrium points is characterised

and bifurcation parameters identified, involving the analysis of an interesting transcendental

characteristic equation; (5) numerical simulations are provided which illustrate and support the

theoretical results, and demonstrate the importance of considering the transient dynamics of

experimental cell populations.

The remainder of this article is organised as follows. In Section 5.2 we discuss the biological

and mathematical motivations for our model, which we then present in Section 5.3. Our main

analytical results are in Section 5.4 in the form of three theorems: Theorem 5.2 for non-negativity

and boundedness of solutions, Theorem 5.4 for the existence and uniqueness of solutions, and

Theorem 5.5 for the local stability of the equilibrium points. Some examples of numerical sim-

ulations of our model are provided in Section 5.5, illustrating the long-term dynamics described

in Theorem 5.5, and demonstrating the importance of the transient dynamics. Finally, in Sec-

tion 5.6 we summarise our results, discuss the utility of our model to describe experimental

scenarios, and note some possibilities for future work.
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5.2 Model motivation

In this section we discuss the biological and mathematical considerations that motivate the

development of our model.

5.2.1 Biological considerations

The eukaryotic cell cycle (Figure 5.1) is a sequence of four phases, namely gap 1 (G1), synthesis

(S), gap 2 (G2) and mitosis (M). The primary function of the cell cycle is the replication

M

G1

S

G2

M

Figure 5.1: Schematic of the eukaryotic cell cycle, indicating the colour
of fluorescent ubiquitination-based cell cycle indicator (FUCCI), see [30],
in each phase. During very early G1 phase there is no fluorescence as
both FUCCI reporters are downregulated. In G1 phase the red FUCCI
reporter is upregulated and red fluorescence is observed. During the tran-
sition from G1 to S phase, called early S, both the red and green FUCCI
reporters are upregulated producing yellow. Through S/G2/M phase the
red FUCCI reporter is downregulated and only the green FUCCI reporter
is upregulated so that green fluorescence is observed

of cellular DNA during S phase, followed by the division of the replicated chromosomes and

cytoplasm into two daughter cells during M phase [24]. Progression through the cell cycle

is tightly regulated in normal cells, which are subject to density-dependent contact inhibition

producing reversible cell-cycle arrest [25, 26]. In cancer cells, however, cell cycle regulation is

generally lost [14] resulting in cell populations with proliferative heterogeneity, as exemplified by

tumours of solid cancers [27, 28]. In particular a small subpopulation of slow-proliferating cells

is often present in tumours, and this subpopulation tends to survive anticancer drug treatment

and can maintain the tumour by repopulating the fast-proliferating subpopulation [27,29].

Experimental studies have revealed the highly dynamic nature of intratumoural heterogene-

ity, which can cause adverse outcomes from cancer therapy, notably drug resistance [13, 33, 66,

158]. Therefore the nonequilibrium, or transient, state of a tumour tends to be of greater rel-

evance than the equilibrium states. The main purpose of our model is to provide insight into

the transient dynamics of intratumoural heterogeneity, specifically with regard to cells switching

their proliferative states through cellular mechanisms.

The range of mechanisms leading to proliferative heterogeneity in cancer cell populations are

not completely understood, although asymmetric cell division is known to be partly responsible

[159, 160]. Asymmetric cell division is a normal process of stem cell proliferation, required

for development and the maintenance of tissue homeostasis, whereby a stem cell divides to

produce one daughter stem cell, called self renewal, and a second daughter cell that will undergo

differentiation. In contrast, symmetric division of a stem cell produces either two daughter stem
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cells or two daughter cells that will both undergo differentiation [159]. It is known that cancer

cells can utilise the pathway of asymmetric cell division to produce heterogeneous populations

of cancer cells that support survival of the cancer [160–162].

Another important mechanism contributing to proliferative heterogeneity in cancer cell pop-

ulations is cell-induced switching between the slow- and fast-proliferating states, which occurs

through cell–cell signalling and direct contact between cells [163,164]. The possibility that cells

can switch their proliferative state, either through asymmetric cell division or induced switching

by surrounding cells, means that the growth rate of a cell population is highly dependent on the

influence of each of these two processes.

To illustrate the concept of induced switching we show in Figure 5.2 a series of our ex-

perimental images from a two-dimensional proliferation assay using FUCCI-C8161 melanoma

cells [13,106]. See Electronic Supplementary Material for further details. While this experiment
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Figure 5.2: Experimental images from a proliferation assay using FUCCI-C8161 melanoma cells, illus-
trating the possibility of induced switching between proliferative states, as discussed in the text.

is not explicitly designed to study slow- and fast-proliferating subpopulations, it is possible that

switching of cell cycle speeds occurs and can be observed by careful inspection of the time-series

images. For example, consider the cells labelled 1, 2 and 3 throughout the images. Cells 1

and 2 are daughter cells from the same parent cell and are in an early stage of G1, while cell

3 is a daughter cell from a different parent cell and is in a later stage of G1 at time 0 hours

(Figure 5.2(a)). At time 3 hours we observe cell 3 interact closely with cell 2 and not cell 1

(Figure 5.2(b)). At times 7 and 9 hours the three cells continue to progress through the cell

cycle with no close interaction between cell 3 and cells 1 and 2 (Figure 5.2(c)–(d)). At 11 hours,
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cell 3 interacts closely with cell 2 again; cell 2 is in S/G2/M phase, which is further through

the cell cycle than cell 1 which is in eS phase (Figure 5.2(e)). At time 14 hours cell 3, which

is still close to cell 2, is in M phase and is undergoing mitotic rounding in preparation for

cell division (Figure 5.2(f)). At 17 hours, cell 3 undergoes division to produce two daughter

cells, cell 2 is undergoing mitotic rounding in preparation for division, whereas cell 1 is in an

earlier stage of the cell cycle (Figure 5.2(g)). At time 19 hours cell 2 has divided to produce

two daughter cells, whereas cell 1 has only just undergone mitotic rounding in preparation for

division (Figure 5.2(h)). These experimental observations illustrate the possibility that cells can

switch between states of slow and fast proliferation, induced by surrounding cells. In summary,

it seems plausible that cell 2 progresses through the cell cycle faster than cell 1 because of the

interactions with cell 3. Indeed, for a given cell line, G1 phase tends to have the most variable

duration of the cell cycle phases [76], and cells 1 and 2 appear to progress through G1 at a

similar rate (Figure 5.2(a)–(c)), so it is possible that asymmetric division does not account for

the overall variation in cell cycle duration between cells 1 and 2.

5.2.2 Mathematical considerations

Delay differential equations are often used when the evolution of the process to be modelled

depends on the history of the process, represented as a time delay which may be discrete [165–

167], distributed [150,168–171], or, more generally, state-dependent [148]. We employ a system

of two coupled nonlinear delay differential equations to model the transient dynamics of cell

proliferation in a population consisting of slow- and fast-proliferating cells. The time delays

are distributed so that only cells of a certain age can proliferate according to an appropriate

probability distribution, or delay kernel, and our system is therefore of integro-differential type.

An alternative to modelling cell proliferation with delay differential equations is to use a multi-

stage model, however this is not suitable for modelling the cell proliferation scenario that we

consider here. Indeed, cell cycle durations in the multi-stage model are hypoexponentially

distributed, and we want to allow for more general distributions of cell cycle duration. Further,

the multi-stage model can be difficult to parameterise due to the large number of stages and

hence parameters required to represent the cell cycle as stages.

5.2.2.0.1 Distributed delays Standard deterministic mathematical models of cell prolif-

eration, such as exponential and logistic growth models, are based on cell cycle durations with

an exponential distribution, which allows for a relatively large probability of arbitrarily small

cell cycle durations. Experimental investigations, however, suggest that the duration of the cell
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cycle, and in particular each cell cycle phase, is not exponentially distributed, rather the hypo-

exponential distribution is often found to be a reasonable approximation [76,77,82,83,86]. Our

experimental data support these observations (Figure S1, Electronic Supplementary Material).

Ordinary differential equations therefore tend to overestimate the cell population growth rate,

and may not qualitatively and quantitatively represent the transient growth dynamics of cell

populations, particularly for slow-proliferating cells.

The distributions of cell cycle durations for all cell lines are naturally bounded, so unbounded

distributions such as the hypoexponential distribution are unrealistic since they theoretically

have a nonzero probability of arbitrarily large values. For this reason we consider only bounded

distributions for their greater biological realism, and we otherwise allow complete generality

for the distributions. Unbounded distributions can be left- or right-truncated to form bounded

distributions, and while our model assumes a left bound of zero, alternative left bounds are

easily incorporated. Our distributed delays have the following form. Let X denote either the

slow-proliferating cells S or fast-proliferating cells F , then the distributed delay X(t) is defined

by

X(t) =

∫ UX

0
X(t− z) gX(z) dz, (5.1)

where the upper limit of integration UX ∈ (0,∞) corresponds to the maximum possible duration

of the cell cycle, and gX is the delay kernel which is normalised so that
∫ UX

0 gX(z) dz = 1. The

delay kernel is the probability density for the distribution of the cell cycle durations. X(t)

is a weighted average over the past population densities X(t − z), and corresponds to the

subpopulation of cells at time t that are ready to divide.

5.2.2.0.2 Contact inhibition Normal cells are subject to contact inhibition [75], so we

assume that the growth rate of each subpopulation at time t has a logistic density dependence

given by
(
1− P (t)/K

)
, where P is the total population density and K is the carrying capacity

density. For cancer cells, however, contact inhibition may be lost [14] resulting in density-

independent growth, so in this case we could set the carrying capacity to infinity in the logistic-

growth terms. We can keep the carrying capacity finite in the induced-switching terms, as

increasing the cell density beyond a finite carrying capacity would, realistically, increase the

probability of cell-induced switching between proliferative states due to surrounding cells.

5.2.2.0.3 Proliferation, switching between proliferative states, and apoptosis Given

the cells that are able to undergo division based on the time delays and density constraints, the

intrinsic growth rates 0 < rS ≤ rF for slow- and fast-proliferating cells, respectively, determine
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the cells that are parent cells and divide at time t. Parent cells can divide symmetrically, where

the daughter cells have the same proliferative state as the parent cell, or asymmetrically, where

a daughter cell can have a proliferative state different from the parent cell. When a subpopu-

lation of slow-proliferating cells divides to produce twice as many daughter cells, the parameter

αS determines the proportion of these daughter cells that are also slow-proliferating cells, so

the proportion 1− αS of the daughter cells are fast-proliferating cells. Similarly, the parameter

αF determines the proportion of daughter cells from fast-proliferating cells that are also fast-

proliferating cells, so the proportion 1−αF of the daughter cells are slow-proliferating cells. We

only consider asymmetric cell division that is self-renewing, that is αS , αF ∈ [1
2 , 1], so that the

division of a parent cell produces at least one daughter cell with the same proliferative state

as the parent, which is the relevant process for cancer cells [159–162]. While the analysis of

our model is valid for αS , αF ∈ [0, 1], excluding Theorem 5.2 for non-negativity, our biological

motivation necessitates that αS , αF ∈ [1
2 , 1].

Induced switching allows for a cell to switch proliferative states at any position of the cell

cycle, induced by surrounding cells with a different proliferative state. We make the reasonable

assumption that a cell is increasingly likely to switch proliferative states as the density of cells

with a different proliferative state increases. This modelling approach would be most realistic

when the cell population has a uniform spatial distribution, such as in the proliferation assay

in Figure 5.2. The parameter βS corresponds to the per capita interaction strength of fast-

proliferating cells to induce slow-proliferating cells to switch to fast proliferation. Similarly, the

parameter βF corresponds to the per capita interaction strength of slow-proliferating cells to

induce fast-proliferating cells to switch to slow proliferation.

Because we focus on growing tumours, for which proliferation outcompetes cell death, and

mechanisms of switching between proliferative states, we simplify our model by not incorporating

apoptosis.
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5.3 Mathematical model

The total cell population consists of the two subpopulations of slow-proliferating cells and fast-

proliferating cells, where P (t) ≥ 0, S(t) ≥ 0, and F (t) ≥ 0 are the respective cell densities, so

that P (t) = S(t) + F (t). The model is

dS(t)

dt
= (2αS − 1)rS

∫ US

0
S(t− z) gS(z) dz︸ ︷︷ ︸

slow-proliferating cells from asymmetric
division of slow-proliferating cells

(
1−

(
S(t) + F (t)

)
K

)
︸ ︷︷ ︸

contact inhibition
of proliferation

+ 2(1− αF )rF

∫ UF

0
F (t− z) gF (z) dz︸ ︷︷ ︸

slow-proliferating cells from asymmetric
division of fast-proliferating cells

(
1−

(
S(t) + F (t)

)
K

)
︸ ︷︷ ︸

contact inhibition
of proliferation

− βSS(t)
F (t)

K︸ ︷︷ ︸
induced switching

of slow-proliferating cells
to fast-proliferating cells

+ βFF (t)
S(t)

K︸ ︷︷ ︸
induced switching

of fast-proliferating cells
to slow-proliferating cells

, (5.2)

dF (t)

dt
= 2(1− αS)rS

∫ US

0
S(t− z) gS(z) dz︸ ︷︷ ︸

fast-proliferating cells from asymmetric
division of slow-proliferating cells

(
1−

(
S(t) + F (t)

)
K

)
︸ ︷︷ ︸

contact inhibition
of proliferation

+ (2αF − 1)rF

∫ UF

0
F (t− z) gF (z) dz︸ ︷︷ ︸

fast-proliferating cells from asymmetric
division of fast-proliferating cells

(
1−

(
S(t) + F (t)

)
K

)
︸ ︷︷ ︸

contact inhibition
of proliferation

+ βSS(t)
F (t)

K︸ ︷︷ ︸
induced switching

of slow-proliferating cells
to fast-proliferating cells

− βFF (t)
S(t)

K︸ ︷︷ ︸
induced switching

of fast-proliferating cells
to slow-proliferating cells

, (5.3)

where the parameters satisfy

Intrinsic growth rates: rS , rF ∈ (0,∞) with rS ≤ rF , (5.4)

Proportion of symmetric divisions: αS , αF ∈ [1
2 , 1], (5.5)

Maximum cell cycle durations: US , UF ∈ (0,∞), (5.6)

Induced switching rates: βS , βF ∈ [0,∞), (5.7)

and the mean values of the delay kernels gS and gF satisfy

∫ US

0
z gS(z) dz ≥

∫ UF

0
z gF (z) dz, (5.8)
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so that the mean cell cycle duration for the slow-proliferating cells is not smaller than the mean

cell cycle duration for the fast-proliferating cells.

As functional differential equations depend on the solution and perhaps derivatives of the

solution at past times it is necessary to specify a function for the initial condition, called the

history function. Defining Û = max{US , UF }, the history function φ = (φS , φF ) for our model

satisfies

φ ∈ C([−Û , 0],R2
>0), (5.9)

φS + φF ∈ C([−Û , 0], (0,K)), (5.10)

where C([−Û , 0],R2
>0) is the space of continuous functions on [−Û , 0] into R2

>0 and C([−Û , 0], (0,K))

is the space of continuous functions on [−Û , 0] into (0,K). Note that state space is therefore an

infinite-dimensional function space. For bounded delays the state space is typically the Banach

space C([−h, 0],Rn), for some h ∈ (0,∞), of continuous functions χ : [−h, 0]→ Rn on the closed

interval [−h, 0] under the supremum norm ‖·‖ defined by ‖χ‖ = sup{ ‖χ(t)‖2 | t ∈ [−h, 0] },

where ‖·‖2 is the Euclidean norm on Rn. In our case, state space C is defined by

C = C([−Û , 0],R2). (5.11)

Finally, we note that adding Equations (5.2) and (5.3) gives

dP (t)

dt
=

(
rS

∫ US

0
S(t− z) gS(z) dz + rF

∫ UF

0
F (t− z) gF (z) dz

)(
1− P (t)

K

)
, (5.12)

so, from the perspective of the whole population, asymmetric division and induced switching

have no net effects. Moreover, if we consider the total population as composed of cells in the

same proliferative state with rS = rF , and gS(z) = gF (z) = δ(z) is the Dirac kernel for zero

delay, then Equation (5.12) reduces to the logistic growth model (Electronic Supplementary

Material).
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5.4 Main results

We now discuss our analysis of Equations (5.2) and (5.3), namely non-negativity and bound-

edness of solutions, existence and uniqueness of solutions, and local stability analysis of the

equilibrium points. A solution for Equations (5.2) and (5.3) means the following [172,173]:

Definition 5.1 (Solution). Consider the system of delay differential equations (5.2) and (5.3)

with parameters, delay kernels, and history functions that satisfy (5.4)–(5.10). A solution for

the system is a function (S, F ) ∈ C([−Û , u),R2
≥0) for some u ∈ [0,∞] such that:

� S and F are differentiable on (0, u) and right-differentiable at 0;

� (S, F ) satisfies Equations (5.2) and (5.3) for t ∈ [0, u).

Additionally, (S, F ) is a solution with initial condition φ = (φS , φF ) ∈ C([−Û , 0],R2
>0) if

� (S, F )|
[−Û ,0]

= φ.

5.4.1 Non-negativity and boundedness

Since the dependent variables S(t) and F (t) in Equations (5.2) and (5.3) represent cell densities

they must assume non-negative values at all times. Further, the densities of normal cells are

bounded above by the carrying capacity density K arising from contact inhibition. Cancer

cells typically have unregulated growth due to the loss of contact inhibition, however continued

growth depends on environmental conditions such as nutrient availability, so it is reasonable to

assume that the density of cancer cells is also bounded by a carrying capacity.

Theorem 5.2 (Non-negativity and boundedness of solutions).

Let (S, F ) be a solution for the system of delay differential equations (5.2) and (5.3) with pa-

rameters, delay kernels, and history functions that satisfy (5.4)–(5.10). Then S(t), F (t) ∈ [0,K]

for all t > 0, therefore the solutions S and F are non-negative and bounded.

We give an elementary proof of this theorem as it facilitates understanding of the non-negativity

and boundedness of the solutions. We first require a lemma.

Lemma 5.3. Let (S, F ) be a solution for the system of delay differential equations (5.2) and

(5.3) with parameters, delay kernels, and history functions that satisfy (5.4)–(5.10). If there

exists T > 0 such that the distributed delays satisfy the relations S(t) ≥ 0 and F (t) ≥ 0 for all

t ∈ (0, T ] then P (t) ∈ [0,K] for all t ∈ (0, T ].
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Proof. If P (t1) > K for some t1 ∈ (0, T ] then, since P (0) < K by Equation (5.10), we

may assume without loss of generality that dP (t)/dt |t=t1 > 0. Since Equation (5.12) gives

dP (t)/dt |t=t1 ≤ 0, we have a contradiction. It follows that P (t) ≤ K for all t ∈ (0, T ]. Simi-

larly, if P (t2) < 0 for some t2 ∈ (0, T ] then, since P (0) > 0 by Equation (5.10), we may assume

without loss of generality that dP (t)/dt |t=t2 < 0. Since Equation (5.12) gives dP (t)/dt |t=t2 ≥ 0,

we have a contradiction. It follows that P (t) ≥ 0 for all t ∈ (0, T ].

Theorem 5.2. It suffices to prove that S(t) ≥ 0 and F (t) ≥ 0 for all t > 0, for then it follows

from Lemma 5.3 that S(t) ≤ K and F (t) ≤ K for all t > 0. Define t1 and t2 by t1 = inf{ t >

0 | S(t) < 0 } and t2 = inf{ t > 0 | F (t) < 0 }. We consider the infima in the extended real

numbers, so that t1, t2 ∈ (0,+∞], where either infimum is equal to +∞ if the corresponding set

is empty. The proof consists of four separate cases which are proved similarly. We demonstrate

one case here, and provide the complete proof in the Electronic Supplementary Material.

Case 1: Let βS − βF ≥ 0 and suppose S(t) < 0 for some t > 0.

Note that t1 ∈ R. If t1 < t2 then choose t3 ∈ (t1, t2) such that S(t3) < 0, dS(t)/dt |t=t3 < 0,

and the delays satisfy S(t3) ≥ 0 and F (t3) ≥ 0. Then, since P (t3) ≤ K by Lemma 5.3 and since

F (t3) ≥ 0, Equation (5.2) gives dS(t)/dt|t=t3 ≥ 0, a contradiction.

If t1 ≥ t2 then, since F (0) > 0 and F (t2) = 0, there exists t3 ∈ (0, t2) such that dF (t)/dt|t=t3 < 0.

Then, since P (t3) ≤ K by Lemma 5.3, since the delays satisfy S(t3) ≥ 0 and F (t3) ≥ 0, and

since S(t3), F (t3) ≥ 0, Equation (5.3) gives dF (t)/dt|t=t3 ≥ 0, a contradiction. We conclude

that S(t) ≥ 0 for all t > 0.

5.4.2 Existence and uniqueness

We begin by introducing some simplifying notation. For ρ in the state space C we denote the

component functions by ρS and ρF so that ρ = (ρS , ρF ), and then define ρS and ρF by

ρS =

∫ US

0
ρS(−z) gS(z) dz and ρF =

∫ UF

0
ρF (−z) gF (z) dz . (5.13)

Now we define f : C → R2 by

f(ρ) =



(
(2αS − 1)rSρS + 2(1− αF )rFρF

)(
1− (ρS + ρF )(0)

K

)
−(βS − βF )

K
ρS(0)ρF (0)

(
2(1− αS)rSρS + (2αF − 1)rFρF

)(
1− (ρS + ρF )(0)

K

)
+

(βS − βF )

K
ρS(0)ρF (0)


. (5.14)
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Note that f is continuous. If (S, F ) is a solution for Equations (5.2) and (5.3), t ≥ 0, and we

define (St, Ft) ∈ C([−Û , 0],R2) by (St(r), Ft(r)) = (S(t + r), F (t + r)) for r ∈ [−Û , 0], then

f((St, Ft)) = [dS(t)/dt, dF (t)/dt]T from (5.2) and (5.3).

Theorem 5.4 (Existence and uniqueness of solutions).

Consider the system of delay differential equations (5.2) and (5.3) with parameters, delay kernels,

and history functions which satisfy (5.4)–(5.10). Then there exists a unique solution (S, F ) ∈

C([−Û ,∞),R2
≥0) of (5.2) and (5.3).

Proof. Here we give an outline of the proof. The complete proof is provided in the Electronic

Supplementary Material. We first show that f defined in Equation (5.14) satisfies the following

Lipschitz condition on every bounded subset of C: for all M > 0 there exists L > 0 such that

for every ρ, ψ ∈ C([−Û , 0],R2) with ‖ρ‖, ‖ψ‖ ≤M we have ‖f(ρ)− f(ψ)‖2 ≤ L‖ρ− ψ‖.

To further simplify the notation in Equation (5.14) we define κ1 = (2αS − 1)rS , κ2 =

2(1− αF )rF , κ3 = 2(1− αS)rS , κ4 = (2αF − 1)rF , and κ5 = (βS − βF )/K. Now,

f(ρ)− f(ψ) =



(
κ1(ρS − ψS) + κ2(ρF − ψF )

)(
1− (ρS + ρF )(0)

K

)
+
(
κ1ψS + κ2ψF

)((ψS − ρS)(0) + (ψF − ρF )(0)

K

)
+κ5(ψS − ρS)(0)ψF (0) + κ5(ψF − ρF )(0)ρS(0)

(
κ3(ρS − ψS) + κ4(ρF − ψF )

)(
1− (ρS + ρF )(0)

K

)
+
(
κ3ψS + κ4ψF

)((ψS − ρS)(0) + (ψF − ρF )(0)

K

)
+κ5(ρS − ψS)(0)ψF (0) + κ5(ρF − ψF )(0)ρS(0)


so, using the triangle inequality, we obtain

‖f(ρ)− f(ψ)‖2 ≤

((√
κ2

1 + κ2
3 +

√
κ2

2 + κ2
4

)(
1 +

4M

K

)
+ 2
√

2|κ5|M

)
‖ρ− ψ‖,

so we can set L to be

L =

(√
κ2

1 + κ2
3 +

√
κ2

2 + κ2
4

)(
1 +

4M

K

)
+ 2
√

2|κ5|M

and then f satisfies the Lipschitz condition. Then [173, Page 32, Theorem 3.7] provides local

existence and uniqueness of solutions for the system (5.2) and (5.3). Since our solutions of

interest are bounded by Theorem 5.2, it follows from [173, Page 37, Proposition 3.10] that the

solutions are continuable to all positive time.
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5.4.3 Local stability

Here we consider the local stability analysis of the equilibrium points for the system in (5.2)

and (5.3), and show that βS and βF are bifurcation parameters with bifurcation point when

βS = βF . We will prove the following theorem.

Theorem 5.5 (Local stability).

Consider the system of delay differential equations (5.2) and (5.3) with parameters, delay kernels,

and history functions that satisfy (5.4)–(5.10).

• When βS 6= βF the system has the three equilibrium points (0, 0), (0,K), and (K, 0) with

the following properties:

– (0, 0) is locally unstable.

– If βS > βF then (K, 0) is locally unstable and (0,K) is locally stable.

– If βS < βF then (K, 0) is locally stable and (0,K) is locally unstable.

• When βS = βF the system has infinitely many equilibrium points corresponding to the line

segment joining (K, 0) and (0,K), all of which are locally stable.

The parameters βS and βF are therefore bifurcation parameters.

Note that, since equilibrium points for delay differential equations are functions in a Banach

space, we have (0, 0), (0,K), (K, 0) ∈ C([−Û ,∞),R2
≥0).

The proof of Theorem 5.5 follows immediately from Propositions 5.6, 5.8, 5.9 and 5.10.

We begin by non-dimensionalising Equations (5.2) and (5.3), and then linearising the non-

dimensional system about the equilibrium points. Denoting the dimensionless variables with a

caret, we define t̂ = rF t, Ŝ(t̂) = S(t)/K and F̂ (t̂) = F (t)/K. We also define the dimensionless

parameters r = rS/rF and β = (βS −βF )/rF . Equations (5.2) and (5.3) then become, dropping

the caret notation for simplicity,

dS(t)

dt
=

(
(2αS − 1)r

∫ US

0
S(t− rF z) gS(z) dz + 2(1− αF )

∫ UF

0
F (t− rF z) gF (z) dz

)
×
(
1− S(t)− F (t)

)
− βS(t)F (t), (5.15)

dF (t)

dt
=

(
2(1− αS)r

∫ US

0
S(t− rF z) gS(z) dz + (2αF − 1)

∫ UF

0
F (t− rF z) gF (z) dz

)
×
(
1− S(t)− F (t)

)
+ βS(t)F (t). (5.16)
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Since S and F are cell densities, hence non-negative, we only consider equilibrium points

(S*, F *) ∈ C([−Û ,∞),R2
≥0). To find the equilibrium points we substitute S = S* and F = F *

into (5.15) and (5.16) to give

0 =
(
(2αS − 1)rS* + 2(1− αF )F *

)(
1− S* − F *

)
− βS*F *, (5.17)

0 =
(
2(1− αS)rS* + (2αF − 1)F *

)(
1− S* − F *

)
+ βS*F *, (5.18)

hence (S*, F *) = (0, 0), (1, 0) or (0, 1) when β 6= 0. When β = 0 the equilibrium points consist

of the two lines (S*, F *) = (u, 1 − u) for all u ∈ R and (S*, F *) = (u,−ru) for all u ∈ R, for

which the non-negative points are (S*, F *) = (u, 1− u) for all u ∈ [0, 1] and (S*, F *) = (0, 0).

To examine the local stability of the equilibrium points (S*, F *) we linearise the system in

Equations (5.15) and (5.16) about each point. Defining x(t) = S(t)− S* and y(t) = F (t)− F *

we obtain the linearised system:

dx(t)

dt
=

(
(2αS − 1)r

(∫ US

0
x(t− rF z) gS(z) dz + S*

)
+ 2(1− αF )

(∫ UF

0
y(t− rF z) gF (z) dz + F *

))
×
(
1− x(t)− y(t)− S* − F *

)
− β

(
x(t) + S*

)(
y(t) + F *

)
∼
(

(2αS − 1)r

∫ US

0
x(t− rF z) gS(z) dz + 2(1− αF )

∫ UF

0
y(t− rF z) gF (z) dz

)
×
(
1− S* − F *

)
+
(

(2αS − 1)rS* + 2(1− αF )F *
)(

1− x(t)− y(t)− S* − F *
)

− β
(
x(t)F * + y(t)S* + S*F *

)
, as x(t), y(t)→ 0, (5.19)

dy(t)

dt
=

(
2(1− αS)r

(∫ US

0
x(t− rF z) gS(z) dz + S*

)
+ (2αF − 1)

(∫ UF

0
y(t− rF z) gF (z) dz + F *

))
×
(
1− x(t)− y(t)− S* − F *

)
+ β

(
x(t) + S*

)(
y(t) + F *

)
∼
(

2(1− αS)r

∫ US

0
x(t− rF z) gS(z) dz + (2αF − 1)

∫ UF

0
y(t− rF z) gF (z) dz

)
×
(
1− S* − F *

)
+
(

2(1− αS)rS* + (2αF − 1)F *
)(

1− x(t)− y(t)− S* − F *
)

+ β
(
x(t)F * + y(t)S* + S*F *

)
, as x(t), y(t)→ 0. (5.20)

By the Principle of Linearised Stability [174, Page 240, Theorem 6.8] it suffices to consider the
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stability of the equilibrium points for the linearisation in Equations (5.19) and (5.20).

Proposition 5.6 (Equilibrium point (0, 0)).

Consider the system of delay differential equations (5.2) and (5.3) with parameters, delay kernels,

and history functions which satisfy (5.4)–(5.10). Then (0, 0) is locally unstable.

Proposition 5.6 follows immediately from Proposition 5.7, in which we analyse the transcen-

dental characteristic equation associated with (0, 0) of the linearised system (5.19) and (5.20)

to show that the characteristic equation has at least one zero in C with positive real part.

While there are alternative methods for proving Proposition 5.6 (Electronic Supplementary Ma-

terial), we consider the direct approach of analysing the associated transcendental characteristic

equation to have mathematical relevance for other studies involving delay differential equations.

Indeed, transcendental characteristic equations are generally difficult to analyse [174, Chapter

XI], so new analysis of such equations is of mathematical interest.

For (S*, F *) = (0, 0), Equations (5.19) and (5.20) become

dx(t)

dt
= (2αS − 1)r

∫ US

0
x(t− rF z) gS(z) dz + 2(1− αF )

∫ UF

0
y(t− rF z) gF (z) dz, (5.21)

dy(t)

dt
= 2(1− αS)r

∫ US

0
x(t− rF z) gS(z) dz + (2αF − 1)

∫ UF

0
y(t− rF z) gF (z) dz. (5.22)

Equations (5.21) and (5.22) have a solution of the form

x(t)

y(t)

 =

c1

c2

 eλt, where

c1

c2

 ∈ C2 is nonzero and λ ∈ C, (5.23)

so substitution gives

eλt

λ 0

0 λ

c1

c2

 =


(2αS − 1)r

∫ US

0
e−λrF z gS(z) dz 2(1− αF )

∫ UF

0 e−λrF z gF (z) dz

2(1− αS)r

∫ US

0
e−λrF z gS(z) dz (2αF − 1)

∫ UF

0 e−λrF z gF (z) dz


c1

c2

 eλt. (5.24)
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To ensure that (c1, c2)ᵀ 6= 0 we must have the characteristic equation

G(λ) =

∣∣∣∣∣∣∣∣
(2αS − 1)r

∫ US

0
e−λrF z gS(z) dz − λ 2(1− αF )

∫ UF

0 e−λrF z gF (z) dz

2(1− αS)r

∫ US

0
e−λrF z gS(z) dz (2αF − 1)

∫ UF

0 e−λrF z gF (z) dz − λ

∣∣∣∣∣∣∣∣
= λ2 − λ

(
(2αS − 1)r

∫ US

0
e−λrF z gS(z) dz + (2αF − 1)

∫ UF

0
e−λrF z gF (z) dz

)

+ (2αS + 2αF − 3)r

∫ US

0

∫ UF

0
e−λrF (z+v) gF (v) gS(z) dv dz (5.25)

equal to zero. The zeros of the transcendental equation G(λ) are the eigenvalues. Proposition 5.7

shows that G(λ) has at least one zero with positive real part, so the equilibrium point (0, 0)

is locally unstable. In the proof of Proposition 5.7 we consider three cases for G(λ) in Equa-

tion (5.25), depending on whether 2αS+2αF−3 is negative, zero, or positive. To understand the

physical interpretation of 2αS + 2αF − 3, first note that 2αS + 2αF − 3 = (2αS − 1)− 2(1−αF ).

Referring to Equation (5.15), (2αS − 1)− 2(1− αF ) is the difference between the proportion of

slow-proliferating parent cells that produce slow-proliferating daughter cells beyond self renewal,

and the proportion of fast-proliferating parent cells that produce slow-proliferating daughter

cells, at a given time. A similar interpretation follows by referring to Equation (5.16) and not-

ing that 2αS + 2αF − 3 = (2αF − 1) − 2(1 − αS). When 2αS + 2αF − 3 is negative or zero we

use the intermediate value theorem to prove that G(λ) has a zero in R which is positive. When

2αS +2αF −3 is positive, however, we require a different approach involving Cauchy’s argument

principle, which we now outline.

Let Ω be a non-empty connected open set, let Γ be a closed curve in Ω with positive, or

counter-clockwise, orientation which is homologous to zero with respect to Ω, and let h be a

meromorphic function on Ω with no zeros or poles on Γ. Then Cauchy’s argument principle

is [175, Page 152, Theorem 18]

1

2πi

∮
Γ

h′(λ)

h(λ)
dλ = Z − P, (5.26)

where Z is the number of zeros of h inside Γ and P is the number of poles of h inside Γ, including

multiplicities.

Now, let Γ be a piecewise differentiable closed curve in C with positive orientation that does

not pass through the point z0. Then the index of z0 with respect to Γ, denoted IndΓ(z0), is

defined by [175, Page 115]

IndΓ(z0) =
1

2πi

∮
Γ

dz

z − z0
. (5.27)
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Note that IndΓ(z0) is also referred to as the winding number of Γ with respect to z0. By

substituting z = h(λ) into Equation (5.26) and using Equation (5.27) we arrive at the standard

observation

Z − P =
1

2πi

∮
h(Γ)

dz

z
= Indh(Γ)(0), (5.28)

where the term on the right of the last equality is the winding number of the closed curve h(Γ)

with respect to the origin. Therefore, the number of zeros minus the number of poles of h inside

Γ, including multiplicities, can be determined by calculating the winding number of the image

h(Γ) with respect to the origin.

Note that G(λ) in Equation (5.25) is a holomorphic function, hence meromorphic, on C,

and has no poles. Therefore, the number of zeros of G(λ) inside a contour Γ which satisifes the

conditions for Equations (5.26) and (5.27) is equal to the winding number of G(Γ) with respect

to the origin. We will be considering rectangular contours with positive orientation in the right

half-plane, and we need to know that G(λ) is not identically zero in the region bounded by the

closed contour. Our contour will bound an interval of the positive real axis arbitrarily close

to, but excluding, the origin, and with arbitrary upper bound. For a contour which bounds

sufficiently large positive real numbers, and by considering Re(G(λ)) on the positive real axis,

we can see that G(λ) is not identically zero in the region bounded by the contour. Furthermore,

by [176, Page 208, Theorem 10.18] it follows that the zeros of G(λ) are isolated and countable,

so we can always choose an appropriate rectangular contour which does not pass through a zero

of G(λ). In the Electronic Supplementary Material we graphically illustrate our application of

Cauchy’s argument principle. We now state and prove the required proposition.

Proposition 5.7. The transcendental characteristic equation G(λ) in Equation (5.25) has at

least one zero in C with positive real part.

Proof. We consider three cases according to whether 2αS + 2αF −3 is negative, zero or positive.

Case 1: If 2αS +2αF −3 < 0 then, since G(0) = (2αS +2αF −3)r < 0 and limλ→∞G|R(λ) =

limλ→∞ λ
2 =∞, it follows that G has a positive real zero by the intermediate value theorem.

Case 2: If 2αS + 2αF − 3 = 0 then G factors as G(λ) = λH(λ), where

H(λ) =

λ−
(

(2αS − 1)r

∫ US

0
e−λrF z gS(z) dz + (2αF − 1)

∫ UF

0
e−λrF z gF (z) dz

)
. (5.29)

Since 2αS + 2αF − 3 = 0 it follows that 2αS − 1 < 0 implies αF > 1, so 2αS − 1 ≥ 0. Similarly,

2αF −1 ≥ 0. Further, if both 2αS−1 = 0 and 2αF −1 = 0 then 2αS+2αF −2 = 0, contradicting
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2αS + 2αF − 3 = 0. It therefore follows that H(0) = −
(
(2αS − 1)r + (2αF − 1)

)
< 0. Since

limλ→∞H|R(λ) = limλ→∞ λ =∞, it follows that H has a positive real zero by the intermediate

value theorem.

Case 3: Suppose now that 2αS + 2αF − 3 > 0. We employ Cauchy’s argument principle to

show that the holomorphic function G(λ) has a zero with positive real part. Let Γ be the simple

closed contour with positive orientation in the right half-plane of the complex plane defined

piecewise as follows:

Γ1 :
(
m(1− t) + (N/2)t

)
− iN, 0 ≤ t ≤ 1, (5.30)

Γ2 :
(
(N/2)(1− t) + (3N/2)t

)
− iN, 0 ≤ t ≤ 1, (5.31)

Γ3 : (3N/2) + i
(
(−N)(1− t) +Nt

)
, 0 ≤ t ≤ 1, (5.32)

Γ4 :
(
(3N/2)(1− t) + (N/2)t

)
+ iN, 0 ≤ t ≤ 1, (5.33)

Γ5 :
(
(N/2)(1− t) +mt

)
+ iN, 0 ≤ t ≤ 1, (5.34)

Γ6 : m+ i
(
N(1− t) + (−N)t

)
, 0 ≤ t ≤ 1, (5.35)

where we fix m > 0 to be arbitrarily small and N > 0 to be arbitrarily large. Note that

Γ =
⋃6
j=1 Γj is rectangular, with vertices at m − iN , 3N/2 − iN , 3N/2 + iN , and m + iN .

Since the zeros of a holomorphic function that is not identically zero are isolated and countable,

we can choose m arbitrarily small and N arbitrarily large while ensuring G(λ) is nonzero on Γ.

Therefore, since G(λ) has no poles, the number of zeros of G(λ) inside Γ is equal to the index

of the image contour G(Γ) with respect to the origin, IndG(Γ)(0). We now begin our application

of the argument principle. Since we only need to show the existence of one zero with a positive

real part, it suffices to prove that IndG(Γ)(0) ≥ 1. Specifically, we show that the image contour

G(Γ) crosses the positive real axis at least once in a counter-clockwise direction while encircling

the origin, and doesn’t cross the positive real axis in a clockwise direction.

We will traverse Γ for one cycle in a counter-clockwise direction beginning with Γ1, and

determine when G(Γ) crosses the positive real axis. For this it is helpful to consider the real

and imaginary parts of G(λ), so evaluating G(λ) at the arbitrary complex number λ = a + ib
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we have

Re(G(λ)) = a2 − b2 − a(2αS − 1)r

∫ US

0
e−arF z cos(brF z) gS(z) dz

− a(2αF − 1)

∫ UF

0
e−arF z cos(brF z) gF (z) dz

− b(2αS − 1)r

∫ US

0
e−arF z sin(brF z) gS(z) dz

− b(2αF − 1)

∫ UF

0
e−arF z sin(brF z) gF (z) dz

+ (2αS + 2αF − 3)r

∫ US

0

∫ UF

0
e−arF (z+v) cos(brF (z + v)) gF (v) gS(z) dv dz , (5.36)

and

Im(G(λ)) = 2ab+ a(2αS − 1)r

∫ US

0
e−arF z sin(brF z) gS(z) dz

+ a(2αF − 1)

∫ UF

0
e−arF z sin(brF z) gF (z) dz

− b(2αS − 1)r

∫ US

0
e−arF z cos(brF z) gS(z) dz

− b(2αF − 1)

∫ UF

0
e−arF z cos(brF z) gF (z) dz

− (2αS + 2αF − 3)r

∫ US

0

∫ UF

0
e−arF (z+v) sin(brF (z + v)) gF (v) gS(z) dv dz . (5.37)

In the following argument we shall generally use that m is arbitrarily small and N is arbitrarily

large without further comment.

Consider G(λ) along Γ1, where b = −N and a increases from m to N/2. For sufficiently

large N and for all a ∈ [m,N/2], Re(G(λ)) < 0 and Re(G(λ)) is dominated by N2. At the end

of Γ1 and for sufficiently large N , Im(G(λ)) < 0 and Im(G(λ)) is dominated by N2. So G(Γ1)

starts in the left half-plane and ends in the third quadrant.

Consider G(λ) along Γ2, where b = −N and a increases from N/2 to 3N/2. At the end of Γ2

and for sufficiently large N , Re(G(λ)) > 0 and Re(G(λ)) is dominated by N2. For sufficiently

large N and for all a ∈ [N/2, 3N/2], Im(G(λ)) < 0 and Re(G(λ)) is dominated by N2. So G(Γ2)

starts in the third quadrant and ends in the fourth quadrant.

Consider G(λ) along Γ3, where a = 3N/2 and b increases from −N to N . For sufficiently

large N , Re(G(λ)) > 0 and Re(G(λ)) is dominated by N2. At the end of Γ3 and for sufficiently

large N , Im(G(λ)) > 0 and Im(G(λ)) is dominated by N2. So G(Γ3) starts in the fourth

quadrant and ends in the first quadrant. The image contour G(Γ) has now crossed the positive

real axis in a counter-clockwise direction.
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Consider G(λ) along Γ4, where b = N and a decreases from 3N/2 to N/2. At the end of Γ4

and for sufficiently large N , Re(G(λ)) < 0 and Re(G(λ)) is dominated by N2. For sufficiently

large N and for all a ∈ [3N/2, N/2], Im(G(λ)) > 0 and Im(G(λ)) is dominated by N2. So G(Γ4)

starts in the first quadrant and ends in the second quadrant.

Consider G(λ) along Γ5, where b = N and a decreases from N/2 to m. At the end of Γ5 and

for sufficiently large N , Re(G(λ)) < 0 and Re(G(λ)) is dominated by N2. Im(G(λ)) could be

positive or negative. So G(Γ5) starts in the second quadrant and ends in the left half-plane.

Consider G(λ) along Γ6, where a = m and b decreases from N to −N , which completes

one circuit around Γ in a counter-clockwise direction. If we fix N to be as large as required

then we can choose m sufficiently small so that along Γ6 the Equations (5.36) and (5.37) are

approximated arbitrarily closely by the equations

Re(G(b)) =− b2 − b(2αS − 1)r

∫ US

0
sin(brF z) gS(z) dz

− b(2αF − 1)

∫ UF

0
sin(brF z) gF (z) dz

+ (2αS + 2αF − 3)r

∫ US

0

∫ UF

0
cos(brF (z + v)) gF (v) gS(z) dv dz , (5.38)

Im(G(b)) =− b(2αS − 1)r

∫ US

0
cos(brF z) gS(z) dz

− b(2αF − 1)

∫ UF

0
cos(brF z) gF (z) dz

− (2αS + 2αF − 3)r

∫ US

0

∫ UF

0
sin(brF (z + v)) gF (v) gS(z) dv dz . (5.39)

For notational simplicity, define the functions f1, f2, f3, g1, g2, and g3 by

f1(b) = −b(2αS − 1)r

∫ US

0
sin(brF z) gS(z) dz , (5.40)

f2(b) = −b(2αF − 1)

∫ UF

0
sin(brF z) gF (z) dz , (5.41)

f3(b) = (2αS + 2αF − 3)r

∫ US

0

∫ UF

0
cos(brF (z + v)) gF (v) gS(z) dv dz , (5.42)

g1(b) = −b(2αS − 1)r

∫ US

0
cos(brF z) gS(z) dz , (5.43)

g2(b) = −b(2αF − 1)

∫ UF

0
cos(brF z) gF (z) dz , (5.44)

g3(b) = −(2αS + 2αF − 3)r

∫ US

0

∫ UF

0
sin(brF (z + v)) gF (v) gS(z) dv dz , (5.45)
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so that Equations (5.38) and (5.39) become

Re(G(b)) = −b2 + f1(b) + f2(b) + f3(b), (5.46)

Im(G(b)) = g1(b) + g2(b) + g3(b). (5.47)

Now, consider decreasing b from N to −N . The curves f1(b) + ig1(b) and f2(b) + ig2(b) have

the same orientation as the spiral −b sin(b)− ib cos(b), which is traversed counter-clockwise as b

decreases. Similarly, the curve f3(b)+ig3(b) has the same orientation as the circle cos(b)−i sin(b),

which is also counter-clockwise. Note that for discrete delays the curves f1(b) + ig1(b) and

f2(b) + ig2(b) are spirals and the curve f3(b) + ig3(b) is a circle. The sum of these three curves,∑3
k=1 fk(b) + igk(b), has counter-clockwise orientation, and the −b2 term in Re(G(b)) translates

these curves along the negative real axis. It follows that if G(b) encircles the origin as b decreases

from N to −N then it does so in a counter-clockwise direction. In particular, G(b) does not

encircle the origin in a clockwise direction. So, for sufficiently small m, G(Γ6) can only encircle

the origin in a counter-clockwise direction.

To ensure that the image contour G(Γ) encircles the origin at least once, note that G(Γ6)

crosses the positive real axis in a counter-clockwise direction at approximately the point (2αS +

2αF − 3)r > 0 for sufficiently small m, so it follows that G(Γ6) must cross the negative real axis

at a point closer to the start of Γ6. Therefore, the symmetry of Im(G(λ)) with respect to the

real axis implies that G(Γ) completes a cycle around the origin before the end of G(Γ6). We

conclude that IndG(Γ)(0) ≥ 1, and our proof is complete.

Proposition 5.8 (Equilibrium point (1, 0) when βS − βF 6= 0).

Consider the system of delay differential equations (5.2) and (5.3) with parameters, delay kernels,

and history functions which satisfy (5.4)–(5.10). For all βS, βF ∈ R, (1, 0) is locally stable when

βS − βF < 0 and locally unstable when βS − βF > 0.

Proof. For (S*, F *) = (1, 0), Equations (5.19) and (5.20) become

dx(t)

dt
= (2αS − 1)r

(
− x(t)− y(t)

)
− βy(t) , (5.48)

dy(t)

dt
= 2(1− αS)r

(
− x(t)− y(t)

)
+ βy(t) . (5.49)

Equations (5.48) and (5.49) have a solution of the form in Equation (5.23), so substitution gives

eλt

λ 0

0 λ

c1

c2

 =

−(2αS − 1)r −(2αS − 1)r − β

−2(1− αS)r −2(1− αS)r + β

c1

c2

 eλt. (5.50)
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To ensure that (c1, c2)ᵀ 6= 0 we must have the characteristic equation

G(λ) =

∣∣∣∣∣∣
−(2αS − 1)r − λ −(2αS − 1)r − β

−2(1− αS)r −2(1− αS)r + β − λ

∣∣∣∣∣∣ = λ2 + λ(r − β)− βr (5.51)

equal to zero. The zeros of G(λ) are the eigenvalues, given by

λ = −1

2
(r − β)± 1

2
| r + β | = −r, β, (5.52)

and the result follows.

Proposition 5.9 (Equilibrium point (0, 1) when βS − βF 6= 0).

Consider the system of delay differential equations (5.2) and (5.3) with parameters, delay kernels,

and history functions which satisfy (5.4)–(5.10). For all βS, βF ∈ R, (0, 1) is locally stable when

βS − βF > 0 and locally unstable when βS − βF < 0.

Proof. For (S*, F *) = (0, 1), Equations (5.19) and (5.20) become

dx(t)

dt
= 2(1− αF )

(
− x(t)− y(t)

)
− βx(t) , (5.53)

dy(t)

dt
= (2αF − 1)

(
− x(t)− y(t)

)
+ βx(t) . (5.54)

Equations (5.53) and (5.54) have a solution of the form in Equation (5.23), so substitution gives

eλt

λ 0

0 λ

c1

c2

 =

−2(1− αF )− β −2(1− αF )

−(2αF − 1) + β −(2αF − 1)

c1

c2

 eλt. (5.55)

To ensure that (c1, c2)ᵀ 6= 0 we must have the characteristic equation

G(λ) =

∣∣∣∣∣∣
−2(1− αF )− β − λ −2(1− αF )

−(2αF − 1) + β −(2αF − 1)− λ

∣∣∣∣∣∣ = λ2 + λ(1 + β) + β (5.56)

equal to zero. The zeros of G(λ) are the eigenvalues, given by

λ = −1

2
(1 + β)± 1

2
| 1− β | = −1, −β, (5.57)

and the result follows.

Proposition 5.10 (Equilibrium points (u, 1− u) for u ∈ [0, 1] when βS = βF ).

Consider the system of delay differential equations (5.2) and (5.3) with parameters, delay kernels,
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and history functions which satisfy (5.4)–(5.10). For all βS, βF ∈ R such that βS = βF and for

all u ∈ [0, 1] the equilibrium point (u, 1− u) is locally stable.

Proof. For (S*, F *) = (u, 1− u) with u ∈ R and β = 0, Equations (5.19) and (5.20) become

dx(t)

dt
=
(
(2αS − 1)ru+ 2(1− αF )(1− u)

)(
− x(t)− y(t)

)
, (5.58)

dy(t)

dt
=
(
2(1− αS)ru+ (2αF − 1)(1− u)

)(
− x(t)− y(t)

)
. (5.59)

Equations (5.58) and (5.59) have a solution of the form in Equation (5.23), so substitution gives

eλt

λ 0

0 λ

c1

c2

 =



−(2αS − 1)ru −(2αS − 1)ru

−2(1− αF )(1− u) −2(1− αF )(1− u)

−2(1− αS)ru −2(1− αS)ru

−(2αF − 1)(1− u) −(2αF − 1)(1− u)


c1

c2

 eλt. (5.60)

To ensure that (c1, c2)ᵀ 6= 0 we must have the characteristic equation

G(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(2αS − 1)ru− λ −(2αS − 1)ru

−2(1− αF )(1− u) −2(1− αF )(1− u)

−2(1− αS)ru −2(1− αS)ru− λ

−(2αF − 1)(1− u) −(2αF − 1)(1− u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= λ2 − λ

(
u(1− r)− 1

)
(5.61)

equal to zero. The zeros of G(λ) are the eigenvalues, given by

λ = 0, u(1− r)− 1. (5.62)

Since r ∈ (0, 1], for u ∈ [0, 1] we have u(1− r)− 1 < 0, therefore (u, 1− u) is locally stable.

5.5 Supporting numerical simulations

We obtain numerical solutions of Equations (5.2) and (5.3) using the forward Euler method, for

which the temporal domain, [0, 1000] h, is uniformly discretised with a time step of duration

∆t = 0.1 h. To approximate the distributed delays we use the trapezoidal rule with uniform

discretisation of the integration interval into 500 subintervals. The distributed delays depend

on past values of the functions S(t) and F (t), which are obtained by interpolating between the

previously estimated values for S(t) and F (t). The interpolation is achieved using piecewise

142



Chapter 5. A novel mathematical model of heterogeneous cell proliferation

cubic Hermite interpolating polynomials, which are shape preserving. The sizes of the time

step and the integration subintervals ensure grid-independence for our results. Examples of the

simulations are shown in Figure 5.3.

The delay kernels in our model are set as probability density functions of a right-truncated

Erlang distribution (Electronic Supplementary Material), shown in Figure 5.3(a). For slow-

proliferating cells the Erlang density has shape k = 12000 and rate λ = 20 h−1 with mean 600 h,

and is truncated at US = 700 h. For fast-proliferating cells the Erlang density has shape k = 20

and rate λ = 1 h−1 with mean 20 h, and is truncated at UF = 100 h. All simulations use the

parameters K = 500 and rS = rF = 0.1 h−1. The parameters αS , αF , βS , and βF are varied for

the different simulations, as indicated in Figure 5.3(b)–(h).

There are many options for the functional form of the history functions. One simple option

is to use constant functions, however it is reasonable to assume that the cells grew exponentially

in the past, so we use exponential functions with growth rates equal to the intrinsic growth

rates of the slow- and fast-proliferating cells. The history functions are φS(t) = 100erS t for

t ∈ [−700, 0] and φF (t) = 100erF t for t ∈ [−100, 0], for Figure 5.3(b)–(h), φS(t) = 10−4erS t for

t ∈ [−700, 0] and φF (t) = 100erF t for t ∈ [−100, 0], for Figure 5.3(i), and φS(t) = 100erS t for

t ∈ [−700, 0] and φF (t) = 10−4erF t for t ∈ [−100, 0], for Figure 5.3(j). Since the state space is

the function space C in Equation (5.11), choosing a different history function in C results in a

different solution. When βS 6= βF , different history functions may produce different transient

dynamics, whereas the solutions have the same long-term behaviour. When βS = βF , however,

there are infinitely many equilibrium points so different history functions can produce solutions

with different long-term behaviour.

Figure 5.3(b)–(d) shows simulations with βS = βF = 0 h−1, so no induced switching between

slow and fast proliferation. By Theorem 5.5 there are infinitely many locally-stable equilibrium

points corresponding to the line segment between (K, 0) and (0,K). The different equilibrium

states are obtained by varying the levels of asymmetric division through αS and αF , or using

different history functions.

In Figure 5.3(e)–(f) we show simulations with βS = 0 h−1 and βF = 0.008 h−1, therefore

induced switching only from fast to slow proliferation. By Theorem 5.5 the equilibrium point

(K, 0) is locally stable and the equilibrium point (0,K) is locally unstable. In Figure 5.3(g)–(h)

we show simulations with βS = 0.008 h−1 and βF = 0 h−1, so induced switching only from

slow to fast proliferation. By Theorem 5.5 the equilibrium point (0,K) is locally stable and the

equilibrium point (K, 0) is locally unstable. These simulations illustrate that induced switching

determines the long-term behaviour of the solutions, while asymmetric division only influences
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Figure 5.3: Numerical simulations of our model in Equations (5.2) and (5.3). (a) Each delay kernel is the
probability density function (PDF) of a right-truncated Erlang distribution (Electronic Supplementary
Material). For slow-proliferating cells the Erlang density function has shape k = 12000 and rate λ = 20
h−1 with mean 600 h, and is truncated at US = 700 h. For fast-proliferating cells the Erlang density
function has shape k = 20 and rate λ = 1 h−1 with mean 20 h, and is truncated at UF = 100 h. (b)–
(j) The simulations all use the parameters K = 500 and rS = rF = 0.1 h−1. For (b)–(h) the history
functions are φS(t) = 100erSt and φF (t) = 100erF t, for (i) the history functions are φS(t) = 10−4erSt and
φF (t) = 100erF t, and for (j) the history functions are φS(t) = 100erSt and φF (t) = 10−4erF t. Parameters
specific to each simulation, namely αS , αF , βS , and βF , are indicated on the figure
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the transient dynamics.

In Figure 5.3(i)–(j) we set one of the history functions φS or φF close to zero over its

domain, illustrating how a very small subpopulation can become the main subpopulation through

induced switching, possibly requiring a long time period. It is particularly interesting that, in

Figure 5.3(i), the density of the fast-proliferating cells is very close to carrying capacity and

appears to be at equilibrium for a long time, however through induced switching the slow-

proliferating cells eventually become the main subpopulation.

5.6 Discussion and outlook

Proliferative heterogeneity in cancer cell populations constitutes a crucial challenge for cancer

therapy, as slow-proliferating cells tend to be highly aggressive, have increased resistance to

cytotoxic drugs, and can replenish the fast-proliferating subpopulation [27, 29, 66, 157]. The

dynamics underlying tumour heterogeneity are not well understood, so improving cancer therapy

depends on furthering this understanding [13, 66, 177]. Theoretical approaches are well-placed

to assist in elucidating the transient dynamics of intratumoural heterogeneity.

In this article we present a delay differential equation model for heterogeneous cell prolifer-

ation in which the total population consists of a subpopulation of slow-proliferating cells and a

subpopulation of fast-proliferating cells. Our model incorporates the two cellular processes of

asymmetric cell division and induced switching between proliferative states, which are important

contributors to the dynamic heterogeneity of a cancer cell population [159, 160, 163, 164]. The

model is designed for investigating the transient dynamics of intratumoural heterogeneity with

respect to cell proliferation. We employ delay differential equations in our model rather than or-

dinary differential equations in order to obtain transient dynamics consistent with the dynamics

in a tumour. While the equilibrium states for our model are the same as those for the corre-

sponding ordinary differential equations, the transient dynamics are very different, and model

parameterisation with biologically-realistic values requires a model that incorporates realistic

cell cycle durations for the slow- and fast-proliferating subpopulations.

Because the transient dynamics of a tumour are of primary interest, and the local stability

analysis of our model provides only long-term behaviour near to the equilibrium, we must

numerically simulate our model to explore the transient dynamics. We provide some examples

of numerical simulations in Figure 5.3, where we specify the delay kernels to be right-truncated

Erlang distributions (Section 2 of Electronic Supplementary Material), and vary the parameters

to demonstrate some of the possible dynamics within a tumour cell population. To exemplify

some of the experimental scenarios to which our model is applicable, we consider a tumour that
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is treated with a cytotoxic drug which may induce cellular stress, causing the fast-proliferating

cells to switch to the drug-resistant slow-proliferating phenotype [66] through the mechanisms

of asymmetric cell division and induced switching.

We show simulations where there is no induced switching between the slow- and fast-

proliferating subpopulations in Figure 5.3(b)–(d). If tumour cells experience no microenvi-

ronmental stress, then all cell divisions may be symmetric, corresponding to the situation in

Figure 5.3(b) where the fast-proliferating cells rapidly populate the tumour until the total cell

density reaches carrying capacity. If a drug is introduced into the tumour microenvironment

then the fast-proliferating cells may experience cellular stress, inducing the fast-proliferating

cells into asymmetric cell division as a survival strategy, as the slow-proliferating phenotype

is drug resistant. Figure 5.3(c)–(d) illustrates this behaviour, first for an intermediate level of

asymmetric division in (c), and then for the maximum level of asymmetric division in (d).

Figure 5.3(e) shows a simulation where fast-proliferating cells are under stress due to the

presence of a drug, and are induced to switch to slow proliferation through signals from slow-

proliferating cells as a survival strategy. Alternatively, the induced signalling may arise from

the highly invasive slow-proliferating cells [66,178] influencing the less invasive fast-proliferating

cells to switch to the more invasive slow-proliferating phenotype. In our simulation the total

cell population appears to reach the carrying capacity density at around 200 hours, however

the dynamics of induced switching of cells from fast to slow proliferation continues until all

cells are slow proliferating. This is important because, while tumour growth has effectively

ceased, the tumour is becoming increasingly drug resistant and invasive over time until the whole

tumour is composed of drug resistant and invasive cells. Therefore, effective early treatment of

the tumour is required in order to prevent the tumour from becoming more aggressive and

treatment resistant. If the per capita interaction strength of slow-proliferating cells to induce

fast-proliferating cells to switch to slow proliferation is obtained experimentally, then our model

could be used to predict the transient change in the proportion of slow-proliferating cells in the

population, and therefore the changes in invasiveness and drug resistance of the tumour.

Now consider a tumour composed of mostly fast-proliferating cells and a very small propor-

tion of slow-proliferating cells, as in Figure 5.3(i). The fast-proliferating cells undergo induced

switching to slow proliferation, perhaps due to stress from an introduced drug or to increase

invasiveness. Initially the fast-proliferating subpopulation grows to reach near the carry capac-

ity density, and the system appears to be in equilibrium for an extended period of time. As

the tumour is almost completely composed of fast-proliferating cells, it is in the least invasive

and most drug sensitive state. Without knowledge of the presence of induced switching, ex-
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perimental investigations may not reveal that the tumour is in the process of becoming highly

invasive and drug resistant. Indeed, once the density of the slow-proliferating cells has reached

a sufficient but still very low level, the tumour rapidly becomes populated by slow-proliferating

cells through induced switching of the fast-proliferating cells.

Finally, consider a small tumour comprised mostly of slow-proliferating cells and a very small

proportion of fast-proliferating cells, as in Figure 5.3(j). Signals from the fast-proliferating cells

induce the slow-proliferating cells to switch to fast proliferation. Experimentally, this could

correspond to a tumour that has been treated with a drug which caused the death of most of

the fast-proliferating cells. For an extended period of time the tumour grows very little, until

the density of fast-proliferating cells is high enough that the induced switching from slow- to

fast-proliferation rapidly grows the tumour to the maximum sustainable size. Our model is

therefore able to provide an estimate of tumour growth over time following drug treatment,

when the cells can undergo induced switching.

There are numerous possibilities for future work. Induced switching between proliferative

states could take many forms. In tumours the slow-proliferating state may continually arise and

disappear [28], so it would be interesting to accommodate time-dependent induced switching

into the model, which could be either periodic or aperiodic. We could also consider the induced

switching to have an explicit dependence on density, so that no switching occurs from a particular

proliferative state when the density of cells from the other proliferative state is above a certain

value. A similar explicit density dependence could be implemented for asymmetric cell division,

which occurs at constant proportions in our current model. These explicit dependences on

density may be relevant for slow-proliferating subpopulations in tumours that appear to persist

over time and maintain the relative size of the subpopulation [27,29]. Our model could also be

extended to include the additional process of spontaneous switching between proliferative states,

which is independent of other cells and may be stochastic.

While our model has implicit spatial structure, since the dependent variables are cell densi-

ties, we could include spatial structure explicitly. We could then explicitly model cell migration

with a diffusive term [85]. Further, induced switching could be modelled as a more localised

process where the rate of a cell switching proliferative states is determined by the density of cells

in a different proliferative state within a given radius of the cell, where the interaction strength

decreases with distance from the cell.

We could also extend our model to more than two dependent variables. For example, we could

consider fast-, slow-, and very-slow-proliferating subpopulations. Another possible extension is

to include apoptosis. Much of our analysis in this article is likely to be easily generalised to
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an extended version of our model. The more challenging aspect could be the analysis of the

corresponding transcendental characteristic equations, however taking a more abstract approach

for an extended model with an arbitrary n dependent variables could simplify the problem.

Code availability

The code for the algorithm to replicate the numerical simulations in this work is available on

GitHub at https://github.com/DrSeanTVittadello/Vittadello2020.

5.7 Supplementary Material

5.7.1 Experimental

We briefly describe the materials and methods employed to obtain our experimental data for

the durations of cells in G1 and S/G2/M phases, shown in Figure 5.4. Further experimental

details are given in [146]. Each histogram is constructed using data from 50 individual cells.

Our experimental data consist of microscopy time-series images of two-dimensional cell pro-

liferation assays using the three human melanoma cell lines C8161 (kindly provided by Mary

Hendrix, Chicago, IL, USA), WM983C and 1205Lu (both kindly provided by Meenhard Her-

lyn, Philadelphia, PA, USA), which have cell cycle durations of approximately 21, 23 and 37 h,

respectively [13]. The cell lines were genotypically characterised [101–104], grown as described

in [106], and authenticated by STR fingerprinting (QIMR Berghofer Medical Research Institute,

Herston, Australia).

We maintain the cell cultures to prevent any induced synchronisation from cell cycle arrest

in G1 phase, by passaging the cells every three days, and on the day prior to setting up an

experiment, to maintain a subconfluent cell density and a fresh growth medium.

Experimental investigation of the progression of the cell cycle is visually enabled with flu-

orescent ubiquitination-based cell cycle indicator (FUCCI) technology [30]. FUCCI consists of

two genetically-encoded reporters that enable visualisation of the cell cycle of individual live

cells: when the cell is in G1 phase the nucleus fluoresces red, and when the cell is in S/G2/M

phase the nucleus fluoresces green (Figure 5.1 in the main document). During the transition

from G1 to S phase, called early S, both reporters fluoresce and the nucleus appears yellow.

FUCCI is utilised in experimental studies of the cycling dynamics of cells in tumours [13], and

reveals the differential cycling of the cell population.
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Figure 5.4: Histograms of G1- and S/G2/M-phase duration data with best fits of the right-truncated
Erlang distribution in Equation (5.66), and a comparison of the probability density functions of the
right-truncated Erlang and exponential distributions. Each histogram corresponds to 50 cells. The
best-fit parameters for the right-truncated Erlang distribution are: (a) RTE(17, 3.3 h−1, 20 h); (b)
RTE(5, 1.1 h−1, 20 h); (c) RTE(7, 0.79 h−1, 30 h); (d) RTE(11, 0.89 h−1, 30 h); (e) RTE(5, 0.30 h−1, 40 h);
(f) RTE(8, 0.62 h−1, 40 h). (g) Probability density functions of the right-truncated Erlang and exponen-
tial distributions, for RTE(8, 0.4 h−1, 80 h) and Exp(0.05 h−1). The exponential distribution has mean 20
h, and the right-truncated Erlang distribution has mean 20.0000 h (to four decimal places)
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5.7.2 Experimental data and models for cell cycle durations

Standard deterministic mathematical models of cell proliferation, such as exponential (5.63) and

logistic (5.64) growth models,

dP (t)

dt
= rP (t), (5.63)

dP (t)

dt
= rP (t)

(
1− P (t)

K

)
, (5.64)

where P (t) is the population density at time t, r is the intrinsic growth rate, and K is the

carrying capacity density, are based on cell cycle durations with an exponential distribution

Exp(θ) for rate θ. Realising Equations (5.63) and (5.64) as stochastic pure birth processes

yields continuous-time homogeneous Markov chains with exponentially-distributed durations of

cell cycle residence [179]. Experimental investigations, however, suggest that the duration of the

cell cycle, and in particular each cell cycle phase, is not exponentially distributed [76,77,82,83,86].

Rather, it is often found that the hypoexponential distribution, characterised as the sum of k

independent exponential random variables with distinct rate parameters λi, for i = 1, . . . , k, is a

reasonable distribution for cell cycle duration [76,77,82,83,86]. The hypoexponential distribution

generalises the Erlang distribution for which the exponential random variables have the same

rate parameter λ. Since the exponential distribution allows for a relatively large probability of

arbitrarily small cell cycle durations, ordinary differential equations such as (5.63) and (5.64)

tend to overestimate the population growth rate, particularly for slow-proliferating cells.

We consider only bounded distributions for their greater biological realism. A particular

example of a bounded delay kernel that may be relevant when modelling the cell cycle is the

probability density for the right-truncated Erlang distribution. The probability density for the

Erlang distribution is

g(z) =
λkzk−1e−λz

(k − 1)!
, for z ∈ [0,∞), (5.65)

where k is the shape parameter, λ is the rate parameter, and the mean is k/λ. Restricting the

Erlang distribution to the bounded interval [0, U ], where U ∈ (0,∞), gives the right-truncated

Erlang distribution which has probability density

g∗(z) =
g(z)∫ U

0
g(w) dw

, for z ∈ [0, U ]. (5.66)

We also show in Figure 5.4 the best fit to the data for the right-truncated Erlang distribution
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RTE(k, λ, U), where the shape k and rate λ correspond to the Erlang distribution, and U is the

right-truncation point of the Erlang distribution. Each best fit is obtained with the MATLAB

nonlinear least-squares solver lsqnonlin [122] with the trust-region-reflective algorithm [123].

These data demonstrate that the durations of G1 and S/G2/M, and therefore of the complete

cell cycle, are well approximated by a right-truncated Erlang distribution. In Figure 5.4(g)

we compare the probability density functions of the exponential and right-truncated Erlang

distributions, which clearly demonstrates that these cell cycle durations are not exponentially

distributed. Using the lsqnonlin solver we find that for each data set the norm of the residual

from fitting the right-truncated Erlang distribution is no greater than the norm of the residual

from fitting the Erlang distribution. This outcome is expected as the cumulative density of

the Erlang distribution tends to one exponentially after the maximum data value. We could

also left-truncate the Erlang distribution to ensure a positive lower bound for the distribution,

depending on whether a better fit would be achieved with particular data.
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5.7.3 Complete proof of Theorem 5.2

It suffices to prove that S(t) ≥ 0 and F (t) ≥ 0 for all t > 0, for then it follows from Lemma 5.3

that S(t) ≤ K and F (t) ≤ K for all t > 0. Define t1 and t2 by t1 = inf{ t > 0 | S(t) < 0 } and

t2 = inf{ t > 0 | F (t) < 0 }. We consider the infima in the extended real numbers, so that t1,

t2 ∈ (0,+∞], where either infimum is equal to +∞ if the corresponding set is empty. The proof

consists of four separate cases.

Case 1: Let βS − βF ≥ 0 and suppose S(t) < 0 for some t > 0.

Note that t1 ∈ R. If t1 < t2 then choose t3 ∈ (t1, t2) such that S(t3) < 0, dS(t)/dt |t=t3 < 0,

and the delays satisfy S(t3) ≥ 0 and F (t3) ≥ 0. Then, since P (t3) ≤ K by Lemma 5.3 and since

F (t3) ≥ 0, Equation (5.2) gives dS(t)/dt|t=t3 ≥ 0, a contradiction.

If t1 ≥ t2 then, since F (0) > 0 and F (t2) = 0, there exists t3 ∈ (0, t2) such that dF (t)/dt|t=t3 < 0.

Then, since P (t3) ≤ K by Lemma 5.3, since the delays satisfy S(t3) ≥ 0 and F (t3) ≥ 0, and

since S(t3), F (t3) ≥ 0, Equation (5.3) gives dF (t)/dt|t=t3 ≥ 0, a contradiction. We conclude

that S(t) ≥ 0 for all t > 0.

Case 2: Let βS − βF < 0 and suppose S(t) < 0 for some t > 0.

Note that t1 ∈ R. If t1 ≤ t2 then, since S(0) > 0 and S(t1) = 0, there exists t3 ∈ (0, t1) such that

dS(t)/dt|t=t3 < 0. Then, since P (t3) ≤ K by Lemma 5.3, since the delays satisfy S(t3) ≥ 0 and

F (t3) ≥ 0, and since S(t3), F (t3) ≥ 0, Equation (5.2) gives dS(t)/dt|t=t3 ≥ 0, a contradiction.

Suppose now that t1 > t2, and choose t3 ∈ (t2, t1) such that F (t3) < 0, dF (t)/dt|t=t3 < 0, and

the delays satisfy S(t3) ≥ 0 and F (t3) ≥ 0. Then, since P (t3) ≤ K by Lemma 5.3, and since

S(t3) ≥ 0, Equation (5.2) gives dF (t)/dt|t=t3 ≥ 0, a contradiction.

Suppose now that t1 = t2. Since S(0) > 0 and S(t1) = 0, there exists t3 ∈ (0, t1) such that

dS(t)/dt|t=t3 < 0. Then, since P (t3) ≤ K by Lemma 5.3, since the delays satisfy S(t3) ≥ 0 and

F (t3) ≥ 0, and since S(t3), F (t3) ≥ 0, Equation (5.3) gives dS(t)/dt|t=t3 ≥ 0, a contradiction.

We conclude that S(t) ≥ 0 for all t > 0.

Case 3: Let βS − βF ≥ 0 and suppose F (t) < 0 for some t > 0.

Note that t2 ∈ R. If t2 < t1 then, since F (0) > 0 and F (t2) = 0, there exists t3 ∈ (0, t2) such that

dF (t)/dt|t=t3 < 0. Then, since P (t3) ≤ K by Lemma 5.3, since the delays satisfy S(t3) ≥ 0 and

F (t3) ≥ 0, and since S(t3), F (t3) ≥ 0, Equation (5.3) gives dF (t)/dt|t=t3 ≥ 0, a contradiction.

Suppose now that t2 > t1, and choose t3 ∈ (t1, t2) such that S(t3) < 0, dS(t)/dt|t=t3 < 0, and

the delays satisfy S(t3) ≥ 0 and F (t3) ≥ 0. Then, since P (t3) ≤ K by Lemma 5.3, and since

F (t3) ≥ 0, Equation (5.2) gives dS(t)/dt|t=t3 ≥ 0, a contradiction.

Suppose now that t1 = t2. Since F (0) > 0 and F (t2) = 0, there exists t3 ∈ (0, t2) such that
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dF (t)/dt|t=t3 < 0. Then, since P (t3) ≤ K by Lemma 5.3, since the delays satisfy S(t3) ≥ 0 and

F (t3) ≥ 0, and since S(t3), F (t3) ≥ 0, Equation (5.3) gives dF (t)/dt|t=t3 ≥ 0, a contradiction.

We conclude that F (t) ≥ 0 for all t > 0.

Case 4: Let βS − βF < 0 and suppose F (t) < 0 for some t > 0.

Note that t2 ∈ R. If t2 < t1 then choose t3 ∈ (t2, t1) such that F (t3) < 0, dF (t)/dt|t=t3 < 0,

and the delays satisfy S(t3) ≥ 0 and F (t3) ≥ 0. Then, since P (t3) ≤ K by Lemma 5.3 and since

S(t3) ≥ 0, Equation (5.3) gives dF (t)/dt|t=t3 ≥ 0, a contradiction.

Suppose now that t2 ≥ t1. Since S(0) > 0 and S(t1) = 0 there exists t3 ∈ (0, t1) such that

dS(t)/dt|t=t3 < 0. Then, since P (t3) ≤ K by Lemma 5.3, since the delays satisfy S(t3) ≥ 0 and

F (t3) ≥ 0, and since S(t3), F (t3) ≥ 0, Equation (5.2) gives dS(t)/dt|t=t3 ≥ 0, a contradiction.

We conclude that F (t) ≥ 0 for all t > 0.
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5.7.4 Complete proof of Theorem 5.4

We first show that f defined in Equation (5.14) satisfies the following Lipschitz condition on

every bounded subset of C: for all M > 0 there exists L > 0 such that for ρ, ψ ∈ C([−Û , 0],R2)

with ‖ρ‖, ‖ψ‖ ≤M we have ‖f(ρ)− f(ψ)‖2 ≤ L‖ρ− ψ‖.

To further simplify the notation in Equation (5.14) we define κ1 = (2αS − 1)rS , κ2 =

2(1− αF )rF , κ3 = 2(1− αS)rS , κ4 = (2αF − 1)rF , and κ5 = (βS − βF )/K. Now,

f(ρ)− f(ψ) =



(
κ1ρS + κ2ρF

)(
1− (ρS + ρF )(0)

K

)
− κ5ρS(0)ρF (0)

−
(
κ1ψS + κ2ψF

)(
1− (ψS + ψF )(0)

K

)
+ κ5ψS(0)ψF (0)

(
κ3ρS + κ4ρF

)(
1− (ρS + ρF )(0)

K

)
+ κ5ρS(0)ρF (0)

−
(
κ3ψS + κ4ψF

)(
1− (ψS + ψF )(0)

K

)
− κ5ψS(0)ψF (0)



=



(
κ1(ρS − ψS) + κ2(ρF − ψF )

)(
1− (ρS + ρF )(0)

K

)

+
(
κ1ψS + κ2ψF

)((ψS − ρS)(0) + (ψF − ρF )(0)

K

)
+κ5(ψS − ρS)(0)ψF (0) + κ5(ψF − ρF )(0)ρS(0)

(
κ3(ρS − ψS) + κ4(ρF − ψF )

)(
1− (ρS + ρF )(0)

K

)

+
(
κ3ψS + κ4ψF

)((ψS − ρS)(0) + (ψF − ρF )(0)

K

)
+κ5(ρS − ψS)(0)ψF (0) + κ5(ρF − ψF )(0)ρS(0)


so, using the triangle inequality, we obtain

‖f(ρ)− f(ψ)‖2 ≤

∥∥∥∥∥∥∥∥∥∥


κ1(ρS − ψS)

(
1− (ρS + ρF )(0)

K

)

κ3(ρS − ψS)

(
1− (ρS + ρF )(0)

K

)

∥∥∥∥∥∥∥∥∥∥

2
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+

∥∥∥∥∥∥∥∥∥∥


κ2(ρF − ψF )

(
1− (ρS + ρF )(0)

K

)

κ4(ρF − ψF )

(
1− (ρS + ρF )(0)

K

)

∥∥∥∥∥∥∥∥∥∥

2

+

∥∥∥∥∥∥∥∥∥∥


κ1ψS

(
(ψS − ρS)(0) + (ψF − ρF )(0)

K

)

κ3ψS

(
(ψS − ρS)(0) + (ψF − ρF )(0)

K

)

∥∥∥∥∥∥∥∥∥∥

2

+

∥∥∥∥∥∥∥∥∥∥


κ2ψF

(
(ψS − ρS)(0) + (ψF − ρF )(0)

K

)

κ4ψF

(
(ψS − ρS)(0) + (ψF − ρF )(0)

K

)

∥∥∥∥∥∥∥∥∥∥

2

+

∥∥∥∥∥∥∥∥
 κ5(ψS − ρS)(0)ψF (0)

κ5(ρS − ψS)(0)ψF (0)


∥∥∥∥∥∥∥∥

2

+

∥∥∥∥∥∥∥∥
 κ5(ψF − ρF )(0)ρS(0)

κ5(ρF − ψF )(0)ρS(0)


∥∥∥∥∥∥∥∥

2

≤
√
κ2

1 + κ2
3

(
1 +

1

K
|ρS(0)|+ 1

K
|ρF (0)|

)
|(ρS − ψS)|

+
√
κ2

2 + κ2
4

(
1 +

1

K
|ρS(0)|+ 1

K
|ρF (0)|

)
|(ρF − ψF )|

+
1

K

√
κ2

1 + κ2
3|ψS ||(ψS − ρS)(0) + (ψF − ρF )(0)|

+
1

K

√
κ2

2 + κ2
4|ψF ||(ψS − ρS)(0) + (ψF − ρF )(0)|

+
√

2 |κ5| |(ρS − ψS)(0)| |ψF (0)|+
√

2 |κ5| |(ρF − ψF )(0)| |ρS(0)|

≤
√
κ2

1 + κ2
3

(
1 +

1

K
‖ρS‖+

1

K
‖ρF ‖

)
‖ρS − ψS‖

+
√
κ2

2 + κ2
4

(
1 +

1

K
‖ρS‖+

1

K
‖ρF ‖

)
‖ρF − ψF ‖

+
1

K

√
κ2

1 + κ2
3‖ψS‖

(
‖ψS − ρS‖+ ‖ψF − ρF ‖

)
+

1

K

√
κ2

2 + κ2
4‖ψF ‖

(
‖ψS − ρS‖+ ‖ψF − ρF ‖

)
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+
√

2|κ5|‖ρS − ψS‖‖ψF ‖+
√

2|κ5|‖ρF − ψF ‖‖ρS‖

≤
(√

κ2
1 + κ2

3

(
1 +

2M

K

)
+
√
κ2

2 + κ2
4

(
1 +

2M

K

)
+

2M

K

√
κ2

1 + κ2
3

+
2M

K

√
κ2

2 + κ2
4 + 2

√
2|κ5|M

)
‖ρ− ψ‖

=

((√
κ2

1 + κ2
3 +

√
κ2

2 + κ2
4

)(
1 +

4M

K

)
+ 2
√

2|κ5|M

)
‖ρ− ψ‖,

so we can set L to be

L =

(√
κ2

1 + κ2
3 +

√
κ2

2 + κ2
4

)(
1 +

4M

K

)
+ 2
√

2|κ5|M

and then f satisfies the Lipschitz condition. Then [173, Page 32, Theorem 3.7] provides local

existence and uniqueness of solutions for the system (5.2) and (5.3). Since our solutions of

interest are bounded by Theorem 5.2, it follows from [173, Page 37, Proposition 3.10] that the

solutions are continuable to all positive time.
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5.7.5 Alternative proof of Proposition 5.6

The functions S and F are non-negative by Theorem 5.2, so the following inequalities show

that the equilibrium point (S*, F *) = (0, 0) ∈ C([−Û ,∞),R2
≥0) for the system (5.2) and (5.3)

is stable if and only if the equilibrium point P * = 0 ∈ C([−Û ,∞),R≥0) for Equation (5.12) is

stable:

‖(S, F )‖ ≤ ‖P‖ ≤
√

2 ‖(S, F )‖. (5.67)

The history function φ for the system (5.2) and (5.3) is strictly positive by Equation (5.9),

and φS + φF < K by Equation (5.10). It follows by continuity that S(t) > 0, F (t) > 0, and

S(t) + F (t) < K in a neighbourhood of (0, 0). So, by Equation (5.12), dP (t)/dt > 0 in a

neighbourhood of P * = 0, which is therefore an unstable equilibrium point. We conclude that

(S*, F *) = (0, 0) is also an unstable equilibrium point by Equation (5.67).
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5.7.6 Graphical illustration of Cauchy’s argument principle

In Figure 5.5 we graphically illustrate our application of Cauchy’s argument principle. We let

Γ be the closed rectangular contour in Figure 5.5(a). Due to the integrals in the transcendental

characteristic equation G(λ) in Equation (5.25), a very large number of numerical integrations

are required to calculate G(λ) along a contour. So, we instead use the discrete delay version of

G(λ), denoted by Gδ(λ), which gives similar qualitative behaviour:

Gδ(λ) = λ2−λ
(

(2αS−1)re−λrF τS +(2αF −1)e−λrF τF
)

+(2αS +2αF −3)re−λrF (τS+τF ) , (5.68)

obtained from G(λ) with the Dirac kernels gS(z) = δ(z− τS) and gF (z) = δ(z− τF ) for discrete

delays τS and τF . Figures 5.5(b), (d), and (f) show the images Gδ(Γ) for three different sets of

parameters for Gδ(λ), and Figures 5.5(c), (e), and (g) show the respective close-up views around

the origin. Note that each coloured segment of Gδ(Γ) in (b)–(f) is the image of the same-coloured

segment of the rectangular contour Γ in (a) under Gδ(λ). To calculate the winding number of

Gδ(Γ) with respect to the origin we count the net number of times that Gδ(Γ) winds counter-

clockwise around the origin, assigning +1 for each time Gδ(Γ) winds around the origin in a

counter-clockwise direction, and −1 for each time Gδ(Γ) winds around the origin in a clockwise

direction. Figure 5.5 illustrates that the behaviour of Gδ(Γ) can be complicated near the origin,

so when calculating the winding number of Gδ(Γ) with respect to the origin we need to ensure

that we also account for the possibility of Gδ(Γ) winding around the origin in a clockwise

direction.
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Figure 5.5: Graphical illustration of our application of Cauchy’s argument principle for Gδ(λ) in Equa-
tion (5.68), when 2αS+2αF −3 > 0. (a) A rectangular contour Γ in the right half-plane does not intersect
the imaginary axis. (b) The image contour Gδ(Γ) when Gδ has the parameters αS = 0.6, αF = 1, rF = 1,
and r = 0.01, with a close-up view of the origin in (c). (d) The image contour Gδ(γ) when Gδ has the
parameters αS = 0.6, αF = 1, rF = 0.1, and r = 1, with a close-up view of the origin in (e). (f) The
image contour Gδ(Γ) when Gδ has the parameters αS = 1, αF = 1, rF = 1, and r = 0.01, with a close-up
view of the origin in (g). Each coloured segment of Gδ(Γ) in (b)–(f) is the image of the same-coloured
segment of the rectangular contour Γ in (a) under Gδ(λ)
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CHAPTER 6

Conclusions and future work

6.1 Summary

In this thesis we employ experimental investigation, mathematical modelling, and mathematical

analysis to explore how the detailed information about the cell cycle obtained with fluorescent cell

cycle indicators can inform the development of novel mathematical models of cell migration and

proliferation, address many key assumptions underlying mathematical models in the literature,

and allow for more rigorous mathematical analysis of experimental observations.

The objectives of this thesis were to:

1. Incorporate cell cycle dynamics into a continuum model of cell migration based on the

information provided by FUCCI technology in relation to the cell cycle phase.

2. Investigate whether cell proliferation assays prepared using standard cell-culture proce-

dures are asynchronous, utilising FUCCI technology.

3. Rigorously examine the go-or-grow hypothesis using FUCCI technology and cell-cycle-

inhibiting drugs.

4. Develop a continuum model of heterogeneous cell proliferation motivated by data from

new proliferation experiments with FUCCI-expressing cells.

These four objectives are successfully addressed in the four articles presented in Chapters 2–5

of this thesis, which we summarise here.
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In Chapter 2 we commence our study by developing a novel continuum mathematical model

that can be used to quantitatively describe 2-D cell migration experiments employing FUCCI

technology. We consider the total cell population as structured, consisting of distinct subpop-

ulations of cells in a particular phase of the cell cycle. The fundamental model is a system

of two coupled partial differential equations that describes the two subpopulations of cells in

either G1 or S/G2/M phase, as directly labelled by FUCCI. Our model can describe the spa-

tial and temporal distributions of the two subpopulations, and in particular the dynamics of

scratch assays performed with cells highlighted by FUCCI, which we demonstrate by showing

that the predictions of the model compare well with our new experimental data from scratch

assay experiments for three cell lines with distinct cell-cycle characteristics.

Scratch assays are routinely employed to study cell migration, for example in the context of

malignant invasion [107] and wound healing [46]. A typical scratch assay may require several

days to grow the cells, set up the experiment, and acquire images of the cell population. Our

model can simulate such an experiment on a single desktop computer in a few seconds. Further,

we can easily vary the parameters in our model to simulate experiments over any period of

time, any scratch width, any geometry, and any cell line provided that we know the durations

of each cell cycle phase, which are typically available. Therefore, this computational modelling

tool can provide valuable information to assist in the design and interpretation of these kinds

of experiments conducted with FUCCI-expressing cells.

Under appropriate conditions, numerical solutions of our mathematical model demonstrate

the existence of travelling wave solutions that are a combination of coupled wavefronts and

pulses. Travelling wave solutions are of great practical interest as cell migration tends to exhibit

travelling wave characteristics [46]. We derive an analytical expression for the minimum wave

speed of the travelling waves, assuming that the diffusion coefficients are equal for cells in G1

and S/G2/M phases, which is biologically reasonable as we are considering subpopulations of

the same cell type which differ only with respect to cell cycle phase. An implication of our

work in Chapter 4 is the experimental justification of the equality of the diffusion coefficients for

cells in G1 and S/G2/M phases. Our expression for the minimum wave speed depends on the

cell cycle dynamics of the particular cells under consideration, namely the ratio of the duration

of S/G2/M phase to the duration of G1 phase. The analytical expression we derive for the

minimum wave speed is of practical interest, as a moving front of cells can be thought of as

acting like a travelling wave solution, so our expression can provide a prediction for the speed

of the moving front in experimental studies.

Following our work in Chapter 2 we started to investigate the go-or-grow hypothesis, per-
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forming some preliminary proliferation experiments with three cell-cycle-inhibiting drugs to de-

termine the minimum doses that induce arrest in each of the three FUCCI-expressing cell lines

while minimising any other effects of the drugs. While analysing the time-series microscopy

images for the corresponding control assays we observed that the total cell population appeared

to grow exponentially, as expected, however the two subpopulations of cells in G1 and S/G2/M

phases exhibited oscillations in their growth. These oscillations, which represent partial cell-

cycle synchronisation of the cell population, were completely unexpected as we prepare our

proliferation assays using standard methods thought to produce asynchronous cell populations.

We therefore continued to investigate this cell synchronisation phenomenon, as it could have

implications for our examination of the go-or-grow hypothesis. Further, many different mathe-

matical models of proliferation have been proposed [50–56], and a key assumption often implicit

in such models is that the cell population is asynchronous, so such models cannot explain the

partial synchronisation that we observe experimentally.

The investigation of the partial synchronisation in the proliferation assays is reported in

Chapter 3, where we present our new experimental data showing that cell proliferation assays,

prepared using standard methods thought to produce asynchronous cell populations, persis-

tently exhibit partial synchronisation which we call inherent synchronisation. Our experiments

use FUCCI-expressing cells to highlight the oscillatory subpopulations within the total cell pop-

ulation, thereby revealing the normally-hidden cell synchronisation. These oscillatory subpopu-

lations would never be observed without these cell cycle indicators. In contrast, our experimental

data show that the total cell population appears to grow exponentially, as in an asynchronous

population. These observations seem inconsistent, however we were able to reconcile these seem-

ingly inconsistent observations by employing a multi-stage mathematical model of cell prolifer-

ation that can replicate the oscillations in the growth of the cell subpopulations. Our study has

important implications for understanding and improving experimental reproducibility, as inher-

ent synchronisation may affect the experimental reproducibility of studies aiming to investigate

cell-cycle-dependent mechanisms, including changes in migration and drug response. Without

quantitative experimental techniques like FUCCI to highlight the cell cycle, synchronisation and

its effects on experimental outcomes and reproducibility may remain hidden.

Following our investigation of inherent synchronisation, we return in Chapter 4 to our exam-

ination of the go-or-grow hypothesis. One aim was to develop a rigorous procedure for testing

whether individual cells in a population are subject to go-or-grow. Previous experimental studies

of the go-or-grow hypothesis are conflicting, as some studies support the hypothesis [57, 62, 63]

while others refute it [13, 64, 65]. The claims of many of these studies are based on qualitative
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observation rather than quantitative analysis, so the conclusions are not well supported. Fur-

ther, the correct measure of cell motility is cell diffusivity, which is typically not estimated in

previous studies of go-or-grow.

Our examination of the go-or-grow hypothesis employs 2-D in vitro proliferation assays using

three FUCCI-expressing melanoma cell lines, as melanoma is an ideal candidate for studying go-

or-grow [57,59,68]. FUCCI allows us to study cell motility in G1 separately from cell motility in

S/G2/M [13,69,70]. Specifically, we investigate cycling cells for differences in motility when the

cells are in G1 compared with S/G2/M, since if cells are subject to go-or-grow then a cycling cell

may become less motile as it progresses through the cell cycle and nears cell division. Further,

given the potential for an arrested cell to become more motile, as it is not proliferating, we use a

cell cycle-inhibiting drug to effect G1 arrest and compare the motility of the arrested cells with

cycling cells.

Since the concept of go-or-grow applies to a single cell, we determine the trajectories of cells

in the experimental time-series images using single-cell tracking. From the resulting trajectory

data we then determine that the cell migration is globally isotropic and that the directional

persistence of the cells dissipates within 1 h. We may therefore regard the cell migration as free

diffusion for lag times of at least 1 h. We then calculate mean diffusivities for cells in G1 and

S/G2/M phases and in cell-cycle arrest. In summary, our analysis of cell migration in 2-D assays

using three melanoma cell lines does not support the go-or-grow hypothesis. We find that cell

motility is independent of the cell-cycle phase, so that the implication from go-or-grow that cells

are more motile in G1 than in S/G2/M when they are nearing cell division is not supported by

our data. Notably, there is no change in cell motility when we effect drug-induced G1 arrest in

the cells, again displaying a lack of support for the go-or-grow hypothesis.

In Chapter 5 we use data from 2-D in vitro proliferation assays with three FUCCI-expressing

melanoma cell lines to illustrate that cell cycle durations are well approximated by an Erlang

distribution and not by an exponential distribution. Typically, mathematical models of cell

proliferation in the literature have an implicit exponential distribution of cell cycle durations

[50–54,71–74], resulting in growth kinetics that are too fast.

Our aim in Chapter 5 was to develop a new mathematical model of cell proliferation with pro-

liferative heterogeneity. To incorporate realistic cell cycle durations into our model we employed

a delay differential equation model for cell proliferation in which the delays are distributed. The

cell population consists of a slow-proliferating subpopulation and a fast-proliferating subpopula-

tion, as tumours consist of a small subpopulation of slow-proliferating cells that tends to survive

anti-cancer drug treatment and can maintain the tumour by repopulating the fast-proliferating
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subpopulation [27,29]. In our model the cells can switch between the two subpopulations through

two cellular processes, namely asymmetric cell division and induced switching of proliferative

states by surrounding cells. While there are mathematical models in the literature that consider

proliferative heterogeneity, they generally lack the flexibility of the proliferative-state dynamics

that we consider: some models account for one proliferating subpopulation only, which under-

goes asymmetric division, while the other subpopulations are quiescent or differentiated [87,88];

other models simply consider subpopulations with different proliferative states without any cells

switching between the subpopulations [89].

The results from our model are very interesting, particularly when comparing the results with

the proliferative heterogeneity observed in tumours. Our model accounts for several characteris-

tics of tumours [27,29,156,157]: the cancer cells in tumours can self-renew through asymmetric

division, as can the cells in our model; tumours consist of both a slow-proliferating subpopu-

lation and a fast-proliferating subpopulation, which is accounted for in our model; both slow-

and fast-proliferating cells in a tumour have a distribution of cell cycle durations, captured

by the time delays in our model. Overall, our model shows promise for providing insight into

proliferative heterogeneity in cell populations, particularly with regard to tumours.

6.2 Main theme

The main theme of the work in this thesis, detailed in Chapters 2–5, is the utilisation of FUCCI

in cell migration and proliferation experiments to inform the development of novel mathematical

models and to allow for more detailed mathematical analysis of experimental data. Experiments

using FUCCI cells provide for the simultaneous study of cell migration and the cell cycle, mo-

tivating the development of novel mathematical models of cell migration and proliferation as

in Chapters 2 and 5. Further, the detailed information on cell subpopulations from experi-

ments with FUCCI cells may reveal normally-hidden features of cell populations, such as the

partial synchronisation discussed in Chapter 3, and can be used to investigate cell behaviour

as a function of the cell cycle, such as our examination of go-or-grow in Chapter 4. Overall,

modern biological techniques such as FUCCI can be used to improve the mathematical under-

standing of cell biology, from which new biological insights can assist in explaining experimental

observations.
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6.3 Future work

Here we discuss some of the possibilities for future research corresponding to each of the four

articles presented in this thesis.

6.3.1 A quantitative investigation of the effects of anti-cancer drugs on cell

migration and proliferation

In Chapter 2 we present a mathematical model for cell migration and proliferation, which can

describe scratch assay experiments. It would be of substantial interest to employ our model

to quantitatively investigate how the migration and proliferation of melanoma cells are affected

by treatment with anti-cancer drugs. It is known that these drugs often inhibit the cell cycle,

causing proliferation to cease, however many important questions remain unanswered regarding

the effects of the drugs on melanoma cells [13].

6.3.2 Extension of our cell migration model to additional cell cycle phases

In Chapter 2 we develop two models corresponding to the cell cycle phases as indicated by

FUCCI: the fundamental model for the two phases G1 and S/G2/M; and the extended model for

the three phases G1, eS, and S/G2/M. With the development of improved cell-cycle indicators

that can highlight additional phases of the cell cycle, we could easily extend our model to

incorporate as many phases as required. Indeed, a recent extension of FUCCI, referred to as

FUCCI4 [113], highlights all four phases of the cell cycle: G1, S, G2, and M. By extending

our model to four coupled partial differential equations, our modelling framework could be used

to quantitatively describe cell migration where individual cells are highlighted using FUCCI4.

Modelling all four phases of the cell cycle, rather than combining three phases into S/G2/M as

required for FUCCI data, may improve the accuracy of the model predictions compared with

our current model. Further, a model incorporating the four phases G1, S, G2, and M would

allow for the investigation of the three phases S, G2, and M individually rather than combined

in S/G2/M, and would be of particular utility for studying the effects of anti-cancer drugs that

specifically inhibit cell cycle progression of melanoma cells in one of S, G2, or M [33].

6.3.3 Formal proof of existence of travelling wave solutions

In Chapter 2 we demonstrated numerically that our models have travelling wave solutions. For

the fundamental model, making the biological reasonable assumption that the diffusivities are

equal for cells in G1 and S/G2/M phases, we derived an expression for the minimum wave

166



Chapter 6. Conclusions and future work

speed. It would be of interest, at least from a mathematical perspective, to formally prove

the existence of the travelling wave solutions. For the fundamental model, phase space is 4-D.

While it is generally straightforward to prove the existence of travelling wave solutions in 2-D,

in higher dimensions the problem becomes much more difficult due to the increasingly complex

topology of the spaces. We attempted to prove the existence of travelling wave solutions for our

fundamental model with an approach based on the principle of Ważewski [180, Chapter 2, Page

24, Theorem 2.3], which recognises in an explicit manner that flows define homotopies, so that

homotopy theory can be used for the study of differential equations. Due to the 4-D nature of

our phase space, there were substantial difficulties in extending the local behaviour of solutions

to global behaviour. Another complication in phase space was the presence of a pulse solution

rather than just a wavefront solution. Due to the difficulties involved, there was no time to

continue with this project.

For phase space of three dimensions and higher an approach based on the principle of

Ważewski seems likely to be difficult except for special cases in which phase space is rela-

tively simple. Possibly a better approach is to use another topological index such as the Conley

index [180–183] which is well-suited to higher dimensions.

6.3.4 Investigating the causes of inherent synchronisation

We employed a multi-stage model in Chapter 3 to replicate the inherent synchronisation ob-

served in our cell proliferation experiments. We haven’t, however, identified the causes of the

synchronisation, of which there are a number of possibilities. While our experimental procedures

ensured that there was no induced synchronisation, our cell lines are adherent cells so require

attachment to a substrate to progress through the cell cycle. During the experiment set up,

the cells are detached from the culture flask and placed into suspension while a cell count is

performed prior to seeding the cells onto a plate. During the period the cells are in suspension,

which could be up to an hour, some of the cells may die as a result of an inability to progress

through the cell cycle. The cells most likely to die are those close to mitosis, therefore in S/G2/M

phase which is highlighted as green by FUCCI. Once the suspended cells are seeded on a plate,

the distribution of red to green cells could now be shifted towards the red cells, thereby pro-

ducing partial synchronisation during the beginning of the experiment. Another possibility is

that the synchronisation arises from the initial synchronisation of daughter cells from the same

parent, as they both start in G1. Another further possibility is that spontaneous synchronisa-

tion is occurring by intercellular signalling, whereby cells influence the cell cycle progression of

surrounding cells.
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One approach to test for these possibilities, and others, is to simulate a proliferation assay

with an agent-based model using the multi-stage version of the Gillespie algorithm [184].

6.3.5 Investigating go-or-grow in 3-D

In Chapter 4 we developed a rigorous methodology for examining the go-or-grow hypothesis,

and then used this methodology to test the hypothesis with melanoma cells in 2-D assays.

The natural extension is to utilise this methodology to study go-or-grow in 3-D. While the

methodology is completely applicable, there are some difficulties to be overcome when analysing

images of spheroids in 3-D: cell tracking can be more complicated as cells can move behind other

cells, however good tracking software would minimise this issue; cells can appear to migrating

while suppressing proliferation, however this may be due to other reasons such as nuclear damage

resulting from the cells moving through constricted pores.

6.3.6 Mathematical model of heterogeneous cell proliferation with

time-dependent induced switching

In tumours the slow-proliferating subpopulation can continually arise and disappear (Roesch et

al., 2010). It would therefore be interesting to accommodate this process into our model with a

time-dependent switching term, which could be either periodic or aperiodic.

6.3.7 Mathematical model of heterogeneous cell proliferation with an explicit

density-dependence of proliferative-state switching

We could consider the induced switching to have an explicit density dependence, so that no

switching occurs from a particular proliferative state when the density of cells from the other

proliferative state is above a certain value. A similar explicit density dependence could be imple-

mented for asymmetric cell division, which occurs at constant proportions in our current model.

These explicit dependences on density may be relevant for slow-proliferating subpopulations in

tumours that appear to persist over time and maintain the relative size of the subpopulation

(Perego et al., 2018; Vallette et al., 2019).

6.3.8 Mathematical model of heterogeneous cell proliferation with spontaneous

switching

Another process for switching of proliferative states that would be interesting to study is spon-

taneous switching between subpopulations, which is independent of other cells.
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6.3.9 Mathematical model of heterogeneous cell proliferation with spatial

dimensions

While our model has implicit spatiality, since the dependent variables are cell densities, we could

include spatial dimensions explicitly to model cell migration with diffusive terms. Further,

induced switching could be modelled as a more localised process, where the chance of a cell

switching proliferative states is determined by the density of cells in a different proliferative

state within a given radius of the cell, where the interaction strength decreases with distance

from the cell.

6.4 Additional co-authored publications and preprints motivated by this thesis

Over the course of the work in this thesis the author has been involved in three collaborative

projects, at both institutional and international levels, that were motivated by this work. The

resulting publications and preprints are noted here:

� Simpson MJ, Jin W, Vittadello ST, Tambyah TA, Ryan JM, Gunasingh G, Haass NK,

McCue SW. Stochastic models of cell invasion with fluorescent cell cycle indicators.

Physica A: Statistical Mechanics and its Applications. 2018;510:375–386.

doi:10.1016/j.physa.2018.06.128.

� Simpson MJ, Baker RE, Vittadello ST, Maclaren OJ. Practical parameter identifiabil-

ity for spatio-temporal models of cell invasion. Journal of the Royal Society Interface.

2020;17:20200055. doi:10.1098/rsif.2020.0055.

� Gavagnin E, Vittadello ST, Guanasingh G, Haass NK, Simpson MJ, Rogers T, Yates

CA. Synchronised oscillations in growing cell populations are explained by demographic

noise. bioRxiv 2020.03.13.987032. 2020. doi:10.1101/2020.03.13.987032.

6.5 Final remarks

In this thesis we have considered some examples of how the detailed cell-cycle information

provided by FUCCI can be used to develop new mathematical models of cell migration and

proliferation, and how the application of mathematical models and techniques can help to in-

terpret experimental data. While we have addressed some particular questions in this thesis,

even more have arisen during the course of this research, highlighting that there is still much

to learn about cell migration and proliferation. The interdisciplinary approach to research has

proved to be very productive in this thesis. Given the enormous amount of data now produced
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from experimental biology, it is of great benefit that mathematicians and biologists collaborate

to analyse and interpret the data, and improve experiment design. With such collaboration, the

fields of applied mathematics and biology both have much to gain.
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in channel-guided cell migration. Biophysical Journal. 2014;107:1054–1064.

[96] Holder AB, Rodrigo MR, Herrero MA. A model for acid-mediated tumour growth with

nonlinear acid production term. Applied Mathematics and Computation. 2014;227:176–

198.

[97] Kimpton LS, Whiteley JP, Waters SL, King JR, Oliver JM. Multiple travelling-wave

solutions in a minimal model for cell motility. Mathematical Medicine and Biology.

2013;30:241–272.

[98] Marchant BP, Norbury J, Byrne HM. Biphasic behaviour in malignant invasion. Mathe-

matical Medicine and Biology. 2006;23:173–196.

[99] Curtis CW, Bortz DM. Propagation of fronts in the Fisher-Kolmogorov equation with

spatially varying diffusion. Physical Review E. 2012;86:066108.

[100] Denman PK, McElwain DLS, Norbury J. Analysis of travelling waves associated with the

modelling of aerosolised skin grafts. Bulletin of Mathematical Biology. 2007;69:495–523.

[101] Davies MA, Stemke-Hale K, Lin E, Tellez C, Deng W, Gopal YN, et al. Integrated

molecular and clinical analysis of AKT activation in metastatic melanoma. Clinical Cancer

Research. 2009;15:7538–7546.

[102] Hoek KS, Schlegel NC, Brafford P, Sucker A, Ugurel S, Kumar R, et al. Metastatic po-

tential of melanomas defined by specific gene expression profiles with no BRAF signature.

Pigment Cell Research. 2006;19:290–302.

[103] Smalley KSM, Contractor R, Haass NK, Kulp AN, Atilla-Gokcumen GE, Williams DS,

et al. An organometallic protein kinase inhibitor pharmacologically activates p53 and

induces apoptosis in human melanoma cells. Cancer Research. 2007;67:209–217.

[104] Smalley KSM, Contractor R, Haass NK, Lee JT, Nathanson KL, Medina CA, et al. Ki67

expression levels are a better marker of reduced melanoma growth following MEK inhibitor

treatment than phospho-ERK levels. British Journal of Cancer. 2007;96:445–449.

[105] Smalley KSM, Brafford P, Haass NK, Brandner JM, Brown E, Herlyn M. Up-regulated

expression of zonula occludens protein-1 in human melanoma associates with N-cadherin

and contributes to invasion and adhesion. American Journal of Pathology. 2005;166:1541–

1554.

179



Bibliography

[106] Spoerri L, Beaumont KA, Anfosso A, Haass NK. Real-time cell cycle imaging in a 3D cell

culture model of melanoma. Methods in Molecular Biology. 2017;1612:401–416.

[107] Jin W, Shah ET, Penington CJ, McCue SW, Chopin LK, Simpson MJ. Reproducibility of

scratch assays is affected by the initial degree of confluence: Experiments, modelling and

model selection. Journal of Theoretical Biology. 2016;390:136–145.

[108] Warne DJ, Baker RE, Simpson MJ. Optimal Quantification of Contact Inhibition in Cell

Populations. Biophysical Journal. 2017;113:1920–1924.

[109] Yohem K, Slymen D, Bregman M, Meyskens F. Radiation survival of murine and human

melanoma cells utilizing two assay systems: Monolayer and soft agar. British Journal of

Cancer. 1988;57:64–69.

[110] Treloar KK, Simpson MJ, Haridas P, Manton KJ, Leavesley DI, McElwain DLS, et al.

Multiple types of data are required to identify the mechanisms influencing the spatial

expansion of melanoma cell colonies. BMC Systems Biology. 2013;7:137.

[111] Haridas P, Penington CJ, McGovern JA, McElwain DLS, Simpson MJ. Quantifying rates

of cell migration and cell proliferation in co-culture barrier assays reveals how skin and

melanoma cells interact during melanoma spreading and invasion. Journal of Theoretical

Biology. 2017;423:13–25.

[112] Abramowitz M, Stegun IA, editors. Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables. United States Department of Commerce, National

Bureau of Standards (NBS); 1964.

[113] Bajar BT, Lam AJ, Badiee RK, Oh YH, Chu J, Zhou XX, et al. Fluorescent indicators

for simultaneous reporting of all four cell cycle phases. Nature Methods. 2016;13:993–996.

[114] Morton KW, Mayers DF. Numerical Solution of Partial Differential Equations. 2nd ed.

Cambridge: Cambridge University Press; 2005.

[115] Tsoularis A, Wallace J. Analysis of logistic growth models. Mathematical Biosciences.

2002;179:21–55.

[116] Otani K, Naito Y, Sakaguchi Y, Seo Y, Takahashi Y, Kikuta J, et al. Cell-cycle-controlled

radiation therapy was effective for treating a murine malignant melanoma cell line in vitro

and in vivo. Scientific Reports. 2016;6:30689.

180



Bibliography

[117] Bae H, Go YH, Kwon T, Sung BJ, Cha HJ. A theoretical model for the cell cycle and

drug induced cell cycle arrest of FUCCI systems with cell-to-cell variation during mitosis.

Pharmaceutical Research. 2019;36:57.

[118] Taylor IW, Hodson PJ. Cell cycle regulation by environmental pH. Journal of Cellular

Physiology. 1984;121:517–525.

[119] Davis PK, Ho A, Dowdy SF. Biological methods for cell-cycle synchronization of mam-

malian cells. BioTechniques. 2001;30:1322–1331.

[120] Haass NK, Gabrielli B. Cell cycle-tailored targeting of metastatic melanoma: Challenges

and opportunities. Experimental Dermatology. 2017;26:649–655.

[121] MATLAB fit. Fit curve or surface to data (R2019b). Accessed February 2020.; 2019.

Available from: https://au.mathworks.com/help/curvefit/fit.html.

[122] MATLAB lsqnonlin. Solve nonlinear least-squares (nonlinear data-fitting) problems

(R2019b). Accessed February 2020.; 2019. Available from: https://mathworks.com/

help/optim/ug/lsqnonlin.html.

[123] Coleman TF, Li Y. An interior trust region approach for nonlinear minimization subject

to bounds. SIAM Journal on Optimization. 1996;6:418–445.

[124] MATLAB fft. Fast Fourier transform (R2019b). Accessed February 2020.; 2019. Available

from: https://au.mathworks.com/help/matlab/ref/fft.html.

[125] Pfeifer CR, Xia Y, Zhu K, Liu D, Irianto J, Garćıa VMM, et al. Constricted migration
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