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Abstract

Collective cell spreading is frequently observed in development, tissue repair and disease
progression. Mathematical modelling used in conjunction with experimental investigation
can provide key insights into the mechanisms driving the spread of cell populations.
The principle aim of this thesis is to apply mathematical modelling frameworks to new
experimental data to identify and quantify several key features underlying collective cell
spreading. This work is presented as a thesis by published papers and consists of five
related works which may either be read as a whole or as separate entities.

We begin by describing a set of experiments to investigate the unique roles of cell motil-
ity and cell proliferation in driving an initially confined fibroblast cell population. To
interpret our experimental observations we use a combination of lattice–based discrete
simulations and a related continuum partial differential equation model. We obtain inde-
pendent estimates of the cell diffusivity, D, by extracting information about the location
of the leading edge from experiments where cell proliferation has been suppressed in the
spreading population. Independent estimates of the cell proliferation rate, λ are obtained
using cell density information from experiments where cell proliferation is not inhibited in
the spreading population. Previous work suggests that cell populations with a high λ/D
ratio will be characterised by steep fronts, whereas systems with a low λ/D will lead to
shallow diffusive fronts and we confirm this here. Our results provide evidence that stan-
dard mathematical models, based on the Fisher–Kolmogorov equation, are appropriate
to interpret and predict such experimental observations.

We extend our investigation to quantify the mechanisms driving the collective spread of
melanoma cell populations. In addition to cell motility and cell proliferation mechanisms,
cell–to–cell adhesion is thought to be a crucial mechanism involved in melanoma cell pop-
ulation spreading. Standard mathematical models often neglect cell–to–cell adhesion and
it is unclear how estimates of the strength of cell–to–cell adhesion in a cell population
can be extracted from experimental data. In this work, we show that multiple types of
data must be integrated to independently quantify each of the three mechanisms present
in the spreading melanoma cell populations. In addition, we provide a method of quan-
tifying the strength of cell–to–cell adhesion by extracting information about the location
of isolated cells in the spreading population.

Our experimental and mathematical modelling investigation to quantify the mechanisms
driving the spread of fibroblast and melanoma cell populations raises several additional
questions which we examine in the final sections of the thesis. Firstly, we examine whether
the location of the leading edge, which is often used to parameterise mathematical models,
is sensitive to the choice of image analysis tools. We show that a standard measure of
cell migration can vary by as much as 25%. In addition, we use a mathematical model to
provide a physical interpretation of the location of the leading edge and find that varying
the image threshold parameter is equivalent to varying the location of the leading edge in
the range of approximately 1-5% of the maximum cell density. Our results suggest that
it is impossible to meaningful compare previously published measures of cell migration
since previously results have been obtained using different image analysis tools and the
details of these tools are often not reported.
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Secondly, we explore the role of in vitro assay geometry by performing experiments in two
distinct geometries. The first geometry describes a tumour–like geometry where a cell
population spreads outwards into an open space. The second geometry describes a wound–
like geometry where a cell population spreads inwards to close a void. Applying the same
techniques to independently quantify D and λ, we find that in vitro assay geometry does
affects these estimates. Our work suggests that estimates of the cell diffusivity vary by
up to 50% while estimates of the cell proliferation rate vary by up to 30%.

Finally, we test whether standard mathematical models, which assume that there is no
spatial structure such as cell clustering present in the system, are appropriate to describe
the spread of the melanoma cell populations considered in this work. We analyse discrete
simulation using pair correlation functions to show that spatial structure can form in a
spreading population of cells either through sufficiently strong cell–to–cell adhesion or
sufficiently rapid cell proliferation. We use the same pair correlation functions to analyse
experimental images and find that the strength of cell–to–cell adhesion is sufficiently weak
and rate of cell proliferation is sufficiently slow, so as not to induce any spatial structure
in the spreading populations.

We conclude by discussing the potential to apply the experimental and modelling ap-
proaches presented here to understand other aspects underlying collective cell spreading.
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Chapter 1

Introduction

1.1 Overview

Collective cell spreading1 is essential for development [159], tissue repair [85, 86, 89] and

disease progression [132, 153]. During these processes, cohorts of individual cells may

migrate, proliferate and/or adhere to other cells, resulting in the spatial spread of a

cell population [85, 86, 132, 159]. For example, development relies on the ability of cell

populations to be transported to new locations [159], while during wound–healing, fronts

of cells invade the wounded area as part of the repair process [85, 86]. Less desirably,

abnormalities in collective cell spreading may lead to malignant spreading and slowed

wound–repair [89, 132, 153]. Consequently, mathematical models to describe collective

cell spreading have been a recent subject of great interest since they have the potential to

provide insights into the mechanisms driving collective cell spreading [85,86,116,132,133].

Mathematical modelling approaches to describe collective cell spreading generally take one

of two forms [3,9,38,85,97,116,132]. The first approach describes the spread of the entire

cell population at the population–level using a continuum description, such as a partial

differential equation [20, 85, 86, 97, 113, 116, 132]. The second approach characterises

the behaviour of individual cells within the spreading cell population, using a discrete

description [3, 9, 38,52,57,146]. Mathematical models are traditionally continuum–based

and the standard continuum mathematical model used to describe how a population of

motile and proliferative cells spread in two dimensions is related to the Fisher–Kolmogorov

equation, which is given by

∂c̄

∂t
= D∇2c̄+ λc̄

(
1 − c̄

K

)
, (1.1)

where c̄(x, y, t) [cells/L2] is the dimensional cell density, D [L2/T] is the cell diffusivity

(random motility coefficient), λ [/T] is the cell proliferation rate and K [cells/L2] is the

carrying–capacity density [20, 85, 86, 97, 113, 116, 132]. In one–dimensional Cartesian

geometry, Equation (1.1) simplifies to the Fisher–Kolmogorov equation [42] which has

constant shape travelling wave solutions, C(z) = c̄(x − st), moving at constant speed

s [85, 86, 97]. The front speed approaches s =
√

4Dλ as t → ∞ for initial conditions

with compact support [97]. Variations of the Fisher–Kolmogorov equation, incorporating

1In this work, the term collective cell spreading refers to the spatial movement of an entire cell popula-
tion due to combinations of motility (migration), proliferation and/or cell–to–cell adhesion mechanisms.

1
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directed motility [104] or nonlinear diffusion [20, 155], have also been used to describe

collective cell spreading. These variations also have travelling wave solutions and different

relationships between the wave speed and the model parameters can be derived for these

generalisations [20,104,155].

An alternative modelling approach to describe collective cell spreading involves simulat-

ing the behaviour of individual cells in a population using a discrete, or individual–based,

modelling framework [3, 9, 38, 52, 57, 146]. There are several discrete tools that can be

used to simulate this behaviour including lattice–based random walk models, cellular

Potts models and off–lattice cell–based models [3, 9, 38, 52, 57, 146]. Each discrete model

tracks and updates individual cells according to a set of rules which are typically based

on observations of the biophysical behaviour [3,9,38,52,57,146]. Discrete models have the

benefit that they produce data, such as snapshots and movies, that are more compatible

with experimental data compared to partial differential equation models [125]. Further-

more, discrete models can be designed to incorporate realistic cell behaviours which can be

more difficult using a partial differential equation description [125]. However, individual–

based models are computationally expensive and many realisations are required to obtain

reliable statistics, meaning that it is often difficult to simulate realistic biological sys-

tems [88]. Continuum models are more amenable to analytical exploration and hence can

be advantageous over individual–based models [88,127].

Experimental observations of collective cell spreading often involve both individual–level

and population level observations, and it is important to understand how behaviours at

the individual–level may affect the behaviour of the entire cell population [53]. Like-

wise, understanding how information at the population–level may influence behaviours at

the individual–level is equally as important [53]. For example, time–lapse imaging often

provides detailed information about how a single cell interacts and responds to its environ-

ment, and observations can be easily incorporated in a discrete model [159]. Additionally,

population–level measurements, such as the front speed can be compared to population–

level information from either the discrete or continuum model [85, 86]. Consequently, a

multi–scale approach may provide a better alternative to traditional continuum modelling

since discrete–to–continuum models can easily capture individual–level behaviours while

still having the same advantages of continuum modelling [120].

Mathematical modelling can provide insights into the mechanisms driving collective cell

spreading [20,85,86,116,132,133]. Recent modelling approaches have used tandem exper-

imental studies to quantify various aspects of collective cell spreading. Maini et al. [85,86]

illustrated that a very simple wound–healing assay gives rise to constant speed travelling

waves as predicted by Fisher’s equation. Sengers et al. [113] characterised the migration

and proliferation of two skeletal cell types by extracting detailed information about the

cell density profile across the spreading cell populations illustrating that the standard con-

tinuum model (Equation 1.1) could accurately describe one of the cell populations, while

an alternative continuum model was needed to characterise the other cell population [113].
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Combined modelling and experimental studies have also accounted for possible cell–to–

cell adhesion mechanisms in the cell population. Khain et al. [72,74] developed a discrete

mathematical model to describe the expansion of a motile and proliferative cell colony in

which the cell motility is reduced by cell–to–cell adhesion. In their model, they represented

simulated cells on a two–dimensional lattice, and they allowed the simulated cells to both

move and proliferate. Cell–to–cell adhesion was introduced by including a mechanism

where the simulated cells could adhere to nearest neighbour simulated cells, effectively

reducing their motility. Khain et al. [72,74] applied this model to investigate the behaviour

of glioma cells in a two–dimensional scratch assay, predicting the location and speed of the

leading edge of the expanding glioma cell colony. In another study, Simpson et al. [121]

extended Khain’s model to investigate the migration of MCF–7 breast cancer cells in a

three–dimensional Transwell apparatus [121].

The tandem use of experimental investigation and mathematical modelling provides an

abundance of opportunities to identify and quantify the mechanisms driving collective

cell spreading. In the following section, we will identify and discuss five aspects related

to mathematical models for collective cell spreading that we will address in this thesis.

1.2 Research questions

In this work, we will utilise combined mathematical modelling tools and experimental

investigation to identify and quantify several features underlying collective cell spreading.

In particular, we propose to answer the following five questions:

(1) How can we separately quantify the roles of cell motility and cell prolif-

eration in a spreading cell population?

Cell motility and cell proliferation are thought to play major roles in driving the

spread of cell populations [85, 89, 116, 132, 153]. Identifying and isolating the con-

tribution of each of these mechanisms, may provide an opportunity to understand

how these mechanisms control the spread of a cell population. Swanson et al. [132]

suggests that cell populations with a high ratio of cell proliferation to cell motility

will be characterised by steep fronts, whereas systems with a low ratio of cell prolif-

eration to cell motility will lead to shallow fronts. This is important when surgically

removing tumours, since the boundary between the tumour tissue and normal tissue

is increasingly difficult to detect as the front becomes more diffuse [132].

Cell–based assays are commonly–used to quantify the capacity of cell populations

to spread in an in vitro environment [7, 30, 69, 70, 78, 144]. Several types of assays

have been developed to investigate collective cell population spreading in two and

three dimensions including Transwell, scratch, exclusion zone and spheroid assays

[7, 30, 78, 144]. Recently, two–dimensional circular barrier assays have become a

popular alternative to scratch assays since they do not damage the cell monolayer,

or the substrate, and are therefore thought to be more reproducible than scratch

assays [145]. Circular barrier assays can be conducted by initially placing cells
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either inside or outside the barrier, which is then lifted to initiate the cell spreading

[7, 78,125,138,145].

Consequently, if we considered the spread of a cell population in in vitro envi-

ronment, how do we use experimental and modelling techniques to independently

quantify the roles of cell motility and cell proliferation. Maini et al. [85, 86] illus-

trated that there are many choices of λ and D in the standard continuum model

which can be used to match the experimental front speed. An alternative approach

to identify parameters is to fit solutions of the mathematical model to experimen-

tal density profiles [113]. The disadvantage of fitting the solution of mathematical

models to cell density information alone is that this does not necessarily ensure that

the parameterised model can make independent predictions. One way to overcome

this may be to collect different types of experimental data so that the process of

model calibration can be separated from the process of model prediction.

(2) What are the mechanisms underlying the spread of melanoma cell pop-

ulations and how do we independently quantify the contribution of each

mechanism?

Collective cell spreading is driven by several mechanisms including cell motility,

cell–to–cell adhesion and cell proliferation [85,132,153]. Typical mathematical mod-

elling approaches to describe the movement of such fronts use partial differential

equations which only incorporate descriptions of cell motility and cell prolifera-

tion [85, 97, 113, 116, 125, 132], and often neglect cell–to–cell adhesion [33, 75, 121].

Several experimental studies have observed that the loss of cell–to–cell adhesion

between individual melanoma cells is associated with increased spatial spreading

[29,65,79,87,93,108], suggesting that cell–to–cell adhesion plays an important role

in spreading melanoma cell populations.

There are currently no widely accepted protocols for designing experiments that

allow us to independently quantify the contributions of cell motility, cell–to–cell

adhesion and cell proliferation in spreading cell populations [72,74–76,121]. In ad-

dition, there is no standard method to assess the degree of the cell–to–cell adhesion

in a cell population. We hypothesise that collecting and analysing several sets of

experimental data describing the same experimental procedure may be required in

order for us to independently quantify the role of these mechanisms in spreading

melanoma cell populations.

(3) Does the location of the leading edge of a spreading cell population de-

pend on the details of the image analysis tools?

An essential element of interpreting and quantifying cell migration assays is to

locate the position of the leading edge of the spreading population so that the rate

at which the cell population spreads across the substrate can be calculated. A

common approach to quantify the cell migration rate in an assay is to calculate the
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initial area occupied by a population of cells and measure the percentage change in

area with time [7, 56,94,145,161]. This can be expressed as

M(t) =
A(t) −A(0)

A(0)
× 100, (1.2)

where A(0) is the initial area enclosed by the population of cells at t = 0, A(t) is

the area enclosed by the population of cells at time t, and M(t) is the percentage

change in area as a function of time t.

Estimates of cell migration rates using Equation (1.2) are often obtained by manu-

ally tracing the area enclosing the spreading cell population [55,160]. Unfortunately,

manually tracing the area enclosed by the leading edge of a spreading cell population

is very subjective [135]. To overcome this limitation, automated image analysis soft-

ware, including ImageJ [66] and MATLAB’s Image Processing Toolbox [90], have

been used as an alternative to manual tracing [69, 164]. These software tools use

edge detection and segmentation algorithms to determine the location of the leading

edge of the spreading cell population. This data can then be used to quantify the

cell migration rate in terms of the percent change in area using Equation (4.1). In

addition to using automatic edge detection algorithms, it is also possible to imple-

ment manual edge detection options in MATLAB’s Image Processing Toolbox [90]

so that the user has complete control over the image detection thresholds. However,

it is unclear whether the details of the image analysis method affects the location

of the detected leading edge, or whether we are able to provide a physical interpre-

tation of the leading edge.

(4) Does in vitro assay geometry affect estimates of the rate of cell motility

and rate of cell proliferation?

Wound–healing and tumour progression are often studied in the same context since

the mechanisms that drive these processes are thought to be similar [22,28,44,115,

153]. Despite their similarities, these processes have distinct geometries: (i) during

wound–healing, cell populations spread inwards to close the wound void, and (ii)

during tumour progression, cell populations spread outwards causing the tumour to

expand [7, 153]. Recent work using microfabrication methods focused on creating

various–sized channels through which cells could migrate, with the observation that

the speed of the leading edge of the cell population depends on the channel width

[148]. Therefore, it seems reasonable to assume that assay geometry could play a

role in determining the rate at which cell populations spread.

If we consider a population of otherwise identical cells, it is unclear whether they will

exhibit different rates of spreading in different in vitro assay geometries. The stan-

dard continuum model, based on the Fisher–Kolmogorov equation, used to estimate

D and λ from experimental observations has an additional implicit assumption that

estimates obtained in one geometry could be relevant when considering the same

population spreading in a different geometry. However, from a biological point of
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view, it seems reasonable to anticipate that cell populations could respond differ-

ently under different circumstances. This means that our estimates of D and λ

using the standard continuum model might be different when calibrating this model

under different experimental geometries.

(5) How do we diagnose spatial structure in a spreading cell population?

Standard continuum models, such as Fisher’s equation, invoke a mean–field assump-

tion implying that there is no underlying spatial structure, such as cell clustering,

present in the system [80,127]. It is well known that strong cell–to–cell adhesion or

sufficiently rapid cell proliferation can lead an initially uniform population of cells to

become clustered over time [2,127]. Previous work has compared averaged discrete

simulation data with predictions from standard mean–field descriptions of these

discrete simulations for systems where either strong adhesion [67] or rapid prolifer-

ation is present [12,126]. These previous comparisons have confirmed that standard

mean–field models fail to accurately predict the averaged behaviour of the discrete

model which implies that the usual mean–field assumption is inappropriate where

either strong cell–to–cell adhesion or rapid proliferation is present [12,67,126,127].

For a given context, it is not always clear which modelling framework is appropriate

without first testing the underlying model assumptions. For example, spreading

populations of 3T3 fibroblast cells do not generally exhibit visible cell clustering,

whereas populations of MDA MB 231 breast cancer cells appear to be highly clus-

tered [125,127]. At first glance, it may appear reasonable to use a mean–field model

to describe the spreading of a population of 3T3 cells and a alternative model to

describe the spreading of a population of MDA MB 231 cells. However, recent work

has indicated that the presence or absence of spatial correlations can be difficult

to detect visually and so our use of a mean–field model for 3T3 cell population

spreading may, in fact, be inappropriate [2]. Consequently, applying diagnostic

tools which are capable of identifying spatial structure in a given cell population

may provide insights into which modelling frameworks are suitable for exploring a

particular system.

This thesis will address these five unanswered questions. In the next section we outline

the principle aims of this thesis.

1.3 Aims and outcomes of this thesis

The principle aim of this thesis is to use mathematical modelling in conjunction with ex-

perimental investigation to identify and quantify several key features underlying collective

cell spreading.

The thesis consists of the five following principal aims:

• Apply multiscale models of collective cell spreading to new experimental data with

the aim of independently quantifying the rate of cell motility and rate of cell prolif-

eration in a spreading cell population,



Chapter 1. Introduction 7

• Identify multiple types of data to distinguish between the roles of cell motility, cell

proliferation and cell–to–cell adhesion in spreading melanoma cell populations,

• Quantify the variability in detecting the leading edge of cell migration assays using

image analysis techniques, and in turn use mathematical modelling to provide a

physical interpretation of the leading edge,

• Investigate the affect of in vitro assay geometry on estimates of the rate of cell

motility and rate of cell proliferation, and

• Use modelling tools to diagnose the presence of spatial correlations in spreading

melanoma cell populations.

This thesis is presented by publication and consists of five papers which have been pub-

lished in peer–reviewed journals. The PhD candidate has contributed significantly to all

five papers and is the primary author of four out of the five papers. The work presented

in this thesis fulfils the Queensland University of Technology requirements for the award

of thesis by published papers.

This thesis comprises the following publications:

• Simpson, M.J., Treloar, K.K., Binder, B.J., Haridas, P., Manton, K.J., Leavesley,

D.I., McElwain, D.L.S. & Baker, R.E. Quantifying the roles of cell motility and cell

proliferation in a circular barrier assay. J. R. Soc. Interface. 10, 2013007 (2013).

(Chapter 2.)

• Treloar, K.K., Simpson, M.J., Haridas, P., Manton, K.J., Leavesley, D.I., McEl-

wain, D.L.S. & Baker, R.E. Multiple types of data are required to identify the

mechanisms influencing the spatial expansion of melanoma cell colonies. BMC Syst.

Biol. 7, 137 (2013). (Chapter 3.)

• Treloar, K.K. & Simpson, M.J. Sensitivity of edge detection methods for quanti-

fying cell migration assays. PLoS ONE. 8, e67389 (2013). (Chapter 4.)

• Treloar, K.K, Simpson, M.J., McElwain, D.L.S. & Baker, R.E. Are in vitro esti-

mates of cell diffusivity and cell proliferation rate sensitive to assay geometry? J.

Theor. Biol. 356, 71–84 (2014). (Chapter 5.)

• Treloar, K.K, Simpson, M.J., Binder, B.J., McElwain, D.L.S. & Baker, R.E. As-

sessing the role of spatial correlations during collective cell spreading Sci. Rep. 4,

5713 (2014). (Chapter 6.)

Each chapter of this thesis constitutes a paper, meaning that each chapter can either be

read individually or alternatively the chapters can be read as a whole. While the style

and layout of each paper has been standardised throughout, the contents of each chapter

have been reproduced in this work exactly as they were published. Consequently, this

means that there is a cross–over in ideas and there is some overlap between chapters in

the details of the experimental and modelling frameworks. The structure of each chapter

is comprised of a background section outlining the relevant literature, a methods section

detailing the experimental and modelling methods applied in the associated chapter,

results and a discussion of the results.
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In the next section, we outline the structure of the thesis and in the process outline the

novel contributions for each paper.

1.4 Structure of this thesis

The structure of this thesis is as follows. In this chapter, we provided a review of ex-

perimental and mathematical modelling studies for collective cell spreading, stated the

proposed research questions and outlined the aims of this thesis.

In Chapter 2, we begin by describing a set of experiments to investigate the roles of cell

motility and cell proliferation in driving an initially confined fibroblast cell population.

We perform two sets of experiments to distinguish between these two mechanisms by

suppressing cell proliferation in the first set of experiments and then repeating the exper-

iments with cell proliferation. The experimental data is analysed using two mathematical

models; a lattice–based discrete random walk model and a related partial differential

equation model. We are able to obtain independent estimates of the cell diffusivity, D,

and cell proliferation rate, λ, and confirm that these estimates lead to accurate modelling

predictions of the spatial and temporal position of the leading edge of the spreading cell

population, as well as the cell density profiles.

Chapter 3 extends the experimental and modelling approach discussed in Chapter 2 to

investigate the spread of melanoma cell populations. Cell–to–cell adhesion is thought to

be a crucial aspect involved in melanoma cell population spreading and hence we account

for this by using a discrete random walk model that incorporates both cell motility, cell

proliferation and cell–to–cell adhesion mechanisms. We use multiple types of data to

identify the cell diffusivity, D, strength of cell–to–cell adhesion, q, and cell proliferation

rate, λ. Our systematic approach indicates that standard types of data, such as the area

enclosed by the leading edge, do not provide sufficient information to uniquely identify

D, q and λ. In addition, we propose a method to independently quantify the degree of

cell–to–cell adhesion in a spreading population.

Throughout Chapters 2 and 3, we estimate the cell diffusivity using information about

the position of the leading edge of the spreading cell populations. In each case, we use

image analysis tools and make implicit choices about the details of the image analysis

methods, such as the threshold applied. Chapter 4 investigates how the detected position

of the leading edge varies depending on the choice of threshold in the image analysis

algorithm. Our results indicate that the observed spreading rates are very sensitive to

the choice of image analysis tools and we show that a standard measure of cell migration

can vary by as much as 25% for the same experimental images depending on the details

of the image analysis tools. In addition, we obtain a physical interpretation of our edge

detection results using a mathematical model. Our modelling indicates that variations

in the image threshold parameter correspond to a consistent variation in the local cell

density. This means that varying the threshold parameter is equivalent to varying the

location of the leading edge in the range of approximately 1–5% of the maximum cell

density.
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The work presented in Chapters 2 to 4 considers the spread of cell populations in one

particular geometry. In Chapter 5 we examine whether the geometry of the in vitro

assay affects estimates of the cell diffusivity and cell proliferation rate for a population

of fibroblast cells. We perform experiments in two distinct geometries: (i) a tumour–

like geometry where a cell population spreads outwards into an open space and (ii) a

wound–like geometry where a cell population spreads inwards to close a void. Applying

the same experimental and modelling approach presented in Chapter 2 and 3, we find

that estimates of D and λ are affected by the choice of in vitro assay geometry.

In Chapter 6, we explore whether a standard continuum model, which assumes that there

is no spatial structure present in the cell population, can be used to describe the spread

of melanoma cell populations. We use a combination of discrete simulations and pair

correlation functions to illustrate that spatial structure can form in a spreading population

of cells either through sufficiently strong cell–to–cell adhesion or sufficiently rapid cell

proliferation. We analyse experimental images of the melanoma cell populations using

the same pair correlation functions. Our results indicate that the spreading melanoma

cell populations remain very close to spatially uniform, suggesting that the strength of

cell–to–cell adhesion and the rate of cell proliferation are both sufficiently small so as not

to induce any spatial patterning in the spreading populations. Our analysis of the role of

spatial correlations in the melanoma cell population suggests that a mean–field model is

appropriate to describe the collective spreading of this particular cell line.

Chapter 7 summarises the main findings of this study, and suggests potential avenues of

future investigation. Additional details of the research conducted including experimental

datasets and some details of the numerical scheme are given in the appendices.

1.5 Statements of joint authorship

In this section, we outline the contributions of the PhD candidate and the co–authors to

each paper. All co–authors have consented to the presentation of this material in this

thesis.

Chapter 2: Quantifying the roles of cell motility and cell proliferation in a

circular barrier assay

For this chapter, the associated published reference is:

Simpson, M.J., Treloar, K.K., Binder, B.J., Haridas, P., Manton, K.J., Leavesley, D.I.,

McElwain, D.L.S. & Baker, R.E. Quantifying the roles of cell motility and cell proliferation

in a circular barrier assay. J. R. Soc. Interface. 10, 2013007 (2013).

Abstract

Moving fronts of cells are essential features of embryonic development, wound repair and

cancer metastasis. This paper describes a set of experiments to investigate the roles

of random motility and proliferation in driving the spread of an initially–confined cell

population. The experiments include an analysis of cell spreading when proliferation was

inhibited. Our data have been analysed using two mathematical models: a lattice–based
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discrete model and a related continuum partial differential equation model. We obtain

independent estimates of the random motility parameter, D, and the intrinsic proliferation

rate, λ, and we confirm that these estimates lead to accurate modelling predictions of the

position of the leading edge of the moving front as well as the evolution of the cell density

profiles. Previous work suggests that systems with a high λ/D ratio will be characterised

by steep fronts, whereas systems with a low λ/D ratio will lead to shallow diffuse fronts

and this is confirmed in the present study. Our results provide evidence that continuum

models, based on the Fisher–Kolmogorov equation, are a reliable platform upon which

we can interpret and predict such experimental observations.

Statement of joint authorship

The work was divided as follows:

• Simpson, M.J. initiated the concept for the manuscript, oversaw and directed the re-

search, wrote the manuscript, oversaw drafting and redrafting of several manuscripts,

wrote the cover and revision letter, critically reviewed and revised the manuscript,

and acted as corresponding author.

• Treloar, K.K. (Candidate) implemented the modelling framework, extracted the

experimental data, performed all data analysis, composed all figures and supplemen-

tary material, and critically reviewed and revised the manuscript.

• Binder, B.J. provided technical assistance, assisted with the interpretation of results

and critically reviewed the manuscript.

• Haridas, P. performed the experiments.

• Manton, K.J. and Leavesley, D.I. provided assistance with the experiments and

offered biological interpretations.

• McElwain, D.L.S. and Baker, R.E. provided assistance with the interpretation of

results and critically reviewed the manuscript.

Chapter 3. Multiple types of data are required to identify the mechanisms

influencing the spatial expansion of melanoma cell colonies

For this chapter, the associated published reference is:

Treloar, K.K., Simpson, M.J., Haridas, P., Manton, K.J., Leavesley, D.I., McElwain,

D.L.S. & Baker, R.E. Multiple types of data are required to identify the mechanisms

influencing the spatial expansion of melanoma cell colonies. BMC Syst. Biol. 7, 137

(2013).

Abstract

The expansion of cell colonies is driven by a delicate balance of several mechanisms includ-

ing cell motility, cell–to–cell adhesion and cell proliferation. New approaches that can be

used to independently identify and quantify the role of each mechanism will help us under-

stand how each mechanism contributes to the expansion process. Standard mathematical

modelling approaches to describe such cell colony expansion typically neglect cell–to–cell

adhesion, despite the fact that cell–to-cell adhesion is thought to play an important role.

We use a combined experimental and mathematical modelling approach to determine the
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cell diffusivity, D, cell–to–cell adhesion strength, q, and cell proliferation rate, λ, in an

expanding colony of MM127 melanoma cells. Using a circular barrier assay, we extract

several types of experimental data and use a mathematical model to independently esti-

mate D, q and λ. In our first set of experiments, we suppress cell proliferation and analyse

three different types of data to estimate D and q. We find that standard types of data,

such as the area enclosed by the leading edge of the expanding colony and more detailed

cell density profiles throughout the expanding colony, does not provide sufficient informa-

tion to uniquely identify D and q. We find that additional data relating to the degree of

cell–to–cell clustering is required to provide independent estimates of q, and in turn D. In

our second set of experiments, where proliferation is not suppressed, we use data describ-

ing temporal changes in cell density to determine the cell proliferation rate. In summary,

we find that our experiments are best described using the range D = 161−243 µm2/hour,

q = 0.3 − 0.5 (low to moderate strength) and λ = 0.0305 − 0.0398 /hour, and with these

parameters we can accurately predict the temporal variations in the spatial extent and

cell density profile throughout the expanding melanoma cell colony. Our systematic ap-

proach to identify the cell diffusivity, cell–to–cell adhesion strength and cell proliferation

rate highlights the importance of integrating multiple types of data to accurately quantify

the factors influencing the spatial expansion of melanoma cell colonies.

Statement of joint authorship

The work was divided as follows:

• Treloar, K.K. (candidate) implemented the methodology, extracted the experi-

mental data, performed all data analysis, wrote the manuscript and supplementary

material, composed all figures, critically reviewed and revised the manuscript.

• Simpson, M.J. initiated the concept for the manuscript, oversaw and directed the

research, contributed to the writing of the manuscript, oversaw drafting and redraft-

ing of several manuscripts, wrote the cover and revision letter, critically reviewed

and revised the manuscript, and acted as corresponding author.

• Haridas, P. performed the experiments.

• Manton, K.J. and Leavesley, D.I. provided assistance with the experiments and

offered biological interpretations.

• McElwain, D.L.S. and Baker, R.E. provided assistance with the interpretation of

results and critically reviewed the manuscript.

Chapter 4. Sensitivity of edge detection methods for quantifying cell migra-

tion assays

For this chapter, the associated published reference is:

Treloar, K.K. & Simpson, M.J. Sensitivity of edge detection methods for quantifying

cell migration assays. PLoS ONE. 8, e67389 (2013).

Abstract

Quantitative imaging methods to analyse cell migration assays are not standardised. Here

we present a suite of two–dimensional barrier assays describing the collective spreading
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of an initially–confined population of 3T3 fibroblast cells. To quantify the motility rate

we apply two different automatic image detection methods to locate the position of the

leading edge of the spreading population after 24, 48 and 72 hours. These results are com-

pared with a manual edge detection method where we systematically vary the detection

threshold. Our results indicate that the observed spreading rates are very sensitive to the

choice of image analysis tools and we show that a standard measure of cell migration can

vary by as much as 25% for the same experimental images depending on the details of

the image analysis tools. Our results imply that it is very difficult, if not impossible, to

meaningfully compare previously published measures of cell migration since previous re-

sults have been obtained using different image analysis techniques and the details of these

techniques are not always reported. Using a mathematical model, we provide a physi-

cal interpretation of our edge detection results. The physical interpretation is important

since edge detection algorithms alone do not specify any physical measure, or physical

definition, of the leading edge of the spreading population. Our modelling indicates that

variations in the image threshold parameter correspond to a consistent variation in the

local cell density. This means that varying the threshold parameter is equivalent to vary-

ing the location of the leading edge in the range of approximately 1–5% of the maximum

cell density.

Statement of joint authorship

The work was divided as follows:

• Treloar, K.K. (candidate) implemented the methodology, extracted the experi-

mental data, performed all data analysis, composed all figures, wrote the manuscript,

composed all figures, critically reviewed and revised the manuscript.

• Simpson, M.J. initiated the concept for the manuscript, oversaw and directed the

research, contributed to the writing of the manuscript, oversaw drafting and redraft-

ing of several manuscripts, wrote the cover and revision letter, critically reviewed

and revised the manuscript, and acted as corresponding author.

Chapter 5. Are in vitro estimates of cell diffusivity and cell proliferation rate

sensitive to assay geometry?

For this chapter, the associated published reference is:

Treloar, K.K., Simpson, M.J., McElwain, D.L.S. & Baker, R.E. Are in vitro estimates

of cell diffusivity and cell proliferation rate sensitive to assay geometry? J. Theor. Biol.

356, 71–84 (2014).

Abstract

Cells respond to various biochemical and physical cues during wound–healing and tumour

progression. In vitro assays used to study these processes are typically conducted in one

particular geometry and it is unclear how the assay geometry affects the capacity of

cell populations to spread, or whether the relevant mechanisms, such as cell motility

and cell proliferation, are somehow sensitive to the geometry of the assay. In this work

we use a circular barrier assay to characterise the spreading of cell populations in two
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different geometries. Assay 1 describes a tumour–like geometry where a cell population

spreads outwards into an open space. Assay 2 describes a wound–like geometry where

a cell population spreads inwards to close a void. We use a combination of discrete

and continuum mathematical models and automated image processing methods to obtain

independent estimates of the effective cell diffusivity, D, and the effective cell proliferation

rate, λ. Using our parameterised mathematical model we confirm that our estimates of

D and λ accurately predict the time–evolution of the location of the leading edge and the

cell density profiles for both assay 1 and assay 2. Our work suggests that the effective

cell diffusivity is up to 50% lower for assay 2 compared to assay 1, whereas the effective

cell proliferation rate is up to 30% lower for assay 2 compared to assay 1.

Statement of joint authorship

The work was divided as follows:

• Treloar, K.K. (candidate) implemented the methodology, performed all data

analysis, wrote the manuscript and supplementary material, composed all figures,

contributed to the writing of the revision letter, critically reviewed and revised the

manuscript.

• Simpson, M.J. initiated the concept for the manuscript, oversaw and directed the

research, oversaw drafting and redrafting of several manuscripts, wrote the cover

and revision letter, critically reviewed and revised the manuscript, and acted as

corresponding author.

• McElwain, D.L.S. and Baker, R.E. provided assistance with the interpretation of

results and critically reviewed the manuscript.

Chapter 6. Assessing the role of spatial correlations during collective cell

spreading

For this chapter, the associated published reference is:

Treloar, K.K, Simpson, M.J., Binder, B.J., McElwain, D.L.S. & Baker, R.E. Assessing

the role of spatial correlations during collective cell spreading Sci. Rep. 4, 5713 (2014).

Abstract

Spreading cell fronts are essential features of development, repair and disease processes.

Many mathematical models used to describe the motion of cell fronts, such as Fisher’s

equation, invoke a mean–field assumption which implies that there is no spatial structure,

such as cell clustering, present. Here, we examine the presence of spatial structure using

a combination of in vitro circular barrier assays, discrete random walk simulations and

pair correlation functions. In particular, we analyse discrete simulation data using pair

correlation functions to show that spatial structure can form in a spreading population

of cells either through sufficiently strong cell–to–cell adhesion or sufficiently rapid cell

proliferation. We analyse images from a circular barrier assay describing the spreading of

a population of MM127 melanoma cells using the same pair correlation functions. Our

results indicate that the spreading melanoma cell populations remain very close to spa-

tially uniform, suggesting that the strength of cell–to–cell adhesion and the rate of cell
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proliferation are both sufficiently small so as not to induce any spatial patterning in the

spreading populations.

Statement of joint authorship

The work was divided as follows:

• Treloar, K.K. implemented the methodology, performed all data analysis, wrote

the manuscript, supplementary material, cover letter and revision letter, composed

all figures, revised the manuscript and acted as corresponding author under the

guidance of Simpson, M.J.

• Simpson, M.J initiated the concept for the manuscript, oversaw and directed the

research, oversaw drafting and redrafting of several manuscripts, critically reviewed

and revised the manuscript.

• Binder, B.J., McElwain, D.L.S. and Baker, R.E. provided assistance with the inter-

pretation of results and critically reviewed the manuscript.



Chapter 2

Quantifying the roles of cell motility and cell proliferation in a

circular barrier assay

A paper published in the Journal of the Royal Society Interface.

Simpson, M.J., Treloar, K.K., Binder, B.J., Haridas, P., Manton, K.J., Leavesley, D.I.,

McElwain, D.L.S. & Baker, R.E. Quantifying the roles of cell motility and cell proliferation

in a circular barrier assay. J. R. Soc. Interface. 10, 2013007 (2013).

Abstract

Moving fronts of cells are essential features of embryonic development, wound repair and

cancer metastasis. This paper describes a set of experiments to investigate the roles

of random motility and proliferation in driving the spread of an initially–confined cell

population. The experiments include an analysis of cell spreading when proliferation was

inhibited. Our data have been analysed using two mathematical models: a lattice–based

discrete model and a related continuum partial differential equation model. We obtain

independent estimates of the random motility parameter, D, and the intrinsic proliferation

rate, λ, and we confirm that these estimates lead to accurate modelling predictions of the

position of the leading edge of the moving front as well as the evolution of the cell density

profiles. Previous work suggests that systems with a high λ/D ratio will be characterised

by steep fronts, whereas systems with a low λ/D ratio will lead to shallow diffuse fronts

and this is confirmed in the present study. Our results provide evidence that continuum

models, based on the Fisher–Kolmogorov equation, are a reliable platform upon which

we can interpret and predict such experimental observations.

15
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2.1 Background

Spatial spreading of cell populations, characterised by moving fronts, is essential for de-

velopment [159], tissue repair [85, 86] and disease progression [132]. Many kinds of ex-

perimental observations can be made to characterise cell spreading, including measuring

front speed [85, 86], recording time–lapse observations [159], or measuring properties of

various subpopulations [98,118].

The formation of moving cell fronts can be thought of as an emergent population–level

outcome driven by individual–level properties of cells within the population [53]. For such

a system it is relevant to ask whether we can predict how differences in cell behaviour,

such as a change in the relative frequency of motility and proliferation events, affects the

emergent properties. This is important if we consider designing intervention strategies

aimed at manipulating the front speed [30]. To design such interventions, we must first

be able to identify, and quantify, the various components of cell behaviour that lead to

moving fronts so that we can begin to understand how to manipulate these components

to obtain a particular outcome.

The standard continuum model used to represent cell spreading is

∂c̄

∂t
= D∇2c̄+ λc̄

(
1 − c̄

K

)
, (2.1)

where c̄(r, t) is the cell density, D is the cell diffusivity (random motility coefficient), λ

is the intrinsic proliferation rate and K is the carrying–capacity density [97, 116]. In

one–dimensional Cartesian geometry, Equation (2.1) simplifies to the Fisher–Kolmogorov

equation [42] which has constant shape travelling wave solutions, C(z) = c̄(x−st), moving

at constant speed s [85, 86, 97]. The front speed approaches s =
√

4Dλ as t → ∞
for initial conditions with compact support [97]. Variations of the Fisher–Kolmogorov

equation, incorporating directed motility [104] or nonlinear diffusion [20,155] , also have

travelling wave solutions and different relationships between the wave speed and the model

parameters can be derived for these generalisations. Other options for modelling cell

spreading processes include using discrete approaches that are related to Equation (2.1)

in an appropriate limit [120]. Discrete models have the advantage that they produce

discrete stochastic data that are similar to experimental images and movies [27], as well as

having a formal mathematical relationship with continuum models, such as Equation (2.1)

[21,33,120].

Many choices of λ and D in the Fisher–Kolmogorov equation give the same asymptotic

front speed, s =
√

4Dλ. This property was demonstrated by Maini and coworkers [85,86],

who measured the front speed in a scrape assay and showed that several reasonable choices

of λ and D could be used to match the front speed. Other approaches to identifying pa-

rameters have used measurements of the cell density profile, c̄(r, t). For example, Sengers

and coworkers [113, 114] fitted the solution of a reaction–diffusion equation to experi-

mental density profiles to match the experimental data [113, 114]. Similarly, Sherratt

and Murray [116] studied a wound healing experiment and chose the parameters in two
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different reaction–diffusion equations so that both models predicted the observed closure

rates. The disadvantage of fitting the solution of mathematical models to cell density

information alone is that this does not necessarily ensure that the parameterised model

can make independent predictions. One way to overcome this is to collect different types

of experimental data so that the process of model calibration can be separated from the

process of model prediction.

In addition to making experimental observations of the position of a moving front of

cells, here we study the shape of the moving front to understand how the relative roles

of cell motility and cell proliferation affect these details. We study the details of the

leading edge since the shape of the moving front is thought to have clinical implications.

For example, in the context of glioma invasion, Swanson [132] discusses the difference

between shallow–fronted tumours (low λ/D ratio) and sharp–fronted tumours (high λ/D

ratio) [132]. These differences are relevant when considering surgical removal since the

boundary between the tumour tissue and normal tissue is increasingly difficult to detect

as the front becomes more diffuse [96,132]. The shape of the leading edge is also of interest

in the context of melanoma progression where visual inspection of the invading cancer,

including the details of the leading edge, is thought to provide important information

about the aggressiveness of the tumour [59].

In this work we investigate how cell motility and proliferation controls the position and

shape of the leading edge of a two–dimensional cell spreading system. Using a circular

barrier assay, we perform experiments that provide independent estimates of D and λ.

We then make separate modelling predictions with regard to the position and shape of

the leading edge. We investigate how the relative roles of motility and proliferation affects

the spreading by performing two parallel sets of experiments. In the first we consider cell

spreading driven by motility without proliferation, whereas in the second consider cell

spreading driven by combined motility and proliferation. All experimental observations

are repeated at three different initial cell densities.

2.2 Experimental methods

2.2.1 Cell culture

Murine fibroblast cells (3T3 cells) were cultured in Dulbecco’s modified Eagle medium

(Invitrogen, Australia) with 5% fetal calf serum (FCS) (Hyclone, New Zealand), 2 mM

L–glutamine (Invitrogen) and 1% v/v Penicillin/Streptomycin (Invitrogen) in 5% CO2

at 37oC. Monolayers of 3T3 cells were cultured in T175 cm2 tissue culture flasks (Nunc,

Thermo Scientific, Denmark).

2.2.2 Barrier assay

We use a barrier assay since several studies claim that they are more reproducible than

a scrape assay [69, 145]. Metal–silicone barriers, 6000 µm in diameter (Aix Scientifics,

Germany), were cleaned, sterilised, dried and placed in the centre a 24–well tissue culture

plate with 500 µL culture medium. Each well in the tissue culture plate has a diameter
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of 15, 600 µm. The plate was placed at 37oC in a humidified incubator at 5% CO2 for

one hour to allow the barriers to attach to the surface of the tissue culture plate. Cells

were lifted just prior to confluence using 0.05% trypsin (Invitrogen, Australia). Viable

cells were counted using a Trypan blue exclusion test and a haemocytometer.

Three different densities of cell suspension were used: 5, 000, 10, 000 and 30,000 cells/100

µL. The cell suspension was carefully introduced in the barrier so that the cells were

approximately evenly distributed. Once seeded, the tissue culture plate was placed in

an incubator. Mitomycin–C (Sigma Aldrich, Australia), an inhibitor of cell proliferation,

10 µg/mL, was added to some cell solutions for four hours. After allowing the cells to

attach for one hour, the barriers were removed and the cell layer was washed with serum

free medium (SFM; culture medium without FCS) and replaced with 0.5 mL of culture

medium. The attachment time was varied, we found one hour was sufficient to prevent

cells washing off the plate when the cell layer was washed with SFM. Plates were incubated

at 37oC, 5% CO2, for four different times, t = 0, 24, 48 and 72 hours. Each assay, for each

initial density, was repeated three times (n = 3).

2.2.3 Cell staining

Two staining techniques were used to analyse these experiments:

(i) Population–scale images were obtained by fixing the cells with 10% formalin, followed

by 0.01% crystal violet (Sigma–Aldrich, Australia). The stain was rinsed with phosphate–

buffered saline (Invitrogen, Australia) and the plates were air–dried. Images were taken

on a stereo microscope with a Nikon digital camera (DXM1200C).

(ii) Individual–scale images were obtained by fixing the cells with 10% formalin, then

made permeable using ice–cold 70% ethanol and the nucleus stained with propidium iodide

(PI), 1 mg/ml (Invitrogen, Australia). Images were taken using a Laborlux fluorescence

microscope with a Nikon digital camera (DXM1200C) at 100x magnification. Overlap-

ping images were taken to reconstruct both horizontal and vertical transects through the

spreading population.

2.2.4 Image analysis

The average cell diameter, ∆, was estimated using Leica LAS AF Lite software (Ap-

pendix A). All other image analysis was performed using customised software written

with MATLAB’s Image Processing Toolbox (v7.12) [90] (Appendix A). In summary, to

estimate the location of the leading edge of the spreading populations, edge detection and

image segmentation algorithms were used to identify and isolate the entire cell population

from the background of the image. To count cell numbers in the PI–stained images, we

assumed that each cell corresponds to a distinct identifiable region in the image. Each

cell was automatically identified. For some images, at high cell density, we found that a

relatively small number of cells had to be manually identified and counted.
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2.3 Modelling methods

2.3.1 Discrete model

An interacting random walk model with proliferation is used to simulate the experiments.

The model is interacting in the sense that it permits only one agent to occupy each lattice

site so that the model incorporates volume exclusion and finite size effects [21,33,120,123].

We take the most straightforward modelling approach by implementing the discrete model

on a two–dimensional square lattice with spacing ∆. We could use a more sophisticated

lattice–based [9, 15] or lattice-free [19, 27, 105] modelling approach; however, given that

this is the first time that a mathematical model has been used to separately quantify

the parameters governing cell migration and cell proliferation in a barrier assay, it is

reasonable to take a parsimonious modelling approach. In our discrete simulations each

site is indexed (i, j), where i, j ∈ Z
+, and each site has position (x, y) = (i∆, j∆).

A random sequential update method [24] is used to perform the simulations using a

von Neumann neighbourhood [71]. If there are N(t) agents at time t, during the next

time step of duration τ , N(t) agents are selected at random and given the opportunity

move with probability Pm ∈ [0, 1]. The random sequential update method means that

not all the N(t) agents are always selected in every step, and sometimes a particular

agent will be selected more than once per time step. Our experiments indicate that the

initially–circular region maintains a circular shape (Section 2.4), therefore we implement

an unbiased mechanism where an agent at (x, y) attempts to step to (x±∆, y) or (x, y±
∆) with equal probability. Once the N(t) potential motility events have been assessed,

another N(t) agents are selected at random and given the opportunity to proliferate with

probability Pp ∈ [0, 1]. We model proliferation with an unbiased mechanism whereby a

proliferative agent at (x, y) attempts to deposit a daughter agent at (x±∆, y) or (x, y±∆),

with each target site chosen with equal probability. Potential motility and proliferation

events that would place an agent on an occupied site are aborted [21, 33, 120]. We note

that there are no differences in the averaged behaviour for simulations in which N(t)

agents are selected at random during the time step of duration τ , or whether all N(t)

agents are selected at random [120].

2.3.2 Continuum model

In the kth identically–prepared realisation the occupancy of site (i, j) is denoted Ck
i,j, with

Ck
i,j = 1 for an occupied site, and Ck

i,j = 0 for a vacant site. If the average occupancy

of site (i, j), evaluated for M identically–prepared realisations, is 〈Ci,j〉 = (1/M)

M∑

k=1

Ck
i,j,

the corresponding continuous density, c̄(r, t), is governed by Equation (2.1) [120] with

K = 1, where λ = lim
∆,τ→0

(Pp/τ) and D = lim
∆,τ→0

(Pm∆2/4τ) [120]. Here, 〈Ci,j〉 ∈ [0, 1],

is equivalent to c̄(r, t) as M becomes sufficiently large, provided that the ratio Pp/Pm

is sufficiently small. This mathematical relationship allows us to use the averaged data

from the discrete model and the solution of Equation (2.1) interchangeably, provided that
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Pp/Pm is sufficiently small. We do not discuss this equivalence here since it has been

analysed, in detail, previously [120].

To interpret our experimental data using Equation (2.1), we obtain numerical solutions

(Appendix A) of
∂c

∂t
= D

(
∂2c

∂r2
+

1

r

∂c

∂r

)
+ λc (1 − c) , (2.2)

which is equivalent to Equation (2.1) in an axisymmetric geometry where the dimensional

cell density, c̄(r, t), has been scaled relative to the carrying capacity density, c(r, t) =

c̄(r, t)/K, with c(r, t) ∈ [0, 1]. Numerical solutions are obtained on 0 ≤ r ≤ 7, 800 µm,

with zero flux boundary conditions at r = 0 µm and at r = 7, 800 µm. The initial

condition for all numerical solutions is given by

c(r, 0) =

{
c0, 0 ≤ r < 3, 000 µm,

0, 3, 000 ≤ r ≤ 7, 800 µm,
(2.3)

where c0 is the initial density of cells inside the barrier.

2.4 Results

2.4.1 Carrying capacity density estimate

Images of individual cells were acquired, and Leica software was used to obtain mea-

surements of the cell diameter of cells (n = 15), giving ∆ ≃ 25 µm (Appendix A). We

estimated the carrying capacity density, K, by calculating the maximum packing density

of circular disk–like cells on a two–dimensional square lattice. Since, ∆ ≃ 25 µm, we have

K = 1/252 ≈ 1.6 × 10−3 cells/µm2.

2.4.2 Cell motility estimates

In our initial analysis we assume that there is no proliferation. Assays were conducted

using three different initial cell densities by placing 5, 000, 10, 000 or 30,000 cells inside the

barriers after Mitomycin–C pretreatment. Each experiment, at each initial density, was

repeated three times (n = 3). Snapshots in Figure 2.1 show that the spreading population

maintains an approximately circular shape. We used image analysis software (Section 2.2,

Appendix A) to quantify the increase in size of the region enclosed by the leading edge

of the spreading population. The location of the leading edge, determined by our image

analysis software, is superimposed in Figure 2.1 (a)–(d). We converted the area estimates

into an equivalent circular diameter, d, giving d = 6, 080, 6, 600, 7, 060 and 7, 540 µm after

t = 0, 24, 48 and 72 hours, respectively. Equivalent results for the experiments where

5, 000 and 30,000 cells were placed in the barriers are given in Appendix A.

To model this spreading behaviour we used the discrete model with ∆ = 25 µm, Pp = 0

and Pm = 1. Simulations were performed on a lattice of size 624× 624, whose dimensions

were chosen so that the width of the lattice was equal to the 15, 600 µm diameter of well

in the 24–well plate, 15, 600/25 = 624. To initialise the simulations, agents were placed

uniformly inside a circle of diameter 6, 000 µm. The centre of the circle was placed at
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Figure 2.1: Experimental images in (a)–(d) show a barrier assay where 10, 000 cells were initially
placed uniformly within the barrier after pretreatment with Mitomycin–C. Images in (a)–(d) correspond
to t = 0, 24, 48 and 72 hours, respectively. The black (solid) line indicates the position of the leading
edge detected by the image analysis software. The area enclosed by the leading edge was converted to
an equivalent circular diameter giving d = 6, 060, 6, 600, 7, 060 and 7, 540 µm in (a)–(d), respectively.
Images in (e)–(h) correspond to snapshots from the discrete model on a 624 × 624 lattice with ∆ = 25
µm. Simulations were performed by initially placing 10, 000 agents uniformly inside a circular region of
diameter 6, 000 µm, and the system evolved with Pm = 1, Pp = 0.0 and τ = 0.09191 hours. The leading
edge of the simulated spreading population is shown by the black (solid) line. Here, D was chosen so
that the area enclosed by the leading edge of the simulated population is, on average, equal to the area
enclosed by the leading edge of the population in the corresponding experimental images. The red curves
(dashed) in (a)–(h) correspond to the c(r, t) = 0.017 contour of the numerical solution of Equation (2.2)
with λ = 0 and D = 1, 700 µm2/hour. The scale bar corresponds to 1,500 µm.

the centre of the lattice, which is equivalent to placing the 6, 000 µm barrier in the centre

of the 15, 600 µm well. The circular region representing the barrier has a diameter of

6, 000/25 = 240 lattice sites, containing π(240)2/4 ≈ 45, 239 lattice sites. To model the

three different initial cell densities, simulations were initiated by placing either 5, 000,

10, 000 or 30,000 agents uniformly, at random, across these 45,239 lattice sites. Zero flux

boundary conditions were imposed, and the model was used to perform simulations until

t = 0, 24, 48 and 72 hours.

To calibrate the discrete model we performed simulations of each experiment with Pm = 1

which gives, on average, an isolated agent an opportunity to undergo a motility event

during each time step. We systematically varied the duration of the time step τ [121],

which is equivalent to varying D. For 25 different values of D in the range D ∈ [100, 5000]

µm2/hour, each experiment was simulated three times (n = 3) and the image analysis

software was used to locate the position of the leading edge in the discrete snapshots in

exactly the same way that the leading edge was located in the experimental images. This

gave us an estimate of the area enclosed by the leading edge for the simulated spreading

populations at t = 24, 48 and 72 hours allowing us to find an optimal value of D to match

the experiments (Appendix A). Results in Figure 2.1 (e)–(h) show snapshots from a single

realisation of the calibrated discrete model together with the leading edge. Similar results
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were obtained for the experiments with 5, 000 and 30,000 cells (Appendix A). In summary,

we found estimates of the diffusivity to be D = 1, 500, 1, 700 and 2, 900 µm2/hour for the

5, 000, 10, 000 and 30,000 cell experiments, respectively.

We also quantitatively model the spreading behaviour in Figure 2.1 using Equation (2.2).

One way to do this is to solve Equation (2.2), using our estimates of D with λ = 0,

and choose a particular contour of the solution, c(r, t) = c∗, that matches the average

spreading observed in the experiments. Choosing c∗ = 0.017 matches the experimental

measurements (Appendix A). To demonstrate the efficacy of our approach, we superim-

pose the c∗ = 0.017 contour of the solutions of Equation (2.2) on the images in Figure 2.1.

Equivalent results for the 5, 000 and 30,000 experiments are summarised in Appendix A.

Our approach to estimate D used the image analysis software to calibrate the discrete

model. Using our estimates of D, we chose the contour of the solution of Equation (2.2),

with λ = 0, so that the position of the leading edge, determined by the image analysis

software, matched the solution of Equation (2.2). Without the image analysis software,

it is not obvious how to interpret the image data in Figure 2.1 using the solution of

Equation (2.2) since we do not know in advance which contour of the solution corresponds

to the leading edge of the spreading populations. Here, we overcome this by applying

the same image analysis technique to both the experimental images and the discrete

snapshots.

2.4.3 Cell proliferation estimates

Previously, we assumed that Mitomycin–C pretreatment prevents cell proliferation [112,

133] and we now test this by quantifying the observed proliferation rate in the experiments.

Assays were performed in triplicate (n = 3) for each initial cell density of 5, 000, 10, 000

and 30,000 cells. We used PI staining and higher magnification images to identify the

nucleus of individual cells allowing us to estimate the temporal changes in the cell density

in the central region of the assay. In each experimental replicate we recorded snapshots

of four square subregions of dimension 400 µm × 400 µm. This means we analysed 16

square subregions for each initial density. The approximate location of the subregions is

shown in Figure 2.2 (a), confirming that they were located away from the leading edge so

that the cells were approximately uniformly distributed within each subregion.

Images in Figure 2.2 (d)–(g) show snapshots of the cells in a central subregion after

Mitomycin–C pretreatment indicating that the number of cells does not change signifi-

cantly with time. These images indicate that the diameter of the cell nucleus appears to

increase with time, on average over t = 72 hours, from approximately 16µm2 to 25µm2.

However it is unclear whether the size of the cells also increases with time as the PI stain-

ing highlights the cell nucleus rather than the cell cytoplasm. Images in Figure 2.2 (h)–(k)

show an identically–prepared experiment without Mitomycin–C pretreatment where the

number of cells increases dramatically with time, and there is no obvious change in the

size of the cell nucleus.
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Figure 2.2: Proliferation in the barrier assay was quantified by counting the number of cells in four
different subregions in each experimental replicate. The relative size and approximate location of the
subregions are shown in (a), where the scale bar corresponds to 1, 500 µm. The number of cells in the
subregions were counted, and the corresponding time evolution of the mean scaled cell density is shown
in (b)–(c), with error bars indicating one standard deviation from the mean. Red (dotted), blue (solid)
and green (dashed) curves in (b)–(c) correspond to appropriately–parameterised logistic growth curves
for the experiments where 5, 000, 10, 000 and 30,000 cells were placed initially in the barrier, respectively.
Images in (d)–(g) show four subregions, of dimensions 400 µm × 400 µm, for the experiment where 5, 000
cells were initially placed inside the barrier after pretreatment with Mitomycin–C. The images in (d)–(g)
correspond to t = 0, 24, 48 and 72 hours, respectively. The PI–staining shows the cells in red. Black dots
indicate cells that were automatically identified using the image analysis software. Results in (h)–(k) show
equivalent images from an experiment without Mitomycin–C pretreatment. The blue crosses in (i)–(k)
indicate cells that were manually counted.

To quantify the differences between Figure 2.2 (d)–(g) and Figure 2.2 (h)–(k), we plot

the nondimensional cell density in Figures 2.2 (b)–(c). We observe that the cell density

in the experiments without Mitomycin–C pretreatment increased rapidly over time. To

quantify the growth, we note that Equation (2.2) can be simplified when the cell density,

c(r, t), is spatially uniform so that locally we have c(r, t) = c(t). Under these conditions

Equation (2.2) simplifies to the logistic equation:

dc

dt
= λc (1 − c) , (2.4)
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which has the solution

c(t) =
c(0)eλt

1 + c(0)(eλt − 1)
, (2.5)

where c(t) ∈ [0, 1]. We used a line search to choose the optimal value of λ that minimised

the least–squares error between our measurements, in Figure 2.2 (b)–(c), and the solution

of the logistic equation (Appendix A). This gave λ = 0.0561 /hour for the experiment with

5, 000 cells without Mitomycin–C pretreatment and λ = 0.0016 /hour for the equivalent

experiment with Mitomycin–C pretreatment, confirming that Mitomycin–C pretreatment

prevented proliferation and justifies our modelling assumption in Figure 2.1 where we set

Pp = 0. Equivalent measurements were repeated for the experiments with 10, 000 and

30,000 cells, and the relevant logistic growth curves are superimposed in Figure 2.2 (b)–

(c). For these experiments we found λ = 0.0552 /hour for the 10, 000 cell experiment

without Mitomycin–C pretreatment, and λ = 0.0021 /hour for the equivalent experiment

with Mitomycin–C pretreatment. Similarly, our results indicate λ = 0.0594 /hour for the

30,000 cell experiment without Mitomycin–C pretreatment, and λ = 0.0026 /hour for the

30,000 cell experiment with Mitomycin–C pretreatment.

2.4.4 Position of the leading edge

We now test whether our estimates of D and λ lead to accurate predictions of the time

evolution of the position of the leading edge of the spreading populations. Experimental

images in Figure 2.3 show the distribution of cells at t = 0, and compare the distribu-

tion after 72 hours both with, and without, Mitomycin–C pretreatment. The extent of

the spreading is significantly larger in the proliferative populations. To quantify these

differences, we make predictions using Equation (2.2) and Equation (5.6), with c0 chosen

to approximate the different initial cell densities. For the experiments with 5, 000 cells

initially we have c0 = 5, 000/45, 239 ≈ 0.11; similarly for 10, 000 and 30,000 cells initially

we have c0 ≈ 0.22 and c0 ≈ 0.66, respectively. Using these initial conditions, and our

estimates of D, we solved Equation (2.2) with λ = 0 to match the experiments where pro-

liferation was suppressed, and we superimpose the c(r, t) = 0.017 contour of the solution

at t = 72 hours onto the images in the second column in Figure 2.3. For the same initial

conditions, we used the previously–determined values of D and λ to solve Equation (2.2)

and the relevant contours are superimposed in the third column of Figure 2.3. A visual

comparison of the experimental images and the numerical solutions of Equation (2.2)

in Figure 2.3 indicates that the modelling prediction of the position of the leading edge

accurately captures the observed spreading. The comparison of the modelling and ex-

perimental results in Figure 2.3 involved no calibration, indicating that our modelling

framework can make reasonably accurate predictions of the experimental observations.

We analysed the remaining images at t = 0, 24 and 48 hours, using the same procedure, to

produce equivalent results shown in the fourth column of Figure 2.3. For each experiment

we superimpose the predicted diameter of the spreading population using the c(r, t) =

0.017 contour of the relevant solution of Equation (2.2). Comparing the partial differential

equation solution with the experimental results illustrates that the modelling framework

reliably predicts the observed spreading patterns. The match between the modelling
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Figure 2.3: The position of the leading edge was determined by analysing experimental images for the
experiments with 5, 000, (a)–(d), 10, 000, (e)–(h) and 30,000, (i)–(l) cells initially. Images are shown
at t = 0 (first column), at t = 72 hours for the experiments with Mitomycin–C pretreatment (second
column) and at t = 72 hours for the experiments without Mitomycin–C pretreatment (third column). In
each image the c(r, t) = 0.017 contour of the relevant solution of Equation (2.2) is superimposed in black
(solid) on the spreading population and the scale bar represents 1, 500 µm. Results in (d), (h) and (l)
show the mean diameter (n = 3) calculated from experimental images at t = 0, 24, 48 and 72 hours, with
the error bars representing one standard deviation from the mean. The curves in (d), (h) and (l) represent
the time evolution of the position of the c(r, t) = 0.017 contour of the relevant solution of Equation (2.2).
The blue (solid) curves correspond to spreading driven by combined motility and proliferation whereas the
red (dashed) curves correspond to spreading by motility only. The numerical solution of Equation (2.2)
correspond to δr = 1.0 µm, δt = 0.005 hours and ǫ = 1× 10−6.

prediction and the experimental measurements improves as the initial numbers of cells

increases which could indicate that our parameter estimates are more reliable for the

experiments with larger numbers of cells present.

For all experimental conditions in Figure 2.3, we observe that cell spreading driven by com-

bined motility and proliferation occurs faster than in the equivalent experiment without

proliferation. We observe a separation of timescales in the data as the difference between

the diameter for the experiments with combined motility and proliferation, and the ex-

periments without proliferation, are minimal at relatively short times, t < 24 hours. Over

longer timescales, the influence of proliferation is more pronounced. For example, with

30,000 cells initially, the diameter of the proliferative spreading population is very similar

to the diameter of the nonproliferative spreading population at t = 24 hours. Conversely,
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the diameter of the experiment with proliferation is approximately 1, 500 µm larger than

the diameter of the equivalent experiment without proliferation after t = 72 hours. These

differences indicate that cell migration takes place over a relatively short timescale whereas

proliferation takes place over much longer timescales. With our estimates of D and λ, the

corresponding ratio Pp/Pm in the discrete model is Pp/Pm ≈ 2 × 10−3 indicating that,

on average, an isolated uncrowded cell will undergo approximately 500 motility events

for each proliferation event. Since Pp/Pm ≪ 1, the effects of proliferation in the discrete

simulations, or equivalent solutions of Equation (2.2), will be insignificant over relatively

short timescales.

Our estimates of D and λ allow us to predict the long term front speed for the proliferative

populations. Formally, Equation (2.2) does not support travelling wave solutions [97,156].

However, the asymptotic result for the Fisher–Kolmogorov equation is approximately valid

in an axisymmetric radial geometry for sufficiently large r [97]. For our parameter esti-

mates, the mean front speed predicted by the Fisher–Kolmogorov equation, s =
√

4λD,

is s = 18.3 (16.3–24.6), 19.4 (13.8–22.1) and 26.2 (23.0–31.7) µm/hour, for the results

with 5, 000, 10, 000 and 30,000 cells placed initially in the barrier. Here, the uncertainty

in the prediction of s was estimated using our estimates of the uncertainty in D and λ

(Appendix A). To test this prediction, we fit a straight line to the mean data in Figure

2.3 (d), (h) and (l), describing the time evolution of the diameter of the spreading pro-

liferative populations, giving s = 15.7 (15.0–16.5), 20.1 (18.7–21.6) and 23.6 (23.0–24.1)

µm/hour for the results with 5, 000, 10, 000 and 30,000 cells placed initially in the barrier,

respectively. The uncertainty in s was calculated by fitting straight lines to the mean data

at t = 0 and the upper and lower bound, defined by the error bars in Figure 2.3 (d), (h)

and (l), at t > 0. Given that our experiments are made over relatively short timescales in

an axisymmetric radial geometry, it is remarkable that the Fisher–Kolmogorov prediction

is relatively accurate. We also note that front speed measurements can depart from the

Fisher–Kolmogorov result due to the effects of stochastic fluctuations [61, 62], which we

have not quantified, but could be measured in future experimental investigations.
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Figure 2.4: (a)–(c) Snapshots of the crystal violet stained image (gray scale) are compared with the corresponding PI–stained transect after 72 hours without Mitomycin–C
pretreatment for experiments with 5, 000, 10, 000 and 30,000 cells initially placed in the barrier, respectively. The scale bar represents 1, 500 µm. Images in (d)–(e), (h)–(i)
and (l)–(m) show pairs of PI–stained transects after 72 hours for experiments with 5, 000, 10, 000 and 30,000 cells, respectively. The scale bar in (d) represents 1, 500 µm and
all images in (d)–(e), (h)–(i) and (l)–(m) at taken at the same scale. Images in (d), (h) and (l) correspond to Mitomycin–C pretreated experiments, and images in (e), (i) and
(m) correspond to experiments without Mitomycin–C pretreatment. Histograms in (f)–(g), (j)–(k) and (n)–(o) show the time evolution of the cell density across the transect
for the experiments with 5, 000, 10, 000 and 30,000 cells, respectively. Histograms are shown at t = 0, 24, 48 and 72 hours, as indicated. The solid curves in (f)–(g), (j)–(k)
and (n)–(o) correspond to the relevant solutions of Equation (2.2). The initial condition is given by Equation (5.6), and results in (f)–(g), (j)–(k) and (n)–(o) correspond to
c0 = 0.11, 0.22 and 0.66, respectively. The numerical solution of Equation (2.2) corresponds to δr = 1.0 µm, δt = 0.005 hours and ǫ = 1× 10−6.
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2.4.5 Shape of the leading–edge

We now present measurements and modelling of the cell density profiles across a transect

of the spreading population. Snapshots in Figure 2.4 (a)–(c) show the population–scale

crystal violet stained images superimposed with a PI–stained transect to illustrate how

the transect data corresponds to the images in Figure 2.3.

To quantify the spatial distribution of cells, we divided each transect into 40–60 equidis-

tant sections, each of length 150 µm, along the transect axis. The image analysis software

was used to count the number of cells in each section, and this was converted into a nondi-

mensional cell density, c(r, t), which was used to construct the histograms of cell density

in Figure 2.4. The histogram data at t = 0 confirms that the initial cell density is approxi-

mately uniform, which supports our previous modelling assumptions. The histogram data

in Figure 2.4 for t > 0 allows us to compare the time evolution of the cell density in those

experiments where proliferation is suppressed from those where proliferation was present.

This data confirms that proliferation has a relatively small influence before t = 24 hours,

but a far more pronounced effect by t = 72 hours. These differences are most obvious in

Figure 2.4 (f)–(g), for the lowest initial density experiments. Here, we observe that the

density profiles for the experiment where proliferation is suppressed remains relatively low

for all time, whereas the density profiles for the corresponding proliferative experiments

almost reaches carrying capacity density after 72 hours.

The relevant solution of Equation (2.2) is superimposed on each histogram in Figure 2.4.

These solutions reflect the key differences between the six sets of experiments thereby con-

firming that the key features of these experiments can be captured, relatively accurately,

by our modelling framework. The histogram data in Figure 2.4 enables us to compare how

the balance of motility and proliferation controls the shape of the leading edge. Previous

results in Figure 2.3 (d) indicate that the presence of proliferation in the 5, 000 cell exper-

iment drives the position of the leading edge approximately 1, 500 µm further by t = 72

hours than the equivalent experiment where proliferation is suppressed. The histograms

in Figure 2.4 (f)–(g) confirm this and highlights a major difference in the shape of the

leading edge. To emphasise the difference in shape, we re–scaled this histogram data,

focussing on the details of the shape of the leading edge, over a distance of approximately

1, 650 µm, in Figure 2.5 (a)–(b). The re–scaled images confirms that cell spreading driven

by combined motility and proliferation leads to relatively steep fronts, whereas cell spread-

ing in the absence of proliferation leads to relatively shallow fronts [132]. The relevant

solutions of Equation (2.2) confirms that the experimental observations are consistent

with differences predicted by our modelling framework. Additional results in Figure 2.5

(c)–(d) and Figure 2.5 (e)–(f) compare the shape of the leading edge at t = 72 hours for

the experiments initialised with 10, 000 and 30,000 cells, respectively. These results also

confirm that proliferative fronts are relatively steep while fronts without proliferation are

relatively shallow.
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Figure 2.5: The shape of the leading edge is compared where the spreading is driven by motility alone
(first row) and combined motility and proliferation (second row). To facilitate the comparison, in each case
we shifted the radial coordinate to compare the density profiles over a distance of approximately 1, 650 µm
behind leading edge. The experimental data corresponds to a barrier assay with 5, 000, (a),(d), 10, 000,
(e),(f) and 30, 000, (c),(f), cells placed into the barrier initially. All data corresponds to 72 hours after the
barrier was lifted. The solid curves are the numerical solutions of Equation (2.2), with the appropriate
parameter values, previously described. The numerical solution of Equation (2.2) corresponds to δr = 1.0
µm, δt = 0.005 hours and ǫ = 1× 10−6.

2.5 Discussion

Quantifying the mechanisms driving cell spreading will improve our understanding of

several processes including development [159], repair [85, 86] and certain diseases [132].

Previous experimental studies have focused on measuring the front speed [85,86]. One of

limitations of measuring the front speed alone is that that there are many choices of D and

λ that give the same front speed according to the Fisher–Kolmogorov equation [85, 86].

To address this, others have chosen model parameters to ensure that the solution of the

model matches the density observations [113, 114, 116]. Using this kind of parameter

fitting approach alone may not allow for any independent assessment of the predictive

capability of the model unless separate experimental measurements are obtained so that

the calibrated model can be independently tested. One way to overcome these limitations

is to intentionally alter the details of the experiment so that we can separately identify the

roles of cell motility and cell proliferation. Here, we use a combination of experimental and

modelling techniques to isolate the roles of motility and proliferation in a two–dimensional

circular barrier assay. We characterise D and λ separately, and then make independent

modelling predictions about other aspects of the experiment.

Our experiments were designed to study the differences between cell spreading driven

combined motility and proliferation, from an equivalent set of experiments where prolif-

eration was suppressed [112]. By quantifying the differences between these experiments,

we showed that Mitomycin–C pretreatment caused the cell density in the central region
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of the assay to remain approximately constant over 72 hours, whereas equivalent cells

in the central region without Mitomycin–C pretreatment proliferated significantly over

the same time period. Using image analysis software, we showed that cell spreading is

enhanced by the presence of cell proliferation.

High–magnification images of transects through the spreading population were used to

reconstruct cell density profiles during each experiment. These density profiles confirmed

that the proliferative experiments led to faster spreading than when proliferation was

suppressed. The cell density profiles showed that the shape of the leading edge can be

very different depending on whether or not cell proliferation is present. When prolifer-

ation was suppressed, we observed the formation of shallow fronts, whereas proliferative

fronts relatively steep. We also used our parameterised modelling framework to make

quantitative predictions of the shape of the leading edge in each experiment and found

that our modelling provided reasonable predictions. Understanding the differences be-

tween cell spreading with and without proliferation, and confirming that our modelling

framework can predict these differences, is important since the shape of the leading edge

of a spreading cell population is thought to have important clinical implications [59,132].

Our results highlight the need to consider the role of initial cell numbers since our es-

timates of D indicate a weak density dependence as we observe D = 1, 500, 1, 700 and

2, 900 µm2/hour for the experiments initialised with 5, 000, 10, 000 and 30, 000 cells, re-

spectively. From a practical point of view, given that estimates of cell diffusivity in the

literature can vary over one or two orders of magnitude [85, 86, 113, 134], our observed

variation is relatively small. Nonetheless, we do observe a consistent density–dependent

mechanism for which there are several plausible explanations such as the possibility that

cells produce a chemical signal (or signals) enhancing migration, or the possibility that

cells modify the substrate as they migrate. For both these putative mechanisms, it is

reasonable to assume that placing more cells in the barrier initially leads to enhanced

migration. Although our current experimental platform was not designed to resolve these

details, our results illustrate the importance of repeating barrier assays with different

initial numbers of cells so that these effects can be observed and quantified.

The experimental observations reported here are relevant to current theoretical devel-

opments where there has been active debate regarding appropriate techniques to model

collective cell motility. Some observations favour models based on linear diffusion, while

others favour nonlinear diffusion [85, 86, 113, 116]. Recent theoretical developments have

even suggested it is possible to accurately model the same discrete interacting motility

mechanism either invoking a linear or a nonlinear diffusion equation. These differences

depend on the details of how the continuum–limit is constructed [13].

Our combined modelling and experimental study illustrates how to separately quantify

the effects of cell motility and cell proliferation in a barrier assay to help understand how

each component contributes to cell spreading. We anticipate that designing more detailed

experimental programs will be necessary when modelling cell spreading involving cell–to–

cell adhesion [33,121] or an epithelial–to–mesenchymal transition (EMT) [153]. For both
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these extensions we must quantify how the cell motility is affected by cell–to–cell adhesion

and how the EMT contributes to the net spreading of the population. Incorporating such

details will be the subject of future research.
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Abstract

The expansion of cell colonies is driven by a delicate balance of several mechanisms includ-

ing cell motility, cell–to–cell adhesion and cell proliferation. New approaches that can be

used to independently identify and quantify the role of each mechanism will help us under-

stand how each mechanism contributes to the expansion process. Standard mathematical

modelling approaches to describe such cell colony expansion typically neglect cell–to–cell

adhesion, despite the fact that cell–to-cell adhesion is thought to play an important role.

We use a combined experimental and mathematical modelling approach to determine the

cell diffusivity, D, cell–to–cell adhesion strength, q, and cell proliferation rate, λ, in an

expanding colony of MM127 melanoma cells. Using a circular barrier assay, we extract

several types of experimental data and use a mathematical model to independently esti-

mate D, q and λ. In our first set of experiments, we suppress cell proliferation and analyse

three different types of data to estimate D and q. We find that standard types of data,

such as the area enclosed by the leading edge of the expanding colony and more detailed

cell density profiles throughout the expanding colony, does not provide sufficient informa-

tion to uniquely identify D and q. We find that additional data relating to the degree of

cell–to–cell clustering is required to provide independent estimates of q, and in turn D. In

our second set of experiments, where proliferation is not suppressed, we use data describ-

ing temporal changes in cell density to determine the cell proliferation rate. In summary,

we find that our experiments are best described using the range D = 161−243 µm2/hour,

q = 0.3 − 0.5 (low to moderate strength) and λ = 0.0305 − 0.0398 /hour, and with these

parameters we can accurately predict the temporal variations in the spatial extent and

cell density profile throughout the expanding melanoma cell colony. Our systematic ap-

proach to identify the cell diffusivity, cell–to–cell adhesion strength and cell proliferation

33
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rate highlights the importance of integrating multiple types of data to accurately quantify

the factors influencing the spatial expansion of melanoma cell colonies.

3.1 Background

Cell colony expansion is driven by several mechanisms including cell motility, cell–to–cell

adhesion and cell proliferation [85, 132, 153]. Methods that can be used to quantify the

role of these various mechanisms driving in vitro colony expansion will assist in improving

our understanding of them [25, 43, 53, 125, 132]. In this work, we propose a systematic

approach to identify and quantify the mechanisms driving the expansion of melanoma

cell colonies in vitro.

We choose to study melanoma cells since melanoma is the most dangerous form of skin

cancer, which can spread rapidly and cause serious illness and death [16,48,131]. Approx-

imately 75% of all skin cancer deaths are due to melanoma, and each year 132, 000 new

cases are diagnosed globally, with more than 12, 500 of these reported in Australia [10].

While the five–year survival rate in patients with non–metastatic melanoma can be as

high as 95%, the five–year survival rate for patients with metastatic melanoma is less

than 15% [11]. The precise details of the mechanisms that drive melanoma cell colony

expansion are unclear, and using a systematic approach which can independently identify

and quantify the role of each individual mechanism may provide practical insights into

how colonies of melanoma cells expand [23,25,39,129].

Expanding colonies of cells are characterised by moving cell fronts [85, 116], and typ-

ical mathematical modelling approaches to describe the movement of such fronts use

partial differential equations that incorporate descriptions of cell motility and cell prolif-

eration [85,97,113,116,125,132]. In most cases, the terms describing cell motility and cell

proliferation in the partial differential equation are chosen without explicitly considering

the details of the underlying biological process [85,123,136], and often neglect cell–to–cell

adhesion [33,75,121] . However, several experimental studies have observed that the loss

of cell–to–cell adhesion between individual melanoma cells is associated with increased

spatial expansion [29, 65, 79, 87, 93, 108], suggesting that cell–to–cell adhesion plays an

important role in the spatial expansion of melanoma cell colonies.

An alternative modelling approach to describe the expansion of cell colonies involves

simulating the behaviour of individual cells in a colony in a discrete modelling framework

[3, 5, 9, 38, 41, 52, 57, 109, 130, 146]. Discrete models have the benefit that they produce

data, such as snapshots and movies, that are more compatible with experimental data

compared to partial differential equation models [125]. Furthermore, discrete models can

be designed to incorporate realistic cell behaviours which can be more difficult using

a partial differential equation description [125]. A recent view of discrete cell–based

modelling approaches can be found in [32, 109, 150]. Khain et al. [72, 74] developed a

discrete mathematical model to describe the expansion of a motile and proliferative cell

colony in which the cell motility is reduced by cell–to–cell adhesion. In their model, they

represented simulated cells on a two–dimensional lattice, and they allowed the simulated
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cells to both move and proliferate. Cell–to–cell adhesion was introduced by including a

mechanism where the simulated cells could adhere to nearest neighbour simulated cells,

effectively reducing their motility. Khain et al. [72, 74] applied this model to investigate

the behaviour of glioma cells in a two–dimensional scratch assay, predicting the location

and speed of the leading edge of the expanding glioma cell colony. In another study,

Simpson et al. [121] extended Khain’s model to investigate the migration of MCF–7

breast cancer cells in a three–dimensional TranswellR© apparatus [121]. Although both

these recent modelling studies incorporated a cell–to–cell adhesion mechanism, there is

no widely accepted protocol for designing experiments that allow us to independently

quantify the contributions of cell motility, cell–to–cell adhesion and cell proliferation in

expanding cell colonies [72, 74–76, 121]. We hypothesise that collecting and analysing

several sets of experimental data describing the same experimental procedure may be

required in order for us to independently quantify the role of these mechanisms.

In this work we use a circular barrier assay [69,145] to investigate the interplay between

cell motility, cell–to–cell adhesion and cell proliferation mechanisms in expanding colonies

of MM127 melanoma cells. We take a systematic approach that uses multiple types of data

to identify each of these mechanisms separately by performing two sets of experiments.

In our first set of experiments, we use Mitomycin–C to suppress cell proliferation so that

we can separate the roles of cell motility and cell–to–cell adhesion from the role of cell

proliferation. We attempt to quantify the roles of cell motility and cell–to–cell adhesion

by extracting information about the location of the leading edge of the expanding colony

and detailed cell density profiles throughout the entire cell colony. We find that these

approaches do not provide sufficient information to identify the rate of cell motility and

strength of cell–to–cell adhesion, and that additional data, including a measurement of

the degree of cell–to–cell clustering, is required. Once we have obtained estimates of the

cell motility rate and cell–to–cell adhesion strength we use a second set of experiments,

in which proliferation is not suppressed, to estimate the rate of cell proliferation. Finally,

given our independent estimates of the cell motility rate, strength of cell–to–cell adhe-

sion and the cell proliferation rate, we confirm that our estimates allow us to accurately

predict the observed spatial expansion in the experiments by comparing the predicted

location of the leading edge and the predicted cell density profiles from our parameterised

mathematical model to our experimental measurements.

3.2 Experimental methods

3.2.1 Cell culture

Human malignant melanoma cells (MM127, [102, 107, 154]), a gift from Mitchell Stark

(Queensland Institute of Medical Research), were cultured in RPMI–1640 with 2mM

L-Glutamine, 23mM HEPES (Invitrogen, Australia) with 10% foetal calf serum (FCS;

Hyclone, New Zealand) and 1% v/v penicillin/streptomycin (Invitrogen, Australia) in 5%

CO2 at 37 ◦C and 95% air atmosphere. Cells were harvested just prior to confluence using

0.05% trypsin–EDTA(1×) (Invitrogen, Australia). Cell viability was determined using a

trypan blue exclusion test and cell number determined using a haemocytometer.
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3.2.2 Circular barrier assay

Metal–silicone barriers, 6, 000 µm in diameter (Aix Scientifics, Germany), were cleaned,

sterilised using 70% Ethanol, dried and placed in the centre of each well of a 24–well tissue

culture plate. Each well has a diameter of 15, 600 µm. Experiments were performed using

two different cell densities: 20,000 or 30,000 cells per well. To suppress cell proliferation, 10

µg /mL Mitomycin–C (Sigma Aldrich, Australia) was added to half of all cell solutions for

one hour at 37 ◦C prior to transfer to the wells [112]. 100 µL of cell suspension was carefully

inserted into the barrier to ensure that the cells were approximately evenly distributed.

Cells were allowed to settle and attach for four hours in a humidified incubator at 37 ◦C,

5% CO2 and 95% air atmosphere. Assays commenced with the removal of the barrier and

the cell layer was washed with warm serum free medium (SFM; culture medium without

FCS) and replaced with 0.5 mL of culture medium. Cultures were incubated at 37 ◦C in

5% CO2 and 95% air atmosphere for t = 0, 24 and 48 hours. Each assay, for each time

point, was repeated three times.

3.2.3 Detection of motility and cell–to–cell adhesion proteins in MM127 cells using

immunofluorescence and western blotting

The presence of mesenchymal-associated proteins including vimentin, N–cadherin and

the epithelial-associated protein E–cadherin were demonstrated with immunofluorescence.

Circular barrier assays were repeated on coverslips with 30, 000 cells, for t = 48 hours,

without Mityomycin–C pretreatment. Cells were fixed with 10% neutral buffered forma-

lin, permeabilised with 0.1% Triton X–100 in PBS for 10 minutes, blocked with 0.5%

BSA in PBS for 10 minutes and incubated with a primary antibody for 90 minutes. The

secondary antibody was then added to the cells for 60 minutes. Between each stage,

cells were washed three times with 0.5% BSA and five times after the addition of the

secondary antibody. Images were acquired using a Leica SP5 confocal microscope fitted

with a Nikon digital camera. The primary antibodies were as follows; Vimentin (Mono-

clonal, rabbit anti–human; clone SP20, Thermo Fisher LabVision, Australia), N–cadherin

(Monoclonal, Mouse anti–human, clone 32, BD Transduction Laboratories, Australia) and

E–cadherin (Monoclonal, mouse anti–human, clone HECD–1, Abcam, Australia). The

secondary antibodies were as follows; Vimentin (Goat anti–rabbit, Alexa Fluor–568, In-

vitrogen, Australia) and for both N–cadherin and E–cadherin (Goat anti–mouse, Alexa

Fluor–488, Invitrogen, Australia). Western blot was also performed to confirm that E–

cadherin is not expressed in MM127 cells. The same primary antibody was used as in the

immunofluorescence testing, while the secondary antibody used was (goat anti–mouse,

Horseradish Peroxidase Conjugate, Invitrogen, Australia). Highly adhesive breast can-

cer cells (MCF–7, ATCC, Manassas, VA) were used as a positive control for E–cadherin

immunoreactivity [46].

3.2.4 Image acquisition and analysis

Colony–scale images to show the spatial expansion of the cell colonies were obtained by

fixing cells with 10% neutral buffered formalin, followed by 0.01% crystal violet (Sigma-
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Aldrich, Australia) in 0.1 M borate buffer. The stain was rinsed with phosphate–buffered

saline (Invitrogen, Australia) and samples air–dried. Images were acquired using a stereo

microscope fitted with a Nikon digital camera. Images were analysed using customised

software written with MATLAB’s Image Processing Toolbox (v7.12) [90]. Edge detection

and segmentation algorithms were applied to the colony–scale images to identify and

isolate the entire cell colony from the background of the image, resulting in an estimate

of the location of the leading edge (Appendix B) [125,137].

Individual–scale images detailing the number and location of the cells in the colony were

acquired by destaining the crystal violet stained samples with 70% ice–cold ethanol and

staining the nuclei with 1 mg /ml Propidium Iodide (Invitrogen, Australia) in PBS. Images

were acquired using a Nikon Eclipse Ti inverted microscope fitted with a Nikon digital

camera. Overlapping adjacent images were used to reconstruct horizontal and vertical

transects through the entire colony. Images were analysed using customised software

written with MATLAB’s Image Processing Toolbox (v7.12) [90]. Segmentation algorithms

were used to automatically count the number of cells in the Propidium Iodide stained

images [125]. For some images, we found that a number of cells had to be manually

identified and counted. In all cases, a visual check was performed to validate that all cells

had been identified correctly using the software, or through manual counting (Appendix

B).

3.3 Results

3.3.1 Identifying the mechanisms controlling the expansion of melanoma cell colonies

The spatial expansion of melanoma cell colonies is a complex process that is influenced

by various mechanisms including cell motility, cell proliferation and cell–to–cell adhesion

[58, 82]. Although all three mechanisms are thought to play a critical role [58, 82], it is

unclear how the contributions of each of these three mechanisms can be identified and

measured in a quantitative framework [125]. In this work, we use a combined experimental

and mathematical modelling approach to distinguish between, and to quantify the role

of, each mechanism.

To observe the spatial expansion of melanoma cell colonies, we performed several exper-

iments using a circular barrier assay [69, 145]. Figure 3.1 illustrates a schematic of the

barrier assay. Human malignant melanoma cells (MM127, [102, 107, 154]) were placed

inside the barrier at t = 0 hours. The barrier was then lifted, allowing the cell colony

to expand outwards. The spatial expansion of the colony was measured at t = 24 and

t = 48 hours by calculating the radius, R, of the expanding circular colony. In our

work, we placed either 20, 000 or 30, 000 cells inside the barrier initially. To confirm

the presence of cell motility and cell–to–cell adhesion proteins in the cell colony, we

used immunofluorescence to examine the expression of E–cadherin, N–cadherin and vi-

mentin [34, 68, 82, 153, 163]. E–cadherin, a cell–to–cell adhesion protein that is uniquely

expressed by epithelial cells [68], was not detected (Figure 3.2 (a)). Western blot analysis

(Figure 3.2 (a) inset) confirmed the absence of E–cadherin [68]. In contrast, N–cadherin
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Figure 3.1: Cell motility, cell–to–cell adhesion and cell proliferation mechanisms drive cell colony ex-
pansion. Schematic representation of the circular barrier assay illustrating the mechanisms influencing
the expansion of a two–dimensional cell colony. Cells are placed inside the barrier which is lifted at t = 0
hours allowing the colony of cells to expand outwards until t = 48 hours. The degree of expansion can be
quantified by measuring and comparing the radius of the colony, R0 and R48.

VimentinN-cadherin

(b) (c)(a)
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100 kD

150 kD

Positive MM127 control

Figure 3.2: MM127 melanoma cells express mesenchymal markers. Immunofluorescence was used to
examine expression of E–cadherin, a cell–to–cell adhesion protein uniquely expressed by epithelial cells
(a), N–cadherin, a cell–to–cell adhesion protein uniquely expressed by mesenchymal cells (b), and vimentin,
a protein that is uniquely expressed by mesenchymal cells (c) in MM127 cells. The scale bar corresponds
to 25 µm. MM127 melanoma cells were cultured in a circular barrier assay for t = 48 hours on glass
coverslips in 500 µL cell medium. All sections were stained with DAPI (blue) to identify the cell nucleus.
N–cadherin and vimentin expression are indicated by the green and red staining, respectively. Western
blot was used to examine the expression of E–cadherin protein in MM127 cells (Inset in (a)).

and vimentin, proteins that are uniquely expressed by mesenchymal cells, were detected

(Figure 3.2 (b)–(c)). The expression of N–cadherin suggests that cell–to–cell adhesion

plays a role in this system, while the presence of vimentin is consistent with our initial

assumption that the cells are motile [68, 82, 153, 163]. In addition to the immunofluores-

cence results, we also visually identified that significant proliferation occurred during the

barrier assays which we confirm during our later analysis (See section 3.3.4).

3.3.2 Modelling the spatial expansion of a melanoma cell colony

To interpret our experimental observations we used a discrete random walk model to

simulate the expansion of the melanoma cell colonies [72–74, 121]. The random walk

model describes how a simulated cell can undergo specific events in a sequence of random

steps [27]. These events include adhesive motility and proliferation, and we note that all of
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Figure 3.3: Multiple combinations of D, q and λ result in the same extent of spatial expansion. A
circular barrier assay initialised with 20, 000 cells was simulated using the mathematical model. The
initial distribution of 20, 000 simulated cells at t = 0 hours is shown in (a). The scale bar corresponds
to 1, 500 µm. Simulation snapshots shown in (b)–(d) illustrate three different combinations of the cell
motility rate, cell–to–cell adhesion strength and cell proliferation rate used to replicate the experiments
over t = 48 hours. All three simulations result in a similar extent of spatial expansion from R = 3, 250
µm at t = 0 hours to R = 3, 450 µm at t = 48 hours. Simulations were performed with (b) moderate
motility, low cell–to–cell adhesion strength and zero proliferation; D = 405 µm2/hour, q = 0.1, λ = 0
/hour, (c) high motility, high cell–to–cell adhesion strength and zero proliferation; D = 810 µm2/hour,
q = 0.8, λ = 0 /hour, and (d) low motility, zero cell–to–cell adhesion and moderate proliferation; D = 162
µm2/hour, q = 0, λ = 0.035 /hour.

these mechanisms are simulated within a framework that incorporates realistic crowding

effects [72–74, 121]. We simulate these mechanisms on a two–dimensional square lattice

with lattice spacing ∆. We estimate ∆ by measuring the diameter of the cell nucleus

using ImageJ [66], giving ∆ = 18 µm. We choose to use the diameter of the cell nucleus

as the estimate for ∆ as this appears to be a realistic measurement for the equivalent

circular space that each individual cell occupies on the tissue culture plate (Appendix

B). Simulations of the experiments were performed on a lattice of size 867 × 867, whose

dimensions correspond to the 15, 600 µm diameter of well in a 24–well plate (15, 600/18 ≈
867). The simulations were initialised by placing either 20, 000 or 30, 000 simulated cells

inside a circle located at the centre of the lattice. The radius of the initial circle was

3, 250 µm, which corresponds to the average initial radius of the cell colony for both initial

densities (Appendix B). To reflect the way that the experiments were initiated, simulated

cells were placed uniformly at random inside the circle so that the initial distribution of

simulated cells matched the initial conditions in the experiments as accurately as possible.

For example, if the initial radius of the circle is 3, 250 µm, we represent this using a

circle whose diameter corresponds to 180 lattice sites since 180 ≈ 3, 250/18. Hence,

the total number of lattice sites inside that circle is π1802 ≈ 101736 and we randomly

occupy 19.65% of these sites to mimic an experiment initialised with 20,000 cells since

19.65% = 100× (20, 000/101736). Similarly, we randomly occupy 29.49% of these sites to

mimic an experiment initialised with 30,000 cells since 29.49% = 100 × (30, 000/101736).

Figure 3.3 (a) illustrates the initial distribution for a simulation initialised with 20, 000

simulated cells.
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The model incorporates crowding effects by permitting each lattice site to be occupied

by, at most, one simulated cell [33, 74, 121]. A random sequential update algorithm was

used to perform the simulations [24] using the following algorithm. If there are N(t)

simulated cells at time t, during the next time step of duration τ , N(t) simulated cells are

selected at random, one at a time, and given the opportunity to move with probability

Pm(1 − q)a. The random sequential update methods means that not all N(t) simulated

cells are always selected during every time step; sometimes a particular simulated cell

will be selected more than once per time step [24]. Here, 0 ≤ Pm ≤ 1 is the probability

that an isolated simulated cell moves a distance of one cell diameter, ∆, during a time

interval of duration τ . The strength of adhesion is governed by the parameter 0 ≤ q ≤ 1,

and 0 ≤ a ≤ 4 is the number of occupied nearest–neighbour lattice sites surrounding the

simulated cell in question. When q = 0, there is no cell–to–cell adhesion and nearest

neighbour cells do not adhere to each other. As q increases, the strength of cell–to–cell

adhesion increases, and nearest–neighbour cells adhere more tightly to each other. If the

opportunity to move is successful and the target site is vacant, a simulated cell at position

(x, y) steps to (x±∆, y) or (x, y±∆) with each target site chosen with equal probability of

1/4. Once the N(t) potential motility events have been assessed, another N(t) simulated

cells are selected at random, one at a time, and given the opportunity to proliferate with

probability 0 ≤ Pp ≤ 1. If the opportunity to proliferate is successful, the proliferative

simulated cell attempts to deposit a daughter simulated cell at (x ± ∆, y) or (x, y ± ∆)

with each target site chosen with equal probability of 1/4.

In this work, we interpret the parameters describing cell motility and cell proliferation in

our model using standard measures. The cell motility rate is quantified in terms of the cell

diffusivity, D [97], which is related to the parameters in our model by D = (Pm∆2)/(4τ)

[27,125]. Similarly, the rate of cell proliferation is given by λ = Pp/τ [121,125]. Values of

D are often reported to be of the order, D = 1000 µm2/hour [97, 132]; however, typical

estimates of D, calculated primarily from in vitro cell populations, are known to vary by

as much as to two orders of magnitude [85, 121, 125, 132]. To the best of our knowledge,

there are no known estimates of D for MM127 melanoma cells. A typical doubling time,

td = loge(2)/λ, for melanoma cells is thought to be approximately 34 hours [128]. We

note that while values of D and λ are sometimes reported in the literature, there are no

such estimates of the strength of cell–to–cell adhesion, q [121].

In our analysis, we measure and quantify the dimensional cell density, c∗(r, t), where r

describes the radial position (µm) and t is time (hours). To measure the dimensional cell

density, we consider a region of area A. In each region, we count the total number of

cells, N , and divide through by the area to give c(r, t) = N/A cells /µm2. In all cases,

we convert the dimensional cell density into an equivalent non–dimensional cell density,

c(r, t), by scaling with the carrying capacity density K. This gives c(r, t) = c∗(r, t)/K.

We approximate the carrying capacity as the maximum packing density of circular–disk–

like cells with diameter 18 µm on a two–dimensional square lattice, giving K = 1/∆2 ≈
3×10−3 cells /µm2 [125]. In some regions where the cell density is approximately spatially

uniform, we will refer to the non–dimensional cell density as a function of time only,
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c(t) [125]. This is particularly useful when we estimate the proliferation rate since we

focus on regions in the middle of the colony where the spatial distribution of cells is

relatively uniform so that locally we have c(r, t) ≈ c(t) [125].

Initially, we used the mathematical model to investigate whether a simple visual compari-

son of the simulated circular barrier assays for typical choices of D, q and λ could provide

any insight into the factors affecting the spatial expansion of the experimental melanoma

cell colony. Simulations in Figure 3.3 (b)–(d) show three different realistic parameter

combinations of D, q and λ. For these simulations we measure the extent of the spatial

expansion of the colony by measuring the radius of the colony, R. Results in Figure 3.3

(b)–(d) show that the spatial expansion after t = 48 hours is equivalent for these different

choices of D, q and λ. This observation suggests that there are multiple combinations

of cell motility, cell–to–cell adhesion and cell proliferation parameters which could repli-

cate the experiment results and therefore a simple visual inspection of the population is

insufficient to identify the mechanisms influencing the expansion of the cell colony. To

overcome this important limitation, we identified multiple types of data that could be

extracted from the experiments. We will now describe each of these types of data and

assess whether they are able to identify a unique set of D, q and λ parameters.

3.3.3 Estimating the rate of cell motility and strength of cell–to–cell adhesion

To distinguish between the roles of cell motility and cell–to–cell adhesion, we considered

experiments where cell proliferation was suppressed by performing the barrier assays with

Mitomycin–C pretreated cells [112, 125]. For each experiment we estimated the position

of the leading edge of the expanding colony, the cell density profile along a transect

throughout the entire expanding colony as well as measuring the degree of cell–to–cell

clustering within the colony.

Data type 1: Location of the leading edge

The area enclosed by the leading edge of an expanding cell colony is a standard tool used

to quantify the rate of cell colony expansion [94,125,137]. To determine the location of the

leading edge we used image analysis software to analyse the experimental images showing

the entire colony (Appendix B) [137]. Images in Figure 3.4 (a)–(b) show the position

of the leading edge detected at t = 0 and t = 48 hours, respectively. In both cases,

the image analysis software accurately detects the position of the leading edge. For each

experimental image we calculated the area enclosed by the detected leading edge, A, and

converted the estimate of A into an estimate of the radius of the expanding colony, R, by

assuming that the cell colony maintained a circular shape, giving R =
√
A/π, [125,137].

The estimates of the radius of the expanding colony are shown by the equivalent circular

areas superimposed in Figure 3.4 (a)–(b). The excellent match between the detected

leading edge and the corresponding equivalent circular area confirms that the cell colony

maintains an approximately circular shape during the experiments. We repeated the

leading edge detection procedure for all experimental images at t = 0, 24 and 48 hours for

both initial cell densities. Results in Figure 3.4 (c)–(d) show how the estimates of R vary
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Figure 3.4: The radius of the colony does not allow us to uniquely estimate D and q. All results
correspond to experiments where the cells were pretreated with Mitomycin–C to prevent cell proliferation.
Images in (a)–(b), show the entire cell colony for experiments initialised with 30, 000 cells at t = 0 and
t = 48 hours, respectively. The scale bar corresponds to 1, 500 µm. An equivalent model simulation
of the experiment is shown in (e)–(f), using D = 243 µm2 /hour, q = 0 and λ = 0 /hour. For all
images in (a)–(d), the detected location of the leading edge using the image analysis software is shown
in black, while the red circle corresponds to the equivalent circle with the same area as enclosed by the
leading edge. Results in (c) and (d) show the time evolution of the average radius of the expanding
colony detected in the experiments. The error bars correspond to one standard deviation from the mean
(black). Corresponding model simulations which match the experimental results are superimposed (colour
lines). Simulation results were averaged over three identically–prepared realisations using three different
combinations of parameters which are shown by the coloured crosses on the error surfaces in (g) and (h).
The model simulations in (c)–(d) were generated using D = 162 µm2/hour and q = 0 (red), D = 162
µm2/hour and q = 0.3 (blue) and D = 1215 µm2/hour and q = 0.8 (green), while solutions in (d), were
generated using D = 81 µm2/hour and q = 0 (red), D = 243 µm2/hour and q = 0.5 (blue), and D = 1215
µm2/hour and q = 0.8 (green), respectively. The error surfaces in (g) and (h) show ErrorLE(D, q), given
by Equation 3.1, for various values of D and q. The error surfaces were by averaging the radius estimates
from three experimental replicates and three identically–prepared model realisations.

with time, indicating that the average radius of the expanding colony in the absence of

proliferation increases gradually over t = 48 hours. For the experiments initialised with

20, 000 cells, the average radius increased from 3, 250 µm to 3, 300 µm, while the average

radius of the expanding colony in the experiments initialised with 30, 000 cells increased

from 3, 250 µm to 3, 360 µm.

To investigate whether information about the radius of the expanding colony is sufficient

to parameterise the cell diffusivity and strength of cell–to–cell adhesion, we used the

mathematical model to perform several simulations to replicate the experiments where

we varied the values ofD and q. We initially considered a range ofD values, approximately

within the interval 0 < D ≤ 3000 µm2 /hour. We chose this range since typical reported

values of the cell diffusivity are of the order 1000 µm2 /hour [97,132] which means that our

initial range of possible cell diffusivity values would encompass such values. To determine

the appropriate values of D, we restricted our estimates so that each potential value of D

corresponded to an integer number of simulation time steps, b = T/τ , where T = 48 hours
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is the total duration of the simulation. For example, D = 81 µm2 /hour corresponds to

a simulation where we chose Pm = 1 and τ = 1 hour, giving b = 48/1 = 48 simulation

steps. Similarly, D = 810 µm2 /hour corresponds to a simulation where we chose Pm =

1 and τ = 1/10 = 0.1 hour, giving b = 48/0.1 = 480 simulation steps. After some

initial parameter investigations (not shown), we simulated the experiments by focussing

on 30 equally–spaced values of D between 81 and 2430 µm2 /hour. Since values of q are

unknown, we choose to simulate the model using 11 equally spaced values of q between 0

and 1 to account for the full possible range of values of the cell–to–cell adhesion strength.

For each different parameter combination, we simulated the experiments and averaged the

results using three identically–prepared realisations of the model. Using the same image

analysis procedure that was applied to the experimental images [125,137], we detected the

leading edge of the simulated experiment, and calculated the area enclosed by the leading

edge to determine R. Figure 3.4 (e)–(f) show two snapshots from a single realisation of

the model with D = 243 µm2/hour, q = 0 and λ = 0 /hour at t = 0 and t = 48 hours.

The equivalent circular area is also superimposed on the simulated colony. We observe

again that the image analysis software is able to detect the position of the leading edge

and that the equivalent radius estimate of the expanding colony is a good approximation

of the location of the leading edge. In all cases we repeated equivalent simulations for

smaller values of τ while keeping the ratio of Pm/τ constant. This exercise confirmed

that our simulations were independent of the temporal discretisation.

To compare the simulation results with our experimental measurements, we assessed the

goodness of fit between the experimental measurements and the model simulations using

an estimate of the least–squares error, ErrorLE(D, q). This allowed us to determine

whether there is an optimal choice of D and q in the model which matches the edge

detection data. For each set of D and q combinations tested, the least squares error was

calculated by comparing the average radius of the experimental expanding cell colony,

Eri, and the average radius of the simulated expanding cell colony, Sri given by,

ErrorLE(D, q) =

2∑
i=1

(Eri − Sri)
2

2∑
i=1

(Eri)2
, (3.1)

where, i corresponds to the two time points, t = 24 and t = 48 hours. In all cases, Eri

and Sri correspond to the average of three experimental and three simulation replicates.

Results in Figure 3.4 (g)–(h) show the error surface, ErrorLE(D, q) for barrier assays

initialised with 20, 000 and 30, 000 cells, respectively. We expect that any optimal choice

of D and q would correspond to a unique minimum on the error surface. However, we

observe that the low error region, for both initial cell densities, is very wide and there is no

such unique minimum. For example, there is little distinction between simulations using

combinations of D between 80 and 500 µm2/hour, and for q between 0 and 1, confirming

that there is no unique choice of D and q to match our experimental data.
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To illustrate this redundancy, we simulated the experiment using three different combina-

tions of D and q. For example, to describe the experiments initialised with 20, 000 cells,

we performed simulations with D = 81, 162 and 810 µm2/hour and q = 0, 0.3 and 0.8,

respectively. In all cases, λ = 0 /hour. The simulation results superimposed in Figure

3.4 (c)–(d) show the average radius of the simulated expanding colonies compared to the

experimental results. All three combinations of D and q match the experimental data,

confirming that there are multiple combinations of D and q which accurately replicate the

experimental data. In summary, these results illustrate that calibrating a mathematical

model using the position of the leading edge alone is inadequate to uniquely identify the

rate of cell motility and strength of cell–to–cell adhesion [137].

Data type 2: Cell density profiles

An alternative approach to estimate the model parameters, which does not solely rely

on the location of the leading edge of the expanding cell colony, is to extract detailed

information about the location of individual cells throughout the population and to con-

struct a cell density profile throughout the entire expanding colony [113,125]. This allows

us to compare additional information about the distributions of cells in the experiments.

For all experiments, a high magnification image of a transect across the center of the

colony stained with Propidium Iodide was acquired, as illustrated in Figure 3.5 (a). This

allowed us to identify the location of individual cells within the expanding colony [125].

Each transect was partitioned into 98 sections along the transect axis, where each section

had length 160 µm and width 260 µm. Figure 3.5 (a) shows a schematic representation of

the transect through the centre of the colony. Image analysis was used to count the num-

ber of cells in each section of the transect which allowed us to calculate the dimensional

cell density, c∗(r, t), and the corresponding non–dimensional cell density profile, c(r, t),

[see section 3.3.2 and Appendix B] [125].

To determine an averaged cell density profile for each experiment, we extracted three cell

density profiles from three experimental replicates (Appendix B). Each density profile

was divided at the centre of the profile so that each half profile described one–half of

the entire cell density profile from the centre of the colony (r = 0) to the leading edge

(r = R). The corresponding non-dimensional cell density profiles from all six half profiles

were averaged. Figure 3.5 (b)–(c) shows an experimental transect image at t = 0 hours

and the corresponding averaged cell density profile using three replicates. For both initial

cell densities, we observe that the density distribution at t = 0 hours is approximately

uniform throughout the colony which is consistent with our experimental procedure where

we attempted to place the cells inside the barrier as evenly as possible. The experimental

transect image and corresponding averaged cell density profile at t = 48 hours are shown

in Figure 3.5 (d)–(e). Here, we see that the leading edge of the cell colony has expanded

as observed previously in the leading edge analysis (Figure 3.4 (c)–(d)).

Simulated cell density profiles were extracted from the mathematical model using the

same process applied to the experimental transects. Simulations were performed using

the same combinations of D and q as for the analysis of the leading edge data (Figure
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Figure 3.5: Cell density profile data does not allow us to uniquely estimate D and q. All results
correspond to experiments where cells were pretreated with Mitomycin–C to prevent cell proliferation.
Cell density profiles were extracted from each experiment by partitioning the transect into 98 rectangular
regions. The transect is the dark region shown in (a) passing through the entire cell colony. The scale
bar corresponds to 1, 500 µm. The magnified image inset in (a) shows several cells which have been
identified by image analysis software (white dots). Experimental transects at t = 0 and t = 48 hours are
shown in (b) and (d) for experiments initialised with 20, 000 cells. The scale bar corresponds to 1, 500
µm. Histograms showing the experimental cell density profile along the transect are shown in (c) and (e).
Each experimental cell density profile was averaged using three experiments as described in the text. The
corresponding model predictions are superimposed at t = 0 hours in (c) and at t = 48 hours in (e) using
five identically–prepared realisations of the model. Both curves correspond to simulations where D = 243
µm2/hour. The red curve in (e) corresponds to weak cell–to–cell adhesion (q = 0.1) and the green curve
corresponds to strong cell–to–cell adhesion (q = 0.9). The leading edge in (e) is magnified in (f). The
error surfaces in (g) and (h) show ErrorDP (D, q), given by Equation 3.2, for various values of D and q.
Simulation results are averaged over five identically–prepared realisations. The red and green crosses in
(g) correspond to the two model solutions superimposed in (e).

3.4 (g)–(h)). The averaged experimental density profile at t = 0 hours for each initial

cell density was used to initiate the model simulations. One realisation of the simulated

density profile is superimposed onto the averaged experimental histogram in Figure 3.5

(c). In all cases, the simulated cell density profiles for each parameter combination were

averaged over five identically–prepared realisations of the model. Two averaged simulated

cell density profiles for simulations with D = 81 µm2 /hour at t = 48 hours using low

cell–to–cell adhesion strength, q = 0.1, and strong cell–to–cell adhesion strength, q = 0.9,

are superimposed onto the corresponding experimental cell density profile in Figure 3.5

(e). A visual comparison of the experimental density profile and the two simulation

profiles provides no definite indication of whether a low value of q or high value of q best

matches the experimental measurement. This observation is confirmed by examining

the magnified image of the leading edge in Figure 3.5 (f) where we again see that it is
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not obvious whether the low q or the high q matches the measurements. These results

indicate that comparing density profile alone information may not be able to distinguish

an optimal parameter combination.

To compare the experimental and simulation density profiles for a broader combination of

parameters we used an estimate of the least–squares error, ErrorDP (D, q), to determine

whether there is an optimal choice of D and q to match the cell density data. The

least squares error, ErrorDP , for each set of D and q parameter sets was calculated by

comparing the averaged simulated cell density profile and the corresponding averaged

experimental profile using,

ErrorDP (D, q) =

2∑
i=1

(
98∑
j=1

(Edji − Sdji )
2

)

2∑
i=1

(
98∑
j=1

(Edji )
2

) . (3.2)

Here, Edji corresponds to the averaged non–dimensional cell density of the jth section of

the cell density profile at time i, where i corresponds to the two time points, t = 24 and

t = 48 hours, averaged using three replicate experimental cell density profiles. Similarly,

Sdji corresponds to the equivalent density of the simulated cell density profiles, averaged

over five realisations. For each combination of D and q, we calculated ErrorDP (D, q)

and compared the averaged simulated cell density profile with the corresponding averaged

experimental profile to produce the error surfaces in Figure 3.5 (g)–(h). The error surfaces

confirm that there is no well–defined error, indicating that there is no optimal choice of

D and q which indicates that density profiles cannot be used alone to estimate D and q.

Data type 3: Degree of cell clustering

The degree of cell–to–cell clustering within a group of cells is thought to indicate the

presence of cell–to–cell adhesion [60, 74]. However, we note that there is no standard,

widely accepted measure of cell clustering that has been proposed for this purpose when

dealing with experimental data [60,74,121,126].

In this work we propose to measure the degree of cell clustering by identifying isolated

cells within the colony. We define an isolated cell to be a cell that appears to lack physical

contact with other cells. For each experiment with Mitomycin–C pretreatment, we used

image processing software to analyse six regions, containing cells stained with Propidium

Iodide, located approximately in the centre of the colony. Each region has a size of 500

µm × 2000 µm. The approximate locations of the six regions are illustrated in Figure 3.6

(a). We note that in Figure 3.6 we adopt the convention that red circles correspond to

isolated cells while black circles correspond to cells which appear to be connected to other

cells within the colony. To determine the proportion of isolated cells in each region, we

used image analysis software to count the total number of cells using the same procedure

described in the cell density profile analysis. The number of isolated cells was counted

using the image analysis software to detect those cells that occupied a circular region,
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of radius 18 µm, that was not occupied any other cells. The inset in Figure 3.6 (a)

shows an isolated red cell which occupies a circular region, which has a radius of 18 µm,

that contains no other cells (Appendix B). In all cases, we manually checked the image

analysis results to ensure that all isolated cells were identified correctly. Snapshots from

the region analysed, shown in Figure 3.6 (b)–(c) at t = 0 and t = 48 hours, illustrate that

the proportion of isolated cells decreases with time which suggests that these cells are

more likely to form cell–to–cell contacts as the experiment proceeds. This observation is

consistent with the idea that cell–to–cell adhesion plays an important role in the expansion

of the MM127 colony. Results comparing the average percentage of isolated cells in the

cell colony in each of the six regions are illustrated in Figure 3.6 (g)–(h), confirming that

the proportion of isolated cells in the colony decreases over time.

To determine whether there is an optimal choice of D and q that matches our experimental

measurements, we simulated the experiments using 11 equally–spaced values of D between

81 and 2430 µm2/hour, and 11 equally–spaced values of q between 0 and 1. All simulations

were performed with λ = 0 /hour since we are dealing with Mitomycin–C pretreated cells.

Image analysis software was used to automatically identify isolated cells in the simulations

using exactly the same approach applied to the experimental images. Snapshots from the

region analysed in each simulation are shown in Figure 3.6 (d) at t = 0 hours and in Figure

3.6 (e)–(f) at t = 48 hours using a low and high value of q, respectively. We observe that

for a low value of q, the proportion of isolated simulated cells does not decrease with

time. However, for a high value of q the proportion of isolated simulated cells decreases

considerably. We repeated the simulations, averaging our results over twenty identically

prepared realisations, for each different value of q, to determine an average estimate of

the proportion of isolated simulated cells in the simulated cell colony at each time point.

The average percentage of isolated cells for three different values of q and D = 243

µm2/hour are superimposed onto the experimental results in Figure 3.6 (g)–(h). For

both initial densities, we observe that the simulation results with q = 0 do not match

our experimental results. Similarly, results with very high cell–to–cell adhesion strength,

q = 0.9, also do not match. To determine the optimal value of q, the least squares

error, ErrorC , was calculated by comparing the average proportion of isolated cells in the

experiments to the model simulations. The least squares error is given by,

ErrorC(D, q) =

2∑
i=1

(Eci − Sci)
2

2∑
i=1

(Eci)2
, (3.3)

where, Eci corresponds to the proportion of cells clustered averaged over six replicates

in the experiments, Sci corresponds to the proportion of isolated simulated cells in the

model simulations, averaged over twenty realisations and i corresponds to the two time

points, t = 24 and t = 48 hours.
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Figure 3.6: The degree of cell clustering allows us to estimate q. All results correspond to experiments where cells were pretreated with Mitomycin–C to prevent cell
proliferation. Isolated cells were identified in several regions along the experimental transects, as shown to scale in (a). The scale bar corresponds to 1, 500 µm. The inset in
(a) illustrates a schematic representation of our definition of an isolated cell that occupies a circular region of at least radius 18 µm that contains no other cells. The inset
in (a) is not to scale. Experimental snapshots in (b)–(c) show Propidium Iodide images at t = 0 and t = 48 hours, respectively, for experiments initialised with 30, 000 cells.
The scale bar corresponds to 100 µm. Red crosses indicate cells which were identified as isolated cells by the image analysis software. Snapshots of the model simulations are
shown in (d)–(f), at t = 0 hours, at t = 48 hours with weak cell–to–cell adhesion, q = 0.1 and at t = 48 hours with strong cell–to–cell adhesion, q = 0.9. Simulations were
performed using D = 243 µm2/hour. Red circles correspond to isolated cells, while black circles indicate all other connected cells. Results in (g)–(h), show the time evolution
of the average percentage of isolated cells for experiments initialised with 20, 000 and 30, 000 cells, respectively. The error bars correspond to one standard deviation from the
mean (experimental – black, model – red, blue and green) and all simulation results were averaged over twenty realisations. Equivalent simulations of the mathematical model
with no cell–to–cell adhesion (red lines) and strong cell–to–cell adhesion are superimposed (green lines). The best match solutions using q = 0.3 and q = 0.5, respectively,
are shown in blue. The error surfaces in (i) and (j) show ErrorC(D, q), given by Equation 3.3, for various values of D and q. Simulation results are averaged over twenty
identically–prepared realisations. The red, green and blue crosses in (i) and (j) correspond to the solutions superimposed in (g) and (h), respectively.
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The error surfaces for each initial density are shown in Figure 3.6 (i)–(j). In contrast to

our previous error surfaces for the leading edge and cell density profile analysis (Figure

3.4 (g)–(h); Figure 3.5 (g)–(h)), our results show that there is a well defined value of q

corresponding to a minimum in ErrorC(D, q) for both initial cell densities. This suggests

that there is an optimal choice of q to match our observations. We also observe that our

results are insensitive to the choice ofD since the error surfaces in Figure 3.6 (i)–(j) appear

to be independent of the value of D. The error surfaces indicate that for the experiments

initialised with 20, 000 cells, the optimal choice of q is between q = 0.1 and q = 0.6 and for

experiments initialised with 30, 000 cells the optimal range is between q = 0.3 and q = 0.6.

Simulation results using values of q in the middle of these ranges, q = 0.3 and q = 0.5,

for experiments initialised with 20, 000 and 30, 000 cells, respectively, are superimposed

in Figure 3.6 (g)–(h). The correspondence between the experimental measurements and

the simulation data suggests that a low–to–moderate cell–to–cell adhesion strength is

necessary to describe our measurements in the MM127 melanoma cell colony. Now that

we have obtained an estimate of q, we can use this information to determine the associated

range of D values using our results from the leading edge analysis (Figure 3.4 (g)–(h))

which we will discuss in section 3.3.5.

3.3.4 Estimating the rate of proliferation

Data type 4: Cell density counts

To quantify the cell proliferation rate we considered experiments performed without

Mitomycin–C pretreatment so that cell proliferation is not suppressed. Propidium Io-

dide stained transect images were used to identify individual cells located approximately

at the centre of the colony. For each replicate experiment, the number of cells in four

different subregions, each of dimension 230 µm × 230 µm, was counted and converted

into a measurement of the non–dimensional cell density, c(t), (Appendix B). Here, we

report values of c(t), instead of c(r, t), since we are focusing on the centre of each colony

away from the leading edge where the cell density is approximately spatially uniform [See

section 3.3.2] [125]. The approximate location and size of each subregion is illustrated in

Figure 3.7 (a).

Images in Figure 3.7 (d)–(e) show snapshots of cells pretreated with Mitomycin–C indi-

cating that the number of cells does not increase or decrease over time. This confirms

that Mitomycin–C pretreatment prevents proliferation and, importantly, did not cause

cell death. Snapshots in Figure 3.7 (f)–(g), where the cells are not pretreated with

Mitomycin–C, indicates that the number of cells increases dramatically over time. These

visual observations are confirmed by examining the evolution of the non–dimensional cell

density, c(t), in Figure 3.7 (b)–(c), where we again see that the cell density does not

increase or decrease in cell colonies with no proliferation, and increases substantially in

cell colonies with proliferation.
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Figure 3.7: Cell density measurements where cell proliferation is not suppressed allows us to estimate λ.
The approximate location of the subregions used to measure the cell density are shown in (a), where the
scale bar corresponds to 1, 500 µm. Images in (d)–(e) show two subregions of dimensions 230 µm × 230
µm for experiments at t = 0 hours and t = 48 hours, where 30, 000 cells, pretreated with Mitomycin–C,
were initially placed inside the barrier. Equivalent images without Mitomycin–C pretreatment are shown
in (f)–(g). The Propidium Iodide staining is highlighted in orange. For each subregion, the number
of cells was counted; white circles correspond to the cells automatically detected by the image analysis
software and white stars indicate cells that were manually counted. The corresponding time evolution
of the mean scaled density, c(t), is shown in (b) and (c), where the error bars indicating one standard
deviation from the mean. Blue and red data points correspond to the experiments initialised with 20, 000
and 30, 000 cells, respectively. Our analysis shows that the proliferation rate (λ) and the doubling time
(td = loge2/λ) for the experiments initialised with 20, 000 cells is λ = 0.0305 /hour and td = 22.7 hours,
and for experiments initialised with 30, 000 cells is λ = 0.0398 /hour and td = 17.42 hours. The red and
blue curves in (b) and (c) show the corresponding solution of the logistic equation, given by Equation 3.5,
respectively.

To estimate the proliferation rate, we note that the proliferation mechanism in our math-

ematical model is related to the logistic equation [121] and is given by

dc(t)

dt
= λc(t)(1 − c(t)), (3.4)

which has the solution

c(t) =
c(0) exp(λt)

1 + c(0)(exp(λt) − 1)
, (3.5)

where c(0) is the initial non–dimensional cell density. To estimate the cell proliferation

rate, we found the value of λ that minimised the least squares error between our exper-

iments and the solution of the logistic equation. Here the least squares error is given

by,

ErrorP (λ) =

2∑
i=1

(Epi − Spi)
2

2∑
i=1

(Epi)2
, (3.6)
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where, Epi corresponds to the non–dimensional cell density averaged over four experimen-

tal replicates, Spi is the corresponding non–dimensional cell density from the solution of

the logistic equation and i corresponds to the two time points, t = 24 and t = 48 hours.

For the experiments initialised with 20, 000 cells without Mitomycin–C pretreatment, we

found that λ = 0.0305 (0.0278, 0.0329) /hour, here the uncertainty in our estimate is

given as a range in parenthesis [125]. For the equivalent experiment with Mitomycin–C

pretreatment we have λ = 0.0002 (0, 0.0015) /hour. For the experiments initialised with

30, 000 cells, we found λ = 0.0398 (0.0338, 0.0444) /hour for the experiments without

Mitomycin–C pretreatment. For the experiments initialised with 30, 000 cells, we found

λ = 0.0001 (0, 0.0027) /hour for the experiments with Mitomycin–C pretreatment. The

relevant logistic growth curves, given by Equation 3.5, are superimposed in Figure 3.7

(b)–(c) and illustrate that the proliferation rate estimates obtained describe the observed

changes in the experimental cell density over time. We note that our estimates of λ is

associated with a doubling time, td = loge2/λ, of 22.7 and 17.42 hours for experiments

initialised with 20, 000 and 30, 000 cells, respectively.

3.3.5 Predicting the spatial expansion of a melanoma cell colony

We now test whether our independently–derived estimates ofD, q and λ accurately predict

the location of the leading edge and the cell density profiles of the expanding melanoma

cell colony. Experimental images of the entire cell colony in Figure 3.8 (a)–(c), (e)–(g)

compare the distribution of cells at t = 0 and t = 48 hours, both with and without

Mitomycin–C pretreatment. We visually observe that the colonies without proliferation

do not appear to expand as fast as the colonies with proliferation. The overall increase

in the average radius of the expanding colonies without proliferation after t = 48 hours is

2.2%. In contrast, the average radius increase in expanding melanoma cell colonies with

proliferation is 9.1%. These results illustrate that proliferation plays a major role in the

spatial expansion of melanoma cell colonies.

To compare our model predictions with the experimental measurements we combined our

results using all the information obtained from different types of experimental data. For

experiments initialised with 20, 000 cells we estimated that q = 0.3. We obtained an

estimate of D from the error surfaces associated with the leading edge data Figure 3.4

(g). For q = 0.3, the associated range of D which have the lowest error are between

D = 81 and D = 567 µm2/hour. Similarly, for experiments initialised with 30, 000 cells,

we estimated that q = 0.5, giving a corresponding range of D values between D = 81

and D = 729 µm2/hour. For both initial densities, we simulate the experiments with a

value of D within the range obtained that gave the minimum error in Figure 3.4 (g)–

(h). In summary, for experiments initialised with 20, 000 cells, we estimate D = 162

µm2/hour, q = 0.3 and λ = 0.0305 /hour and for experiments initialised with 30, 000

cells, we estimate D = 243 µm2/hour, q = 0.5 and λ = 0.0398 /hour. We note that our

estimates indicate some weak dependence on the initial numbers of cells since the values

of the cell diffusivity, strength of cell–to–cell adhesion and proliferation rate all increase

slightly as the initial numbers of cells placed inside the barrier increases.
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Figure 3.8: Independent estimates of D, q and λ predict the spatial extent of the expanding colony.
Experimental measurements of the radius of the expanding colony were compared to predictions from
the parameterised mathematical model using the parameter estimates determined previously. Results in
(a) and (c), and (e) and (g) compare the position of the leading edge for experiments where 20, 000 and
30, 000 cells were initially placed inside the barrier, respectively. The scale bar corresponds to 1, 500 µm.
Images are shown at t = 0 hours (a) and (e), at t = 48 hours for the experiments with Mitomycin–C
pretreatment (b) and (f), and at t = 48 hours without Mitomycin–C pretreatment (c) and (g). The
solid curves superimposed (black) on each image correspond to the relevant simulation which has been
been converted into an equivalent circular area. In all cases, simulation results were averaged over three
realisations. Results in (d) and (h) show the mean radius calculated from the experimental images
at t = 0, 24 and 48 hours, with error bars indicating one standard deviation from the mean. The
corresponding average radius of the simulated expanding colony is superimposed in (d) and (h). Blue
lines correspond to experiments where proliferation was suppressed using Mitomycin–C pretreatment,
while red lines correspond to experiments where proliferation was not suppressed. Simulations were
averaged over three identically–prepared realisations. Simulations of the experiments initialised with
20, 000 cells correspond to D = 162 µm2/hour, q = 0.3 and λ = 0.0305 /hour, and simulation of the
experiments initialised with 30, 000 cells correspond to D = 243 µm2/hour, q = 0.5 and λ = 0.0398 /hour.

We performed simulations of experiments using our estimates of D, q and λ to examine

whether the parameterised mathematical model predicts the differences observed in the

experiments where cell proliferation is suppressed compared with the observations when

cell proliferation is allowed (Appendix B). The predictions of the model, in terms of the

average circular area enclosing the leading edge of the expanding colony, are superimposed

onto the corresponding experimental image in Figure 3.8 (a)–(c), (e)–(g) showing that

the parameterised model accurately matches the experimental observations. Analysing all

images at t = 0, 24 and 48 hours, we produced the data in Figure 3.8 (d) and (h) comparing

the radius of the expanding colony measured in the experiments with the predictions of the

model. We note that the prediction of the mathematical model at t = 48 hours for the

experiments without Mitomycin–C pretreatment, initialised with 30, 000 cells, slightly

underestimated the experimental data. Despite this, overall our comparison indicates

that the parameterised model predicts the time evolution of the radius of the expanding
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Figure 3.9: Independent estimates of D, q and λ predict the density profiles in the cell colony. Exper-
imental measurements of the cell density profile are compared with the predictions of the mathematical
model using the parameter estimates reported previously. Images of the transects for the experiments
initialised with 30, 000 cells are shown at t = 0 hours (a), at t = 48 hours where proliferation was sup-
pressed (b), and at t = 48 hours where proliferation was not suppressed (c). The scale bar corresponds
to 1, 500 µm. Experimental histograms and the corresponding simulated cell density profiles for all sets
of experiments at t = 0, t = 24 and t = 48 hours, both with and without proliferation, are shown in
(d)–(g). Simulations were averaged over five identically–prepared realisations. Model simulations of the
experiments initialised with 20, 000 cells correspond to D = 162 µm2/hour, q = 0.3 and λ = 0.0305 /hour,
and for experiments initialised with 30, 000 cells, simulations correspond to D = 243 µm2/hour, q = 0.5
and λ = 0.0398 /hour.

melanoma cell colony and captures the differences in our experiments where proliferation

was either allowed or suppressed.

We now test whether our parameterised model can predict the cell density profile through-

out the entire expanding colony for all cases considered in our experimental program.

Experimental images in Figure 3.9 (a)–(c) highlight major visual differences between the

distribution of cells in the experiments where we suppressed cell proliferation relative to

the equivalent experiment where we allowed cell proliferation. The corresponding cell

density profiles extracted from the experimental images are shown in Figure 3.9 (d)–(g).

Equivalent simulations of these experimental conditions using our parameterised mathe-

matical model are superimposed onto the experimental density profiles and we note that

in all cases the match between the model prediction and the experimental measurements
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are excellent. This confirms that our parameterised mathematical model accurately pre-

dicts both the spatial extent of the expanding cell population and the distribution of

individual cells within the expanding melanoma cell colony. Moreover, our approach can

predict how differences in individual cell behaviour, such as the cell proliferation rate,

affect the emergent properties of the expanding colony.

3.4 Discussion

Despite compelling evidence that cell–to–cell adhesion plays an important role in many

expanding cell populations, standard mathematical modelling approaches often neglect

to include any such mechanism [85, 97, 113, 116, 125, 132]. This may explain why re-

ported estimates of the cell diffusivity can vary widely since these estimates have often

been obtained by calibrating mathematical models which neglect to incorporate cell–to–

cell adhesion [85, 121, 125, 132]. To overcome these issues combined experimental and

modelling approaches that can separately identify and quantify the roles of cell motility,

cell–to–cell adhesion and cell proliferation are required.

In our work, we used a combined experimental and modelling approach to independently

quantify the roles of cell motility, cell–to–cell adhesion and cell proliferation in an ex-

panding colony of MM127 melanoma cells. Our experimental approach used a circular

barrier assay, while our modelling approach incorporated cell–to–cell adhesion as well as

cell motility and cell proliferation mechanisms. In contrast to previous approaches, we

extracted multiple types of data from the same barrier assay and used these different

kinds of data to attempt to independently quantify the cell motility rate, D, cell–to–cell

adhesion strength, q, and proliferation rate, λ. To separate the role of cell proliferation

from the roles of cell motility and cell–to–cell adhesion, we first performed a set of ex-

periments where we suppressed proliferation to quantify D and q. We then performed a

second set of experiments with proliferation to quantify the cell proliferation rate, λ. All

experiments were repeated at two initial cell densities and each experiment was replicated

three times.

We extracted three different types of data from experiments where proliferation was sup-

pressed to identify D and q. Our first type of data was to estimate the area enclosed

by the leading edge of the expanding colony to determine whether there was a unique

choice of D and q that matched the experimental measurements. Our analysis of the lead-

ing edge data indicates that this commonly–used measurement is insufficient to uniquely

identify D and q suggesting that additional data is required. It is important to recognise

the limitations of the leading edge data since this is one of the most commonly–reported

types of data [137]. In an attempt to overcome the limitations of the leading edge data,

we extracted detailed cell density profiles throughout the entire colony. Our attempts

to calibrate the mathematical model to these more detailed measurements also failed to

identify a unique choice of D and q to match the measurements.
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In an attempt to estimate the strength of cell–to–cell adhesion we then measured the de-

gree of cell clustering in the expanding melanoma cell colony by measuring the proportion

of isolated cells within the colony. We found this to be a convenient measure of the de-

gree of cell clustering since isolated cells were easily identifiable using an automated image

processing software. Our results indicated that a low to moderate cell–to–cell adhesion

strength in the mathematical model provided the best match to the measurements. Once

we had estimated q we were then able to identify a range of D from combining our results

regarding the degree of cell clustering with our results describing the time evolution of

the position of the leading edge of the expanding cell colony.

To estimate the proliferation rate we measured the temporal change in cell density in

a set of experiments where cell proliferation was not suppressed. Our estimates of λ

indicate that the role of cell proliferation in the experiments is considerable since the

doubling time is approximately 20 hours and experiments were performed over a period

of 48 hours. We used our estimates of D, q and λ to make predictions about the expansion

of the melanoma cell colony which confirmed that our parameterised mathematical model

matched the experiments and was able to accurately predict differences between the results

when cell proliferation was suppressed compared to experiments when cell proliferation

was allowed. In summary, we showed that the spatial expansion of the melanoma cell

colony is significantly enhanced by cell proliferation. We also found that our estimates of

D, q and λ are weakly dependent on the initial cell density in the experiments. This is

an important observation since many experimental and modelling studies do not consider

the effect of the initial density in a barrier assay; however, our results illustrate that these

effects could be important [125].

One of the advantages of our mathematical modelling approach is that the discrete model

explicitly represents cell motility, cell–to–cell adhesion and cell proliferation processes.

The model is straightforward to implement and provides us with a relatively straight-

forward physical interpretation of how different mechanisms acting at the level of an

individual cell contributes to the population-level expansion of the cell colony. Most im-

portantly, when combined with appropriate experimental data, our model allows us to

separately identify, and quantify, the role of each individual cell–level mechanism in the

expanding cell colony.

A schematic illustration of our systematic approach for identifying and quantifying the

roles of cell motility, cell proliferation and cell–to–cell adhesion is given in Figure 3.10.

Our approach can be summarised in the following way: for a particular cell colony we

begin with a hypothesis about which particular mechanisms might be involved in the

expansion of that colony. We then attempt to determine whether these putative mech-

anisms are present in the cell colony using visual inspection of the experimental data

or immunofluorescence techniques. If the mechanisms are present, we identify an ap-

propriate modelling method and include model parameters which control that particular

mechanism of interest. Next, we attempt to determine what type of experimental data

could be used to estimate the relevant model parameters. After we have extracted this
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data, we use the mathematical model to simulate the experiment in an attempt to un-

derstand if a particular choice of parameter(s) can predict the observed behaviour. If the

model predictions give a good agreement with the experimental observations we stop the

process. Otherwise, if we find that we do not have enough types of data to completely

parameterise the model we should collect more types of different data and repeat the

process iteratively. If this approach fails, then the experimental or modelling approach

should be reconsidered. In our case, we found that using this approach implied that we

had to consider multiple data types to independently identify and quantify the mecha-

nisms controlling the expansion of a melanoma cell colony. We suggest that this general

framework could be used to analyse other biological processes.

A clear consequence of our work is that while it is relatively simple to incorporate detailed

mechanisms into a mathematical model, it becomes increasingly difficult to independently

identify the contributions of each mechanism in the mathematical model using experi-

mental data. However, we anticipate that for every additional mechanism and parameter

incorporated into a mathematical model of collective cell behaviour, further additional ex-

perimental data types are required so that we can parameterise the mathematical model.

This quickly becomes infeasible when multiple mechanisms are considered. For exam-

ple, in our work, we incorporated three different factors into the mathematical model

(cell motility, cell-to–cell adhesion and cell proliferation) and we found that we needed to

consider at least four different data types to quantify these mechanisms.

Our work has been aimed at improving our understanding of how 2D in vitro colonies

of melanoma cells expand. An important limitation of our work is that it cannot be

directly applied to three–dimensional (3D) in vitro experiments since the techniques used

to quantify the cell motility rate, strength of cell–to–cell adhesion and cell proliferation

rate in 2D cell colonies do not directly translate to 3D cell colonies. For example, the

leading edge of a cell colony in 2D is straightforward to locate using standard imaging

software and analysis [137]. In 3D, however, detection of the edge, or surface, of the cell

colony is significantly more challenging and requires more sophisticated imaging software

and more detailed image analysis algorithms [30, 31, 45, 83]. Similar difficulties are also

relevant in terms of locating and counting individual cells within a 3D colony [30,78].

Our work has been focused on interpreting in vitro measurements of cell colony expan-

sion [30]. Extending our approach to in vivo colony expansion would involve dealing

with many more mechanisms that are not present in the in vitro system [30, 78]. These

additional mechanisms could include more complicated signalling pathways that regulate

morphological and phenotypic cell changes, more complicated interactions between cells

and their heterogeneous environment as well as the impact of nutrient deficiency, for ex-

ample [63,68]. These additional mechanisms could mean that the amount of data required

to independently identify and quantify each mechanism in vivo could be impossible to

collect. However, despite these difficulties, the fundamental premise of our framework,

that we require additional data to uniquely identify additional mechanisms, remains valid.
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We would also like to acknowledge and discuss some further difficulties that directly

impacted our 2D in vitro assays. One of the original aims of this work was to analyse

experiments over a period of t = 72 hours to determine whether acquiring additional data

over a longer period of time would assist in identifying and quantifying the mechanisms

driving in vitro colony expansion. Unfortunately, during our initial set of experiments we

observed that the cell culture medium became discoloured after t = 72 hours, indicating

that the cells were stressed. Fortunately, no such indication of cell stress was evident

before t = 72 hours, which is why we have presented data here for t = 0, 24 and 48

hours. A preliminary analysis of the data associated with the t = 72 hour experiments

did not provide us with any additional information about the mechanisms driving colony

expansion and this suggests that the difficulties associated with interpreting our data

after t = 0, 24 and 48 hours can not be alleviated by performing longer experiments.

In summary, our approach is limited since we could only perform experiments over a

relatively short period of time.

Originally, we also aimed to perform experiments at different initial cell densities. During

our preliminary experimental investigations we found that cell colonies initialised with less

than 15, 000 cells produced extremely diffuse fronts that were impossible to locate and

analyse using the image analysis software employed here. We also performed experiments

that were initialised with more than 35, 000 cells and found that these high density barrier

assays tended to form 3D cell aggregates instead of a 2D monolayer. One constraint of

our present modelling approach is that it is suitable for describing the expansion of 2D

cell colonies and cannot be directly applied to 3D experiments [125]. These difficulties

mean that our methods were restricted to a range of initial cell densities. Despite these

restrictions, our systematic approach of analysing multiple data sets from the same exper-

iment provided us with practical insights into the role of various mechanisms that drive

the expansion of melanoma cell colonies. We anticipate that this approach could be used

quantify the roles of cell motility, cell proliferation and cell–to–cell adhesion in different

melanoma cell lines and other cell lines.

In this work, we used a combined experimental and mathematical modelling approach to

systematically quantify the cell motility rate, strength of cell–to–cell adhesion and cell

proliferation rate in an expanding colony of MM127 melanoma cells. Our work illustrates

that the relative contributions of cell motility, cell–to–cell adhesion and cell proliferation

are impossible to assess using standard experimental approaches, such as measuring the

area enclosed by the leading edge. Our work highlights the importance of using multiple

data types to independently identify and quantify the mechanisms involved in the spatial

expansion of both melanoma cell colonies and we anticipate that our approach will also

be relevant to other cell lines.
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Figure 3.10: Framework illustrating a systematic approach that can be used to independently iden-
tify and quantify the mechanisms driving cell colony expansion. The mechanisms thought to be driving
the expansion of a selected cell colony are identified and confirmed using visual inspection or other ad-
vanced experimental techniques. A mathematical modelling approach is selected and appropriate model
parameters defined. Various experimental data is extracted to estimate the model parameters. For each
additional mechanism considered, we anticipate that we will require at least one further piece of infor-
mation from the experiments to quantify the role of that particular mechanism. The experimental data
is analysed by extracting simulation data from the mathematical model and testing how well the model
predictions match with the experimental data. If the modelling predictions provide a good match to the
experimental data we stop the process. Alternatively, if the modelling predictions do not uniquely match
the experimental data, we repeat the process iteratively using additional types of data extracted.
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Sensitivity of edge detection methods for quantifying cell migration

assays

A paper published in PLoS One.

Treloar, K.K. & Simpson, M.J. Sensitivity of edge detection methods for quantifying

cell migration assays. PLoS ONE. 8, e67389 (2013).

Abstract

Quantitative imaging methods to analyse cell migration assays are not standardised. Here

we present a suite of two–dimensional barrier assays describing the collective spreading

of an initially–confined population of 3T3 fibroblast cells. To quantify the motility rate

we apply two different automatic image detection methods to locate the position of the

leading edge of the spreading population after 24, 48 and 72 hours. These results are com-

pared with a manual edge detection method where we systematically vary the detection

threshold. Our results indicate that the observed spreading rates are very sensitive to the

choice of image analysis tools and we show that a standard measure of cell migration can

vary by as much as 25% for the same experimental images depending on the details of

the image analysis tools. Our results imply that it is very difficult, if not impossible, to

meaningfully compare previously published measures of cell migration since previous re-

sults have been obtained using different image analysis techniques and the details of these

techniques are not always reported. Using a mathematical model, we provide a physi-

cal interpretation of our edge detection results. The physical interpretation is important

since edge detection algorithms alone do not specify any physical measure, or physical

definition, of the leading edge of the spreading population. Our modelling indicates that

variations in the image threshold parameter correspond to a consistent variation in the

local cell density. This means that varying the threshold parameter is equivalent to vary-

ing the location of the leading edge in the range of approximately 1–5% of the maximum

cell density.

59
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4.1 Background

Cell migration plays a key role in development [98,157], repair [85,86,113] and disease [132,

153]. Abnormalities in cell migration are associated with malignant spreading [69,70,153]

and slowed wound repair [142]. Potential therapies aimed at treating these abnormalities

may seek to manipulate the rate of migration by applying pharmaceutical drugs or topical

treatments [69,142,143]. Development and validation of such therapies can be assessed by

comparing assays performed under control conditions with an equivalent assay where the

treatment has been applied [30]. In vitro migration assays can also be used to quantify

the role of experimental variations such as the influence of different substrates [85, 86].

Regardless of the purpose for performing an in vitro cell migration assay, image detection

methods that can be used to quantify the rate of cell migration are an essential element

of interpreting and quantifying such assays.

Various types of assays have been used to study cell migration including two–dimensional

scratch assays [85, 86] and three–dimensional Transwell assays [35, 121]. More recently,

two–dimensional circular barrier assays have become a popular alternative to scratch as-

says [56] since they do not damage the cell monolayer, or the substrate, and are therefore

thought to be more reproducible than scratch assays [69, 145]. Barrier assays are per-

formed by placing a population of cells inside a circular barrier. The barrier is lifted and

the subsequent spreading of the population is measured [125]. An essential element of

interpreting and quantifying a barrier assay is to locate the position of the leading edge

of the spreading population so that the rate at which the cell population spreads across

the substrate can be calculated.

A common approach to quantify the cell migration rate in a barrier assay is to report the

percentage change in area [7, 56,94,145,161]. This can be expressed as

M(t) =
A(t) −A(0)

A(0)
× 100, (4.1)

where A(0) is the initial area enclosed by the population of cells, A(t) is the area enclosed

by the population of cells at time t, and M(t) is the percentage change in area at time t.

Estimates of cell migration rates using Equation (4.1) are often obtained by hand trac-

ing the area enclosing the spreading cell population on an image of the assay [55, 160].

Unfortunately, hand tracing the area enclosed by the leading edge of a spreading cell

population is subjective [135]. To overcome this limitation, automated image analysis

software, including ImageJ [66] and MATLAB’s Image Processing Toolbox [90], have

become important alternatives to hand tracing [69, 164]. These software tools use edge

detection and segmentation algorithms to determine the location of the leading edge of

the spreading cell population. This data can then be used to quantify the cell migration

rate in terms of Equation (4.1). In addition to using automatic edge detection algorithms,

it is also possible to implement user–defined edge detection options in MATLAB’s Image

Processing Toolbox [90] so that the user has complete control over the choice of image

detection thresholds.
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Since there is no standardised method for quantifying the location of the leading edge in

a barrier assay, it is often difficult, if not impossible, to meaningfully compare published

measures of cell migration in terms of Equation (4.1). This difficulty is exacerbated by the

fact that previously published results have been obtained using different image analysis

techniques and the details are not always reported [64, 81, 99, 100, 151]. To address this

limitation, here we apply three different edge detection techniques to a set of images

from a two–dimensional barrier assay describing the collective spreading of a population

of 3T3 fibroblast cells. We apply three different edge detection techniques to the same

experimental data set and compare results from two commonly used automatic edge

detection techniques and one manual edge detection technique. Our results indicate that

the location of the leading edge is sensitive to the details of the edge detection procedure

and this can lead to significantly different quantitative estimates of cell migration. Using

a reasonable range of threshold values we show that estimates of cell migration, given by

Equation (4.1), can vary by as much as 25% for the same data set.

To provide further insight into the edge detection techniques, we also interpret our re-

sults using a mathematical model to quantitatively describe the temporal cell spreading

process associated with the barrier assay. Using previously–determined estimates of the

cell diffusivity [125], we show that the location of the leading edge, as defined by the

image detection methods, corresponds to contours of cell density in the range of approxi-

mately 1–5% of the maximum cell packing density. Comparing the location of the leading

edge determined by the image detection methods and the mathematical model of the

cell spreading provides us with a simple, but meaningful, physical interpretation of the

threshold parameters used in the image detection methods.

4.2 Experimental methods

4.2.1 Cell culture

Murine fibroblast 3T3 cells (ATCC, CCL-92, Manassas, VA, USA) were grown in T175

cm2 tissue culture flasks (Nunc, Thermo Scientific, Denmark) using Dulbecco’s modified

Eagle medium (Invitrogen, Australia) supplemented with 5% fetal calf serum (FCS) (Hy-

clone, New Zealand), 2mM L-glutamine (Invitrogen) and 1% v/v Penicillin/Streptomycin

(Invitrogen) in 5% CO2 at 37 ◦C. Prior to confluence, cells were lifted using 0.05 % trypsin

(Invitrogen, Australia) and viable cells were counted using a Trypan blue exclusion test

and a haemocytometer.

4.2.2 Circular barrier assay

Cell migration experiments were performed using a circular barrier assay. Metal–silicone

barriers, 6000 µm in diameter (Aix Scientifics, Germany), were cleaned, sterilised, dried

and placed in the center of the wells in a 24–well tissue culture plate with 500 µL of

culture medium. The wells in tissue culture plate have a diameter of 15, 600 µm. Two

different densities of cell suspensions were used: 10,000 and 30,000 cells/µL. Ten µg/mL

Mitomycin–C (Sigma Aldrich, Australia) was added to the cell solutions for one hour

to inhibit cell proliferation [112]. One µL of cell suspension was carefully inserted in
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the barrier to ensure that the cells were approximately evenly distributed. Once seeded,

the tissue culture plate was left for one hour in a humidified incubator at 37 ◦C and 5%

CO2 to allow the cells to attach to the surface. After the cells attached to the surface,

the barriers were removed and the cell layer was washed with serum free medium (SFM;

culture medium without FCS) and replaced with 0.5 mL of culture medium. Plates were

incubated at 37 ◦C in 5% CO2 for four different times, t = 0, 24, 48 and 72 hours. Each

barrier assay, for each time point, was repeated three times. Images of the spreading cell

population were obtained by fixing cells with 10% formalin, followed by 0.01% crystal

violet (Sigma-Aldrich, Australia). The stain was rinsed with phosphate–buffered saline

(Invitrogen, Australia) and the plates were air–dried. Images were acquired using a stereo

microscope with a Nixon digital camera (DXM1200C).

4.2.3 Edge detection methods

Three methods were used to detect the location of the leading edge: (i) a manual detection

method written using MATLAB’s Image Processing Toolbox (version 7.12) [90], (ii) an

automated method using MATLAB’s Image Processing Toolbox (version 7.12) [90] and

(iii) an automated method using ImageJ (version 1.46r) [66]. All three methods are

based on a Sobel edge detection algorithm [1] but differ in the way that the thresholds

are chosen. Although different edge detection methods are available, such as the active

contour method [95] and the Canny method [49, 50], we choose to focus on MATLAB

and ImageJ implementations of the Sobel method since these software tools are widely

available.

Manual edge detection using the MATLAB Image Processing Toolbox

Customised image processing software was written using the MATLAB Image Processing

Toolbox [90]. The following procedure was used to detect the location of the leading

edge of the spreading population. The image was imported (imread) and converted from

colour to grayscale (rgbtogray). The Sobel method was applied to the grayscale image

by specifying a sensitivity threshold value S, in which all edges weaker than S are ex-

cluded (edge[grayscale image, ‘Sobel’, S]). The lines in the resulting image were dilated to

show the outlines of detected edges (strel(7), imdilate). Remaining empty spaces in the

images were filled and all objects disconnected from the leading edge were removed (im-

fill, imclearborder). The image was smoothed and filtered to remove any noise (imerode,

medfilt2 ) and the area enclosed by the detected leading edge was estimated (regionprops).

Before we analysed the experimental images, we undertook a preliminary step where we

applied a wide range of threshold values to our experimental images, S ∈ [0.001, 0.5]. We

found that thresholds in the range S ∈ [0.01, 0.08] produced visually reasonable results.

Automatic edge detection using the MATLAB Image Processing Toolbox

The manual edge detection method described in section 4.2.3 can be implemented in an

automated mode by allowing the MATLAB Image Processing toolbox to automatically

determine the threshold, S, for each individual image [90]. The following procedure
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was used to detect the location of the leading edge. The image was imported (imread)

and converted from color to grayscale (rgbtogray). The Sobel method was applied in

the automatic mode (edge[grayscale image, ‘Sobel’ ]). The lines in the resulting image

were dilated (strel(7), imdilate). Remaining empty spaces were filled and all objects

disconnected from the leading edge were removed (imfill, imclearborder). The image was

smoothed and filtered (imerode, medfilt2 ) and the area enclosed by the detected leading

edge was estimated (regionprops).

Automatic edge detection using ImageJ

ImageJ software [66] was used to automatically detect the position of the leading edge.

For all images, the image scale was set (Analyze–Set scale) and colour images were con-

verted to grayscale (Image–Type–32bit). The Sobel method was used to enhance edges

(Process–Find Edges). The image was sharpened (Process–Find Edges) and an automat-

ically determined threshold was applied (Image–Adjust–Threshold–B&W–Apply). After

applying the Sobel method again (Process–Find Edges), the wand tracing tool, located

in the main icons box, was used to select the detected leading edge. The area enclosed

by the detected leading edge was calculated (Analyze–Set Measurements–area, Analyze–

Measure).

4.3 Modelling methods

To provide a physical interpretation of our image analysis results, we use a mathematical

model to relate the edge detection results to the spatial distribution of the cell density.

We model the spreading population of cells using a linear diffusion equation [85,86,113],

with previously determined values of the cell diffusivity [125] [see Chapter 2]. The effects

of cell proliferation are neglected in our mathematical model, and this is consistent with

our experimental protocol where cells were pretreated with Mitomycin–C to suppress cell

proliferation [112].

To relate our edge detection results to the cell density, we consider the solution of the

two–dimensional axisymmetric diffusion equation

∂c

∂t
= D

(
∂2c

∂r2
+

1

r

∂c

∂r

)
, (4.2)

where r is radial position, t is time, c(r, t) is the non–dimensional cell density and D is

the cell diffusivity, which is a measure of random, undirected, cell motility [121,125]. The

non–dimensional cell density is obtained by scaling the dimensional cell density, c̄(r, t), by

the carrying capacity density K. This gives c(r, t) = c̄(r, t)/K, with c(r, t) ∈ [0, 1]. The

carrying capacity density is estimated by assuming that the maximum packing density of

cells corresponds to a square packing density. The average cell diameter is 25 µm, giving

K ≈ 1.6 × 10−3 cells per µm2 [125].

We solve Equation (4.2) on the domain 0 ≤ r ≤ 7, 800 µm. The boundary at r = 0 mm

corresponds to the centre of the well and we apply a symmetry condition, ∂c/∂r = 0,

here [124]. The boundary at r = 7, 800 µm corresponds to the outer edge of the well
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which is a physical boundary and so we apply a zero flux boundary condition here. The

boundary condition at r = 7, 800 µm is irrelevant for our barrier assay results since the

leading edge of the spreading cell front did not reach this boundary on the time scale of

the experiments [125]. The initial condition is given by,

c(r, 0) =

{
c0, 0 ≤ r < 3, 000 mm,

0, 3, 000 ≤ r ≤ 7, 800 mm,
(4.3)

where c0 is the density of cells initially inside the barrier. Assuming that the cells have an

average diameter of 25 µm [125], we can pack 3000/25 cells across the radius of the barrier.

Hence, we estimate that the maximum number of cells that can be packed in a monolayer

in the barrier is πr2 = π(3000/25)2 = 45, 239. To specify the initial condition using for

Equation (5.6), we assume that either 10,000 or 30,000 cells are uniformly distributed

within the barrier giving c0 = 10, 000/45, 239 ≈ 0.22 and c0 = 30, 000/45, 239 ≈ 0.66,

respectively.

Numerical solutions of Equation (4.2) are obtained using a finite–difference approximation

on a grid with a uniform grid spacing of width δr, and implicit Euler stepping with uniform

time steps of duration δt [17, 117].

4.4 Results

4.4.1 Locating the leading edge

To demonstrate the sensitivity of different image processing tools, we apply the manual

edge detection method, with different threshold values, to images showing the entire

spreading populations in several different barrier assays. Images in Figure 4.1 (a) and (g)

show the spreading population in a barrier assay with 30,000 cells at t = 0 and t = 72

hours, respectively. Visually, the leading edge of the cell population at t = 0 (Figure

4.1 (a)) appears to be relatively sharp and well–defined. In contrast, the leading edge

of the cell population at t = 72 hours (Figure 4.1 (g)) is diffuse and less well–defined.

This indicates that is it difficult to visually identify the location of the leading edge

after the barrier has been lifted and the cell population spreads outwards, away from the

initially–confined location.

Our visual interpretation of the images indicate that the precise location of the leading

edge is not always straightforward to define. To explore this subjectivity, we use the

manual edge detection method (section 4.2.3) by specifying different values of the Sobel

threshold, S. Results in Figure 4.1 (b)–(c) show the detected leading edges at t = 0 hours

using a high threshold (S = 0.0800) and a low threshold (S = 0.0135), respectively. For

both thresholds, the detected leading edges appear to be appropriate representations of

the leading edge of the spreading population, and are very similar to each other. Results

in Figure 4.1 (h)–(i) show the detected leading edges at t = 72 hours for a high threshold

(S = 0.0565) and a low threshold (S = 0.0135), respectively. Both detected edges at

t = 72 hours appear to be reasonable approximations to the location of the leading edge
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of the spreading population, however they are very different to each other which indicates

that the results are sensitive to S.

To qualitatively compare the two leading edges detected at t = 0 hours (Figure 4.1 (b)–

(c)) we superimpose the two detected leading edges in Figure 4.1 (d) and show a magnified

portion of these edges in Figure 4.1 (e). The superimposed edges confirm that the choice

of S has relatively little influence at t = 0 hours. We now compare equivalent results

at t = 72 hours from Figure 4.1 (h)–(i). Superimposing the two leading edges for high

and low S thresholds in Figure 4.1 (j) indicates that there is a distinct difference between

them. A magnified portion of the detected leading edges is shown in Figure 4.1 (k) which

also supports our initial observation that it is difficult to visually delineate the leading

edge of the spreading population when the leading edge is diffuse.

Our edge detection results at t = 0 hours and t = 72 hours, in Figure 4.1 (a)–(e) and

(g)–(k), qualitatively indicate that the threshold value is important in detecting the edge

at a later time. To quantitatively compare our edge detection results, we calculate the

area enclosed by the detected leading edge and convert this area into an equivalent circle

with radius
√
A/π. Results in Figure 4.1 (f) show the equivalent circular areas for low and

high thresholds at t = 0 hours. The area of the low and high thresholds are 32.2 mm2 and

31.1 mm2, respectively, giving a relatively small difference of 1.1 mm2. These two circles

are almost visually indistinguishable at the scale shown in Figure 4.1 (f), confirming there

is very relatively little difference regardless of the threshold. Equivalent circular areas in

Figure 4.1 (l) show the low and high threshold areas at t = 72 hours superimposed on

the initial area. The area of the two outer circles in Figure 4.1 (l) is 52.9 mm2 and 60.8

mm2, giving a relatively large difference of 7.9 mm2. If we take the initial area to be

A(0) = 31.1 mm2 then Equation (4.1) gives us M(72) = 70.1% for the high threshold

leading edge in Figure 4.1 (h) and M(72) = 95.5% for the low threshold leading edge in

Figure 4.1 (i). These results indicate that the increase in area enclosed within the leading

edge of the spreading cell population is very sensitive to the choice of threshold and the

results can vary by as much as 25%

4.4.2 Comparing edge detection techniques

To explore and quantify the sensitivity in detecting the leading edge for our barrier assays,

we now extend our initial investigation and detect the location of the leading edge across

all experimental images acquired at different time points. We applied the manual edge

detection technique to all images using thresholds within the range S ∈ [0.015, 0.8]. For

each threshold value, we calculated the area enclosed by the detected leading edge and we

analysed the images from each experimental replicate separately so that we could calculate

the mean area enclosed by the leading edge, 〈A(t)〉. We estimated the variability amongst

the experimental replicates by calculating the standard deviation about the mean, σ.

Our results are summarised in Table 4.1, where we see that the variability amongst the

experimental replicates is small with typical values of σ/〈A(t)〉 < 5%. From this point

onward we will report all our experimental results in terms of the mean area, 〈A(t)〉, and

for convenience we will drop the angle bracket notation.
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Figure 4.1: Images of barrier assays containing 30,000 cells at t = 0 hours (a)–(f) and t = 72 hours
(g)–(l). (a)–(g): Images from the barrier assay. (b)–(h): Leading edge for a high threshold S in red,
superimposed on an image of the spreading population. (c)–(i): Leading edge for a low threshold S in
blue, superimposed on the an image of the spreading population. (d)–(j): Comparing high and low S
detected edges at t = 0 hours. (e)–(k): Detailed comparison of the detected edges in the boxed area in
(d) and (j). (f)–(l): Comparing equivalent circular areas. The black line in (l) shows the initial circular
area. Scales are given in each subfigure.
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Number Mean area Standard deviation Mean Area Standard deviation Mean area Standard deviation Mean area Standard deviation

of Time Manual S High Manual S High Manual S Low Manual S Low Auto ImageJ Auto ImageJ Auto Matlab Auto Matlab

cells (hours) (mm2) (mm2) (mm2) (mm2) (mm2) (mm2) (mm2) (mm2)

10, 000 0 27.4 0.67 30.1 1.61 30.3 0.83 29.0 1.64

24 31.9 0.91 36.0 0.63 35.0 2.26 34.2 0.78

48 36.2 1.91 43.4 0.68 41.3 1.11 39.1 2.64

72 39.7 1.98 47.1 0.62 45.8 0.81 44.6 0.81

30, 000 0 31.1 0.21 33.5 0.34 33.1 1.40 30.0 1.56

24 44.8 2.11 50.3 1.08 49.9 1.4 45.0 2.12

48 50.0 1.52 55.5 1.78 55.2 1.57 51.4 1.47

72 52.9 2.25 60.8 2.11 55.9 3.01 54.6 3.10

Table 4.1: Edge detection area (mm2) results. Summary of edge detection results comparing the manual edge detection technique (Manual), the MATLAB Image
Processing Toolbox automatic technique (Auto MATLAB) and the ImageJ automatic technique (Auto ImageJ). All results show the average area estimated using
three identically–prepared and analysed experimental replicates. The variability amongst experimental replicates is estimates using the standard deviation.
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Figure 4.2: Comparing three edge detection techniques for barrier assays with two different cell densities
for 10,000 cells in (a) and (c), and 30,000 cells in (b) and (d). (a)–(b): Comparison of the three edge
detection techniques showing the mean area enclosed by the leading detected edge at t = 0, 24, 48 and 72
hours with time points indicated. Red lines correspond to the the manual edge technique using MATLAB’s
Image Processing Toolbox for a range of the threshold parameter S ∈ [0.015, 0.08]. Black dots correspond
to the automatic MATLAB results and the green asterisks correspond to the automatic ImageJ results.
(c)–(d): The migration rate of cells in the barrier assays expressed as M(t)% using Equation (4.1). Results
correspond to the minimum (red) and maximum (blue) average areas detected using the manual MATLAB
technique. Error bars correspond to one standard deviation about the mean.

We now compare the sensitivity of our manual edge detection results by analysing the

images at using a range of threshold values for several different time points for barrier

assays with two different initial cell densities. Results in Figure 4.2 (a)–(b) show the

relationship between the average area enclosed by the detected leading edge and the

threshold value S for a barrier assay with 10,000 and 30,000 cells, respectively. Initially,

for the barrier assay with 10,000 cells, the minimum average area enclosed by the detected

leading edge is 27.4 mm2 and the maximum area is 30.1 mm2. For the barrier assay with

30,000 cells, the minimum and maximum initial average area enclosed by the detected

leading edge is 31.1 mm2 and 33.5 mm2, respectively. For both initial cell densities, the

difference between the maximum and minimum detected initial area is relatively small

compared to the differences we observe at later times, as we will now demonstrate.

Results in Figure 4.2 (a)–(b) show that the average area enclosed by the detected leading

edges increases with time as the cell population spreads outwards from the barrier. We

expect that the sensitivity in detecting the location of the leading edge will increase with

time as the population spreads and the leading edge becomes increasingly diffuse. For

the barrier assays initialised with 10,000 cells, results in Figure 4.2 (a) show that the

minimum area detected at t = 24 hours is 31.9 mm2 and the maximum area detected is

36.0 mm2, giving a difference of 4.1 mm2. At t = 48 hours the minimum area is 36.2 mm2

and the maximum area is 43.4 mm2, giving a difference of 7.2 mm2. At t = 72 hours,
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the minimum area is 39.7 mm2 and the maximum area is 47.1 mm2, giving a relatively

large difference of 7.4 mm2. These results indicate that the sensitivity in detecting the

leading edge is relatively large and that the results depend on the choice of the threshold,

and this sensitivity increases with time as the leading edge of the spreading population

becomes increasingly diffuse.

Equivalent manual edge detection results for barrier assays containing 30,000 cells in

Figure 4.2 (b) show similar trends to the results previously reported for the barrier assays

with 10,000 cells. The minimum detected average areas at 24, 48 and 72 hours are 44.8

mm2, 50.0 mm2 and 52.9 mm2, while the maximum detected average areas are 50.3 mm2,

55.5 mm2 and 60.8 mm2, respectively. Comparing the minimum and maximum average

areas for the barrier assay with 30,000 cells gives differences of 5.5 mm2, 5.5 mm2 and 7.9

mm2 at t = 24, 48 and 72 hours, respectively.

Our results using the manual edge detection method illustrate that there are many plausi-

ble approximations of the leading edge of the spreading populations for a range of thresh-

old values. We now compare the manual edge detection algorithm with two automatic

edge detection methods. We applied the automatic MATLAB and ImageJ techniques

(section 4.2.3 and section 4.2.3), to the same images we previously analysed using the

manual edge detection method. For both automatic techniques, the average area en-

closed by the detected edge was calculated and compared to the average areas obtained

using the manual edge detection method. Results in Figure 4.2 (a)–(b) show the auto-

matic edge detection results relative to the manual results, and estimates of the mean

and standard deviation of the area obtained using the automatic techniques are given in

Table 4.1. The MATLAB and ImageJ results confirm that both automatic techniques

give estimates that are consistent with those obtained using the manual edge detection

method. However, the automatic techniques are restricted in the sense that they can only

detect one particular location whereas the manual edge detection method can produce

many different results, all of which are reasonable estimates of the position of the leading

edge of the spreading cell population.

Number Time M(t) M(t) M(t) M(t)

of cells (hours) Manual S High Manual S Low Auto ImageJ Auto Matlab

10, 000 24 10.8 25.0 14.4 17.9

48 25.7 50.7 35.0 34.8

72 37.8 63.5 49.7 53.8

30, 000 24 49.6 66.6 50.8 50.0

48 65.6 82.7 66.8 71.3

72 74.6 99.1 68.9 82.0

Table 4.2: Quantifying the cell migration rate using Equation 4.1. The cell migration rate in
terms of M(t) using Equation 4.1 and the average results from Table 4.1. Results are reported for
the manual edge detection technique with a high threshold (Manual S high), the manual edge de-
tection technique with a low threshold (Manual S Low), the MATLAB Image Processing Toolbox
automatic technique (Auto MATLAB) and the ImageJ automatic technique (Auto ImageJ).
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We now use Equation (4.1) to quantify the observed cell migration in our barrier assays.

This approach requires that we use an estimate of A(0), the initial average area. Our

previous results indicate that the initial average area of the spreading population ranged

from 27.4 to 30.1 mm2 for the barrier assay with 10,000 cells while the initial average

area of the spreading population ranged from 31.1 to 33.5 mm2. To estimate A(0) we will

take the average of these maximum and minimum estimates so that we have A(0) = 28.8

and A(0) = 32.3 mm2 for the barrier assays with 10,000 and 30,000 cells, respectively. To

estimate the sensitivity of our results as a function of the threshold value in the manual

edge detection technique, we apply Equation (4.1) using the minimum and maximum

detected average areas from our manual edge detection method. The details of the results

for all three edge detection techniques are given in Table 4.2. Although we observe that

the two automatic methods produce similar results for certain assays at certain times, the

differences between the results for the two automatic edge detection methods can be very

large with M(72) = 68.9 % for the barrier assay with 30,000 cells according to the ImageJ

results whereas M(72) = 82.0 % for the same assay according to the automatic MATLAB

method. Profiles in Figure 4.2 (c)–(d) show how M(t) varies with time according to the

results obtained from the manual edge detection method applied to the images from the

barrier assays initialized with 10,000 and 30,000 cells, respectively. Figure 4.2 (c)–(d)

each contain two sets of results corresponding to the average estimate of M(t) calculated

using the low S threshold, and the average estimate of M(t) calculated using the high S

threshold. The differences between the low and high threshold results in Figure 4.2 (c)

is 14.2 %, 25.0 % and 25.7 % for t = 24, 48 and 72 hours, respectively. The difference

between the low and high threshold results in Figure 4.2 (d) (30,000 cells) is 17.0 %,

17.0 % and 24.5 % for t = 24, 48 and 72 hours, respectively. These results indicate that

estimates of cell migration using Equation (4.1) are very sensitive to the details of the

edge detection technique and that this sensitivity increases with time.

4.4.3 A physical interpretation of the leading edge

Previously, we used three different edge detection techniques to determine the location of

the leading edge of spreading cell populations in several barrier assays. Although these

techniques produce visually reasonable approximations to the position of the leading

edges, the techniques do not give us any physical measure, or definition, of the leading

edge. To address this, we now interpret our edge detection results using a mathematical

model of the cell spreading process. For each barrier assay experiment, we solve Equation

(4.2) using the appropriate boundary and initial conditions (Section 4.3) and previous

estimates of the cell diffusivity [125]. The solution profiles in Figure 4.3 (a) and (d),

show the predicted cell density near the leading edge of the spreading cell populations in

the barrier assay at t = 24, 48 and 72 hours. The difference between the two initial cell

densities in the barrier assays is shown in these profiles since we have c0 = 0.22 in the

centre of the barriers for the assays initialised with 10,000 cells (Figure 4.3 (a)) whereas

we have c0 = 0.66 in the centre of the barriers for the assays initialised with 30,000 cells

(Figure 4.3 (d)).
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Figure 4.3: (a) and (d): Solutions of Equation (4.2) showing the density profiles near the leading edge at
t = 0 (dotted black), t = 24 (blue), t = 48 (red) and t = 72 hours (green). Arrows indicate the direction of
increasing time. The initial conditions is given by Equation (5.6) with c0 = 0.22 and c0 = 0.66 for barrier
assays with 10,000 and 30,000 cells, respectively. Numerical solutions of Equation (4.2) are obtained
with δr = 1.0 µm and δt = 0.005 hours, with D = 1700 µm2/hour and D = 2900 µm2/hour for barrier
assays with 10,000 and 30,000 cells, respectively. (b) and (e) The detail of the solutions of Equation
(4.2) from the boxed area in (a) and (d) compared with the scaled manual edge detection results (black)
from Figure 4.2 (a) and (c). (c) and (f) Images of a barrier assay with 10,000 and 30,000 cells at t = 72
hours, respectively. The contours of the solution of Equation (4.2) are superimposed. The values of the
contours are cmin = 0.007 and cmax = 0.026 for the barrier assay with 10,000 cells, and cmin = 0.008 and
cmax = 0.020 for the barrier assay with 30,000 cells.

To determine a physical relationship between the threshold value S and the cell density

at the corresponding detected edge, we compare our manual edge detection results to

solutions of Equation (4.2). For each set of averaged edge detection results, we scale the

threshold values to match the corresponding solution of Equation (4.2). The scaling is

given by

Sscaled = cmin + (cmax − cmin)
S − Smin

Smax − Smin

, (4.4)

where cmin and cmax are the minimum and maximum contours of the solution of Equation

(4.2), c(r, t), which enclose the same average area detected by the manual edge detection

method applied with the minimum and maximum thresholds, Smin and Smax, respectively.

Profiles in Figure 4.3 (b) and (e) compare the scaled edge detection results to correspond-

ing solutions of Equation (4.2) at t = 24, 48 and 72 hours for barrier assays with 10,000

and 30,000 cells, respectively. For both initial density experiments at all time points, the

shape of the c(r, t) density profiles matches the shape of the edge detection results. This

match indicates that varying the threshold value S corresponds to a consistent variation

in the spatial distribution of cell density in the spreading cell population. Comparing the
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edge detection results to the corresponding contours of the cell density, we observe that

the manual edge detection technique identifies a range of leading edges corresponding to

cell densities of 2–5.5 % at t = 24 hours, 0.9–3.2 % at t = 48 hours and 0.8–2.5 % at

t = 72 hours for the barrier assays with 10,000 cells. Equivalent results in Figure 4.3 (e)

indicates that the manual edge detection technique identifies a range of leading edges cor-

responding to cell densities of 0.2–0.8 %, 0.5–1.5 % and 0.8–1.8 %, for t = 24, 48, 72 hours

for the barrier assay with 30,000 cells. In summary, the manual edge detection technique

identifies a range of leading edges corresponding to cell densities of approximately 1–5 %

of the maximum packing density.

The images in Figure 4.3 (c) and (f) show snapshots from two barrier assays at t = 72

hours with 10,000 and 30,000 cells, respectively. To illustrate the location of the leading

edge, defined by contoured solutions of Equation (4.2), we superimpose the cmin and cmax

contour of the appropriate solution of Equation (4.2). In both cases we observe that the

cmin and cmax contours are reasonable approximations to the location of the position of the

leading edge of the spreading populations. In each experiment, the difference between the

cmin and cmax contours are relatively large and this recapitulates the sensitivity observed

previously in Figure 4.1 (h)–(i).

4.5 Discussion

Cell migration is an essential aspect of development [98, 157], repair [85, 86, 113] and

disease [132,153]. In vitro cell migration assays are routinely used to assess the migration

potential of different cell types [69,70] as well as assessing the potential for different types

of treatment strategies aimed at regulating cell migration [30, 142, 143, 145]. Currently,

many studies report results from cell migration assays without specifying the details of

how the assays are measured or interpreted [64,81,99,100,151]. In an attempt to address

this limitation we compare three different image processing techniques to quantify the

migration rate of cells in a two–dimensional barrier assay [125]. Our visual interpretation

of the images from the barrier assays indicate that the position of the leading edge of the

spreading population is relatively sharp and well–defined at the beginning of the assay.

However, we observe that the leading edge of the spreading cell population becomes

increasingly diffuse and less well–defined at later times as the cell population spreads

across the substrate. We quantify the rate of cell migration using a standard measure,

given by Equation (4.1), describing how the area enclosed by the leading edge of the

spreading population increases with time. To explore how such a standard measure of

cell migration depends on the edge detection methods we calculate the location of the

leading edge of the spreading population using three different image processing tools. In

summary, our results indicate that estimates of the cell migration rate are very sensitive

to the details of the image processing tools and we show that our estimates of the cell

migration rate can vary by as much as 25% for the same data set. These differences

depend on the choice of threshold used in the edge detection technique. Our measurements

indicate that the concept of the area enclosed by the leading edge is poorly defined and we

suggest that one way to overcome these difficulties is to use a direct measurement of cell
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density. For example, a nuclear stain could be used to reveal the locations of individual

cells within the spreading population [125].

In addition to comparing estimates of cell migration using different image processing

techniques, we also provide a physical interpretation of the results from the manual edge

detection technique by using a mathematical model of the cell spreading process. We

use a previously–parameterised [125] mathematical model to describe the spatial and

temporal variation in cell density associated with the barrier assays and we compare our

modelling results with the edge detection results. For all images processed by the manual

edge detection technique, we identified a range of Sobel threshold values, from Smin to

Smax, that could be used to produce a reasonable estimate of the location of the leading

edge of the spreading populations. We scaled these values so that they corresponded with

a range of cell density contours, from cmin to cmax, corresponding to the minimum and

maximum contours of the relevant solution of Equation (4.2). Our results indicate that

varying the threshold S corresponds to a consistent variation in the spatial distribution

of cell density in the spreading cell population. In particular, the manual edge detection

technique identifies the leading edge of the population within a range of the cell density

of approximately 1-5% of the maximum packing density. The close match between the

position of the leading edge as a function of the Sobel threshold and the solution of the

partial differential equation describing the spreading process suggests that this type of

information could be used to estimate the diffusivity of the cells, D. This could be a

useful method for estimating the cell diffusivity since it is well known that estimates of

cell diffusivity can vary by as much as an order of magnitude and these variations depend

on the kind of cell and the substrate being considered [133].

As a result of this study, we recommend that the location of the leading edge of a spreading

cell population in a cell migration assay should not be determined using any kind of hand

tracing technique. Instead, a computational image processing technique should be used

to reduce the impact of the subjectivity of the analyst. Our results demonstrate that the

computational edge detection techniques can be very sensitive to the choice of threshold

applied to the image. Therefore, we recommend that images of cell migration assays

should be analysed using a manual edge detection technique and that the details of the

image thresholds should be reported.

We anticipate that our results for the two–dimensional barrier assay will also be relevant

to other types of cell migration assays such as scratch assays [85,86], or different types of

circular barrier assays that include the outward migration of cells away from an initially–

confined circular population [125] as well as barrier assays describing the inward migration

of cell populations into an initially–vacant circular region [69,70,145]. We also expect that

our results for the two–dimensional barrier assay could be extended by considering other

types of experimental conditions. For example, here we chose to present results for cells

that were pretreated to prevent cell proliferation [112] so that we could study cell spreading

processes driven by cell migration alone in the absence of cell proliferation. Given that

the shape of the leading edge of the spreading cell population depends on the relative

contribution of cell migration and cell proliferation [125, 132], we expect that comparing
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different edge detection results for different cell populations with different relative rates

of cell proliferation and cell migration will also be of interest [121,123]. Finally, although

we have presented our image analysis techniques in the context of analysing an in vitro

cell migration assay, these concepts will also be relevant when considering in vivo cell

spreading, such as in the detection of the leading edge of spreading melanomas [59,95].
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Are in vitro estimates of cell diffusivity and cell proliferation rate

sensitive to assay geometry?

A paper published in the Journal of Theoretical Biology.

Treloar, K.K, Simpson, M.J., McElwain, D.L.S. & Baker, R.E. Are in vitro estimates

of cell diffusivity and cell proliferation rate sensitive to assay geometry? J. Theor. Biol.

356, 71–84 (2014).

Abstract

Cells respond to various biochemical and physical cues during wound–healing and tumour

progression. In vitro assays used to study these processes are typically conducted in one

particular geometry and it is unclear how the assay geometry affects the capacity of

cell populations to spread, or whether the relevant mechanisms, such as cell motility

and cell proliferation, are somehow sensitive to the geometry of the assay. In this work

we use a circular barrier assay to characterise the spreading of cell populations in two

different geometries. Assay 1 describes a tumour–like geometry where a cell population

spreads outwards into an open space. Assay 2 describes a wound–like geometry where

a cell population spreads inwards to close a void. We use a combination of discrete

and continuum mathematical models and automated image processing methods to obtain

independent estimates of the effective cell diffusivity, D, and the effective cell proliferation

rate, λ. Using our parameterised mathematical model we confirm that our estimates of

D and λ accurately predict the time–evolution of the location of the leading edge and the

cell density profiles for both assay 1 and assay 2. Our work suggests that the effective

cell diffusivity is up to 50% lower for assay 2 compared to assay 1, whereas the effective

cell proliferation rate is up to 30% lower for assay 2 compared to assay 1.

75
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5.1 Background

Cell migration and cell proliferation are essential mechanisms that drive wound–healing

and tumour progression [26, 51, 89, 153, 158]. During these processes, cells sense and

respond to various biochemical and physical cues [7, 18, 77, 84, 149]. Although the role

of biochemical cues has been widely explored, it remains relatively unclear how physical

cues, such as the local geometry, affect the capacity of cell populations to spread [7, 18,

77,84,149].

Wound–healing and tumour progression are often studied in the same context since the

mechanisms that drive these processes are thought to be similar [22, 28, 44, 115, 153].

Despite their similarities, these processes have distinct geometries: (i) during wound–

healing, cell populations spread inwards to close the wound void, and (ii) during tumour

progression, cell populations spread outwards causing the tumour to expand [7, 153].

Cell–based assays are commonly–used to quantify the capacity of cell populations to

spread in vitro [7, 30, 69, 70, 78, 144]. Several types of assays have been developed to

investigate cell population spreading in two and three dimensions including Transwell,

scratch, exclusion zone and spheroid assays [7, 30,78,144]. While these assays have been

used to study the behaviour of various cell lines in vitro, most studies neglect to explicitly

consider the role of geometry when conducting or interpreting these assays and it is unclear

how results obtained for one particular geometry translate into another [7, 30, 78, 144].

Recent work using microfabrication methods focused on creating various–sized channels

through which cells could migrate, with the observation that the speed of the leading edge

of the cell population depends on the channel width [148]. Therefore, it seems reasonable

to assume that assay geometry could play a role in determining the rate at which cell

populations spread.

An alternative approach to understand how differences in geometry affect cell population

spreading is to conduct a two–dimensional cell spreading assay where the direction of the

spreading is intentionally varied. In this work, we will consider two types of assays:

Assay 1. This is a tumour–like assay initialised by placing cells inside a barrier, which is

then lifted, allowing the population to spread outwards [7, 78].

Assay 2. This is a wound–like assay initiated by placing cells outside a barrier, which is

then lifted, allowing the population to spread inwards [7, 78].

Without analysing any experimental data it is unclear whether a population of otherwise

identical cells will exhibit different rates of spreading in the geometry of assay 1 compared

to the geometry of assay 2.

A circular barrier assay can be used to study both assay 1 and assay 2 geometries, by ini-

tially placing the cells either inside or outside the barrier, which is then lifted to initiate

the cell spreading [7, 78, 125, 138, 145]. Barrier assays are thought to be more repro-

ducible than traditional mechanical wounding assays, such as scratch assays, as they do

not damage the cell monolayer [56, 145]. In this work, we will consider the spreading
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of cell populations in a barrier assay that are driven by combinations of motility and

proliferation.

The standard continuum mathematical model used to describe how a population of motile

and proliferative cells spread in two dimensions is related to the Fisher–Kolmogorov equa-

tion, and is given by
∂c̄

∂t
= D∇2c̄+ λc̄

(
1 − c̄

K

)
, (5.1)

where c̄(x, y, t) [cells/L2] is the dimensional cell density, D [L2/T] is the cell diffusivity

(random motility coefficient), λ [/T] is the cell proliferation rate and K [cells/L2] is

the carrying–capacity density [20, 85, 86, 97, 113, 116, 132]. Physical dimensions relevant

to in vitro cell biology assays are µm and hours for L and T , respectively. Discrete

random walk–based models which are related to Equation (5.1) can also be used to study

cell population spreading. Discrete models allow us to visualise the biological spreading

process in a way that is more closely comparable with experimental results [4,5,8,27,33,

92,121,125,140,141]. For example, snapshots from a discrete model showing the location

of individual agents in the population can be easily compared to experimental images

that show the location of individual cells in the population [125,138].

Previous studies have used Equation (5.1) to estimate D and λ from experimental ob-

servations with the additional implicit assumption that these estimates could be relevant

when considering the same cell population spreading in a different geometry. This stan-

dard assumption implies that estimates of D and λ obtained by calibrating Equation (5.1)

to observations in one particular geometry could be used to accurately predict the spread-

ing of the same cell population, under the same experimental conditions, in a different

geometry. However, from a biological point of view, it seems reasonable to anticipate that

cell populations could respond differently under different circumstances. This means that

our estimates of D and λ in Equation (5.1) might be different when calibrating this model

to different experimental conditions. For this reason we will refer to estimates of D as

the effective cell diffusivity and our estimates of λ as the effective cell proliferation rate,

thereby making it explicit that we are allowing for the possibility that these estimates

could depend on the specific details for the experiment from which they are estimated.

In this work, we use a combined experimental and mathematical modelling approach to

investigate how the two–dimensional spreading of a fibroblast cell population is influenced

by the assay geometry. In particular, we address the following questions:

(1) Do estimates of the effective cell diffusivity, D, depend on the geometry of the assay?

(2) Do estimates of the effective cell proliferation rate, λ, depend on the geometry of

the assay?

(3) Does the geometry of the assay affect the rate at which the leading edge of the cell

population moves?

(4) Are the cell density profiles through the spreading cell population sensitive to

changes in the geometry of the assay?
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To answer these questions, we conduct several circular barrier experiments using assay 1

and assay 2 geometries. For both assay geometries we independently estimate the effective

cell diffusivity, D, using experiments where cell proliferation is suppressed. The effective

proliferation rate, λ, is then separately estimated using experiments where proliferation is

not suppressed. To ensure that our estimates of D and λ accurately predict the position of

the leading edge of the spreading population as well as the cell density profile throughout

the spreading cell population we compare predictions of the parameterised mathematical

model with experimental measurements. In summary, our results indicate that estimates

of D and λ appear to depend on the assay geometry, with D being more sensitive than λ.

5.2 Experimental methods

5.2.1 Circular barrier assay

Figure 5.1 shows a schematic diagram of the two barrier assay geometries considered in

this work. To perform these assays metal–silicone barriers (Aix Scientifics, Germany),

were cleaned, sterilised, dried and placed in the centre of the wells of a 24–well tissue

culture plate. The wells in the tissue culture plate have a diameter of 15, 600 µm. The

barrier has an approximate radius of 3000 µm on the inside of the silicone tip (located at

the end of the barrier) and 4000 µm on the outside of the silicone tip.

Experiments were conducted with fibroblast cells (Appendix C) where, in some cases the

spreading was driven by cell motility only, whereas in other cases the spreading was driven

by a combination of cell motility and cell proliferation. For those experiments where cell

proliferation was suppressed, Mitomycin–C (Sigma Aldrich, Australia) was added to the

cell solutions for one hour before the assays were initialised [112]. Experiments using

assay 1 and assay 2 geometries were initialised by carefully placing the cells either inside

(Figure 5.1 (a)) or outside (Figure 5.1(b)) the barrier, respectively. In all cases great

care was taken to ensure that the cells were approximately evenly distributed at the

beginning of the experiment. All experiments were repeated using two different initial

cell densities: low density (3.5×10−4 cells/µm2) and high density (1.1×10−3 cells/µm2).

After initially placing the cells in or around the barrier, the tissue culture plate was left

for one hour in a humidified incubator at 37 ◦C and 5% CO2 to allow the cells to attach

to the surface, after which the barriers were removed and the cell layer was washed with

serum free medium (SFM; culture medium without FCS) and replaced with 0.5 mL of

culture medium. Plates were incubated at 37 ◦C in 5% CO2 for four different durations,

t = 0, 24, 48 and 72 hours. Each assay, for each time point, for each initial density and

for each geometry, was repeated in triplicate (n = 3).

5.2.2 Image acquisition and analysis

Two types of images were acquired from each experiment; (i) population–scale images

showing the location of the entire spreading population, and (ii) individual–scale images

detailing the location of individual cells within the spreading population. Details of the

image acquisition and analysis are given in Appendix C.
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Figure 5.1: Schematic of the circular barrier assay for assay 1 and assay 2 (not to scale). (a) Assay
1: cells are placed inside the barrier allowing the cell population to spread outwards. (b) Assay 2: cells
are placed outside the barrier allowing the cell population to spread inwards. The population–scale views
for the assay 1 and assay 2 geometries are shown in (c) and (d), respectively, and indicate the radii
measurements that were extracted from assay 1 and assay 2. Here, R1 corresponds to the radius of the
circular area enclosed by the spreading cell population for assay 1 (dR1/dt > 0) and R2 indicates the
radius of the circular void area for assay 2 (dR2/dt < 0).

Schematic population–scale images of assay 1 and assay 2 are shown in Figure 5.1 (c)

and (d), respectively. We use a standard approach to measure the observed spreading

by estimating the radius, R, from the centre of the well to the leading edge of the cell

population as shown in Figure 5.1 (c) and (d). Here, R1, corresponds to the radius of

the spreading cell population in assay 1, and R2 represents the radius of the void space

in assay 2. Estimates of R1 and R2 were obtained by locating the position of the leading

edge of the spreading cell populations using customised image processing software that

was written using the MATLAB image processing toolbox (v7.12) [90] (Appendix C).

The same image analysis methods used to detect the location of the experimental leading

edge were applied to detect the edges in the snapshots produced by the discrete model

described in Section 5.3. For assay 1, the area (regionprops) of the spreading population,
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A, was estimated and converted into an equivalent circular radius, R1 =
√
A/π. For

assay 2, the area of the void region, A, was estimated and converted into an equivalent

circular radius, R2 =
√
A/π.

Individual–scale images were used to construct a detailed transect across the spreading

populations. Overlapping images were acquired at regular spatial intervals from the lead-

ing edge of the cell population to either the centre of the well (assay 1) or the edge of the

well (assay 2). Automated image analysis, supplemented with manual counting, was used

the count the number of individual cells within various subregions across the transects

and these counts were used to construct detailed cell density profiles (Appendix C).

5.3 Modelling methods

To quantify and interpret our experimental observations, we use an interacting random

walk model which is related to Equation (5.1). The details of our discrete model have

been previously reported in [121].

5.3.1 Discrete model

The discrete model is implemented on a two–dimensional square lattice with spacing ∆,

which corresponds to the average diameter of the cells. We estimate ∆ by measuring

the area of several cells using ImageJ software [66] and convert these estimates into an

equivalent circular diameter, giving ∆ ≈ 25 µm. We assume that the cells form a two–

dimensional monolayer, which is reasonable given that our images indicate that individual

cells do not pile up onto other cells in the vertical direction. To account for volume

exclusion and finite size effects, the model permits only one agent to occupy each lattice

site [33, 121]. This exclusion mechanism explicitly accounts for any differences in the

availability of free space in assay 1 compared to assay 2. Each site is indexed (i, j), where

i, j ∈ Z
+, and each site has position (x, y) = (i∆, j∆). Simulations are initialised by

placing agents uniformly, at random, either inside a circle of radius 3000 µm located at

the centre of the lattice for assay 1 simulations, or outside a circle of radius 4000 µm

for assay 2 simulations. Here, the initial radii for assay 1 and assay 2 correspond to the

physical internal and external radii imposed by the silicone tip of the barrier.

A random sequential update method [24] is used to perform the simulations. If there are

N(t) agents at time t, during the next time step of duration τ , N(t) agents are selected at

random, one at a time, and given the opportunity to move with probability Pm ∈ [0, 1].

We use an unbiased motility mechanism where an agent at (x, y) attempts to step to

(x ± ∆, y) or (x, y ± ∆) with equal probability of 1/4. Once the N(t) potential motility

events have been assessed, during the same time step another N(t) agents are selected

at random, one at a time, and given the opportunity to proliferate with probability

Pp ∈ [0, 1]. We model proliferation with an unbiased mechanism whereby a proliferative

agent at (x, y) attempts to deposit a daughter agent at (x ± ∆, y) or (x, y ± ∆), with

each target site chosen with equal probability of 1/4. Potential motility and proliferation

events that would place an agent on an occupied site are aborted [33,121].
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5.3.2 Continuum model

To relate the discrete model to Equation (5.1), we note that the average occupancy of

site (i, j), evaluated using R identically–prepared realisations, is

〈Ci,j〉 =
1

R

R∑

k=1

Ck
i,j, (5.2)

here the superscript denotes the kth identically–prepared realisation of the same stochastic

process and the occupancy of site (i, j) is denoted by Ck
i,j, with Ck

i,j = 1 for an occupied

site, and Ck
i,j = 0 for a vacant site. The corresponding continuous density, c̄(x, y, t), is

governed by Equation (5.1) with carrying capacity, K = 1 agents/lattice site [121].

The associated diffusivity and proliferation rate [121] are given by

D =
Pm

4
lim

∆,τ→0

(
∆2

τ

)
, λ = lim

τ→0

(
Pp

τ

)
. (5.3)

We note that 〈Ci,j〉 ∈ [0, 1] is equivalent to c̄(x, y, t) as R → ∞, provided that Pp/Pm

is sufficiently small [121]. Strictly speaking, the continuum model is valid in the limit

that ∆ → 0 and τ → 0 jointly with the ratio ∆2/τ held constant, implying that Pp =

O(τ) [121]. As we will show in Section 5.4, the cell populations in all assays maintain an

approximately circular geometry for the entire duration of the experiment (Section 5.4.1),

hence, we implement Equation (5.1) in an axisymmetric coordinate system,

∂c

∂t
= D

(
∂2c

∂r2
+

1

r

∂c

∂r

)
+ λc(1 − c), (5.4)

where the dimensional cell density, c̄(r, t), has been scaled relative to the carrying capacity

density, c(r, t) = c̄(r, t)/K so that c(r, t) ∈ [0, 1]. We estimate the carrying capacity

density by making the standard assumption that the maximum packing density of cells

corresponds to a square packing [125]. Since ∆ ≈ 25 µm, we have K = 1/252 ≈ 1.6×10−3

cells/µm2 [125].

Numerical solutions of Equation (5.4) are obtained using a finite–difference approximation

on a grid with a uniform grid spacing δr, and implicit Euler stepping with uniform time

steps of duration δt [17, 117]. Picard iteration, with absolute convergence tolerance, ǫ,

is used to solve the resulting system of nonlinear equations. For all numerical results

presented we tested that the numerical solutions were grid independent. Solutions of

Equation (5.4) are obtained on the domain 0 ≤ r ≤ 7800 µm, with a symmetry condition,

∂c/∂r = 0, at r = 0 µm and a zero flux boundary condition at r = 7800 µm for both assay

1 and assay 2 geometries. The value r = 7800 µm corresponds to the physical radius of

the well (r = 15600/2). The initial condition for assay 1 is given by,

c(r, 0) =

{
c0, 0 ≤ r ≤ 3000 µm ,

0, 3000 ≤ r ≤ 7800 µm ,
(5.5)
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where c0 ∈ [0, 1] is the initial nondimensional cell density within the barrier. The initial

condition for assay 2 is given by

c(r, 0) =

{
0, 0 ≤ r < 4000 µm,

c0, 4000 ≤ r ≤ 7800 µm.
(5.6)

The initial nondimensional cell density for low density experiments is c0 = 3.5×10−4/1.6×
10−3 ≈ 0.22, whereas the initial nondimensional cell density for the high density experi-

ments is c0 = 1.1 × 10−3/1.6 × 10−3 ≈ 0.66.

5.3.3 Standard measure of spatial spreading

In addition to analysing the data using the mathematical modelling framework described

in Sections 5.3.1–5.3.2, we also interpret our results using a standard measure that is

often reported in the experimental cell biology literature [7,56,94,137,145,161,162]. This

standard measure can be written as

M(t) =
Ra(t) −Ra(0)

Ra(0)
× 100, (5.7)

where M(t) represents the percentage change in the observed radius at time t relative

to the initial radius, a = 1, 2, represents assay 1 or assay 2, respectively, and R(t) is the

detected radius at time t.

5.4 Results

5.4.1 Cell diffusivity estimates

We first investigated whether estimates of D were sensitive to the assay geometry. To

identify D we considered experiments where cells were pretreated with Mitomycin–C to

suppress cell proliferation. Population–scale images in Figure 5.2 (a) and (b) illustrate the

distribution of cells in the assay 1 geometry at t = 0 and t = 72 hours for an experiment

with a high initial cell density inside the barrier. The corresponding images for the assay

2 geometry are shown in Figure 5.2 (c) and (d). For both geometries, the area occupied

by the cell population increases with time and the circular geometry is maintained. From

these images alone it is difficult to interpret whether the spreading in assay 1 is any

different to the spreading in assay 2.
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Figure 5.2: Estimates of cell diffusivity. Experimental and modelling images are shown in (a)–(d) and (f)–(i) comparing the position of the leading edge of the spreading
cell population for assay 1 and assay 2 geometries at high initial cell density. Experimental images in (a)–(b) show the distribution of cells at t = 0 and t = 72 hours for a
barrier assay using the assay 1 geometry where cells are initially placed uniformly inside the barrier after Mitomycin–C pretreatment. Equivalent images using the assay 2
geometry, where cells are initially placed outside the barrier, are shown in (c)–(d). The black solid line indicates the position of the leading edge of the spreading population
as detected by the image analysis software. The area enclosed by the spreading cell population was converted to an equivalent circular area. For the assay 1 geometry, the
area detected encloses the spreading cell population, while for the assay 2 geometry, the area detected encloses the void. Images in (f)–(i) show the corresponding snapshots
of the discrete model on a 624 × 624 lattice with ∆ = 25 µm. Simulations were performed using Pm = 1 and Pp = 0. Model simulations in (f)–(g) correspond to τ = 0.0526
hours and (h)–(i) correspond to τ = 0.1000 hours. The detected leading edge of the discrete cell population is indicated by the black solid line. The red (assay 1) and green
(assay 2) circles which are superimposed onto the experimental and discrete images correspond to the c(r, t) = 0.019 contour of the numerical solution of Equation (5.4) with
λ = 0, D1 = 2900 µm2/hour and D2 = 1500 µm2/hour. Results in (e) and (j) compare E(D), using Equation (5.8), between the position of the leading edge of the simulated
cell population, using various values of D, and the position of the leading edge of the corresponding experimental image for assay 1 (red) and assay 2 (green) at low and high
initial cell densities, respectively. The scale bar corresponds to 1500 µm.
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To quantify any differences between the observed spreading in assay 1 and assay 2, we

used the image analysis methods (Section 5.2.2) to detect the position of the leading

edge of the spreading cell populations in each geometry. The detected leading edges are

superimposed onto the images in Figure 5.2 (a)–(d). For assay 1, the area enclosed by the

leading edge was converted into an equivalent circular radius, R1. Similarly, for assay 2,

the area of the void space enclosed by the leading edge was converted into an equivalent

circular radius, R2. For the assay 1 population–scale images in Figure 5.2, R1 increases

from 3000 µm to 4171 µm, over t = 72 hours, giving M(72) = 39% using Equation (5.7).

Similarly, for the population–scale images of assay 2, R2 decreases from 4000 µm to 2950

µm, giving M(72) = −26%. The corresponding results for the experiments initialised

with low cell density give M(72) = 26% for assay 1 and M(72) = −14% for assay 2

(Appendix C). Although it is straightforward to compute and compare estimates of M(t)

for the different assays, these estimates do not provide us with any quantitative insight

into the role of the mechanisms that drive the spreading process.

We estimated D for each geometry by comparing the experimental data with simulation

data from the discrete mathematical model. Simulations, as described in Section 5.3,

were performed using the discrete model to replicate the initial distribution of cells in

both geometries at both initial densities. To estimate D we performed simulations where

we systematically varied the duration of the time step, τ , which is equivalent to varying

the effective cell diffusivity, D = Pm∆2/(4τ), in the continuum model. This procedure

enabled us to determine the value of D that produces a prediction that best matches the

experimental data. In all cases, we set Pp = 0 and Pm = 1. We considered 30 equally

spaced values of D in the interval D ∈ [0, 5000] µm2/hour, and for each value of D we

simulated each experiment three times (n = 3), over t = 24, 48 and 72 hours. The image

analysis software was used to the locate the position of the leading edge of the simulated

cell populations in the same way that the image analysis was used to detect the leading

edge in the experimental images. In all cases, the detected leading edge was converted to

an equivalent circular radius.

Population–scale images in Figure 5.2 (f) and (g) show the distribution of agents in the

discrete model in assay 1 and the corresponding detected position of the leading edge,

at t = 0 and t = 72 hours, for an experiment where a high density cell population

was initially placed inside the barrier. The population–scale images in Figure 5.2 (h)

and (i) illustrate the equivalent results for assay 2. We note that the distribution of

agents in Figure 5.2 (g) and (i) do not appear to be influenced by the underlying lattice

structure at this scale since the simulations were initialised at a relatively low density,

and the density of agents at the leading edge is, by definition, very low. This qualitative

observation is consistent with recent theoretical comparisons between lattice–based and

lattice–free descriptions of spreading cell populations which confirmed that there is no

difference between a lattice–based and lattice–free model at the leading edge of spreading

populations [106].

To determine the value of D for which our model results best match the observed data, we

compared the radii estimates from the discrete simulations, at t = 24, 48 and 72 hours, to
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the corresponding experimental data, using an estimate of the least–squares error given

by

E(D) =

3∑
i=1

(ERi
a − SRi

a)
2

3∑
i=1

(ERi
a)

2

, (5.8)

where i indicates the three time points, t = 24, 48 and 72 hours, and a corresponds to

the assay geometry, 1 and 2. In all cases, ER and SR are the radii extracted from the

experimental cell populations and the corresponding simulated populations, respectively,

averaged over (n = 3) identically–prepared replicates.

Results in Figure 5.2 (e) and (j) show E(D) for experiments in each geometry for both

initial cell densities. For all experiments there is a well–defined minimum which indicates

the least–squares estimate of D. We note that the estimate of D is different for each

geometry and each initial cell density. Our analysis indicates that for experiments using a

low initial cell density we have D ≈ 1700 µm2/hour for assay 1, while D ≈ 800 µm2/hour

for assay 2. Our results for the experiments using a high initial cell density show a similar

trend where D ≈ 2900 µm2/hour for assay 1, while D ≈ 1500 µm2/hour for assay 2. For

both initial cell densities, our least–squares estimate ofD is approximately 50% smaller for

assay 2. These differences suggest that the cell motility mechanism is affected by the assay

geometry and we note that these differences were not obvious through visual inspection

of the experimental images or through the use of the commonly–reported quantity, M(t),

given by Equation (5.7).

To confirm that our estimates of D allow us to accurately model the experimental data

we compared the numerical solution of Equation (5.4), with λ = 0, to population–scale

images from the experiments and discrete simulations in Figure 5.2 (a)–(d) and (f)–(i). To

compare the numerical solution of Equation (5.4) with the experimental images we choose

an appropriate contour of the solution, c(r, t) = 0.019, which best describes the averaged

spreading observed in the experiments (Appendix C). The correspondence between the

position of the leading edge in the experimental images and the c(r, t) = 0.019 contour of

the solution of Equation (5.4) in Figure 5.2 (a)–(d) and (f)–(i) confirms that our estimates

of D are appropriate for each geometry and initial cell density.

5.4.2 Cell proliferation estimates

To estimate λ we considered experiments where proliferation was not suppressed. Individual–

scale images were used together with the image analysis techniques to count the number

of cells, at a fixed position, as a function of time. For each experiment, the number

of cells in four different subregions, each of dimension 250 µm × 250 µm, was counted.

The locations of the subregions were chosen so that the cell density at that location is

approximately spatially uniform and locally we have c̄(r, t) ≈ c̄(t). The cell counts were

converted into a measurement of the nondimensional cell density, c(t) = c̄(t)/K. Figure

5.3 (a) and (f) illustrate the approximate location and size of each of the four subregions

for assay 1 and assay 2, respectively.
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Images in Figure 5.3 (b) and (c), and Figure 5.3 (g) and (h), show snapshots of a subregion

analysed for assay 1 and assay 2, respectively. These results correspond to experiments

that were initialised with a high cell density. We note that the cell density increases

rapidly with time and that there appears to be no visual difference in the cell density

behaviour between either geometry. The evolution of c(t) is shown in Figure 5.3 (d) and

(i) for both geometries and each initial cell density.

We note that Equation (5.4) can be simplified when the cell density, c(r, t), is spatially

uniform so that locally we have c(r, t) = c(t). Hence, Equation (5.4) simplifies to the

logistic equation
dc(t)

dt
= λc(t)(1 − c(t)), (5.9)

which has the solution

c(t) =
c(0) exp(λt)

1 + c(0)(exp(λt) − 1)
, (5.10)

where c(0) is the nondimensional initial cell density.

To estimate λ, we found the value of λ that minimised an estimate of the least–squares

error between our experimental measurements and Equation (5.10), given by

E(λ) =

3∑
i=1

(EP i
a − SP i

a)
2

3∑
i=1

(EP i
a)

2

, (5.11)

where i denotes the three time points, t = 24, 48 and 72 hours, and a corresponds to the

assay geometry, 1 and 2. In all cases, EP corresponds to the nondimensional cell density

extracted from the experimental images averaged over (n = 4) replicates and SP is the

corresponding nondimensional cell density using Equation (5.10).

Results in Figure 5.3 (e) and (j) show E(λ) for experiments in both geometries and

both initial cell densities. For all cases, our results show that there is a well–defined

minimum in E(λ). For experiments without Mitomycin–C pretreatment at low density

we have λ = 0.056 /hour for assay 1 and λ = 0.042 /hour for assay 2. Similarly, for the

experiments without Mitomycin–C pretreatment at high density we have λ = 0.059 /hour

for assay 1 and λ = 0.041 /hour for assay 2. The relevant logistic growth curves, given

by Equation (5.10) with our estimates of λ, are superimposed in Figure 5.3 (d) and (i).

These growth curves confirm that, on average, our estimates of λ provide a good match

to the observed data.

To explore whether our estimates of λ are sensitive to the location of the subregion, we

re–estimated λ in two additional subregions located in different positions that were at

least 2000 µm behind the leading edge (Appendix C). These additional results show that

there is a relatively small variation in λ, confirming that our estimates of λ are relatively

insensitive to the choice of the location of the subregions, provided that we are sufficiently

far behind the leading edge where c̄(r, t) ≈ c̄(t). Therefore, given this insensitivity, we

will use the values of λ reported here in Chapter 5.
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Figure 5.3: Estimates of the cell proliferation rate. Cell proliferation rate estimates were obtained by counting the number of cells in four different subregions in each
experimental replicate. The location of subregions were located away from the leading edge so that the cell density in that subregion was approximately spatially uniform
giving c(r, t) = c(t). The location and size of the four subregions for assay 1 and assay 2 geometries are shown in (a) and (f), where the scale bar corresponds to 1500 µm.
Images in (b)–(c) and (g)–(h) show snapshots of dimensions 250 µm × 250 µm for experiments with high cell density without Mitomycin–C pretreatment, at t = 0 and t = 72
hours for assay 1 and assay 2 geometries, respectively. The Propidium Iodide staining highlights the cell nucleus and blue crosses indicate cells that were counted. Results in
(d) and (i) compare the mean non–dimensional cell density (n = 4) from experiments with an initial low and high cell density for both assay 1 (red) and assay 2 (green) at
t = 0, 24, 48 and 72 hours, with error bars indicating one standard deviation from the mean. The appropriately parameterised logistic growth curves using the cell proliferation
rate estimates from Table 1 are superimposed in (d) and (i). Results in (e) and (j) show E(λ), given by Equation (5.11), for various values of λ, for experiments at low and
high cell density, respectively.
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We also estimated λ for the experiments with Mitomycin–C pretreatment (Appendix

C) where cell proliferation was assumed to be suppressed. This gave λ < 0.003 /hour,

indicating that the number of cells did not significantly increase or decrease over the

duration of the experiment. This implies that Mitomycin–C pretreatment prevented

proliferation and did not induce cell death.

5.4.3 Predicting the behaviour of spreading cell populations in different geometries

A summary of our estimates of D and λ for both geometries and both initial cell densities

are given in table 5.1. The variability in our estimates are also reported, and the details

of how the variability was determined is given in Appendix C.

We will now consider whether the parameterised mathematical model can accurately

predict the position of the leading edge of the spreading cell populations and the details

of the cell density profiles throughout the entire spreading cell populations.

Position of the leading edge

Population–scale images in Figure 5.4 and Figure 5.5 compare the position of the leading

edge of the cell population for assay 1 and assay 2 with the corresponding predictions from

Equation (5.4) using the appropriate parameter values given in Table 5.1. The solution

of Equation (5.4) is represented in terms of the c(r, t) = 0.019 contour (Appendix C).

Overall, the agreement between the experiments and the model predictions indicate that

the parameter estimates appear to accurately capture the observed differences between

the two geometries, both with and without proliferation, and at all time points considered.

Results in Figure 5.6 compare the time evolution of the observed values of M(t) (Equation

(5.7)) with the corresponding predicted values of M(t) using appropriately parameterised

solutions of Equation (5.4). We note that the prediction of the mathematical model

at t = 24 hours for assay 2 appears to systematically underestimates M(t). This small

discrepancy could be due to our experimental procedure since the imaging process requires

a brief interruption to the incubation conditions when the assay was stopped for imaging.

We anticipate that this disruption would have a negligible impact on those experiments

conducted for a long period of time whereas the impact could be more important for

experiments conducted over a shorter period of time. Despite this discrepancy at one

time point in assay 2, our overall comparison between the observations and the modelling

Assay Initial Diffusivity Proliferation rate Doubling time
Density D (µm2/hour) λ (/ hour) td = ln(2)/λ (hours)

1 low 1700 (1000–1900) 0.056 (0.048–0.065) 12.4 (10.6–14.5)
high 2900 (2400–3200) 0.059 (0.055–0.078) 11.7 (8.8–12.6)

2 low 800 (500–1200) 0.042 (0.037–0.054) 16.5 (12.8–18.7)
high 1500 (1000–1900) 0.041 (0.035–0.055) 16.9 (12.6–19.8)

Table 5.1: Summary of parameter estimates for assay 1 and assay 2 geometries with the uncertainty
given in the parentheses.
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Figure 5.4: Extent of spatial spreading in assay 1 is compared to the corresponding predictions of
the mathematical model. The position of the leading edge of the spreading cell population in assay 1
was determined by analysing images from the experiments initialised with low cell density in (a)–(b),
and high cell density in (c)–(d). Images in rows 1 to 4 show the spreading cell population at t =
0, 24, 48 and 72 hours, respectively. The coloured area corresponds to the spreading cell population.
Experiments with Mitomycin–C pretreatment (motility only) are shown in the first and third column,
while experiments without Mitomycin–C pretreatment (motility and proliferation) are shown in the second
and fourth columns. In each image, we superimpose the c(r, t) = 0.019 contour of the relevant solution of
Equation (5.4) in black. The scale bar corresponds to 1500 µm.
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Figure 5.5: Extent of spatial spreading in assay 2 is compared to the corresponding predictions of the
mathematical model. The position of the leading edge of spreading cell population in assay 2 was deter-
mined by analysing images from the experiments initialised with low cell density in (a)–(b), and high cell
density in (c)–(d). Images in rows 1 to 4 show the spreading cell population at t = 0, 24, 48 and 72 hours,
respectively. The white circular area corresponds to the void region. Experiments with Mitomycin–C pre-
treatment (motility only) are shown in the first and third column, while experiments without Mitomycin–C
pretreatment (motility and proliferation) are shown in the second and fourth columns. In each image, we
superimpose the c(r, t) = 0.019 contour of the relevant solution of Equation (5.4) in red. The scale bar
corresponds to 1500 µm.
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Figure 5.6: Experimental measurements of the position of the leading edge of the spreading population
were compared to the corresponding predictions of the mathematical model in terms of M(t). The mean
radius estimated from experimental images at t = 0, 24, 48 and 72 hours (n = 3) were converted into
a measurement of M(t) using Equation (5.7). The errors bars indicate one standard deviation from the
mean. Results are given for both assay 1 and assay 2 for low (a)–(b) and high (c)–(d) initial cell densities,
respectively. Solid curves represent M(t) calculated using the position of the c(r, t) = 0.019 contour
from the relevant solution of Equation (5.4). Red curves correspond to experiments with Mitomycin–C
pretreatment, whereas blue curves correspond to experiments without Mitomycin–C pretreatment.

predictions indicates that the parameterised model accurately predicts the time–evolution

of the position of the leading edge and reliably captures the differences in our experiments

where cell proliferation was either suppressed or permitted.

Cell density profiles

We now consider comparing the observed cell density profile with the cell density profile

predicted by our parameterised mathematical model. Individual–scale images across a

transect through the spreading population were used to estimate spatial distribution of

the nondimensional cell density. We divided each transect into 20–30 subregions, each

of length approximately 150 µm, along the transect axis. Figure 5.7 (a) and (f) show

the location of the transects relative to the entire population. Snapshots of the images

analysed from experiments with a high initial cell density are given in Figure 5.7 (b)–(e)

for assay 1, and in Figure 5.7 (g)–(j) for assay 2. Image analysis software was used to

count the number of cells in each subregion, and this was converted into an estimate of the

nondimensional cell density, c(t) = c̄(t)/K, which was used to construct the histograms in

Figure 5.8. The appropriately parameterised solutions of Equation (5.4) are superimposed

onto these histograms. Comparing the solutions of Equation (5.4) with the experimental

measurements confirms that the appropriately parameterised model reliably captures the
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Figure 5.7: Location of the subregions used to construct cell density profiles and individual–scale images
showing the locations of cells within these subregions. Experimental cell density profiles were constructed
by counting the number of cells in 20–40 subregions along a transect spanning the spreading cell population.
The relative size and approximate location of these subregions are illustrated in (a) and (f), where the
scale bar corresponds to 1500 µm. Individual–scale images in (b)–(e) and (g)–(j) show snapshots of various
subregions of dimensions 250 µm × 250 µm. The subregions in (b)–(e) correspond to assay 1, and the
value of the radial coordinate r in each of these subregions increases such that (b) is close to the centre
of the well and (e) is located towards the edge of the outward spreading population. The subregions in
(g)–(j) correspond to assay 2, and the value of the radial coordinate r in each of these subregions increases
such that (g) is located close to the leading edge of the inward spreading population and (j) is located
towards the edge of the well. The Propidium Iodide staining highlights the cell nucleus and blue crosses
indicate cells that were counted in the analysis.

entire cell density profiles in assay 1 and assay 2, and for both types of experiments where

cell proliferation was suppressed or not.

5.4.4 Comparing estimates of D and λ in different geometries

We now compare whether estimates of D and λ obtained by calibrating the model in one

particular geometry can be used to predict the extent of spatial spreading in a different

geometry. Results in Figure 5.9 compare the population–scale images at t = 72 hours

with the corresponding predictions of the mathematical model using both the estimates of

D and λ obtained from assay 1 and the estimates of D and λ from assay 2. In all cases we

see that the prediction of the mathematical model, parameterised with the appropriate

estimates of D and λ, provides an excellent match to the observed spreading, as expected.

However, we also show that the prediction of the mathematical model, parameterised

with the alternative estimates of D and λ, provide a very poor prediction. The difference

between the observed position of the leading edge and the prediction of the mathematical

model is most evident in the proliferative populations where the discrepancy is as much

as 500 µm. These comparisons confirm that estimates of D and λ obtained by focusing

on one particular geometry may not be suitable to make predictions in another geometry.

Results in Figure 5.10 present a similar comparison between the observed shape of the

cell density profile near the leading edge and the predictions of the mathematical model.

Cell density profiles within a distance of 2000 µm of the leading edge were constructed

by dividing this region into 9–15 equidistant subregions of length approximately 100 µm.
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Figure 5.8: Cell density profiles comparing the extracted experimental data and the relevant solution
of Equation (5.4) using the parameter estimates in Table 1. Assay 1 results for experiments both with
(dark grey) and without Mitomycin–C (light grey) pretreatment, at t = 0, 24, 48 and 72 hours, are shown
in rows 1 (low initial density) and 3 (high initial density). Equivalent results for assay 2 are shown in
rows 2 (low initial density) and 4 (high initial density). Arrows indicate the direction of the spreading
cell population. The red (motility only) and blue (motility and proliferation) curves superimposed on all
results correspond to the relevant solutions of Equation (5.4).

Image analysis software was used to count the number of cells in each subregion, and

this count was converted into a nondimensional cell density, c(t) = c̄(t)/K. Again, our

results confirm that the predictions of the mathematical model, parameterised with the

appropriate estimates of D and λ, provide a good match to the shape and position of

the observed density profiles. In contrast, the prediction of the mathematical model,

parameterised with the alternative estimates of D and λ, fail to match either the position

or shape of the leading edge. Therefore, our results suggest that great care should be

taken when estimating D and λ in one situation and then applying the parameterised

model to make predictions in another situation.

Our data describing the shape of the cell density profile in Figure 5.10 can also be used

to provide a separate estimate of D by matching the solution of Equation (5.4) with
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Figure 5.9: Predicting the spread of a cell population using estimates of D and λ from a different
geometry: comparing the location of the leading edge. Population–scale images correspond to experiments
at t = 72 hours are given in (a)–(d) for a low initial cell density, and in (e)–(h) for a high initial cell density.
Experiments with Mitomycin–C pretreatment (motility only) are shown in the first and third columns,
while experiments without Mitomycin–C pretreatment (motility and proliferation) are shown in the second
and fourth columns. In each image we superimpose the c(r, t) = 0.019 contour of the relevant solution
of Equation (5.4) using the parameter estimates for assay 1 (red) and for assay 2 (blue). The scale bar
corresponds to 1500 µm.

this data for the experiments where proliferation was suppressed. Additional results

(Appendix C) confirm that estimates of D obtained using this approach are very similar

to our results reported in Section 5.4.1 where we focused on the leading edge data only.

Most importantly, when we estimate D using the shape of the cell density profiles we

find a very similar discrepancy between our estimates of D when we use the density

profiles from assay 1 compared to the density profiles from assay 2. Although we have

estimated D using both the density profiles and the leading edge data separately, we chose

to focus on the results associated with the leading edge data since this method is simpler

to implement since it avoids the need for counting individual cells and constructing cell

density profiles.

5.5 Discussion

Various approaches that attempt to investigate how populations of cells spread typically

neglect the influence of the assay geometry [37, 77]. In this work, we used a circular

barrier assay to analyse the spreading behaviour of a fibroblast cell population in two

distinct geometries; (i) assay 1 resembled a tumour–like outward spreading process, and

(ii) assay 2 resembled a wound–like inward spreading process. To quantify the differences

between these assays we used a combined experimental and a mathematical modelling

approach to estimate D from experiments where cell proliferation was suppressed. We

then separately estimated λ from experiments where proliferation was not suppressed.
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Figure 5.10: Predicting the spread of a cell population using estimates of D and λ from a different
geometry: comparing the cell density profile at the leading edge of the spreading population. Cell density
profiles correspond to experiments at t = 72 hours are given in (a)–(d) for a low initial cell density, and
in (e)–(h) for a high initial cell density. Experiments with Mitomycin–C pretreatment (motility only) are
shown in the first and third columns, while experiments without Mitomycin–C pretreatment (motility and
proliferation) are shown in the second and fourth columns. In each image, we superimpose the solution
of Equation (5.4) using the parameter estimates for assay 1 (red) and for assay 2 (blue).

Given our estimates of D and λ, we then independently verified that our parameterised

model could predict both the position of the leading edge and the shape of the cell density

profiles in both assays for two different initial densities.

Our results suggest that assay geometry can affect the behaviour of spreading cell popu-

lations since our estimate of D for assay 2 was up to 50% lower than our estimate of D

for assay 1, while our estimate of λ was up to 30% lower for assay 2 compared to assay

1. This observation is important because most experimental and mathematical modelling

studies of in vitro cell spreading typically focus on one geometry only and make the im-

plicit assumption that observations and measurements in one geometry are relevant for

others. Our results, highlighted in Figure 5.9 and Figure 5.10, indicate that this implicit

assumption can produce misleading results.

This work highlights the importance of using mathematical modelling tools to quantify the

contributions of cell motility and cell proliferation in driving the observed spreading be-

haviour. For example, standard measures of cell spreading, such as Equation (5.7), do not

provide any detailed information regarding how the underlying mechanisms contribute to

the observed spreading. Furthermore we have shown that these standard measures cannot

be compared between different geometries since comparing estimates of M(t) for assay

1 with estimates of M(t) for assay 2 is not insightful. Our analysis of the data using

Equation (5.7) could have been performed in terms of the observed area, A(t), instead of

the observed radius, R(t) [7, 94, 137, 161]. However, regardless of whether M(t) is mea-

sured in terms of R(t) or A(t) we find the same trends in the data which means that
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our conclusions about M(t) are relevant regardless of these details. In contrast, a math-

ematical modelling approach that explicitly represents the underlying cell motility and

cell proliferation mechanisms can overcome this difficulty since we can extract, and quan-

tify, detailed information about both the cell motility and cell proliferation mechanisms

separately.

The focus of our work has been to assess quantitative differences between two different

assay geometries. It is also worthwhile to discuss some qualitative differences between

assay 1 and assay 2. We found that the experimental procedure for assay 1 was more

straightforward to implement and analyse for two reasons. First, assay 2 requires the

use of a greater number of cells in the experimental procedure which means that discrete

simulations are more time consuming to perform. Second, we found that it is more

difficult to initialise the cells uniformly outside the barrier compared to inside the barrier.

Despite this difficulty, we always ensured that all experiments were initiated as uniformly

as possible by performing a large number of experiments and discarding all those results

in which the cells were not uniformly initialised.

To illustrate the consequences of our study, we confirmed that estimates of D and λ

from one particular geometry could give misleading results by applying the mathematical

model parameterised with these estimates to make a prediction of the cell spreading in

the other geometry that we considered. These results confirmed that the solution of our

mathematical model with estimates of D and λ from assay 1 failed to predict the position

of the leading edge and the shape of the density profile in assay 2. Similarly, we confirmed

that the solution of the mathematical model with estimates of D and λ from assay 2 failed

to predict the position of the leading edge and the shape of the density profile in assay 1.

A key assumption in this work is that the cell spreading always took place in a two–

dimensional monolayer for the entire duration of the experiments. Initially, we also per-

formed experiments where cells were placed into and around the barriers at a higher

density than we reported here. In these additional experiments we observed that cells did

not form a monolayer due to the high initial density. These additional experiments were

not analysed here since the two–dimensional model is inappropriate.

One limitation of our study is that we have not resolved the question of why cells appear to

behave differently in different geometries. One possible mechanism that could explain our

observations is that the total number of cells initially present in assay 2 is always larger

than in assay 1. Assuming that each cell consumes nutrients at a particular rate, we might

expect that the supply of nutrients in assay 2 would be depleted faster than in assay 1

which is consistent with our observations that D and λ are apparently smaller in assay

2. To test this hypothesis we suggest that additional measurements of the availability

of nutrients could be made and that these measurements could be incorporated into

an extension of the mathematical model where D and λ explicitly depend on nutrient

availability. This suggestion could be important since many mathematical models of

collective cell spreading make the implicit assumption that the supply of nutrients is

unlimited [20, 85, 86, 113]. Other options for extending this work are to include further
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experiments to examine the role of other geometries, such as using barriers with different

curvatures. Unfortunately the barriers that we used in this study are fixed in shape and

so a different experimental apparatus would be required to study such an extension.
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Chapter 6

Assessing the role of spatial correlations in collective cell spreading
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the role of spatial correlations during collective cell spreading Sci. Rep. 4, 5713 (2014).

Abstract

Spreading cell fronts are essential features of development, repair and disease processes.

Many mathematical models used to describe the motion of cell fronts, such as Fisher’s

equation, invoke a mean–field assumption which implies that there is no spatial structure,

such as cell clustering, present. Here, we examine the presence of spatial structure using

a combination of in vitro circular barrier assays, discrete random walk simulations and

pair correlation functions. In particular, we analyse discrete simulation data using pair

correlation functions to show that spatial structure can form in a spreading population

of cells either through sufficiently strong cell–to–cell adhesion or sufficiently rapid cell

proliferation. We analyse images from a circular barrier assay describing the spreading

of a population of MM127 melanoma cells using the same pair correlation functions.

Our results indicate that the spreading melanoma cell populations remain very close to

spatially uniform, suggesting that the strength of cell–to–cell adhesion and the rate of cell

proliferation are both sufficiently small so as not to induce any spatial patterning in the

spreading populations.

99
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6.1 Background

Moving fronts of cells are frequently observed in embryonic development, tissue repair and

cancer progression [20,44,85,89,116,152]. In vitro experiments, such as scratch or circular

barrier assays, play an important role in identifying and quantifying the mechanisms that

control the motion of such cell fronts [7, 78, 86, 113, 125, 137–139]. Standard continuum

models, such as Fisher’s equation or generalisations thereof, are often used to describe

the motion of in vitro cell fronts [86, 101, 113, 116, 125, 132, 139]. However, these models

invoke a mean–field assumption implying that there is no underlying spatial structure,

such as cell clustering, present in the system [80,127].

It is well known that strong cell–to–cell adhesion or sufficiently rapid cell proliferation

can lead an initially uniform population of cells to become clustered over time [2, 127].

Our previous work has compared averaged discrete simulation data with predictions from

standard mean–field descriptions of these discrete simulations for systems where either

strong adhesion [67] or rapid proliferation is present [12,126]. These previous comparisons

have confirmed that standard mean–field models fail to accurately predict the averaged

behaviour of the discrete model which implies that the usual mean–field assumption is

inappropriate where either strong cell–to–cell adhesion or rapid proliferation is present

[12, 67, 126, 127]. We do not aim to repeat these kinds of comparisons between averaged

discrete simulation data and the predictions of a mean–field model in this work. Instead,

we analyze a detailed experimental data set with the aim of demonstrating how the

presence of spatial structure, such as cell clustering, can be identified and quantified.

Unlike mean–field models, individual–based models explicitly incorporate spatial correla-

tion effects [12,88,126] and allow us to visualise the cell spreading process in a way that

is directly comparable with experimental images [27, 40, 125, 137]. However, individual–

based models are computationally expensive and many realisations are required to obtain

reliable statistics, meaning that it is often difficult to simulate realistic biological sys-

tems [88]. Mean–field models are more amenable to analytical exploration and hence can

be advantageous over individual–based models provided that the mean–field assumption

is an accurate representation of the relevant system [88,127].

It is not always clear which modelling framework is appropriate for a given context without

first testing the underlying model assumptions. For example, spreading populations of

3T3 fibroblast cells do not generally exhibit visible cell clustering, whereas populations

of MDA MB 231 breast cancer cells appear to be highly clustered [125, 127]. At first

glance, it may appear reasonable to use a mean–field model to describe the spreading of

a population of 3T3 cells and a discrete model to describe the spreading of a population

of MDA MB 231 cells. However, recent work has indicated that the presence or absence

of spatial correlations can be difficult to detect visually and so our use of a mean–field

model for 3T3 cell population spreading may, in fact, be inappropriate [2]. Consequently,

applying diagnostic tools which are capable of identifying spatial structure in a given

cell population may provide insights into which modelling frameworks are suitable for

exploring a particular system.
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Several methods have been developed to assess the degree of spatial correlations in pop-

ulations including measurements of the coordination number, Ripley’s K function and

Moran’s I statistic [14, 54, 110, 111, 126]. A specific measure of spatial correlations is the

pair correlation function, F (r), which describes how the probability of finding two objects

at a given distance, r, relates to the the probability of finding two objects, separated by

the same distance, in a spatially uniform population [2,14,127]. Pair correlation functions

are a useful tool as they can be used to distinguish between spatial patterns, such as ag-

gregation or segregation, at various length scales [2,14,103]. In particular, pair correlation

functions have been successfully used to distinguish differences between spatial patterns

of benign and malignant cells [91].

In this work, we quantify the extent to which the location of individual MM127 melanoma

cells [102,107,154] are spatially correlated during an in vitro cell spreading assay. We per-

form several in vitro experiments where cells are initially placed in a circular barrier and

then the population spreads outwards after the barrier is lifted [125, 137]. In particular,

we consider a detailed experimental procedure where all experiments are repeated under

two different conditions: first, where cells are treated to prevent proliferation, and second,

where cell proliferation is permitted. This is important because MM127 melanoma cells

are known to be motile, adhesive and proliferative [137], and our experimental procedure

allows us to examine the effects of proliferation separately from adhesion. This therefore

allows us to determine whether spatial correlations are present, and, if so, whether the

spatial correlations are associated with cell proliferation or cell–to–cell adhesion [125,137].

To assess the degree of spatial correlations in our experimental cell populations, we calcu-

late the pair correlation function developed by Binder and Simpson [14], which accounts

for volume exclusion (crowding) and is relevant when considering biological cells which

cannot occupy the same location in space. We also examine the conditions under which

spatial structure can form in a spreading cell population using discrete simulations that

mimic the spreading melanoma cell population. Using the pair correlation function we

confirm that the distribution of cells is initially spatially uniform. Finally, we use the pair

correlation function to determine whether any spatial correlations over short length scales

emerge during the cell spreading process. All experiments are repeated for two different

initial cell densities. Our results confirm that the degree of cell motility, cell proliferation

and cell–to–cell adhesion in the spreading melanoma cell populations does not lead to

significant spatial correlations.

6.2 Methods

6.2.1 Cell culture

Human malignant melanoma cells (MM127, [102,107,154]) were cultured with 10% fetal

calf serum (FCS), RPMI–1640, 2mM L-Glutamine, 23mM HEPES (Invitrogen, Australia)

and 1% v/v penicillin/streptomycin (Invitrogen, Australia). Prior to confluence, cells

were lifted using 0.05% trypsin–EDTA(1×) (Invitrogen, Australia) and viable cells were

counted using a Trypan blue exclusion test and a haemocytometer.
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6.2.2 Circular barrier assay

The experimental procedure have been reported in detail previously [125, 137]. Metal–

silicone barriers (Aix Scientifics, Germany) were cleaned, sterilised, dried and placed in

the centre of each well of a 24–well tissue culture plate. Experiments were performed

using two different cell densities: 20,000 and 30,000 cells per well. Cell proliferation

was suppressed in half of all cell solutions by adding 10 µg/mL Mitomycin–C (Sigma

Aldrich, Australia) for one hour at 37 ◦C prior to transfer to the wells [112]. 100 µL

of cell suspension was carefully inserted into the barrier to ensure that the cells were

approximately evenly distributed. Cells were allowed to settle and attach for four hours

in a humidified incubator at 37 ◦C, 5% CO2 and 95% air. Assays commenced with the

removal of the barrier and the cell layer was washed with warm serum free medium

(culture medium without FCS) and replaced with 0.5 mL of culture medium. Cultures

were incubated at 37 ◦C in 5% CO2 and 95% air for t = 0 and 48 hours. Each assay, for

each time point, was repeated three times.

6.2.3 Image acquisition and analysis

The cell nuclei were stained using 1 mg/ml Propidium Iodide (Invitrogen, Australia) in

phosphate buffered saline and images were acquired using a Nikon Eclipse Ti inverted

microscope fitted with a Nikon digital camera. Overlapping adjacent images were used

to reconstruct a transect images detailing the location and size of individual cell nuclei

along the spreading cell population. MATLAB’s Image Processing Toolbox [90] was used

to convert the images into black and white by thresholding the image (rgb2gray, imadjust,

im2bw). Images were discretised onto the pair correlation lattice by rescaling the image

so that each square pixel corresponds to a length of δ = 1 µm (imresize). White pixels

correspond to unoccupied lattice sites and black pixels indicate occupied lattice sites.

Each cell on the pair correlation lattice is composed of several black pixels. In all cases,

a visual check was performed to validate that all cells had been correctly identified using

the software. For discrete simulations, the simulation lattice was rediscretised onto the

pair correlation lattice by scaling the lattice by a factor of 18 such that a simulated cell

occupying one lattice site on the simulation lattice instead occupied 18 × 18 = 324 lattice

sites on the pair correlation lattice and is composed of 324 black pixels.

6.2.4 Pair correlation function

Pair correlation functions were computed by considering pair distances between all black

pixels on the pair correlation lattice for both experimental images and discrete simulation

data [14]. The pair correlation lattice is a finite square lattice with integer coordinates,

each site corresponding to the centre of a pixel and assigned coordinates (r, w), where

r ∈ {1, 2, · · · , R} is a coordinate on an axis aligned in the direction of outward spreading

and w ∈ {1, 2, ...W} in the direction perpendicular to the direction of outward spreading.
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In our calculations we used R = W . The occupancy of black pixels on the pair correlation

lattice is captured by the indicator function,

M(r, w) =





0 if site (r, w) is vacant,

1 if site (r, w) is occupied.

The number of black pixels (n) at any given time and the corresponding pair correlation

density (ρ) are given by

n =

W∑

w=1

R∑

r=1

M(r, w), ρ =
n

RW
.

We define the set of paired black pixels as

ψ = {(a, b)|wa = wb, ra 6= rb, M(ra, wa) = M(rb, wb) = 1},

where a and b denote generic pixels with coordinates (ra, wa) and (rb, wb), respectively.

The subset of black pixel pairs at distance i (1 ≤ i ≤ R) is

Si = {(a, b)||ra − rb| = i, (a, b) ∈ ψ}.

The number of elements in the subset Si indicate the counts of pair distances

cr(i) = |Si| for i = 1, ..., R.

The normalisation factor is given by

ĉr(i) = W 2(R − i)ρρ̂,

where ρ̂ corresponds to the conditional probability of selecting the second black pixel in

the black pixel pair given that the probability of selecting the first black pixel is the usual

density ρ,

ρ̂ =
n− 1

RW − 1
.

The pair correlation function, F (i), is given by

F (i) =
cr(i)

ĉr(i)
. (6.1)

The pair correlation function is calculated using N subregions giving an average pair

correlation function F (r) =

(
N∑

n=1

Fn(r)

)
/N . If F (r) = 1, the probability of finding two

black pixels at a given distance, r, is equal to the probability of finding two black pixels

at the same distance in a spatially uniform distribution of objects [2,14]. If F (r) < 1, the

probability of finding two black pixels at a given distance, r, is less than the probability

of finding two black pixels at the same distance in a spatially uniform distribution of

objects [2, 14]. Alternatively, if F (r) > 1, the probability of finding two black pixels at a
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given distance, r, is greater than the probability of finding two black pixels at the same

distance in a spatially uniform distribution of objects [2, 14].

6.3 Results

6.3.1 Visual inspection of spreading MM127 melanoma cell populations does not

provide insights into possible spatial correlations

Circular barrier assays were conducted to examine the role of spatial correlations in a

spreading population of MM127 melanoma cells over a period of t = 48 hours [137]. The

exact nature of the experiments was described in the methods section. Briefly, cells were

initially placed inside a circular barrier and the barrier was then lifted allowing the cell

population to spread outwards. To distinguish whether cell proliferation has a signifi-

cant effect on the presence of spatial correlations in the cell population, we performed

experiments with Mitomycin–C pretreatment to suppress cell proliferation [112] and then

repeated the experiments without Mitomycin–C pretreatment.

Figure 6.1 shows images of the entire spreading cell populations, as well as the relative

location and size of various square subregions, each of dimension 600 µm × 600 µm,

located both in the centre of the spreading population [Figure 6.1 (a)] and towards the

edge of the spreading population [Figure 6.1 (e)]. Our analysis will focus on cell behaviour

in these subregions. We also provide images, in Figure 6.1, showing the distribution of

individual cells within smaller subregions, of dimensions 300 µm × 300 µm, at the centre

of the spreading cell population [Figure 6.1 (b–d)] and at the edge of spreading cell

population [Figure 6.1 (f–h)]. For the purposes of analysis, R and W denotes the length

and width of the subregion, respectively. Here, r corresponds to the radial distance in

the direction of outward spreading (1 ≤ r ≤ R) and w corresponds to the direction

perpendicular to r (1 ≤ w ≤ W ). We expect an even distribution of individual cells at

t = 0 hours since the experiments were initialised by placing cells as uniformly as possible

inside the circular barrier [137]. Examining the snapshots at t = 0 hours, the cells appear

to be spatially uniform with no visual evidence of clustering. However, without further

analysis, it is difficult to conclude whether the cells are clustered or not [2].

If we compare results at t = 48 hours in Figure 6.1 (c–d) and (g–h), after cells have had

the opportunity to migrate, adhere to other cells, and to proliferate, the cell populations

still appear to be relatively uniform. However, it is difficult to conclude whether the cells

are clustered or not simply from inspecting these snapshots. Comparing the snapshots

where cell proliferation is permitted to those where cell proliferation is absent, it is clear

that cell proliferation dramatically increases the density of cells but it is unclear whether

there is any major change in the extent of cell clustering. Furthermore, comparing the

snapshots of cells within the subregions located at the centre of the population with the

subregions located towards the edge indicates that there is very little difference between

the distributions of cells in these two different locations. Although there is no clear

visual indication of spatial correlations, previous work [2,14] suggests that further analysis
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Figure 6.1: Experimental subregions of spreading MM127 melanoma cell populations. The
role of spatial correlations in spreading MM127 cell populations was investigated by considering circular
barrier assays initiated with 30,000 cells. For each experiment we calculated the pair correlation functions
in four subregions, each of dimension 600 µm × 600 µm, at the centre of the spreading cell population
and in four subregions, each of dimension 600 µm × 600 µm, at the edge of the spreading cell population.
The relative size and approximate location of these subregions is shown in (a) and (e), where the scale
bar corresponds to 1,500 µm. Subregions showing the location of individual cells are shown at t = 0 hours
in (b) and (f), at t = 48 hours for experiments without cell proliferation in (c) and (g), and at t = 48
hours for experiments with cell proliferation in (d) and (h). Note that the subregions in (b–d) and (f–h)
are of dimension 300 µm × 300 µm. We describe the geometry of each subregion using coordinates (r, w),
such that r indicates the direction of outward spreading and w measures the width of the subregion. The
subregions in (a) and (e) correspond to 1 ≤ r ≤ 600 µm and 1 ≤ w ≤ 600 µm, while the regions in (b–d)
and (f–h) correspond to 1 ≤ r ≤ 300 µm and 1 ≤ w ≤ 300 µm.

should be undertaken before we can be certain that there is no underlying spatial structure

present in the MM127 cell population.

6.3.2 Discrete simulations of the experimental process provide insight into possible

mechanisms inducing spatial correlations

Before we analyse the experimental images to quantify the role of spatial correlations, we

first investigate how spatial correlations may emerge in the spreading MM127 melanoma

cell populations by simulating the barrier assay using a discrete random walk model that

incorporates cell motility, cell–to–cell adhesion and cell proliferation. We consider a two–

dimensional model since the MM127 melanoma cell population spreads as a monolayer

for the duration of the experiments [137].

In this work, we considered two types of lattices; (i) a simulation lattice, and (ii) a pair

correlation lattice. The simulation lattice, with lattice spacing ∆, is used to perform

random walk simulations of the barrier assay. This involves modelling the spreading of

a population of simulated cells, which mimic real cells in the experiments, undergoing

motility events modulated by cell–to–cell adhesion, and proliferation events. Here, ∆ is

an indication of the average area that each individual cell occupies on the tissue culture
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plate. We chose to focus on the area occupied by the nucleus since the total area occupied

by the cell fluctuates whereas the area occupied by the nucleus does not. To determine ∆,

we measured the area of the nucleus and converted this into an estimate of the diameter

of the nucleus (∆ ≈ 18 µm, Appendix D).

The pair correlation lattice is used to compute the pair correlation function on a finer

lattice, with lattice spacing δ = 1 µm. Both experimental images and discrete simulation

images are discretised onto the finer pair correlation lattice by resizing the dimensions of

the image such that each pixel is 1 µm × 1 µm (Appendix D). Each pixel on the pair

correlation lattice is either vacant (white pixel) or occupied (black pixel). Each black

pixel is an object on the pair correlation lattice and corresponds to part of a cell in the

experiments or part of a simulated cell in the discrete simulations. The advantage of

discretising cells onto a pair correlation lattice using several black pixels (δ ≪ ∆) as

opposed to discretising with one cell per lattice site is that we avoid having to select the

location of individual cells on the lattice as this is not always an accurate representation

of the original location of cells in the experiments [14]. The pair correlation signal is

computed for all pair distances on the pair correlation lattice between 1 µm and 600

µm. For specific details of the calculation of the pair correlation function, F (r), we

refer the reader to the methods section. When we present our estimates of the pair

correlation function, F (r), we focus on pair distances in the interval 1∆ ≤ r ≤ 5∆ (18

µm ≤ r ≤ 90 µm) since we are primarily interested assessing spatial correlations over small

to intermediate length scales [6,67], but no smaller than the diameter of the nucleus [14].

Random walk simulations are initialised to mimic the experimental procedure where either

20,000 or 30,000 cells are placed, uniformly at random, inside the circular barrier. Each

circular barrier, of diameter 6,000 µm, is placed into the centre of a well on a tissue culture

plate. The well has a diameter of 15,600 µm. To mimic this geometry in the discrete

simulations we place either 20,000 or 30,000 simulated cells, uniformly at random, inside

a circular region of diameter of 334 ≈ 6,000/18 lattice sites. This circular region is located

approximately in the centre of a square lattice of side length 867 ≈ 15,600/18 lattice sites.

A random sequential update algorithm is used to perform the discrete simulations [24].

If there are S(t) simulated cells at time t, during the next time step of duration τ , S(t)

simulated cells are selected at random, one at a time, and given the opportunity to move

with probability Pm(1−q)a. Here, 0 ≤ Pm ≤ 1 is the probability that an isolated simulated

cell can move a distance ∆ during the time interval τ , 0 ≤ q ≤ 1 is a measure of cell–to–

cell adhesion strength, and a = 0, 1, 2, 3 or 4 is the number of occupied nearest–neighbour

lattice sites of that simulated cell. If q = 0, there is no cell–to–cell adhesion and nearest

neighbour simulated cells do not adhere to each other. As q increases, the strength of cell–

to–cell adhesion increases, and the motion of nearest–neighbour simulated cells is reduced

as the cells adhere more tightly to each other. A simulated cell at position (i∆, j∆) steps

to (i∆±∆, j∆) or (i∆, j∆±∆) with each target site chosen with equal probability of 1/4.

Since our model is an exclusion process, which explicitly incorporates crowding effects, any

attempted motility event where the target site is occupied will be aborted. Once the S(t)

potential motility events have been assessed, another S(t) simulated cells are selected
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at random, one at a time, and given the opportunity to proliferate with probability

0 ≤ Pp ≤ 1. If the opportunity to proliferate is successful, the proliferative simulated cell

attempts to deposit a daughter simulated cell at (i∆±∆, j∆) or (i∆, j∆±∆) with each

target site chosen with equal probability of 1/4. Again, any attempted proliferation event

where the target site is occupied will be aborted. We relate the parameters in the discrete

model, Pm and Pp, to standard measures of the cell diffusivity, D = Pm∆2/(4τ), and

the cell doubling time, td = τ lne(2)/Pp [137]. Our previous work, which did not include

any measurement of spatial correlation, modelled the spread of MM127 melanoma cell

population and indicated that we have D ≈ 248 µm2/hour [137].

To understand how different mechanisms give rise to different spatial correlations in the

discrete model, we simulated the spreading MM127 cell populations with varying degrees

of cell motility (D), cell–to–cell adhesion strength (q) and cell proliferation (td). Figure

6.2 shows several snapshots from the discrete model after t = 48 hours. In each snapshot,

the initial distribution of simulated cells is shown as an inset. The corresponding average

pair correlation functions, F (r), calculated using Equation (6.1) (methods section), are

shown in Figure 6.3. In all cases, we analysed four subregions, of dimension 600 µm ×
600 µm, both at the centre of cell population, as indicated by Figure 6.3 (a), and four

subregions at the edge of the cell population, as shown in Figure 6.3 (e). Each spreading

experiment was simulated using three identically–prepared realisations of the discrete

model, giving a total of N = 3× 4 = 12 identically prepared subregions. Pair correlation

signals, F (r), were computed from the discrete simulation data using exactly the same

procedure that we apply to the experimental images, as described in the following section.

The simulation lattice was resized onto the pair correlation lattice so that each lattice site

corresponds to a physical length of δ = 1 µm. This means that each square simulated cell

is composed of 18 × 18 = 324 black pixels. Additional results indicate that the choice of

δ is relatively insensitive provided that δ < ∆ (Appendix D).

Results in Figure 6.2 (b–c) and (g–h) mimic experiments with Mitomycin–C pretreatment

in which cell proliferation is suppressed by setting Pp = 0. Here, simulated cells undergo

cell motility events modulated by cell–to–cell adhesion, but do not proliferate. Four

subregions, each of dimension 600 µm × 600 µm, were considered at the centre of the cell

population [Figure 6.2 (a)] and at the edge of the cell population [Figure 6.2 (f)]. The

discrete snapshot at t = 0 hours, shown as an inset in Figure 6.2 (b), appears spatially

uniform, and this is confirmed by the corresponding pair correlation signal in Figure 6.3

(b) which shows that F (r) ≈ 1 between 1∆ ≤ r ≤ 5∆. If spatial correlations are present,

we expect the pair correlation signal to deviate from unity [14].

Discrete snapshots, after t = 48 hours, are shown in Figure 6.2 for simulations with weak

cell–to–cell adhesion [Figure 6.2 (b) and (g)] and strong cell–to–cell adhesion [Figure

6.2 (c) and (h)]. Visually we see that there is a significant difference in the spatial

distribution of individual simulated cells when the strength of cell–to–cell adhesion is

high. Here, simulated cells form clusters of around 5–15 individuals. In contrast, if we

consider the case with weak cell–to–cell adhesion, the spatial distribution of individual

simulated cells appears to be uniform and there are very few clusters. The corresponding
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Figure 6.2: Discrete simulation snapshots with different combinations of cell motility, cell–

to–cell adhesion and cell proliferation mechanisms. The emergence of spatial correlations in a
spreading cell population was examined by simulating the biological process using a discrete random
walk model with different combinations of adhesion, motility and proliferation. For each simulation we
calculated the pair correlation functions in four subregions, each of dimension 600 µm × 600 µm, at the
centre of the spreading cell population (a–e) and in four subregions, each of dimension 600 µm × 600 µm,
at the edge of the spreading cell population (f–j). The relative size and approximate location of these
subregions is shown in (a) and (f), where the scale bar corresponds to 1,500 µm. Simulations are performed
on the simulation lattice where the lattice spacing, ∆ = 18 µm, corresponds to the average diameter of
the nucleus. Results in (b–c) and (g–h) correspond to simulations at t = 0 hours where 30% of simulation
lattice sites are initially occupied with simulated cells, uniformly at random. While results (d–e) and (i–j)
are initially occupied at 5%. The initial distribution of simulated cells, for each simulation, is shown as
an inset in red. The size of the inset is approximately 550 µm × 550 µm. Simulation snapshots with no
proliferation and weak adhesion (q = 0.3) are shown in (b) and (g) and snapshots with no proliferation
and strong adhesion in (c) and (h). All results with no proliferation include unbiased motility where
D = Pm∆2/4τ = 248 µm2/hour. Snapshots in (d) and (i) illustrate simulations with no adhesion and
slow proliferation (td = 23 hours). While results with no adhesion and rapid proliferation (td = 12 hours)
are shown in (e) and (j). Results with proliferation are simulated using D = 248 µm2/hour for td = 23
hours and D = 23 µm2/hour for results with td = 12 hours. Results in row 1 and 2 correspond to pair
correlation signals computed at the centre and at the edge of the cell population, respectively.

pair correlation signals for each case, for subregions located at the centre of the cell

population [Figure 6.3 (c)], confirm our visual observations since F (r) fluctuates around

unity for simulations with weak cell–to–cell adhesion and deviates significantly from unity

for simulations with strong cell–to–cell adhesion. The pair correlation signal for strong

cell–to–cell adhesion indicates that F (1∆) > 1 meaning that pairs of simulated cells at a

distance of 1∆ are more probable than pairs of objects at the same distance in a spatially

uniform population. The pair correlation signal at the edge of the population [Figure 6.3

(g)] shows the same trend and illustrates that there is relatively little difference between

the spatial distribution of cells at the centre and at the edge of the spreading population.

Similar results can be observed in Figure 6.2 (d–e), (i–j) and Figure 6.3 (d) and (h)

where we show the results of simulations that mimic experiments without Mitomycin–C

pretreatment and where cell–to–cell adhesion is not present (q = 0). Here, simulated

cells undergo cell motility and cell proliferation events. In this case, we compare slow

and rapid proliferation mechanisms where we observe that rapid cell proliferation leads

to clustering. Here, F (1∆) > 1 and F (2∆) > 1, indicating that simulated cells at pair
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Figure 6.3: Different mechanisms in discrete simulations lead to varying pair correlation

signals. Average pair correlation signals were computed from discrete simulations with varying degrees of
cell–to–cell adhesion strength and cell proliferation in subregions, of dimension 600 µm × 600 µm, located
at the centre and at the edge of the spreading simulated populations. The relative size and approximate
location these subregions are shown in (a) and (e), respectively, where the scale bar corresponds to
1,500 µm. Simulations are performed on the simulation lattice where the lattice spacing, ∆ = 18 µm,
corresponds to the average diameter of the nucleus. Solid lines in (b–d) and (f–h) correspond to simulations
without cell proliferation in which 30% of simulation lattice sites are initially occupied with simulated
cells, uniformly at random. Dotted lines correspond to simulations with proliferation in which 5% of
simulation lattice sites are initially occupied. Average pair correlation signals, constructed using N = 12
subregions from three replicate simulations, are shown at t = 0 hours in (b) and (f), at t = 48 hours for
simulations without proliferation in (c) and (g), and at t = 48 hours for simulations with proliferation
in (d) and (h). Pair correlation signals in (c) and (g) are shown for simulations with no proliferation
and weak cell–to–cell adhesion (q = 0.3, red) and strong cell–to–cell adhesion (q = 0.7, blue). All results
without proliferation include unbiased motility where D = Pm∆2/4τ = 248 µm2/hour. Pair correlation
signals for simulations with no adhesion and slow proliferation (td = 23 hours, red) and rapid proliferation
(td = 6 hours, blue) are shown in (d) and (h). Results with proliferation are simulated using D = 248
µm2/hour for td = 23 hours and D = 23 µm2/hour for results with td = 12 hours. Results in row 1 and
2 correspond to pair correlation signals computed at the centre and at the edge of the cell population,
respectively.

distances between 1∆ ≤ r ≤ 2∆ are more likely to occur than pairs of objects, separated

by the same distance, in a spatially uniform population. To highlight the differences

between slow and rapid proliferation, we obtained the results in Figure 6.2 (d–e) and

Figure 6.2 (i–j) by initiating the simulations with a smaller number of simulated cells

(5,000) than in the experiments. Furthermore, we also reduced the degree of motility in

the simulations where we considered rapid proliferation. These differences were required

otherwise the lattice becomes fully confluent after t = 48 hours with rapid proliferation

and we note that a confluent monolayer of simulated cells has, by definition, no spatial

structure. Therefore, reducing the initial number of cells and their motility rate allowed

us to compare the spatial structure present at t = 48 hours before the lattice became

confluent. The cell doubling time for MM127 melanoma cells is approximately 23 hours

meaning that the total cell number will have approximately tripled over t = 48 hours in a
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modestly crowded environment. Hence, we expect in our experiments that the cell density,

in regions away from the edge of cell population, will be approaching confluence by t = 48

hours. This means that any spatial correlations present in experiments with Mitomycin–C

pretreatment could be masked by proliferation when it is not suppressed. This observation

emphasises the importance of considering different experimental conditions to distinguish

between the effects of different mechanisms [125,137].

Our discrete simulation investigation indicates that cell populations where strong cell–to–

cell adhesion or rapid cell proliferation are present are associated with spatial correlations

and clustering which implies that the mean–field assumption is inappropriate to describe

such systems [2]. The failure of the mean–field assumption to predict the averaged discrete

behaviour for systems with either strong adhesion or rapid proliferation has been examined

previously [12,67,126]. Although we know in advance that cell–to–cell adhesion and cell

proliferation plays a role in governing the spreading of MM127 melanoma cell populations

[137], without any kind of analysis of the spatial distribution of individual cells within

the population it is unclear whether these mechanisms are sufficiently strong to induce

significant spatial correlations and clustering [137].

6.3.3 Spatial correlations are not present in spreading MM127 melanoma cell

populations

Our experimental snapshots in Figure 6.1 did not provide any conclusive visual evidence

about whether spatial correlations may be present in the spreading melanoma cell popu-

lations. To quantitatively determine the extent to which the cell populations are spatially

correlated, we computed the average pair correlation signals for all experiments using the

same procedures applied to the discrete simulations, as discussed in the methods section.

For each set of experiments, we analysed four subregions, each of dimension 600 µm × 600

µm, at the centre of cell population, as indicated by Figure 6.1 (a), and four subregions,

each of dimension 600 µm × 600 µm, near the edge of the cell population, as shown in

Figure 6.1 (e). Each experiment was repeated three times giving a total of N = 3×4 = 12

subregions. We note that each experimental subregion produces a similar pair correlation

signal, F (r), over all pair distances considered in this work. Supplementary results in Ap-

pendix D illustrate that for each experiment and location considered, there are no obvious

differences in the pair correlation signal across replicates or subregions. Hence, we treat

each realisation as an identically prepared, independent subregion, and we determine the

average pair correlation function, F (r) =

(
N∑

n=1

Fn(r)

)
/N , where N = 12.

Average pair correlation signals for all sets of experiments are shown in Figure 6.4. Given

that our experiments were initiated by placing cells as uniformly as possible inside the

circular barrier at t = 0 hours, we expect that the pair correlation signal will fluctuate

around unity (F (r) ≈ 1) for all pair distances. The signals at t = 0 hours in Figure 6.4

(b) and (f) confirm that the cells are initially distributed uniformly at random inside the

barrier both at the centre of the cell population and at the edge of the cell population.

Results after t = 48 hours, for subregions located at the centre [Figure 6.4 (c–d)] and at
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Figure 6.4: Spatial correlations are not present in spreading MM127 melanoma cell popu-

lations.Average pair correlation functions were extracted from images showing the location of individual
cells in four subregions, each of dimension 600 µm × 600 µm, at the centre of the spreading cell population
(a) and four subregions, each of dimension 600 µm × 600 µm, at the edge of the spreading cell population
(e). The relative size and approximate location of these subregions is shown in (a) and (e), respectively,
where the scale bar corresponds to 1,500 µm. Average pair correlation signals are shown at t = 0 hours
in (b) and (f), at t = 48 hours for experiments without cell proliferation in (c) and (g), and at t = 48
hours for experiments with cell proliferation in (d) and (h). Results in (b–d) and (f–h) correspond to pair
correlation signals computed at the centre and at the edge of the spreading cell population, respectively.
The horizontal axis is measured as multiples of the average diameter of the nucleus which is approxi-
mately 18 µm. Snapshots of the experimental subregions after image processing are shown as an inset.
The size of the inset is approximately 215 µm × 215 µm. Each pair correlation signal was averaged over
12 subregions of dimensions 600 µm × 600 µm, using three identically prepared experimental replicates.
The error bars correspond to one standard deviation about the mean (N = 12). All experiments were
conducted by initially placing approximately 30,000 cells inside the barrier assay.

the edge [Figure 6.4 (g–h)] of the cell population, for all experiments with and without

cell proliferation, also indicate that the average pair correlation signal, F (r), fluctuates

around unity for pair distances between 1∆ ≤ r ≤ 5∆.

The pair correlation signals in this work were computed using data extracted from exper-

iments where 30,000 cells were placed inside the circular barrier initially. To investigate

whether the initial cell density affects the presence of spatial correlations, we repeated

the procedure using a different initial cell density where 20,000 cells were placed as uni-

formly as possible in the barrier and we found similar results (Appendix D). In addition

to considering the pair correlation at the centre of the population and at the edge of the

population, we also calculated the pair correlation signal at other locations across the

spreading cell population. These additional results show that the pair correlation signal

does not change significantly across the spreading cell population (Appendix D).

All results presented so far involve computing the pair correlation function, F (r), by

considering distances between pairs of pixels in the direction of outward spreading, r.
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Alternatively, we could consider distances between pairs of pixels in the direction perpen-

dicular to outward spreading, w, to give F (w). Additional results (Appendix D) compare

F (r) and F (w), showing that the average pair correlation function is independent of the

direction considered.

6.4 Discussion

In this work, we investigated the presence of spatial correlations in a spreading population

of MM127 melanoma cells by computing pair correlation signals at the centre and edge

of the spreading cell population. Our results indicate that there is very little underlying

spatial structure present in the experimental system. Assessing the presence of spatial

correlations using statistical tools, such as the pair correlation function, allows us to

quantify the degree to which spatial structure is present in a given cell population. This

information may provide insight into which potential modelling frameworks could be

used to represent the experimental system. The relative absence of spatial structure in

the spreading MM127 melanoma cell populations implies that a mean–field model could

be appropriate to represent these experiments, at least over the time scales explored in

the experimental data set [80,127].

Using our experimental data set, we have been able to investigate the relative roles of cell

proliferation and cell–to–cell adhesion in terms of how they contribute to the formation of

clustering. This is important because many experimental and modelling approaches ne-

glect to consider the roles of adhesion and proliferation separately, meaning that it could

be difficult to distinguish between the contributions of each mechanism [125,137]. We are

interested in identifying the potential contribution of each mechanism since the analysis

of the resulting spatial patterns from our discrete model indicates that both rapid pro-

liferation and strong cell–to–cell adhesion can lead to significant spatial patterning and

clustering. In contrast, our experimental results indicate that there were no major differ-

ences between the spatial distribution of cells in a population where cell proliferation was

suppressed compared to the spatial distribution in a population where cell proliferation

was present.
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Chapter 7

Conclusions

In this chapter we summarise the results and novel contributions of this work, and discuss

potential avenues of further investigation.

7.1 Summary

This study utilised combined mathematical modelling tools and experimental investiga-

tion to identify and quantify several key features of collective cell spreading. The tandem

use of experimental investigations to inform and parameterise mathematical models for

collective cell spreading has been a key focus of this work.

The principal aims of this thesis were to

• Apply multiscale models of collective cell spreading to new experimental data with

the aim of independently quantifying the rate of cell motility and rate of cell prolif-

eration in a spreading cell population,

• Identify multiple types of data to distinguish between the roles of cell motility, cell

proliferation and cell–to–cell adhesion in spreading melanoma cell populations,

• Quantify the variability in detecting the leading edge of cell migration assays using

image analysis techniques, and in turn use mathematical modelling to provide a

physical interpretation of the leading edge,

• Investigate the affect of in vitro assay geometry on estimates of the rate of cell

motility and rate of cell proliferation, and

• Use modelling tools to diagnose the presence of spatial correlations in spreading

melanoma cell populations.

We began this study in Chapter 2, by describing a set of experiments which investigated

the roles of cell motility and cell proliferation in driving an initially confined fibroblast

cell population. To distinguish between cell motility and cell proliferation, experiments

were performed by suppressing cell proliferation in the first instance, and then repeating

the experiments with cell proliferation. The experimental data was analysed using two

mathematical models; a lattice–based discrete random walk model and a related con-

tinuum partial differential equation model. Using our approach, we were able to obtain

independent estimates of the cell diffusivity and cell proliferation rate, and confirm that

113
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these estimates led to accurate modelling predictions of the temporal and spatial evolu-

tion of the position of the leading edge and the cell density profile of the spreading cell

populations.

Previous experimental and modelling studies have focused on measuring the speed of the

leading edge of the spreading cell population [85,86]. However, according to the Fisher–

Komogorov equation there are multiple combinations of D and λ that give rise to the

same prediction of the leading edge speed [85, 86]. One way to overcome this is to fit

the solution of the model to cell density observations [113, 114, 116]. However, this does

not necessarily ensure that the process of model calibration can be separated from the

process of model prediction. Our work provided a method to overcome these limitations

by intentionally altering the details of the experiments so that we were able to isolate and

separately quantify the roles of cell motility and cell proliferation. In turn, we were able

to confirm previous suggestions that the relative combinations of cell motility and cell

proliferation control the shape of the leading edge; in which steep fronts are characterised

by a high λ/D ratio and shallow diffuse fronts by a low λ/D ratio. Our results illustrated

that continuum models, based on the Fisher–Kolmogorov equation, are appropriate to

interpret and predict the spread of the spreading fibroblast cell populations.

In Chapter 3, we applied the experimental and modelling techniques discussed in Chapter

2 to quantify the mechanisms driving the spread of melanoma cell populations. Cell–to–

cell adhesion is thought to be important in melanoma cell population spreading and we

accounted for this by incorporating cell motility, cell proliferation and cell–to–cell adhesion

mechanisms into our discrete mathematical framework. To identify the cell diffusivity,

strength of cell–to–cell adhesion and cell proliferation rate of the spreading melanoma

cell populations, we undertook a systematic approach which integrated several types of

experimental data. Our approach illustrated that standard types of data, such as the

area enclosed by the leading edge of the spreading cell population and more detailed

cell density profiles throughout the spreading cell population does not provide sufficient

information to uniquely identify the cell diffusivity and cell proliferation rate. Instead,

we found that additional data relating to the degree of cell clustering was required to

provide independent estimates of the strength of cell–to–cell adhesion, and in turn the cell

diffusivity. We also illustrated that the same techniques applied in Chapter 2 to estimate

the cell proliferation rate could be used to independently estimate the proliferation rate

of the melanoma cell populations.

One of the consequences of this work is that while it is relatively simple to incorporate

detailed mechanisms into a mathematical model, it becomes increasingly difficult to inde-

pendently identify the contributions of each mechanism in the mathematical model using

experimental data. However, where possible, the systematic identification and extraction

of multiple types of data may provide important insights into the contributions of individ-

ual mechanisms to the spread of a cell population. For example, standard mathematical

models for collective cell spreading typically neglect cell–to–cell adhesion and many esti-

mates of the cell diffusivity vary widely [85, 113, 132]. Separating the role of cell–to–cell

adhesion from the role of cell motility, as was undertaken in this work, may provide one
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tool to investigate this variation. Additionally, there is currently no standard method to

quantify the degree of cell–to–cell adhesion present in a spreading cell population and our

work addressed this by providing a method to assess the strength of cell–to–cell adhesion

by extracting information about the location of isolated cells in the population.

Throughout Chapter 2 and Chapter 3, we used information about the position of the

leading edge of the spreading cell populations to estimate the cell diffusivity. For each

study, image analysis tools were used to detect the position of the leading edge. In

Chapter 4, we investigated how the details of these tools, such as the edge detection

threshold, affected the position of the detected leading edge of the spreading population.

Our results indicated that the observed spreading rates are very sensitive to the choice of

image analysis tools and that a standard measure of cell migration can vary by as much

as 25% for the same experimental images depending on the details of the image analysis

tools. Our results implied that it is very difficult, if not impossible, to meaningfully

compare previously published measures of cell migration since previous results have been

obtained using different image analysis techniques and the details of these techniques are

not always reported.

One limitation of edge detection algorithms is that they do not specify any physical

measure, or physical definition, of the leading edge of the spreading population. We ad-

dressed this here by providing a physical interpretation of our edge detection results using

a mathematical model. Our modelling indicated that variations in the image threshold

parameter correspond to a consistent variation in the local cell density. This means that

varying the threshold parameter is equivalent to varying the location of the leading edge

in the range of approximately 1–5% of the maximum cell density.

The research presented in Chapters 2 to 4 considered the spread of fibroblast and melanoma

cell population in one particular geometry. Chapter 5 investigated whether the geometry

of the in vitro assay affects estimates of the cell diffusivity and cell proliferation rate

of spreading fibroblast cell populations. To address this question, we performed exper-

iments in two distinct geometries: (i) a tumour–like geometry where a cell population

spreads outwards into an open space and (ii) a wound–like geometry where a cell pop-

ulation spreads inwards to close a void. Applying the same experimental and modelling

techniques presented in Chapter 2, we obtained estimates of the cell diffusivity and cell

proliferation rate for each different assay geometry. Using the obtained estimates, we were

able to accurately predict the time–evolution of the location of the leading edge and the

cell density profiles throughout the spreading cell populations for both geometries con-

sidered. Our work showed that estimates of the cell diffusivity and cell proliferation rate

were different depending on the geometry considered, with estimates of the cell diffusivity

varying by up to 50% and estimates of the cell proliferation rate varying by up to 30%.

An important consequence of our work is that estimates obtained in one geometry can

not necessarily be used to predict the spreading of the same cell population in a different

geometry.
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Throughout Chapters 2 to 5, we applied a mathematical modelling framework in which

we implicitly assumed that there was no spatial structure, such as cell clustering, present

in any of the cell populations considered. This allowed us to use a mean–field approach

to predict the spatial and temporal evolution of the fibroblast cell populations, as well

as quantify the rate of cell proliferation in both the fibroblast and melanoma cell pop-

ulations. However, without first testing whether spatial correlations are present in the

cell population, it is unclear whether the modelling approaches applied in Chapters 2 to

5, were in fact appropriate. Chapter 6 assessed the validity of this assumption by using

tools to diagnose spatial structure in the spreading melanoma cell populations considered

in Chapter 3. In particular, we analysed discrete simulation data using pair correlation

functions to show that spatial structure can form in a spreading population of cells either

through sufficiently strong cell–to–cell adhesion or sufficiently rapid cell proliferation.

Analysing the experimental data using the same methods applied to the discrete simu-

lation data, indicated that the spreading melanoma cell populations remain very close

to spatially uniform. This suggested that the strength of cell–to–cell adhesion and the

rate of cell proliferation are both sufficiently small so as not to induce any spatial pat-

terning in the spreading populations. Hence, a mean–field model may be appropriate to

describe the collective spreading of this particular cell line. Overall, our work highlighted

the importance of testing the underlying assumptions of a given mathematical model and

provided one method to diagnose spatial structure in a spreading cell population.

7.2 Future work

There are multiple avenues of future investigation that have arisen from the research in

this thesis and we consider some of these below.

• Quantifying cell motility, cell proliferation and cell–to–cell adhesion mech-

anisms driving three–dimensional (3D) spreading cell populations

Our work has been solely focused on understanding the mechanisms driving the

spread of cell populations in two–dimensions (2D). However, development, tissue

repair and disease progression are three–dimensional environments and the mech-

anisms underlying the spread of cell populations may be very different in 3D as

opposed to those in 2D [7, 30, 78]. Hence, it is unsurprising that several 3D in

vitro assays have been developed to investigate collective cell spreading in 3D en-

vironments [30, 78]. For example, spheroid assays allow us to mimic the spatial

expansion of clusters in 3D which would not be possible using a 2D assay [78]. A

natural extension of our work, is to consider how the mechanisms driving collective

cell spreading can be identified and quantified in 3D. It is relatively straightforward

to adapt and apply the mathematical models in 3D, however, conducting and ex-

tracting complementary experimental data may be relatively more complicated in

3D. Advances in various microscopy techniques, such as confocal imaging, enables

us to observe intricate details about 3D cell populations [30, 78]. For example, we

may be able to track the location of several points on the surface of an expanding

spheroid over time and consequently use this type of experimental data to calculate



Chapter 7. Conclusions 117

model parameters or compare model predictions. We note that the edge detection

algorithms required to locate the surface of a 3D spheroid cell population would

require more sophisticated strategies than those applied to the 2D cell populations

in this work. A preliminary investigation into these aspects may highlight whether

it is feasible to extend the concepts in this work from 2D into 3D.

• Investigating methods to extract model parameters from experimental

data

In this work, we estimated the cell diffusivity by considering the change in the po-

sition of the leading edge of the spreading cell populations over time. Similarly, we

estimated the cell proliferation rate by extracting experimental data relating to the

temporal change in cell density, in the middle of the cell population. One advantage

of the methods used in this work, is that they are relatively easy to extract and

analyse from both a experimental and modelling viewpoint. With recent advances

in imaging and image analysis technologies, there is the potential to extract more

detailed information about the spreading cell populations [7, 30, 78]. For example,

time–lapse imaging allows us to capture trajectories of individual cells within the

population [78]. Measurements of the cell diffusivity could be obtained from trajec-

tory data using methods such as the relationship between diffusivity and the mean

square displacement [127]. Consequently, it would be interesting to consider whether

measurements of the cell diffusivity, obtained from many individual cells are any

different to estimates obtained from population–scale level such as the location of

the leading edge.

• Exploring the role of drug therapies on the cell diffusivity and cell pro-

liferation rate

Cell motility and cell proliferation can be significantly affected by the addition

of drugs into the system [7, 78]. For example, in this work we applied the drug

Mitomycin–C to suppress cell proliferation in our experiments, observing that the

overall spread of the cell populations were greatly reduced by the presence of this

drug [112]. One extension of our work is to apply the methods developed in this

work to understand how different concentrations of drugs affect the rate of cell

motility and cell proliferation in a spreading cell population. The methods applied

in this work could be used to extract estimates of these parameters and as a result

we may be able to quantify whether the cell diffusivity, D, or cell proliferation rate,

λ, is a function of the concentration of drug in the system.

• Distinguishing between the contributions of cell motility and cell prolif-

eration in multiple species cell populations

Collective cell spreading often involves multiple species [119]. For example, one

element of wound–healing is the interaction between fibroblast and keratinocyte

cell populations [89]. Consequently, it could be insightful to quantify the spread of

multi–species cell populations and identify methods to isolate the exact contribu-

tions of each population to the overall spread of entire population. In turn, this
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may allow us to understand how cell populations may influence other cell popula-

tions. One possible procedure that could be used to understand this interaction is

by systematically repeating the circular barrier assays conducted in this work. In

particular, estimates of the cell diffusivity and cell proliferation rate could be ob-

tained separately for each cell population, and then from experiments where the two

cell populations are combined. From a modelling viewpoint, is is relatively straight-

forward to model multi–species populations and a model similar to the approach

used in this work has been described in detail by Simpson et al. [119]. We note that

several additional considerations may be required. For example, cells may form a

cell monolayer in single–species cell populations, however, this may not be the case

in multi–species cell populations and hence, the mathematical model may require

adaptation to account for these potential differences.

• Understanding the role of nutrient supply in collective cell spreading

In Chapter 5 we observed that the cell diffusivity and cell proliferation rate varied

significantly depending on the geometry of the in vitro assay. One possible reason is

that the number of cells is always larger in the assay 1 geometry as opposed to the

assay 2 geometry. Assuming that each cell consumes nutrients at a particular rate,

we might expect that the supply of nutrients in assay 2 would be depleted faster

than that in assay 1. We could test this hypothesis, by obtaining measurements from

experiments where either the nutrient supply is monitored or maintained through-

out. These measurements could then be incorporated into the mathematical model

where the cell diffusivity and cell proliferation rate depend explicitly on the nutri-

ents available. This could also help to address whether the assumption of unlimited

nutrients in many mathematical models for collective cell spreading is reasonable.

• Providing user-friendly access to image analysis software

Throughout this thesis, we applied image analysis techniques to detect various fea-

tures of the spreading 3T3 fibroblast and MM127 melanoma cell populations. These

techniques used software platforms such as Matlab’s Image Processing Toolbox [90]

and ImageJ [66]. We also illustrated in Chapter 4 how varying the details of the

image analysis can lead to different physical measurements, which in turn can alter

modelling predictions. This poses an important question about providing acces-

sibility to the image analysis software techniques used in research. Although the

techniques used in this work are relatively simple and are already heavily docu-

mented in the manuals for Matlab’s Image Processing toolbox and ImageJ, it is

relatively easy to see how more advanced image analysis work could be distributed

by providing original codes or written tutorials.

• Addressing issues, practicalities and usefulness of mathematical models

for collective cell spreading

Collective cell spreading is inherently variable [24, 125, 132]. Is is therefore unsur-

prising that mathematical models cannot possibly account for all of this variability

and there will always be active debate regarding appropriate techniques to model
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collective cell spreading [24, 125, 132]. Furthermore, there are many questions sur-

rounding the issue of how we account for the high degree of uncertainty in modelling

approaches. Other issues relevant to modelling collective cell spreading include:

- Simple versus complex models [3, 27,125].

- Discrete models versus continuous models [4, 27,113,114,125].

- Sufficient use of experimental platforms to provide insights [20, 30, 85, 86, 88,

125].

- Linear versus non–linear diffusion models [20,85,86,113,116, 125,155].

- Lattice versus lattice–free approaches [105,106].

- Incorporating simple or complex features in the model e.g. varying the mech-

anisms in the model [13,24,119].

An important consequence of this debate is that we need to continually reassess

the appropriateness of our modelling choices depending on the aims of future in-

vestigations. For example, the experimental observations in this thesis indicated

that there is a consistent density–dependent mechanism involved in the spread of

both the 3T3 fibroblast and MM127 melanoma cell populations. Although our cur-

rent experimental platform was not designed to resolve these details, our results

illustrated the importance of repeating barrier assays with different initial numbers

of cells so that these effects can be observed and quantified. In this context, our

choice of modelling and experimental platforms were appropriate given our initial

aims. However, in different circumstances our choice of modelling tools may not be

appropriate given that we do not always have access to sufficient experimental data

nor is it practical to repeat experiments for every single initial condition. Balancing

aims, model complexity and the availability of experimental data is essential for

continued insights into collective cell spreading.

7.3 Final remarks

Mathematical modelling in conjunction with experimental investigation has the potential

to provide crucial insights into the mechanisms driving collective cell spreading. In this

study, we investigated how experimental and modelling frameworks can be used to identify

several key features underlying collective cell spreading. In particular, we were able to

independently quantify the roles of cell motility and cell proliferation in a spreading cell

population, and investigate how these roles are influenced by factors such as the initial

cell density, type of cell population and the assay geometry. Efforts to explore how

quantitative tools, such as mathematical modelling, can be effectively combined with

experimental investigation while recognising and testing the limitations of such tools, are

important for continued insights into collective cell spreading.





Appendix A

Supplementary material for Chapter 2: ‘Quantifying the role of cell

motility and cell proliferation in a circular barrier assay’

A.1 Estimates of the cell diameter

Images of 3T3 cells were analysed using a Leica AF6000 wide field microscope (Figure

A.1). Leica software was used to measure the cell diameter.

 

Figure A.1: Cell diameter measurements. Low cell density images, under high magnification, were
used to record the diameter measurements of many individual 3T3 cells. Images were acquired using a
Leica AF6000 wide field microscope and Leica software was used to measure the diameter of each cell.

The cell diameter data, reported in Table A.1, indicates that the mean cell diameter is

25 µm.

Cell diameter (µm)
29.44 23.90 31.86 20.14 24.06 28.05 17.51 22.80

27.05 23.95 26.68 18.53 26.89 19.05 33.68 29.44

23.70 23.40 20.40 23.60 31.90 22.60 29.60 26.60

Mean (µm) 25.08

s.d. (µm) 4.66

Table A.1: Cell diameter measurements from 24 3T3 cells show the average cell diameter is
approximately 25 ± 5 µm

121
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A.2 Image analysis using the MATLAB image processing toolbox

Customised image processing software was written using MATLAB’s image processing

toolbox. Figure A.2 illustrates the key steps used to detect the leading edge of the spread-

ing populations. Each image was imported (imread), and displayed (imshow) (Figure A.2

(a)). The colour image was converted to greyscale (rgbtogray) (Figure A.2 (b)), and a

binary gradient mask containing the segmented cell population was obtained by applying

the Sobel operator (edge(Original Image, Sobel), edge(I,’sobel’,threshold*0.5) to enhance

lines of high contrast (Figure A.2 (c)). The lines in the binary gradient mask were dilated

(strel, imdilate) to show the outline of the object (Figure A.2 (d)). Any remaining holes

in the images were filled (imfill) and objects disconnected from the edge were removed

(imclearborder). The image was smoothed and filtered to remove small objects (noise)

detected in the previous steps (imerode, medfilt2). The resulting image contains both a

large object (corresponding to the spreading cell population) and smaller objects (noise).

The smaller objects were removed (regionprops, bwareopen) to leave the edge of the cell

population (Figure A.2 (e)). An outline of the detected edge was superimposed back onto

the original image (bwperim) (Figure A.2 (f)) to verify the accuracy of the procedure. The

area (regionprops) of the detected object was estimated and converted into an equivalent

circular diameter.

(f)

(a) (b) (c)

(d) (e)

Figure A.2: (a)-(f) Customised image processing software (written using the MATLAB image processing
toolbox) is used to detect the leading edge of a crystal violet stained experimental image with initially
5000 cells, at t = 24 hours, without Mitomycin–C. Scale bar corresponds to 1.5 mm.
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To count the number of cells in the various subregions, we used a combination of cus-

tomised image processing software, written using the MATLAB image processing toolbox,

and manual counting where necessary. Images in Figure A.3 illustrate the key steps in

the cell counting procedure. The subregion shown corresponds to an experiment where

5,000 cells were initially placed in the barrier without Mitomycin–C pretreatment. The

image shows the density of P–stained cells after 24 hours. To count the cells we imported

(imread) and displayed (imshow) the original image (Figure A.2 (a)). The colour image

was converted to greyscale (rgbtogray) (Figure A.2 (b)) which was enhanced (imadjust)

to provide sufficient contrast between each cell and the background of the image (Figure

(c)). The image was converted to black and white based on a threshold (graythresh,

im2bw). Objects less than 30 pixels were removed (bwareaopen) to reduce noise. Similar

to the image processing for the leading edge detection, remaining holes in the image were

filled (strel, imfill, Bwboundaries) (Figure A.2 (d)). The centre of each detected region

(which we assume to be an individual cell) was identified (regionprops(image,Centroid))

and superimposed back on the original image to test the accuracy of the detection method

(Figure A.2 (e)). The number of cells detected by the automated software was recorded,

and any undetected cell was manually included in the total cell count (Figure A.2 (f)).

x

x

x

x

(f)

(a) (b) (c)

(d) (e)

Figure A.3: (a)-(f) The number of cells in a small area is detected and counted using a combination of
automated software (written using MATLAB) and manual counting. Each region is approximately 300
µm × 300 µm. Crosses in (f) indicate the location of manually-detected cells.
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A.3 Experimental edge detection of the population–scale images

(crystal violet stained images)

Table A.2 summarises the diameter of the spreading populations estimated from the

experimental images.

Motility only Motility and proliferation

Cell Time Diameter Diameter

density (hours) mean (µm) s.d. (µm) mean (µm) s.d. (µm)

5,000 cells

0 5981 129 3040 129

24 6273 129 6277 152

48 6966 119 7242 57

72 7295 34 8179 117

10,000 cells

0 6079 172 6073 46

24 6601 75 6953 304

48 7062 238 7708 232

72 7535 69 9042 251

30,000 cells

0 6178 161 6348 152

24 7569 179 7590 69

48 8091 116 8643 50

72 8342 237 9766 96

Table A.2: Mean diameter estimates extracted from the population–scale images. Image processing was
used to detect the location of the leading edge of the spreading cell populations from the experiments
both with (motility only) and without Mitomycin–C (motility and proliferation) pretreatment, at t = 0,
24, 48 and 72 hours, with low and high initial cell densities. The area enclosed by the detected leading
edge was converted into an equivalent circular radius to give a mean radius and standard deviation (s.d.)
(n = 3).

A.4 Numerical solutions of the partial differential equation models

The numerical solution of Equation (2.2) (Chapter 2) was obtained using a finite difference

approximation with uniform grid spacing, δr, and implicit Euler stepping with constant

time steps, δt. Picard iteration, with absolute convergence tolerance ǫ was used to solve

the resulting system of nonlinear equations.

A.5 Estimating the random motility coefficient

To estimate the diffusivity in the discrete random walk model we compared the experi-

mental and simulated estimates of the diameter of the spreading populations by evaluating

the least–squares error, which can be written as

E2 =

∑3

i=1

(
dis − die

)2
∑3

i=1 (die)
2

(A.1)
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where E is the least–squares error, dis is the average simulated diameter at the three

different time points, i = 1, 2, 3, and die is the average experimental diameter. The time

points i = 1, 2, 3 correspond to t = 24, 48 and 72 hours, respectively.

We performed discrete simulations of cell spreading with Mitomycin–C pretreatment (no

proliferation) for many different values of the diffusivity, D, which is equivalent to con-

sidering discrete simulations with different values of the time step, τ . For various values

of diffusivity, we simulated each experiment until t = 24, 48 and 72 hours. The image

analysis software was used to calculate the area enclosed by the leading edge, and the area

was converted into an equivalent circular diameter. This process was repeated three times

to mimic the experimental replicates and an average diameter for each experiment at each

time point was obtained. Equation (A.1) was used to give the least–squares error between

the experimental observations and the simulation data. Plots of the least–squares error

for different values of the diffusivity are given in Figure A.4 which shows that we observe

a well defined minimum for each experiment.
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Figure A.4: Least–squares error versus diffusivity for the experiments with (a) 5,000, (b) 10,000 and (c)
30,000 initial number of cells placed into the barrier after Mitomycin–C pretreatment.

A summary of the least–squares estimates of the diffusivity (or equivalently the time step,

τ) are given in Table A.3.

Initial number Time duration Diffusivity Error

of cells τ hours D µm2/hour E

5,000 0.1042 1500 0.0302

10,000 0.0919 1700 0.0215

30,000 0.0539 2900 0.0165

Table A.3: Summary of the parameter estimation results with the optimal value of time duration τ and
the corresponding value of diffusivity (D) for all three initial densities. The associated error as calculated
using Equation (A.1) is also given.
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The variability in our estimates of the diffusivity was estimated by repeating the cali-

bration process using the experimental data without averaging. For our four different

time points (t = 0, 24, 48 and 72 hours) we have three replicates of each experiment,

giving us a total of 12 experimental images for each initial density. To conservatively

estimate the variability in the diffusivity, we calibrated our random walk model for com-

binations of these 12 images that corresponded to the smallest observed spreading and

the largest observed spreading. This approach gave us estimates of 1500 (1500 − 2100),

1700 (1000 − 1900) and 2900 (2400 − 3200) µm2/hour for the experiments with 5, 000,

10, 000 and 30, 000 initial number of cells, respectively. Here, the variability is given in

the parenthesis.

A.6 Position of the leading edge with Mitomycin–C pretreatment

The location of the leading edge of the spreading populations for all experiments with

Mitomycin–C pretreatment was determined using the image analysis software. The area

enclosed by the leading edge was converted into an equivalent circular diameter. Results

are summarised in Table A.4.

Initial Average Average Average Average Average Average

number exp. discrete exp. discrete exp. discrete

of d (µm) d (µm) d (µm) d (µm) d (µm) d (µm)

cells t = 24 hours t = 24 hours t = 48 hours t = 48 hours t = 72 hours t = 72 hours

5,000 6273 6536 6966 6774 7295 6926

10,000 6601 6822 7062 7123 7535 7451

30,000 7567 7458 8091 8084 8341 8466

Table A.4: The diameter, d, estimates (with Mitomycin–C pretreatment) of the experimental images
were compared with the corresponding diameter estimates of the discrete snapshots using the calculated
diffusivities at t = 24, 48 and 72 hours for all three initial densities. Results show good comparison
between experimental and discrete estimates.

The images associated with the diameter estimates in Table A.4 for the experiment with

10, 000 cells initially placed in the barrier initially are reported in Figure 2.1 (Chapter 2).

The remaining images associated with the estimates in Table A.4 are given in Figure A.5.
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Figure A.5: Images for the experiments where 5, 000 and 30, 000 cells were placed in the barrier initially
(corresponding to Figure 2.1 in the Chapter 2). Experimental images in (a)–(d) and (i)–(l) show barrier
assays where 5, 000 cells and 30, 000 cells were placed initially into the barrier after pretreatment with
Mitomycin–C, respectively. Images in (e)–(h) and (m)–(p) are snapshots from the discrete random walk
model. Simulations were performed by placing either 5,000 or 30,000 agents uniformly inside a circular
region of diameter d = 6.0 mm, and the system evolved with Pm = 1, Pp = 0 and τ = 0.1042 (5, 000 cells)
or τ = 0.1042 (30, 000 cells). In all images (a)-(p), the black (stochastic) line indicates the position of
the leading edge of the population as detected by the image analysis software. The red (smooth) curves
in (a)-(p) are numerical solutions of Equation (5.1) (Chapter 2) with λ = 0 and D = 1, 500 µm2/hour
(5, 000 initial cells) and D = 2, 900 µm2/hour (30, 000 initial cells). The c∗ = c(r, t) = 0.0017 contour of
the numerical solution is presented. The numerical solution of Equation (5.1) was obtained numerically
with δr = 1 µm and δt = 0.005 hours and absolute convergence tolerance ǫ = 1 × 10−6. The scale bar
corresponds to 1.5 mm.

A.7 Proliferation rate estimates

To quantify the proliferation rate we counted the number of cells in four different subre-

gions located away from the leading edge of the spreading population for each experiment

at each time point. These cell numbers were converted into a scaled cell density. Results

are summarised in Table A.5.
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Motility only (with Mitomycin–C)

Initial number Time c(t) Mean Standard

of cells (hours) (cells/µm2) deviation

5,000 cells 0 0.1108 0.1440 0.1219 0.1662 0.1357 0.0250

24 0.1234 0.1382 0.1481 0.0938 0.1259 0.0237

48 0.1224 0.1275 0.1530 0.1632 0.1415 0.0197

72 0.1420 0.1616 0.1224 0.1665 0.1481 0.0202

10,000 cells 0 0.2635 0.2572 0.2604 0.2309 0.2530 0.0150

24 0.2234 0.2201 0.2170 0.2201 0.2201 0.0026

48 0.2799 0.2170 0.2893 0.2704 0.2641 0.0324

72 0.2728 0.2892 0.2673 0.2892 0.2796 0.0112

30,000 cells 0 0.5529 0.5161 0.6758 0.5867 0.5867 0.0691

24 0.5543 0.6102 0.5912 0.5596 0.5788 0.0265

48 0.6344 0.6598 0.6344 0.6090 0.6344 0.0207

72 0.6220 0.5619 0.6110 0.5945 0.5974 0.0264

Motility and proliferation (without Mitomycin–C)

Initial number Time c(t) Mean Standard

of cells (hours) (cells/µm2) deviation

5,000 cells 0 0.1335 0.1230 0.1440 0.1230 0.1492 0.0116

24 0.2093 0.2486 0.2067 0.2486 0.1259 0.0234

48 0.5861 0.5312 0.6646 0.6620 0.1415 0.0645

72 0.9394 0.7484 0.7641 0.8530 0.8262 0.0884

10,000 cells 0 0.2234 0.2075 0.2233 0.1950 0.2123 0.0137

24 0.4748 0.4025 0.4151 0.3962 0.4222 0.0359

48 0.8459 0.7484 0.7794 0.7390 0.7782 0.0483

72 0.8967 0.8748 0.9002 0.8302 0.8758 0.0032

30,000 cells 0 0.5845 0.6495 0.6387 0.6820 0.6387 0.0410

24 0.8731 0.8421 0.9248 0.9041 0.8860 0.0362

48 0.9929 0.9824 0.9459 0.9041 0.9563 0.0402

72 1.0366 1.0584 1.1834 1.2002 1.1197 0.0841

Table A.5: Scaled density data for cell counts in the middle of the PI-stained transects for all initial
densities at t = 0, 24, 48 and 72 hours, for experiments both with and without Mitomycin-C pretreatment
at each time point.

To estimate the proliferation rate, λ, we used the experimental cell density estimates

(Table A.5) and the solution of the logistic equation (Equation (2.4) in the Chapter 2) to

estimate the least–squares error, which can be written as

E2 =

∑3

i=1

(
cil − cie

)2
∑3

i=1 (cie)
(A.2)

where E is the least–squares error, cil is the scaled cell density at the three different time

points, i = 1, 2, 3 , given by the solution of the logistic equation. cie is the scaled cell density

estimates obtained from the experimental images. The time points i = 1, 2, 3 correspond

to 24, 48 and 72 hours, respectively. Plots of the least–squares error for different values of
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the proliferation rate are given in Figure A.6 which shows that we observe a well–defined

minimum for each experiment.
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Figure A.6: Least–squares error versus proliferation rate λ for the experiments with (a) 5,000, (b) 10,000
and (c) 30,000 initial number of cells placed into the barrier without Mitomycin–C pretreatment.

A summary of the proliferation rate, λ, for each experimental condition is given in Table

A.6.

Initial number Motility only Error Motility and Proliferation Error

of cells λ /hour E λ /hour E

5,000 0.0016 0.0758 0.0561 0.120

10,000 0.0021 0.0981 0.0552 0.0814

30,000 0.0026 0.0362 0.0594 0.0760

Average 0.0021 – 0.0569 –

Table A.6: Estimates of λ for the experiments with initially 5,000, 10,000 and 30,000 cells with and
without Mitomycin-C pretreatment, and the associated least–squares error, given by Equation (A.2).

The variability in our estimates of the proliferation rate was estimated by repeating the

calibration process using the experimental data without averaging. For our four different

time points (t = 0, 24, 48 and 72 hours) we have four replicates of each experiment,

giving us a total of 16 experimental images for each initial density. To conservatively

estimate the variability in the proliferation rate, we calibrated the logistic model for

combinations of these 16 images corresponding to the slowest observed growth and the

fastest observed growth. This approach gave us estimates of 0.0561 (0.0443 − 0.0720),

0.0552 (0.0476 − 0.0645) and 0.0594 (0.0551 − 0.0784) /hour for the experiments with

5,000, 10,000 and 30,000 initial number of cells. Here, the variability is given in the

parenthesis.
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A.8 Locating the leading edge using the solution of a partial

differential equation

Snapshots in Figure 2.2 (a)(d) (Chapter 2) show the leading edge of the spreading pop-

ulation as determined by the image analysis software. To determine the position of the

leading edge using solutions of Equation (2.2) (Chapter 2), we determined a value of c∗,

which is a contour of the solution of Equation (2.2) (Chapter 2) so that the area enclosed

by the contour, c∗ = c(r, t), matches on average, the area enclosed by the leading edge

of the spreading population determined by the image analysis software. To find c∗, we

solved Equation (2.2) (Chapter 2) numerically for the appropriate initial conditions to

model the spreading shown in Figure 2.2 (Chapter 2). Given the experimental estimates

of the diameter at t = 24, 48 and 72 hours, we used the solution of Equation (2.2) (Chap-

ter 2) to predict the diameter of the spreading population and compared these results

with the experimental estimates of the diameter. Details are shown in Figure A.7 for

this particular experiment where 10, 000 cells were placed into the barrier initially. The

profiles in Figure A.7 show how the diameter of the spreading population varies with the

threshold contour value of the solution of Equation (2.2) (Chapter 2). We choose the rel-

evant contour value that corresponds to the average experimental diameter. A summary

of results for the same procedure applied to all three initial densities of cells is given in

Table A.7, which, on average, indicates that c∗ = 0.0170.
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Figure A.7: Diameter estimates for the experiment where 10,000 cells were initially placed in the
barrier after Mitomycin-C pretreatment in red (solid) at t = 24 (a), t = 48 (b), t = 72 (c) hours. The
corresponding solution of Equation (2.2) (Chapter 2) is given in blue (dashed) for a range of contour
values, 0.001 < c∗ < 0.05. The intersection of the curves gives the appropriate contour value for that
time point. For this experiment we have c∗ = 0.030, 0.019 and 0.012 for results at 24, 28 and 72 hours,
respectively.

A.9 Leading edge position after 24 and 48 hours

Figure 2.3 (Chapter 2) show images of the spreading populations after 72 hours for all

three initial densities of cells. Additional results are given in Figure A.8 to illustrate the

observed spreading after t = 0, 24 and 48 hours for all experimental conditions.
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Initial number of cells c∗ (t=24 hours) c∗ (t=48 hours) c∗ (t=72 hours) Average

5,000 0.032 0.010 0.008 0.0167

10,000 0.030 0.019 0.012 0.0203

30,000 0.010 0.013 0.019 0.0140

Average 0.0240 0.0140 0.0130 0.0170

Table A.7: Contour values c∗ giving the best match to the experimental diameter estimates with
Mitomycin-C pretreatment for t = 24, 48 and 72 hours.
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Figure A.8: The position of the leading edge was determined by analysing experimental images for the
experiments where 5,000 (a)-(-f), 10,000 (g)–(k), and 30,000 (l)–(p) cells were placed initially into the
barrier. Images are shown at t = 0 (first column); at t = 24 hours both with and without Mitomycin–
C pretreatment (second and third columns respectively); and at t = 48 hours both with and without
Mitomycin–C pretreatment (fourth and fifth columns respectively). In each image, we superimpose the
c(r,t) = 0.017 contour of the relevant solution of Equation (2.2) (Chapter 2) in black. The numerical
solution of Equation (2.2) (Chapter 2) is obtained numerically with = 1 µm and = 0.005 hours and
absolute convergence tolerance ǫ = 1× 10−6. The scale bar corresponds to 1.5 mm.





Appendix B

Supplementary material for Chapter 3: ‘Multiple types of data are

required to identify the mechanisms influencing the spatial

expansion of melanoma cell colonies’

B.1 Estimating the diameter of the cell nucleus

High magnification images of MM127 cells were used to obtain an estimate of the mean

diameter of the cell nucleus. To account for this variation, we estimate the diameter of

the cell nucleus since the fluctuations in the size of the nucleus appear to be much smaller

than the fluctuations in the size of the entire cell and therefore provides us with a more

reliable estimate of the average area occupied by each cell. Images were acquired using

a Nikon TI Eclipse microscope fitted with a Nikon digital camera. ImageJ was used to

measure the diameter of the cell nucleus in the images (Figure B.1). These measurements

are reported in Table B.1, and indicate that the mean diameter of the MM127 cell nucleus

is approximately 18 µm.

21.15 µm
16.80 µm

16.58 µm 16.50 µm 17.75 µm

16.65 µm

16.80 µm

21.51 µm

18.05 µm

16.93 µm

17.87 µm

23.07 µm

15.38 µm

17.18 µm

21.41 µm

15.17 µm
15.97 µm

Figure B.1: High magnification images of MM127 cells. Images were acquired using a Nikon Ti
Eclipse microscope fitted with a Nikon digital camera and the diameter of each cell nucleus was
measured using ImageJ software. The scale bar corresponds to 50 µm
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Diameter of cell nucleus (µm)

18.94 18.78 21.98 17.34 23.50 17.00 16.00 16.74 16.42 15.03

16.49 18.95 17.00 21.52 16.15 16.86 16.11 14.17 19.32 21.15

16.80 17.87 16.58 16.50 17.75 16.93 16.65 16.80 21.51 18.05

17.18 15.38 23.07 15.17 15.97 21.41 22.48 17.58 16.50 18.00

Mean (µm) 17.94

Standard deviation (µm) 2.37

Table B.1: Cell diameter measurements of 40 MM127 cells indicate that the mean diameter of
the cell nucleus is 17.94 ± 2.37 µm

B.2 Data type 1: Location of the leading edge

Image analysis software was used to detect the location of the leading edge of the ex-

panding MM127 cell colonies. All measurements of the location of the leading edge were

converted to an equivalent circular radius R. Table B.2 summarises the leading edge

data for all experiments performed. All measurements reported are averaged over three

experimental replicates.

Initial number Time R (Motility and adhesion) R (Motility, adhesion and proliferation)

of cells (hours) Mean (mm) Standard deviation (mm) Mean (mm) Standard deviation (mm)

20,000

0 3.2476 0.0223 3.2476 0.0223

24 3.3007 0.0250 3.3407 0.0206

48 3.3633 0.0305 3.4672 0.0506

30,000

0 3.2583 0.0208 3.2583 0.0208

24 3.3277 0.0292 3.3807 0.0517

48 3.3644 0.0198 3.6143 0.0229

Table B.2: Experimental radius measurements of the entire expanding cell colonies for all exper-
iments performed. Image processing was used to determine the area of the expanding colony for
each experiment with and without Mitomycin–C pretreatment at t = 0, t = 24 and t = 48 hours
for both initial densities. The area of the expanding colony was converted into an equivalent circle
from which we estimated the radius R =

√
A/π. Each data point was replicated three times to

give the mean radius and standard deviation.
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B.3 Data type 2: Cell density profiles

Cell density profiles were extracted from Propidium Iodide stained images which show

the location of the nucleus of individual cells throughout the entire colony. Cell density

profiles for each experiment were averaged over three experimental replicates as described

in Chapter 3. Figure B.2 compares the cell density profiles extracted from three replicate

experiments with the final averaged cell density profile for experiments initialised with

20, 000 and 30, 000 cells both with and without Mitomycin–C pretreatment. For all ex-

periments, the averaged cell density profile appears to be an appropriate approximation

given that the variation between the three replicate cell density profiles is minimal.
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Figure B.2: Extracted cell density profiles (red lines) are compared with the averaged cell density pro-
file (blue histograms) for experiments initialised with 20, 000 cells and 30, 000 cells, with and without
Mitomycin–C pretreatment at t = 0, t = 24 and t = 48 hours. Cell density profiles were averaged as de-
scribed in Chapter 3. Results in (a)–(b) correspond to experiments with Mitomycin–C pretreatment, while
results in (c)–(d) correspond to experiments without Mitomycin–C pretreatment. For each experiment,
the red lines correspond to the cell density profile extracted from each replicate experiment.
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B.4 Data type 3: Degree of cell clustering

The degree of cell clustering in the MM127 cell colonies was measured by counting the

number of isolated cells in Propidium Iodide images showing the location of the nucleus

of individual cells throughout the entire colony. Table B.3 summarises the proportion

of isolated cells compared to total number of cells in six subregions in the middle of the

colony as described in Chapter 3.

Initial number of cells Time % Isolated cells in the colony Mean Standard deviation

20,000

0 34.14 36.01 45.25 33.68 36.50 47.19 38.80 5.88

24 36.01 34.14 37.65 34.25 41.58 32.25 35.98 3.30

48 29.82 37.17 33.68 31.81 28.58 36.71 32.96 3.54

30,000

0 15.69 13.83 11.25 15.23 16.98 18.25 22.58 5.01

24 15.69 13.83 11.25 15.23 16.98 18.25 15.21 2.46

48 11.96 12.58 9.94 11.9 10.88 12.58 11.64 1.04

Table B.3: Proportion of isolated cells in the MM127 cell colonies with Mitomycin–C pretreatment.
Image processing was used to identify the number of isolated cells and the total number of cells in the
expanding colony for each experiment with Mitomycin–C pretreatment at t = 0, t = 24 and t = 48 hours.
The proportion of isolated cells in the expanding colony was converted into a percentage. Each data point
was replicated six times to give the mean and standard deviation.



Appendix B. Extracting multiple types of data 137

B.5 Data type 4: Cell density counts

The rate of cell proliferation in the cell population was quantified by counting the number

of cells in four subregions located in the centre of the cell colonies for each experiment

and at each time point. Results in Table B.4 summarise the nondimensional cell density

measurements. The proliferation rate, λ, was estimated by comparing the time evolution

of the experimental non–dimensional cell density measurements with the corresponding

solutions of the logistic equation for various values of λ as described in Chapter 3. An

estimate of the least squares error was used to determine the optimal value of λ for

each experiment. Results in Figure B.3 illustrate the corresponding error, ErrorP (λ) for

different values of λ for experiments without Mitomycin–C pretreatment. For each initial

cell density, we observe a well–defined minimum, indicating that the proliferation rate is

λ = 0.0305 /hours for experiments initialised with 20, 000 cells and λ = 0.0398 /hours for

experiments initialised with 30, 000 cells.
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Figure B.3: An estimate of the least squares error was used to determine the proliferation rate in the
MM127 melanoma cell colony. (a)–(b) indicates the error, ErrorP (λ) produced for various values of λ
between 0.001 and 0.08 for experiments initialised with 20, 000 and 30, 000 cells, respectively.
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Initial (with Mitomycin–C) (without Mitomycin–C)

number Time
c(t) (cells /µm2) Mean

Standard
c(t) (cells /µm2) Mean

Standard

of cells (hours) Deviation Deviation

20,000

0 0.2015 0.2058 0.1958 0.2158 0.2047 0.0084 0.1757 0.1909 0.2100 0.1871 0.1909 0.0149

24 0.1985 0.2150 0.2048 0.2008 0.2048 0.0073 0.3399 0.3322 0.3513 0.3590 0.3456 0.0119

48 0.1985 0.2058 0.2150 0.2058 0.2063 0.0084 0.5227 0.4769 0.4616 0.5303 0.4979 0.0338

30,000

0 0.2750 0.2993 0.3150 0.3447 0.3085 0.0292 0.2688 0.3421 0.2750 0.3054 0.2979 0.0336

24 0.2627 0.323 0.3090 0.3269 0.3056 0.0300 0.5993 0.5814 0.5695 0.6706 0.6052 0.0453

48 0.2627 0.3055 0.2912 0.3387 0.2995 0.0316 0.7251 0.7213 0.6869 0.6220 0.6888 0.0477

Table B.4: Experimental measurements of the non–dimensional cell density, c(t). Image processing was used to count the total number of cells in four subregions
located in the centre of the cell colonies for each set of experiments, with and without Mitomycin–C pretreatment. The number of cells was converted into a
non–dimensional cell density. Each data point was replicated four times to give the mean non–dimensional cell density and standard deviation.
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B.6 Predicting the spatial expansion of a MM127 melanoma cell

colony

Table B.5 summarises the estimates of the cell diffusivity, D, cell–to–cell adhesion strength,

q, and cell proliferation rate, λ, obtained from the analysis described in Chapter 3.

Experimental images of the entire expanding cell colony and the corresponding simulated

cell colonies using the estimates of D, q and λ are shown in Figure B.4. The location of

the leading edge and the radius of the expanding cell colonies are superimposed on both

experimental and model images of the colony. In all cases, the estimates obtained using

the analysis described in Chapter 3 visually appear to predict the location of the leading

edge of the MM127 cell colonies.

Initial number Cell diffusivity Cell–to–cell adhesion strength Proliferation rate

of cells (D) (q) (λ)

20,000 162 µm2 /hour 0.3 0.0305 /hour

30,000 243 µm2 /hour 0.5 0.0398 /hour

Table B.5: Estimates of the cell diffusivity, D, cell–to–cell adhesion strength, q and cell prolifer-
ation rate λ obtained from the analysis described in Chapter 3.
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Figure B.4: (a)–(d) Experimental images of the entire expanding cell colony for each different set of experiments and corresponding model simulations using the parameter
estimates obtained in Chapter 3. In all images, the detected location of the leading edge is outlined in black while the equivalent mean radius of the expanding colony is
shown in red. Model simulations of the experiments initialised with 20, 000 cells were performed using D = 162 µm2 /hour, q = 0.3 and λ = 0.0305 /hour, and for experiments
initialised with 30, 000 cells, simulations were performed using D = 243 µm2 /hour, q = 0.5 and λ = 0.0398 /hour.
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B.7 Image acquisition and analysis

Detecting the location of the leading edge of the cell colony

Customised image processing software was written in MATLAB’s image processing tool-

box. The same software was used to detect the location of the leading edge in both the

experimental cell colonies and the simulated cell colonies. Each colour image was imported

(imread) and converted to greyscale (rgbtogray). A binary gradient mask containing the

segmented cell colony was obtained by applying the Sobel operator (edge(Original Image,

’Sobel’), edge(I,’sobel’,threshold) to enhance lines of high contrast. To show the outline of

the object, the lines in the binary gradient mask were dilated (strel, imdilate). Remain-

ing holes in the images were filled (imfill) and objects disconnected from the edge were

removed (imclearborder). The image was smoothed and filtered to remove small objects

detected in the previous steps (imerode, medfilt2 ). The resulting image contains both a

large object (corresponding to the expanding cell colony) and smaller objects. The smaller

objects were removed (regionprops, bwareopen) to leave the edge of the cell colony. An

outline of the detected edge was superimposed back onto the original image (bwperim) to

verify the accuracy of the procedure. The area (regionprops) of the detected object was

estimated and converted into an equivalent circular radius.

Detecting individual cells in the cell colony

To count the number of cells in the various subregions, we used a combination of cus-

tomised image processing software, written using the MATLAB image processing toolbox,

and manual counting where necessary. Each colour image was imported (imread), con-

verted to greyscale (rgbtogray) and enhanced (imadjust) to provide sufficient contrast

between each cell and the background of the image. The image was converted to black

and white based on a threshold (graythresh, im2bw). To reduce noise, objects less than

30 pixels were removed (bwareaopen). Remaining holes in the image were filled (strel,

imfill, Bwboundaries), using a similar method as in the leading edge software. The centre

of each detected region (which we assume to be an individual cell) was identified (region-

props(image,‘Centroid‘)) and superimposed back on the original image to test the accu-

racy of the detection method. The number of cells detected by the automated software

was recorded. All remaining cells not automatically identified were manually included in

the total cell count.

Identifying isolated cells in the cell colony

In addition to counting individual cells, we identified isolated cells that did not share a

circular region, of radius 18 µm, with other cells. To do this, we repeated the same image

processing procedure to identify the total number of cells in the colony. For each identified

region corresponding to a cell, we recorded the physical location of each identified cell

using (regionprops). Each identified cell was checked to determine whether the cell was

isolated by comparing the location of the identified cell with the locations of all other cells.

For example, to check if cell A, located at (x1, y1), and cell B, located at (x2, x2) share the

same circular region of radius 18 µm, we calculated the physical distance between the two
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cells using W =
√

(x2 − x1)2 + (y2 − y1)2. If W > 18 µm, this indicates that cell B does

not share the same circular region of radius 18 µm around cell A and vice versa. This was

repeated systematically for all cells to identify which cells were completely isolated in the

cell colony. To test the accuracy of the detection method, we superimposed the locations

of each isolated cell back onto the original image and overlaid a square grid of size 18 µm.

The image was visually checked to make sure all identified isolated cells were correctly

detected and that the image processing had identified all isolated cells. In some cases, a

small number of identified cells were incorrectly identified and were deleted. Similarly, a

small number of isolated cells were not identified and had to be manually added.



Appendix C

Supplementary material for Chapter 5: ‘Are in vitro estimates of cell

diffusivity and cell proliferation rate sensitive to assay geometry?’

C.1 Cell culture

Murine fibroblast 3T3 cells (ATCC, CCL-92, Manassas, VA, USA) were maintained in

Dulbecco’s modified Eagle medium (Invitrogen, Australia) supplemented with 5% fetal

calf serum (FCS) (Hyclone, New Zealand), 2mM L-glutamine (Invitrogen) and 1% v/v

Penicillin/Streptomycin (Invitrogen). The cells were grown in 5% CO2 at 37 ◦C. Cells

were lifted using 0.05 % Trypsin (Invitrogen, Australia) and viable cells were counted

using a Trypan blue exclusion test and a haemocytometer.

C.2 Measurements of the cell diameter

Images of 3T3 cells were acquired using a Leica AF6000 wide–field microscope (Figure

C.1). ImageJ software was used to manually trace the outline of individual 3T3 cells. The

area, A, enclosed by the outline of the cell was converted into a cell diameter estimate

by assuming that, on average, the morphology of the cell is circular (2
√
A/π). Figure

C.1 shows the outline of several 3T3 cells and the associated measurement of the cell

diameter. Table C.1 summarises measurements for n = 24 cells.

Cell diameter (µm)
29.44 23.90 31.86 20.14 24.06 28.05 17.51 22.80

27.05 23.95 26.68 18.53 26.89 19.05 33.68 29.44

23.70 23.40 20.40 23.60 31.90 22.60 29.60 26.60

Mean (µm) 25.08

s.d. (µm) 4.66

Table C.1: The cell diameter data, including the mean and standard deviation (s.d.)

C.3 Image acquisition and analysis

C.3.1 Population–scale image acquisition and analysis

Images of the entire spreading population were obtained by fixing the cells with 10%

formalin, followed by 0.01% crystal violet (Sigma–Aldrich, Australia). The stain was

143



Appendix C. Exploring the role of assay geometry 144

50 µm

31.9 µm

27.1 µm

20.1 µm

24.0 µm

26.9 µm

29.6 µm
22.8µm

26.9 µm

29.4 µm

Figure C.1: Measurements of the cell diameter. Low cell density images, under high magnification,
were used to measure the diameter of many individual 3T3 cells. Images were acquired using a
Leica AF6000 wide–field microscope and ImageJ software was used to measure the diameter of
each cell. The scale bar corresponds to 50 µm.

rinsed with phosphate–buffered saline (Invitrogen, Australia) and the plates were air–

dried. Images were acquired using a stereo microscope with a Nikon digital camera

(DXM1200C). Customised image processing software was written using MATLAB’s image

processing toolbox (v7.12).

To detect the leading edge the colour image was imported (imread) and converted to

greyscale (rgbtogray). A binary gradient mask containing the segmented image was ob-

tained by applying the Sobel operator (I = edge(Original Image, ’sobel’), edge(I,’sobel’,threshold))

to enhance lines of high contrast. To show the outline of the object, the lines in the bi-

nary gradient mask were dilated (strel, imdilate). Remaining holes in the images were

filled (imfill) and objects disconnected from the edge were removed (imclearborder). The

image was smoothed and filtered to remove small objects detected in the previous steps

(imerode, medfilt2 ). The resulting image contains both a large object (corresponding to

the expanding cell colony) and smaller objects. The smaller objects were removed (re-

gionprops, bwareopen) to leave the edge of the cell colony. An outline of the detected

edge was superimposed back onto the original image (bwperim) to verify the accuracy

of the procedure. The area (regionprops) of the detected object, A, was estimated and

converted into an equivalent circular radius, R1 =
√
A/π.

The same procedure was repeated to detect the location of the leading edge in images

of assay 2 except that we further enhanced the edges in the image by thresholding the

greyscale image (im2bw) before applying the Sobel operator. All other steps in the proce-

dure were the same. The thresholds applied to each image were manually chosen for each

each image. This process allowed us to estimate the area of the void region, A, which was

converted into an equivalent circular radius, R2 =
√
A/π.



Appendix C. Exploring the role of assay geometry 145

In all cases, we ensured that the image analysis methods applied to assay 1 and assay

2 produced quantitatively equivalent results by performing preliminary edge detection

using ImageJ software. For all images, the scale was set (Analyse–Set scale) and colour

images were converted to greyscale (Image–Type–32bit). The Sobel method was used to

enhance edges (Process–Find Edges). The image was sharpened (Process–Find Edges)

and an automatically determined threshold was applied (Image–Adjust–Threshold–B&W-

Apply). After applying the Sobel method again (Process–Find Edges), the wand tracing

tool, located in the main icons box, was used to select the detected leading edge. The

area enclosed by the detected leading edge was calculated (Analyze–Set Measurements–

area, Analyze–Measure). We observed in all cases, that the edge detected by the ImageJ

software was similar to the edge detected by the MATLAB software.

The same image analysis methods used to detect the location of the leading edge in the

experimental images was also applied to detect the leading edges in the images produced

by the discrete model.

C.3.2 Individual–scale image acquisition and analysis

Images detailing the location of individual cells within the population were obtained by

fixing the cells with 10% formalin, then made permeable using ice–cold 70% ethanol and

the nuclei stained with Propidium Iodide (PI), 1 mg/ml (Invitrogen, Australia). Images

were acquired using a Laborlux fluorescence microscope fitted with a Nikon digital camera

(DXM1200C) at 100x magnification. Overlapping images were acquired to reconstruct

a transect image which shows the location of individual cells across the entire spreading

cell population.

To count the number of cells in various subregions of the individual–scale images, we

used a combination of customised image processing software, written using the MATLAB

image processing toolbox, and manual counting. Each colour image was imported (im-

read), converted to greyscale (rgbtogray) and enhanced (imadjust) to provide sufficient

contrast between each cell and the background of the image. The image was converted

to black and white based on a threshold (graythresh, im2bw). To reduce noise, objects

less than 30 pixels were removed (bwareaopen). Remaining holes in the image were filled

(strel, imfill, Bwboundaries), using a similar method as in the leading edge software. The

centre of each detected region (which we assume to be an individual cell) was identi-

fied (regionprops(image,‘Centroid‘)) and superimposed back on the original image to test

the accuracy of the detection method. The number of cells detected by the automated

software was recorded. All remaining cells not automatically identified were manually

included in the total cell count.

C.4 Leading edge data

Table C.2 summarises the leading edge results obtained by analysing the population–

scale images. Image analysis was used to detect the position of the leading edge of the

spreading cell populations and the area enclosed by the leading edge was converted into

an equivalent circular area, R =
√
A/π. For assay 1, R corresponds to the radius of the
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area enclosed by the spreading cell populations and for assay 2, the estimates represent

the radius of the void area. For all experiments, Table C.2 summarises the mean and

standard deviation (n = 3) of R.

Motility only Motility and proliferation

Cell Time R R

density (hours) mean (µm) s.d. (µm) mean (µm) s.d. (µm)

Assay 1 low

0 3040 86 3040 86

24 3301 38 3476 152

48 3531 119 3854 116

72 3768 34 4521 126

high

0 3089 80 3089 80

24 3784 89 3795 35

48 4046 58 4322 25

72 4171 118 4883 48

Assay 2 low

0 4062 21 4062 21

24 3909 34 3845 16

48 3560 35 3208 133

72 3453 117 2988 74

high

0 3956 53 3956 53

24 3644 23 3544 34

48 3155 170 2861 40

72 2950 51 2181 158

Table C.2: Mean R estimates extracted from the population–scale images. Image processing was used
to detect the location of the leading edge of the spreading cell populations from assay 1 and assay 2 ex-
periments both with (motility only) and without Mitomycin–C (motility and proliferation) pretreatment,
at t = 0, 24, 48 and 72 hours, with low and high initial cell densities. The area enclosed by the detected
leading edge was converted into an equivalent circular radius to give a mean radius and standard deviation
(s.d.) (n = 3).

C.5 Effective cell diffusivity estimates

Estimates of D were obtained in the Chapter 5 by comparing the position of the leading

edge in the experimental images with the equivalent measurements applied to snapshots

produced by the discrete mathematical model. To confirm our estimates of D, we also

compared the shape of the cell density profiles near the leading edge, shown in Figure

5.10 (Chapter 5), to corresponding solutions of Equation (5.4).

The same least–squares procedure described in Chapter 5 was used to obtain estimates

of D with the cell density information. Briefly, we compared numerical solutions of

Equation (5.4) (Chapter 5) to the experimental cell density profiles, at t = 72 hours,

for 30 equally–spaced values of D in the interval D ∈ [0, 3000] µm2/hour. Since we are

focussing on experimental data where the cells were pretreated with Mitomycin–C we set
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λ = 0 in our numerical calculations. We used an estimate of the least–squares error to

determine D. The least–squares estimate is given by

E(D) =

N∑
j=1

(ECj − SCj)2

N∑
j=1

(ECj)2
, (C.1)

where ECj is the non–dimensional cell density of the jth subsection of the cell density

profile at time t = 72 hours, SCj is the non–dimensional cell density at the corresponding

location predicted by Equation (5.4) (Chapter 5) at t = 72 hours and N is to the total

number of sections considered.

Table C.3 summarises our estimates of D using both the leading edge data and the cell

density profiles. In all cases considered, we observed a well–defined minimum in E(D),

and our estimates of D obtained using the cell density profiles are very similar to those

obtained using the leading edge data.

Assay Initial Leading edge data Cell density profiles
Density D (µm2/hour) D (µm2/hour)

1 low 1700 1500
high 2900 2700

2 low 800 1000
high 1500 1700

Table C.3: Estimates of D for assay 1 and assay 2. Estimates obtained by considering leading edge data
are compared to estimates obtained by comparing the shape of the cell density profile with the solution
of Equation (5.4) (Chapter 5).

C.6 Cell proliferation rate data

Estimates of λ from assay 1 and assay 2 geometries were obtained by counting the number

of cells in certain subregions (n = 4) located far behind the leading edge so that the cell

density within the subregion was approximately spatially uniform, c(r, t) = c(t). The cell

counts were converted into an estimate of the non–dimensional cell density, c(t) = c̄(t)/K,

where K = 1/252 ≈ 1.6 × 10−3 cells/µm2. Results showing the mean non–dimensional

cell density and standard deviation are summarised in Table C.4

C.7 Alternative effective cell proliferation rate estimates

Estimates of λ in Chapter 5 were obtained by considering a subregion located at least

2000 µm behind the leading edge of the spreading cell populations. To confirm that our

estimates of λ do not depend on the location of the subregion, we re–estimated λ in two

additional subregions that were also located behind the leading edge. These additional
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Motility only Motility and proliferation

Cell Time c(t) c(t)

density (hours) mean s.d. mean s.d.

Assay 1 low

0 0.2530 0.0150 0.2123 0.0137

24 0.2201 0.0375 0.4222 0.0359

48 0.2641 0.0324 0.7782 0.0483

72 0.2796 0.0112 0.8758 0.0032

high

0 0.5867 0.0691 0.6387 0.0410

24 0.5788 0.0265 0.8860 0.0362

48 0.6344 0.0207 0.9563 0.0402

72 0.5974 0.0262 1.1197 0.0841

Assay 2 low

0 0.2102 0.0241 0.2206 0.0248

24 0.1902 0.0280 0.4054 0.0878

48 0.1805 0.0458 0.5703 0.0445

72 0.1958 0.0158 1.0212 0.0875

high

0 0.6350 0.0634 0.6424 0.0389

24 0.6482 0.0358 0.8265 0.0412

48 0.6258 0.0458 0.9094 0.0010

72 0.6242 0.0958 1.0200 0.0798

Table C.4: Non–dimensional density data from cell counts in four subregions located away from the
leading edge for assay 1 and assay 2 geometries. Density data are shown for assay 1 and assay 2 experiments
both with (motility only) and without Mitomycin–C pretreatment (motility and proliferation), at t = 0,
24, 48 and 72 hours, with low and high initial cell densities. All results were averaged over (n = 4)
replicates to give the mean and standard deviation (s.d.).

estimates of λ were obtained using the same procedure as the previous estimates except

that the location of the subregions considered was changed.

The locations of the two additional subregions for assay 1 and assay 2 are shown in Figure

C.2 (a) and (c), respectively, and are approximately 300 µm × 300 µm in size. Figure C.2

(b)–(c) and (e)–(f) show the corresponding time–evolution of the non–dimensional cell

density in each of the two subregions for experiments without Mitomycin–C pretreatment

in assay 1 and assay 2, respectively. Results are shown at both initial cell densities and the

relevant logistic growth curves, given by Equation (5.4) (Chapter 5) are superimposed.

Estimates of λ were obtained using data from the additional two subregions for both

assays, and the results are summarised in Table C.5. We note that there is a relatively

small variation between the estimates of λ obtained in each additional subregion indicating

that our estimates of λ are not sensitive to the location of the subregion provided that it

is located sufficiently far away from the leading edge that we can assume that the density

is spatially constant within that subregion.
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Cell density R1 λ (/hour) R2 λ (/hour) mean s.d.

Assay 1
low 0.056 0.040 0.048 0.011

high 0.059 0.053 0.056 0.004

Assay 2
low 0.042 0.044 0.043 0.001

high 0.041 0.043 0.042 0.001

Table C.5: Summary of effective cell proliferation rates from assay 1 and assay 2 using two additional
subregions that are located at least 2000 µm behind the leading edge. Results are shown for experiments
without Mitomycin–C (motility and proliferation) pretreatment with low and high initial cell densities
and are obtained using n = 4 replicates.
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Figure C.2: Estimates of the effective cell proliferation rate are similar across the spreading cell popu-

lation. Cell proliferation rate estimates were obtained by counting the number of cells in two different
subregions located at least 2000 µm behind the leading edge of the spreading cell populations. The loca-
tions of the subregions are indicated in (a) and (d), where the scale bar corresponds to 1500 µm. Results
in (b)–(c) and (e)–(f) compare the mean non–dimensional cell density (n = 4) from experiments with
an initial low and high cell density for both assay 1 (red) and assay 2 (green) at t = 0, 24, 48 and 72
hours, with error bars indicating one standard deviation from the mean. The appropriately parameterized
logistic growth curves using the cell proliferation rate estimates from Table C.5 are superimposed. In each
case, the colours correspond to the results obtained from the subregion highlighted in (a) and (d).
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C.8 Effective cell proliferation rate estimates with Mitomycin–C

pretreatment

Chapter 5 presents analysis for experiments without Mitomycin–C pretreatment (motility

and proliferation) in Figure C.3. Here we present the corresponding analysis for exper-

iments with Mitomycin–C pretreatment (motility only), in addition to summarising the

results presented in Chapter 5. Table C.6 summarises the estimates of λ from all experi-

ments in both assay 1 and assay 2 geometries.

Motility only Motility and proliferation

Cell density λ (/hour) λ (/hour)

Assay 1
low 0.003 0.056

high 0.002 0.059

Assay 2
low 0.001 0.042

high 0.001 0.041

Table C.6: Summary of proliferation rates from assay 1 and assay 2 experiments both with (motility)
and without Mitomycin–C (motility and proliferation) pretreatment, at t = 0, 24, 48 and 72 hours, with
low and high initial cell densities.

Figure C.3 shows the time–evolution of the non–dimensional cell density for experiments

with Mitomycin–C pretreatment in assay 1 and assay 2. The relevant logistic growth

curves, given by Equation (5.4) (Chapter 5) are superimposed. Our results illustrate that

the estimates of the effective proliferation rate describe the observed time–evolution of

the experimental cell density in both geometries. They confirm that the number of cells

did not significantly increase or decrease over time and, importantly, that Mitomycin–C

pretreatment prevents proliferation and did not cause cell death.
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Figure C.3: Estimates of λ for experiments with Mitomycin–C pretreatment. Estimates of λ
were obtained by counting the number of cells in four different subregions in each experimental
replicate. Results in (a) and (b) compare the mean non–dimensional cell density (n = 3) for assay
1 (red) and assay 2 (green) from experiments with Mitomycin–C pretreatment, at t = 0, 24, 48
and 72 hours, with low and high initial cell densities. Error bars indicate one standard deviation
from the mean. The appropriately parameterized logistic growth curves are superimposed.
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C.9 Locating the leading edge using the solution of a partial

differential equation

To compare solutions of Equation (5.4) (Chapter 5) with the experimental images we

determined a value of c∗, which is a contour of the solution of Equation (5.4) (Chapter 5)

so that the area enclosed by the contour c∗ = c(r, t), matches, on average, the area enclosed

by the detected leading edge determined by the image analysis software. To determine

c∗ we solved Eq. (5.4) (Chapter 5) numerically for the appropriate initial conditions to

model the spreading shown in Figure 5.2 (Chapter 5). Given the experimental estimates

of the radius, as shown in Table C.2, we used the solution of Equation (5.4) (Chapter 5) to

predict the radius of the spreading population (assay 1) or radius of the void area (assay

2) and compared these estimates to the corresponding experimental estimates at t = 24,

48 and 72 hours for experiments with Mitomycin–C pretreatment. In each case, we chose

the value of c∗ so that the area defined by the contour c∗ = c(r, t) corresponded to the

average area obtained by applying the leading edge detection methods to the experimental

images. A summary of results for the assay 1 and assay 2 geometries for each initial cell

density is given in Table C.7. These data indicate that, on average, choosing c∗ = 0.019

provides the best overall match. We use this value of c∗ to compare the experimental

results to the solution of Equation (5.4) (Chapter 5).

Cell density c∗ (t = 24 hours) c∗ (t = 48 hours) c∗ (t = 72 hours) Mean

Assay 1 low 0.030 0.010 0.008 0.016

high 0.010 0.013 0.019 0.014

Assay 2 low 0.054 0.010 0.010 0.025

high 0.049 0.007 0.008 0.021

Mean 0.036 0.010 0.011 0.019

Table C.7: Summary of the contour values, c∗, determined for the assay 1 and assay 2 geometries, with
Mitomycin–C pretreatment, at t = 0, 24, 48 and 72 hours, with low and high initial cell densities. For
both geometries, the values of c∗ are similar and indicate that, on average, c∗ = 0.019.

C.10 Calculating the variation in the parameter estimates

The variability in our estimates of D and λ was estimated by repeating the calibration

process using each piece of the experimental data separately, without averaging the data.

To determine the variability in our estimate ofD we have three replicates of measurements

for R in each experiment at each of the four time points (t = 0, 24, 48 and 72 hours),

giving a total of 12 experimental images for each initial density and each assay geometry.

To conservatively estimate the variability in D, we calibrated the discrete model for each

combination of these 12 images. The combination of measurements that corresponded to

the smallest observed spreading was used to specify the lowest possible value of D and

the combination of measurements corresponding to the largest observed spreading was

used to specify the highest possible value of D. The upper and lower estimates of D are

given Table 5.1 (Chapter 5). A similar procedure was used to estimate the variability
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in λ using four replicates at each time point and repeating the calibration procedure

using all combinations of the experimental measurements and the solution of the logistic

equation (Equation (5.4), Chapter 5). Table 5.1 (Chapter 5) indicates the upper and

lower estimates of λ.



Appendix D

Supplementary material for Chapter 6: ‘Assessing the role of spatial

correlations during collective cell spreading’

D.1 Estimating the total area occupied by individual MM127

melanoma cells

In our work, we require an estimate of ∆, which approximates the diameter of the area

occupied by a cell. During our experiments we observe that the shape of the cells con-

stantly fluctuate with time. To account for this variation, we estimate the diameter of

the cell nucleus since the fluctuations in the size of the nucleus appear to be much smaller

than the fluctuations in the size of the entire cell and therefore provides us with a more

reliable estimate of the average area occupied by each cell. Images of the cell nuclei were

acquired using a Nikon TI Eclipse microscope fitted with a Nikon digital camera. Images

were thresholded using MATLAB’s image processing toolbox and discretised on a lattice

by resizing the dimensions such that each pixel is 1 µm × 1 µm. Each pixel on the lattice

is either vacant (white pixel) or occupied (black pixel) and a cell is composed of several

black pixels. The process used is the same process used to discretise experimental images

onto the pair correlation lattice in Chapter 6.

Estimates of ∆ were obtained by counting the number of black pixels per cell and con-

verting this measurement into an area, A. We assume that, on average, the morphology

of each cell is circular and we convert A into a diameter estimate using 2
√
A/π. Figure

D.1 (a) shows an image of MM127 cell nuclei and the corresponding discretisation onto a

lattice Figure D.1 (b). Table D.1 summarises measurements for n = 40 cells and indicates

that, on average, ∆ ≈ 18 µm.

153
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(a) (b)

Figure D.1: Cell diameter measurements. High magnification images of MM127 cells are shown
in (a). Images were acquired using a Nikon Ti Eclipse microscope fitted with a Nikon digital camera.
The scale bar corresponds to 10 µm. The nucleus diameter (b) of cells was determined by counting the
number of black pixels of each cell in a discretised image, where each pixel corresponds to 1 µm × 1 µm
and converting this into a circular measurement.

Diameter of cell nucleus (µm)

18.94 18.78 21.98 17.34 23.50 17.00 16.00 16.74 16.42 15.03

16.49 18.95 17.00 21.52 16.15 16.86 16.11 14.17 19.32 21.15

16.80 17.87 16.58 16.50 17.75 16.93 16.65 16.80 21.51 18.05

17.18 15.38 23.07 15.17 15.97 21.41 22.48 17.58 16.50 18.00

Mean (µm) 17.94

Standard deviation (µm) 2.37

Table D.1: Cell nucleus diameter measurements of 40 MM127 cells indicate that the mean nucleus
diameter of the cell, ∆, is 17.94± 2.37 µm
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D.2 Computing average pair correlation functions

In Chapter 6, we present average pair correlation functions, F (r), for all experimental

results. Here, we demonstrate that there are no obvious differences in the pair correla-

tion signal between each subregion in an individual experiment. Furthermore, we also

demonstrate that the averaging approach taken in Chapter 6 is reasonable. Figure D.2

presents results for subregions located at the centre of the cell population for experiments

without cell proliferation and with cell proliferation. Pair correlation signals shown in

Figure D.2 (b) and (f) illustrate the signal extracted from four subregions, of dimension

600 µm × 600 µm, using one experimental replicate. The approximate locations of these

subregions are illustrated in Figure D.2 (a) and (e), respectively. We observe that each

signal fluctuates around unity for all pair distances between 1∆ ≤ r ≤ 5∆. We note that

there is some variability between the pair correlation signals. However, there does not

seem to be obvious differences or trends in the data. Results in Figure D.2 (c) and (g)

illustrate the average pair correlation signal, F (r), from three experimental replicates of

the same experiment using four subregions in each replicate. Again the pair correlation

signals fluctuate around unity for all pair distances without any obvious trends in the

data. In addition our results illustrate that the pair correlation signal for each different

replicate of the same experiment is similar. The final average pair correlation signals,

averaged using 12 subregions from three experimental replicates of the same experiment,

is shown in Figure D.2 (d) and (h). Our results confirm that there are no obvious differ-

ences in the pair correlation signal across experimental subregions or replicates indicating

that our averaging approach used in Chapter 6 is appropriate.
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Figure D.2: Average pair correlation functions. The role of spatial correlations in spreading MM127 cell populations was investigated by calculating pair correlation
functions in four subregions, each of dimension 600 µ × 600 µm, at the centre of the spreading cell population and at the edge of the spreading cell population (e)–(h). The
relative size and approximate location of these subregions is shown in (a) and (e), where the scale bar corresponds to 1,500 µm. Pair correlation functions were computed for
experiments with Mitomycin–C pretreatment to suppress cell proliferation (b)–(d) and without Mitomycin–C pretreatment (f)–(h). Pair correlation signals were computed
from four subregions of dimensions 600 µm × 600 µm and each individual realisation from replicate 1, R1, is shown in (b) and (f). The horizontal axis is measured as multiples
of the average diameter of the nucleus. Averaging the pair correlation signals across four subregions for three experimental replicates is shown in (c) and (g), where, R1, R2 and
R3 correspond to replicates 1, 2 and 3, respectively. Results in (d) and (h) illustrate the final pair correlation signal which is averaged across all 12 subregions from the three
experimental replicates. The error bars correspond to one standard deviation about the mean (N = 12). All experiments were conducted by initially placing approximately
30,000 cells inside the barrier assay.
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D.3 Average pair correlation signals for experiments with different

initial cell densities

Chapter 6 presents average pair correlation signals from all sets of experiments in which

30, 000 cells were initially placed inside the circular barrier. To investigate whether the

initial cell density affects the presence of spatial correlations in the spreading cell popu-

lations, we repeated the procedure using a different initial cell density where 20, 000 cells

were placed as uniformly as possible in the barrier and we found similar results. Results in

Figure D.3 at t = 0 hours and after t = 48 hours, for subregions located at the centre and

at the edge of the cell population, for all experiments with and without cell proliferation,

indicate that the average pair correlation signal, F (r), fluctuates around unity for pair

distances between 1∆ ≤ r ≤ 5∆. These results suggest that there is very little spatial

structure and clustering present in the spreading MM127 melanoma cell populations.
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Figure D.3: Spatial correlations are not present in spreading MM127 melanoma cell popu-

lations. Average pair correlation functions were extracted from images showing the location of individual
cells in four subregions, each of dimension 600 µm × 600 µm, at the centre of the spreading cell population
(a) and four subregions at the edge of the spreading cell population (e). The relative size and approximate
location of these subregions is shown in (a) and (e), respectively, where the scale bar corresponds to 1,500
µm. Average pair correlation signals are shown at t = 0 hours in (b) and (f), at t = 48 hours for experi-
ments without cell proliferation in (c) and (g), and at t = 48 hours for experiments with cell proliferation
in (d) and (h). Results in (a)–(d) and (e)–(h) correspond to pair correlation signals computed at the
centre and at the edge of the spreading cell population, respectively. The horizontal axis is measured
as multiples of the average diameter of the nucleus. Each pair correlation signal was averaged over 12
subregions of dimensions 600 µm × 600 µm, using three identically prepared experimental replicates.
The error bars correspond to one standard deviation about the mean (N = 12). All experiments were
conducted by initially placing approximately 20,000 cells inside the barrier assay.
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D.4 Pair correlation signals in subregions located across the spreading

cell population

We compute the pair correlation signal, in Chapter 6, in subregions located at the centre

and at the edge of the spreading cell populations. Our results show that there are no ob-

vious differences in the pair correlation signal at these locations. To confirm that the pair

correlation signal does not change significantly depending on the location of the subregion,

we computed the pair correlation signal in five different subregions, each of dimension 800

µm × 800 µm, equally spaced between the centre and the edge of the cell population. The

relative size and location of each of these subregions is illustrated in Figure D.4 (a)–(e).

The corresponding pair correlation signal, using one experimental replicate, is shown in

Figure D.4 (g)–(k), where we observe that the pair correlation signals, F (r), fluctuates

around unity for pair distances between 1∆ ≤ r ≤ 5∆ in each subregion. Our results

illustrate that the pair correlation signals in subregions located across the spreading cell

population are similar and we do not observe any obvious differences that depend on the

location of the subregion. Hence, it seems reasonable that the pair correlation signals

at each of these five subregions could be averaged to determine F (r). Results shown

in Figure D.4 (f) and (l) illustrate the average pair correlation signal determined from

the five subregions. The average pair correlation signal illustrates that F (r), fluctuates

around unity for pair distances between 1∆ ≤ r ≤ 5∆ and that the standard deviation,

shown by the error bars, is small confirming that the pair correlation signals extracted in

subregions located across the spreading cell population are similar.
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Figure D.4: Pair correlation signals are similar across the entire spreading cell population.
Pair correlation functions were extracted from images showing the location of individual cells in five sub-
regions of dimensions, 800 µm × 800 µm located across the spreading cell population. The location of the
subregion considered is shown in (a–e), where the scale bar corresponds to 1,500 µm. The corresponding
pair correlation signal for each location is shown in (g)–(k). The horizontal axis is measured as multiples
of the average diameter of the nucleus. The average pair correlation signal, calculated using N = 5 subre-
gions across the spreading cell population as illustrated in (f), is shown in (l). The error bars correspond
to one standard deviation about the mean (N = 12). All experiments were conducted by initially placing
approximately 30,000 cells inside the barrier assay.
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D.5 Insensitivity of pair correlation signal to δ

In Chapter 6, we discretise experimental and discrete simulation images onto a finer pair

correlation lattice by resizing the dimensions of the image such that each pixel is 1 µm ×
1 µm. Here, the lattice spacing is δ = 1 µm. To test whether the pair correlation signal is

sensitive to δ, we repeated the process by discretising the images onto the pair correlation

lattice using various values of δ between 0.1 µm ≤ δ ≤ 3 µm for the experimental images

and 0.1 µm ≤ δ ≤ 18 µm for the discrete simulation images. For the experimental images,

we do not consider any values of δ > 3 µm since we wish to avoid specifying or disrupting

the physical location of the cells on the lattice. Results in Figure D.5 show two examples

of the experimental and discrete images, shown inset in each subfigure, where F (r) has

been computed for various values of δ. We observe that the δ values examined produce

similar pair correlation signals.
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Figure D.5: Size of pair correlation lattice spacing, δ does not affect the pair correlation

signal. Experimental and discrete simulation images were discretised onto a pair correlation lattice
with various values of δ. Average pair correlation signals were extracted from four subregions, each of
dimension 600 µm × 600 µm, at the centre of the population at t = 48 hours from (a) experiments with
Mitomycin–C pretreatment and (b) simulations with cell motility (D = Pm∆2/4τ = 248 µm2/hour),
weak adhesion (q = 0.3) and no proliferation. Snapshots of the entire subregion analysed are shown as an
inset. The physical size of the inset is approximately 215 µm × 215 µm. All experiments and simulations
were initialised with approximately 30,000 cells or simulated cells, respectively. The green dotted lines
correspond to average pair correlation signals computed on a pair correlation lattice with δ = 0.5 µm.
Summarily, blue solid lines indicate δ = 1 µm and red dashed lines illustrate results with δ = 3 µm for the
experimental images and δ = 18 µm for the discrete simulation images. The horizontal axis is measured
as multiples of the average diameter of the nucleus.
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D.6 Average pair correlation function in the w direction

In Chapter 6, spatial correlations in the spreading MM127 melanoma cell populations

were assessed by considering distances between pairs of pixels in the direction of outward

spreading, r, to give an estimate of the pair correlation signal, F (r). For completeness, we

now consider whether the pair correlation signals are sensitive to direction by repeating

the analysis by considering distances between pairs of pixels in the direction perpendicular

to the direction of outward spreading, w, to give an estimate of the pair correlation signal,

F (w). Results in Figure D.6 compare the corresponding average pair correlations signals,

F (r) and F (w), confirming that the pair correlation signals in the intervals 1∆ ≤ r ≤ 5∆

and 1∆ ≤ w ≤ 5∆ are similar regardless of whether we analyse the r or w direction.
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Figure D.6: Comparing the average pair correlation function in the w direction with the

average pair correlation function in the r direction. Average pair correlation functions were
extracted from images showing the location of individual cells in four subregions, each of dimension 600
µm × 600 µm, at the centre of the spreading cell population (a) and four subregions, each of dimension
600 µm × 600 µm, at the edge of the spreading cell population (e). The relative size and approximate
location of these subregions is shown in (a) and (e), respectively, where the scale bar corresponds to
1,500 µm. Pair correlation signals were computed by considering the pair distances of pixels in both
the r direction (black, F (r)) and in the w direction (red, F (w)). Average pair correlation signals are
shown at t = 0 hours in (b) and (f), at t = 48 hours for experiments without cell proliferation in (c) and
(g), and at t = 48 hours for experiments with cell proliferation in (d) and (h). Results in (b)–(d) and
(f)–(h) correspond to pair correlation signals computed at the centre and at the edge of the spreading
cell population, respectively. The horizontal axis is measured as multiples of the average diameter of the
nucleus. Snapshots of the experimental subregions after image processing are shown as an inset. The
size of the inset is approximately 215 µm × 215 µm. Each pair correlation signal was averaged over
12 subregions of dimensions 600 µm × 600 µm, using three identically prepared experimental replicates.
The error bars correspond to one standard deviation about the mean (N = 12). All experiments were
conducted by initially placing approximately 30,000 cells inside the barrier assay.
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