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Abstract

In this thesis, we couple intracellular signalling and cell–based mechanical proper-

ties to develop a novel free boundary mechanobiological model of epithelial tissue

dynamics. Mechanobiological coupling is introduced at the cell level in a discrete

modelling framework, and new reaction–diffusion equations are derived to describe

tissue–level outcomes. The free boundary evolves as a result of the underlying bi-

ological mechanisms included in the discrete model. To demonstrate the accuracy

of the continuum model, we compare numerical solutions of the discrete and con-

tinuum models for two different signalling pathways. First, we study the Rac–Rho

pathway where cell– and tissue–level mechanics are directly related to intracellu-

lar signalling. Second, we study an activator–inhibitor system which gives rise to

spatial and temporal patterning related to Turing patterns. In all cases, the contin-

uum model and free boundary condition accurately reflect the cell–level processes

included in the discrete model.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Context

A key research area in mathematical biology is studying cell migration [1, 2]. As

tumours and wounds consist of a large number of cells, tumour development and

wound healing is often studied as collective cell migration [3–6]. At the microscopic

level, individual cells usually move in a random and irregular manner [1, 2]. This

can result in collective cell migration which mimics cells migrating to heal an

open wound, or to spread tumours [4, 7]. At the macroscopic level, collective cell

migration is commonly modelled as a diffusion process [1, 2].

Collective cell migration can lead to moving cell fronts, which are routinely

studied using in vitro cell biological experiments [7, 8]. These experiments often

involve developing scratch assays, where an artificial gap, called a scratch, is cre-

ated in a monolayer of cells [8]. Over a period of time, the cells move freely and

randomly to close the gap [8]. In closing the gap, the cell front imitates healing

an open wound [7]. Figure 1.1 illustrates a moving cell front in a scratch assay

experiment.

Many studies construct mathematical models to describe moving cell fronts

observed in scratch assay experiments [9–14]. As cells move freely and randomly in

scratch assay experiments (Figure 1.1), their net migration is commonly described

using the linear diffusion equation [1, 2]. Cells are also known to proliferate in

scratch assay experiments [9,10,15]. The Fisher–Kolmogorov–Petrovsky–Piskunov

model, also known as the Fisher-KPP model, extends the linear diffusion equation

to include a logistic source term which describes cell proliferation [1, 16, 17]. The

1
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Fisher-KPP model is a one dimensional, reaction–diffusion equation,

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2︸ ︷︷ ︸
diffusion

+λc(x, t)

(
1− c(x, t)

K

)
︸ ︷︷ ︸

logistic source

, (1.1)

where c(x, t) > 0 is the cell density, D > 0 is the diffusion coefficient, λ > 0 is the

proliferation rate, and K > 0 is the carrying capacity density [1, 16,17].

Figure 1.1: Experimental images of a scratch assay illustrating a moving cell front
at t = 0, 6, 12 and 18 hours. The red, yellow and green colours indicate cells
at different stages of the cell cycle. Reproduced from Vittadello et al. [9] with
permission.

As the Fisher-KPP model captures the net migration and proliferation of cells,

it is widely used in mathematical biology to describe collective cell behaviour. For

example, the Fisher-KPP model is used to study moving cell fronts observed in

scratch assay experiments [10, 13], as well as the development of tumours, such

as glioblastoma [6,18,19]. Travelling wave solutions of the Fisher-KPP model are
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commonly studied in mathematical biology [1,2,20–22], and can be interpreted in

the context of wound healing [20,22].

In this thesis, we take a different approach and consider a moving cell front

in the context of epithelial tissues. Epithelial tissues are comprised of tightly

packed layers of cells, and play an important role in wound healing and tumour

development [23–25]. While Figure 1.1 illustrates that cells constantly exchange

neighbours in scratch assay experiments, Figure 1.2 shows that the boundaries

between neighbouring cells are maintained in epithelial tissues. As such, new

reaction–diffusion equations are presented in this thesis to investigate the effect of

cell boundaries on cell migration in epithelial tissues. In doing so, a free boundary

is used to describe the moving cell front. This research takes the most fundamental

approach and only considers the role of cell migration in a free boundary model

of epithelial tissues. Cell proliferation is neglected, and could be considered one

extension of this study.

1.1.2 Epithelial tissues

Epithelial tissues are layers of cells that form protective surfaces such as the skin

and the lining of internal organs [23–25]. Figure 1.2(a)–(b) shows an epithelial

tissue which lines the uterus. In such tissues, strong intercellular bonds between

adjacent cells form tightly packed layers within the tissue [23,26–28]. Epithelial tis-

sues elastically deform by stretching or compressing in response to chemical signals

and mechanical forces, or trauma, such as tumours and wounds [24,27]. Tumours

grow as cancerous cells invade healthy tissue, whereas wounds shrink as healthy

cells migrate over the open wound. Thus, mathematical models are developed to

study how epithelial tissues elastically deform due to tumour development, wound

healing and morphogenesis.

Existing mathematical models typically use a mechanical spring model to cap-

ture the elasticity of epithelial tissues [29–31]. Figure 1.2(c) illustrates how a cross

section of epithelial tissue relates to a series of interconnected mechanical springs.

Bonds between adjacent cells [23, 26] are modelled by explicitly defining the cell

boundaries. The mechanical spring model incorporates the effect of mechanical

cell properties, such as resistance to deformation and cell size, on the shape of

epithelial tissues. Mechanical forces can induce biochemical signals, such as intra-

cellular signalling, which can cause the tissue to stretch or compress [32, 33]. In

this thesis, cell–based mechanical properties are coupled to intracellular signalling

to investigate their combined effect on the evolution of epithelial tissues. This is

referred to as mechanobiological coupling.



4

Cell nucleus Cell boundaries Basement membrane

(a) (b)

(c)

Figure 1.2: Experimental image of the lining of the uterus and corresponding model
schematic. (a) shows a uterine epithelial tissue. The nucleus of individual cells
is highlighted in blue, and the boundaries between adjacent cells is highlighted in
green. The basement membrane is highlighted in magenta. A higher magnification
of (a) is shown in (b). (c) illustrates a schematic of a one dimensional cross section
of epithelial tissue and corresponding mechanical spring model. Experimental
images in (a)–(b) are reproduced from [34] with permission.

1.1.3 Mathematical models

Mathematical models of epithelial tissues are broadly categorised as either discrete

or continuum [29, 31]. Discrete models treat cells as individual discrete entities

[35,36]. Discrete models include cellular Potts models [37], cell–centre models [35]

and cell–based models [29, 31]. Cell–based models represent cells as mechanical

springs between cell boundaries, whereas cell–centre models represent cells by their

centres. In this thesis, mechanobiological coupling is captured at the cell level in

a cell–based discrete model. Figure 1.2(c) is an example of a cell–based model.
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Discrete models capture cell–level information, such as elasticity, adhesion, motility

and intracellular signalling [29,31,35,38], but often lack macroscopic behaviour [29].

In contrast, continuum models describe tissue–level behaviour, but provide no cell–

level information [31]. A common continuum model is the linear diffusion equation

which captures collective cell migration at the macroscopic level [1, 2]. Other

continuum models, such as the Fisher-KPP model, consist of non-linear partial

differential equations, and are more amenable to analysis than discrete models

[16,17,29–31,38]. Possible analysis techniques for continuum models include linear

stability analysis and travelling wave analysis [21,39,40].

A large number of continuum models are proposed without first considering

cell–level information [32, 41–43]. For example, the Fisher-KPP model is a con-

tinuum model which suggests that collective cell migration and proliferation can

be described by extending the linear diffusion equation to include a logistic source

term [1,2]. While this model may reasonably reflect cell behaviour observed in cell

biology experiments [9,10,12,13], it originates from considering how cell migration

and proliferation effect cell behaviour at the macroscopic level, rather than individ-

ual cells at the microscopic level. However, a small number of continuum models

are derived from a biologically–motivated discrete model using various coarse–

graining techniques and assumptions [11, 29–31, 44]. One technique is to let the

number of discrete entities (cells) tend to infinity [30, 31, 44]. Murphy et al. [29]

develop a new technique by assuming that each individual cell consists of multiple

identical springs. To construct the continuum model, Murphy et al. [29] let the

number of springs per cell tend to infinity while maintaining a constant number

of cells. In this thesis, the continuum model is derived by letting the number of

cells tend to infinity. Our focus in deriving the continuum model is to investigate

how cell–level mechanisms, such as intracellular signalling, relate to tissue–level

behaviour.

Epithelial tissues play important roles in tumour development, wound heal-

ing and morphogenesis [26, 27, 45, 46]. Temporal variation in tumour size and

wound width can be thought of as the evolution of a free boundary [47]. Exist-

ing free boundary models which study tumour development and wound healing

are reviewed in [47]. Many continuum free boundary models pre-specify the rate

of tissue elongation to match experimental observations [48–52]. Other contin-

uum models describe the evolution of the free boundary using a classical one–

phase Stefan condition [53,54]. In some continuum models which consider tumour

spheroids, the evolution of the free boundary depends on the local nutrient con-

centration [55–57]. In this thesis, a free boundary is incorporated in the discrete

and continuum models to study the effect of mechanobiological coupling on the
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evolution of epithelial tissues. By presenting the continuum limit description of a

biologically–motivated discrete model, a novel free boundary condition is derived

which reflects the mechanobiological coupling and biological mechanisms included

in the discrete model.

1.1.4 Modelling mechanical and chemical cell properties

Many models in mathematical biology treat biological tissues and groups of cells

as homogeneous, where each cell is assumed to be identical and possess the same

cellular properties [13, 30, 31, 53]. However, biological tissues are naturally het-

erogeneous as cells can be distinguished by distinct properties, such as cell size

or cell age [25]. Experimental images in Figure 1.1 illustrate that cells in scratch

assay experiments can be distinguished by their stage within the cell cycle. In

addition, Figure 1.2(a)–(b) shows that epithelial tissues contain cells with vari-

ous sizes and shapes. Heterogeneity can also arise due disease progression and

result in malignant tissues [58, 59]. Some models capture heterogeneity as spatial

and temporal variation in mechanical and chemical cell properties to differentiate

between cells [29, 60]. Under certain conditions, models which consider heteroge-

neous cell populations are also applicable to homogeneous cell populations [29]. As

models which consider homogeneous cell populations assume cells possess identical

cellular properties [30, 31], these models are not applicable to heterogeneous cell

populations.

Some models investigate the role of purely mechanical cell properties on ep-

ithelial tissue behaviour [29–31, 61, 62]. Baker et al. [30] consider mechanical cell

properties in a free boundary model for homogeneous cell populations. Murphy et

al. [29] investigate the role of mechanical heterogeneity in tissues of fixed length.

By including mechanobiological coupling, the free boundary model developed in

this thesis is applicable to heterogeneous cell populations. Thus, the work of Baker

et al. [30] and Murphy et al. [29] is unified and extended.

Other studies investigate the role of chemical cell properties on the shape of

epithelial cells [35,43,60,63]. For example, Smith et al. [63] consider how chemical

signalling influences the growth rate of cells, whereas Zmurchok et al. [60] cou-

ple cellular tension and chemical cell properties. Zmurchok et al. [60] finds that

depending on the strength of the coupling, the cell either mechanically relaxes,

or continuously expands and contracts. This is referred to as non-oscillatory and

oscillatory dynamics. In this research, the work of Zmurchok et al. [60] is extended

by investigating how oscillatory and non-oscillatory tissue dynamics arise due to

mechanobiological coupling.
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1.1.5 Modelling mechanobiological coupling

To confirm the accuracy of the continuum model developed in this thesis, including

the free boundary condition, we compare solutions of the discrete and continuum

models relating to different biological scenarios and signalling pathways. First, the

work of Baker et al. [30] is replicated by considering a homogeneous tissue, where

the mechanical properties of cells are constant and independent of the chemical

properties. To investigate mechanobiological coupling in epithelial tissues, the

model is applied in two case studies. The first case study considers the Rac–

Rho pathway where diffusible chemicals called Rho GTPases regulate the shape

of epithelial cells [60, 64–69]. Additionally, Rho GTPases play a role in tumour

development by contributing to the survival and migration of diseased cells in

healthy tissues [70,71]. Zmurchok et al. [60] investigates how the Rac–Rho pathway

leads to oscillatory and non-oscillatory dynamics in a solely discrete modelling

framework. The results of this study are extended in the current research by

including mechanobiological coupling in both a discrete and continuum modelling

framework. In doing so, we investigate how mechanobiological coupling leads to

oscillatory and non-oscillatory tissue dynamics.

The second case study involves an activator–inhibitor system in the context

of Turing patterns [1]. The skin of marine angelfish exhibit a striped pattern

that dynamically changes as the animal grows [72]. Kondo et al. [72] propose

a reaction–diffusion mechanism to account for spatial and temporal variation in

the pattern as the skin evolves. Previous mathematical studies exclusively use

continuum models to investigate the development of spatial–temporal patterns

[51,52,73,74]. These studies model the skin as a uniformly evolving cellular domain

[51,52,73,74]. We extend these studies by investigating the development of spatial–

temporal patters in both a discrete and continuum modelling framework. As the

biological mechanisms included in the discrete model naturally gives rise to non-

uniform tissue evolution, the skin is modelled as a non-uniformly evolving cellular

domain.

1.1.6 Aims

The work presented in this thesis aims to:

1. investigate mechanobiological coupling in epithelial tissues;

2. develop and solve a free boundary mechanobiological model of epithelial tis-

sues in both a discrete and continuum modelling framework; and
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3. determine the accuracy of the continuum model by comparing numerical

solutions of the discrete and continuum models.

In achieving these aims, the evolution of epithelial tissues in response to mechanobi-

ological coupling is investigated, and the findings of previous studies are extended.

1.2 Thesis structure

This thesis is comprised of two main chapters. Chapter 2 is the main document of a

preprint which is under review at Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences. Chapter 3 is the accompanying supplementary

material. The preprint is available on bioRxiv.

In Chapter 2, a novel free boundary mechanobiological model for epithelial tis-

sues is developed. Mechanobiological coupling is introduced at the cell level, and

new reaction–diffusions equations are derived to describe tissue–level outcomes. In

taking the continuum limit description of the discrete model, a novel free bound-

ary condition is derived that corresponds to the underlying biological mechanisms

and heterogeneity included in the discrete model. To determine the accuracy of

the continuum model, the work of Baker et al. [30] is replicated, and the role of

mechanobiological coupling is considered in two case studies. The first case study

considers the Rac–Rho pathway, and investigates how mechanobiological coupling

leads to oscillatory and non-oscillatory tissue dynamics. The second case study

considers an activator–inhibitor system in the context of Turing patterns on a

non-uniformly evolving cellular domain.

Chapter 3 outlines the numerical methods for the free boundary model devel-

oped in Chapter 2, and presents additional numerical simulations. The numerical

methods of the discrete and continuum models are outlined in detail. Additional

numerical results are presented which support the case studies in Chapter 2. These

include analysing long time tissue behaviour, and additional comparisons of dis-

crete and continuum solutions. The methodology used to determine the model

parameters which give rise to oscillatory and non-oscillatory tissue dynamics is

also outlined. This involves phase plane and linear stability analysis.

Chapter 4 summarises the key findings presented in this thesis, and discusses

opportunities for future research.

https://www.biorxiv.org/content/10.1101/2020.07.02.185686v2
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1.3 Statement of joint authorship

This section outlines the contribution of the Masters candidate and the co-authors

of the joint publication presented in this thesis.

Chapter 2: A free boundary mechanobiological model of epithelial

tissues

This chapter is the main document of the preprint entitled “A free boundary

mechanobiological model of epithelial tissues”. This preprint is available on bioRxiv,

and is under review at Proceedings of the Royal Society A: Mathematical, Physical

and Engineering Sciences. The contribution of each co-author is listed below.

• Tamara A. Tambyah devised the methodology, developed the models,

performed all numerical simulations, conducted the analysis, generated the

figures and drafted the preprint for submission.

• Ryan J. Murphy assisted with numerical simulations and critically reviewed

the preprint for submission.

• Pascal R. Buenzli supervised the analysis and generation of the figures, and

critically reviewed the preprint for submission.

• Matthew J. Simpson initiated the theoretical concepts, supervised the anal-

ysis and generation of the figures, and critically reviewed the preprint for

submission.

Chapter 3: Mathematical techniques for a free boundary mechanobi-

ological model of epithelial tissues

This chapter is the supplementary material of the preprint entitled “A free bound-

ary mechanobiological model of epithelial tissues”. This preprint is available on

bioRxiv, and under review at Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences. The contribution of each co-author is listed

below.

• Tamara A. Tambyah implemented the mathematical techniques, performed

analysis, generated the figures and drafted the preprint for submission.

• Ryan J. Murphy critically reviewed the preprint for submission.

• Pascal R. Buenzli supervised the analysis and generation of the figures, and

critically reviewed the preprint for submission.

https://www.biorxiv.org/content/10.1101/2020.07.02.185686v2
https://www.biorxiv.org/content/10.1101/2020.07.02.185686v2
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• Matthew J. Simpson supervised the analysis and generation of the figures,

and critically reviewed the preprint for submission.



Chapter 2

A free boundary

mechanobiological model of

epithelial tissues

This chapter comprises of the main document of a preprint available on bioRxiv.

This preprint is under review at Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences as:

A free boundary mechanobiological model of epithelial tissues

Tamara A. Tambyah, Ryan J. Murphy, Pascal R. Buenzli and Matthew J.

Simpson

11

https://www.biorxiv.org/content/10.1101/2020.07.02.185686v2
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2.1 Introduction

Epithelial tissues consist of tightly packed monolayers of cells [27,28,44]. Mechan-

ical cell properties, such as resistance to deformation and cell size, and chemical

cell properties, such as intracellular signalling, impact the shape of epithelial tis-

sues [27, 32]. The role of purely mechanical cell properties on tissue dynamics

has been studied using mathematical and computational models [29–31,38,61,62].

Other models focus on intracellular signalling to examine how chemical signalling

affects tissue dynamics. [35,43,60,63,75]. We extend these studies by developing a

model which couples mechanical cell properties to intracellular signalling. We refer

to this as mechanobiological coupling. By including mechanobiological coupling in

a discrete computational framework, new reaction–diffusion equations are derived

to describe how cell–level mechanisms relate to tissue–level outcomes.

Epithelial tissues play important roles in cancer development, wound heal-

ing and morphogenesis [27, 45, 46]. Temporal changes in tumour size and wound

width in epithelial monolayers can be thought of as the evolution of a free bound-

ary [47,76]. Many free boundary models use a classical one–phase Stefan condition

to describe the evolution of the free boundary [53,54]. Other free boundary mod-

els, particularly those used to study biological development, pre-specify the rate of

tissue elongation to match experimental observations [48–52,73,74]. In this study,

we take a different approach by constructing the continuum limit description of a

biologically–motivated discrete model. In doing so, we derive a novel free bound-

ary condition that arises from the underlying biological mechanisms included in

the discrete model. While the discrete model is suitable for describing cell–level

observations and phenomena [35, 36], the continuum limit description is suitable

to describe tissue–level dynamics and is more amenable to analysis [39,40,77].

To confirm the accuracy of the continuum limit description, including the new

free boundary condition, we compare the solution of the discrete model with the so-

lution of the continuum model for a homogeneous tissue with no mechanobiological

coupling, and observe good correspondence. To investigate mechanobiological cou-

pling within epithelial tissues, the modelling framework is applied in two different

case studies. The first case study involves the Rac–Rho pathway where diffusible

chemicals called Rho GTPases regulate mechanical cell properties [60,64–69]. We

explicitly consider how the coupling between diffusible chemical signals and me-

chanical properties lead to different tissue–level outcomes, including oscillatory

and non-oscillatory tissue dynamics. The second case study involves the diffusion
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and reaction of an activator–inhibitor system in the context of Turing patterns

on a non-uniformly evolving cellular domain [52, 73, 74]. In both case studies, the

numerical solution of the continuum model provides an accurate description of the

underlying discrete mechanisms.

2.2 Model Description

In this section, we first describe the cell–based model, referred to as the dis-

crete model, where mechanical cellular properties are coupled with intracellular

signalling. To provide mathematical insight into the discrete model, we then de-

rive the corresponding coarse–grained approximation, which is referred to as the

continuum model.

2.2.1 Discrete model

To represent a one dimensional (1D) cross section of epithelial tissue, a 1D chain

of cells is considered [31,61] (Figure 2.1). The tissue length, L(t), evolves in time,

while the number of cells, N , remains fixed. We define xi(t), i = 0, 1, . . . N , to

represent the cell boundaries, such that the left boundary of cell i is xi−1(t) and

the right boundary of cell i is xi(t). The left tissue boundary is fixed at x0(t) = 0

and xN (t) = L(t) is a free boundary.
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Figure 2.1: Schematic of the discrete model where mechanical cell properties, ai
and ki, are functions of the family of chemical signals, Ci(t). In this schematic
we consider two diffusing chemical species where the concentration in the ith cell

is Ci(t) =
{
C

(1)
i (t), C

(2)
i (t)

}
. The diffusive flux into cell i from cells i ± 1, and

the diffusive flux out of cell i into cells i ± 1 is shown. Cell i, with boundaries at
xi−1(t) and xi(t), is associated with a resident point, yi(t), that determines the

diffusive transport rates, T
±(j)
i .

Each cell, which we consider to be a mechanical spring [31,61], is assigned po-

tentially distinct mechanical properties, ai and ki, such that the resulting tissue is
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heterogeneous (Figure 2.1) [38]. Each cell i contains a family of well mixed chem-

ical species, Ci(t) =
{
C

(1)
i (t), C

(2)
i (t), . . . , C

(m)
i (t)

}
, where C

(j)
i (t) represents the

concentration of the jth chemical species in cell i at time t. As the cell boundaries

evolve with time, C
(j)
i (t) tends to decrease as cell i expands. Conversely, C

(j)
i (t)

tends to increase as cell i compresses. Furthermore, C
(j)
i (t) diffuses from cell i to

cells i ± 1. The mechanical properties of individual cells, such as the cell resting

length, ai = a (Ci), and the cell stiffness, ki = k (Ci), may depend on the local

chemical concentration, Ci(t). We refer to this as mechanobiological coupling.

As cells move in overdamped, viscous environments [29,38,78], the location of

each cell boundary i evolves as

η
dxi
dt

= fi+1 − fi, i = 1, 2, . . . , N − 1, (2.1)

where η > 0 is the mobility coefficient, and fi is the cell-to-cell interaction force

acting on cell boundary i from the left [29, 38]. For simplicity, we choose a linear,

Hookean force law given by

fi = k (Ci) (xi(t)− xi−1(t)− a (Ci)) , i = 1, 2, . . . , N. (2.2)

The fixed boundary at x0(t) = 0 has zero velocity, whereas the free boundary at

xN (t) = L(t) moves solely due to the force acting from the left:

η
dx0

dt
= 0, η

dxN
dt

= −fN . (2.3)

We now formulate a system of ordinary differential equations (ODEs) that

describe the rate of change of C
(j)
i (t) due to changes in cell length and diffusive

transport. A position–jump process is used to describe the diffusive transport of

C
(j)
i (t). We use T

±(j)
i to denote the rate of diffusive transport of C

(j)
i (t) from

cell i to cells i ± 1, respectively [79, 80] (Figure 2.1). For a standard unbiased

position–jump process with a uniform spatial discretisation, linear diffusion at

the macroscopic scale is obtained by choosing constant T
±(j)
i [79]. As the cell

boundaries evolve with time, one way to interpret C
(j)
i (t) is that it represents

a time–dependent, non-uniform spatial discretisation of the concentration profile

over the chain of cells. Therefore, care must be taken to specify T
±(j)
i on the

temporally evolving spatial discretisation if we suppose the position–jump process

corresponds to linear diffusion at the macroscopic level [80].

Yates et al. [80] show that in order for the position–jump process to lead to

linear diffusion at the macroscopic level, the length– and time–dependent transport
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rates must be chosen as

T
−(j)
i =

2Dj

(yi(t)− yi−1(t)) (yi+1(t)− yi−1(t))
, i = 2, . . . , N − 1, (2.4)

T
+(j)
i =

2Dj

(yi+1(t)− yi(t)) (yi+1(t)− yi−1(t))
, i = 2, . . . , N − 1, (2.5)

where Dj > 0 is the diffusion coefficient of the jth chemical species at the macro-

scopic level, and yi(t) is the resident point associated with cell i (Figure 2.1) [80].

The resident points are a Voronoi partition such that the left jump length for the

transport of C
(j)
i (t) is yi(t)− yi−1(t), and the right jump length for the transport

of C
(j)
i (t) is yi+1(t) − yi(t) [80]. Complete details of defining a Voronoi partition

are outlined in Chapter 3.2.1.

At the tissue boundaries, we set T
−(j)
1 = T

+(j)
N = 0 so that the flux of C

(j)
1 (t)

and C
(j)
N (t) across x0(t) = 0 and xN (t) = L(t) is zero. We follow Yates et al. [80]

and choose the inward jump length for the transport of C
(j)
1 (t) and C

(j)
N (t) as

2 (y1(t)− x0(t)) and 2 (xN (t)− yN (t)), respectively, giving

T
+(j)
1 =

2Dj

(y2(t)− y1(t)) (y2(t) + y1(t))
, (2.6)

T
−(j)
N =

2Dj

(yN (t)− yN−1(t)) (xN (t)− yN (t)− yN−1(t))
. (2.7)

Therefore, the ODEs which describe the evolution of C
(j)
i (t) are:

dC
(j)
1

dt
= Z(j) (C1)︸ ︷︷ ︸

chemical
reactions

− C
(j)
1

l1

dl1
dt︸ ︷︷ ︸

changes in
cell length

+
1

l1

(
T
−(j)
2 C

(j)
2 l2︸ ︷︷ ︸

diffusion into
cell 1

− T
+(j)
1 C

(j)
1 l1︸ ︷︷ ︸

diffusion out of
cell 1

)
, (2.8)

dC
(j)
i

dt
= Z(j) (Ci)︸ ︷︷ ︸

chemical
reactions

−
C

(j)
i

li

dli
dt︸ ︷︷ ︸

changes in
cell length

+
1

li

(
T

+(j)
i−1 C

(j)
i−1li−1 + T

−(j)
i+1 C

(j)
i+1li+1︸ ︷︷ ︸

diffusion into cell i

−
(
T

+(j)
i + T

−(j)
i

)
C

(j)
i li︸ ︷︷ ︸

diffusion out of cell i

)
,

i = 2, . . . , N − 1,

(2.9)

dC
(j)
N

dt
= Z(j) (CN )︸ ︷︷ ︸

chemical
reactions

−
C

(j)
N

lN

dlN
dt︸ ︷︷ ︸

changes in
cell length

+
1

lN

(
T

+(j)
N−1C

(j)
N−1lN−1︸ ︷︷ ︸

diffusion into
cell N

−T−(j)
N C

(j)
N lN︸ ︷︷ ︸

diffusion out of
cell N

)
, (2.10)
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where li = xi(t) − xi−1(t) is the length of cell i. Chemical reactions among the

chemical species residing in the ith cell are described by Z(j) (Ci). The form of

Z(j) (Ci) is chosen to correspond to different signalling pathways.

In summary, the discrete model is given by Equations (2.1)–(2.10), where Equa-

tions (2.1)–(2.3) describe the mechanical interaction of cells, and Equations (2.8)–

(2.10) describe the underlying biological mechanisms. We solve this determinis-

tic system of ODEs numerically using ode15s in MATLAB [81]. The numerical

method is outlined in Chapter 3.2.1, and key numerical algorithms to solve the

discrete model are available on GitHub.

2.2.2 Continuum model

Assuming that the tissue consists of a sufficiently large number of cells, N , we now

derive an approximate continuum limit description of the discrete model. In the

discrete model, i = 0, 1, . . . , N is a discrete variable which indexes cell positions

and cell properties. The time evolution of the cell boundaries, xi(t), is a set of

N + 1 discrete functions that depend continuously upon time. In contrast, the

continuum model describes the spatially continuous evolution of cell boundary

trajectories in terms of the cell density per unit length, q(x, t). In the continuum

model, ī = i/N is the continuous analogue of i [30]. As N →∞, ī = 0, 1/N, . . . , 1

becomes a continuous variable and defines a continuum of cells. The spatially and

temporally continuous cell density is [30,31]

q(x, t) = N
∂ī(x, t)

∂x
, x ∈ [0, L(t)] and ī ∈ [0, 1]. (2.11)

At any time t, x(̄i, t) is the inverse function of ī(x, t) where x ∈ [0, L(t)] for ī ∈ [0, 1].

We use x(̄i, t) to represent the continuous spatial and temporal evolution of cell

boundary trajectories [30].

The discrete quantity Ci(t) is represented by a multicomponent vector field in

the continuum model, CCC(x, t) = {C1(x, t), C2(x, t), . . . , Cm(x, t)}. Assuming that the

mechanical relaxation of cells is sufficiently fast such that the spatial distribution

of cell lengths is slowly varying in space [29], the location of the resident points

can be approximated as the midpoint of each cell,

Cj
(
x

(
i

N
− 1

2N
, t

)
, t

)
= C

(j)
i (t), i = 1, . . . , N. (2.12)

In Equation (2.12), the subscript j denotes the jth chemical species in the con-

tinuum model, and the superscript (j) denotes the jth chemical species in the

https://github.com/tamaratambyah/Tambyah2020
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discrete analogue. Mechanobiological coupling is introduced by allowing the cell

stiffness, k (CCC), and the cell resting length, a (CCC), to depend on the local chemical

concentration.

We write the linear force law for the continuum of cells as

f (̄i, t) = k (CCC) (x (̄i, t)− x (̄i− 1/N, t)− a (CCC)) , (2.13)

where CCC is evaluated at ī− 1/(2N). Thus, the equations of motion are:

η
∂x(̄i, t)

∂t
= 0, ī = 0, (2.14)

η
∂x(̄i, t)

∂t
= f (̄i+ 1/N, t)− f (̄i, t) , ī ∈ (1/N, 1), (2.15)

η
∂x(̄i, t)

∂t
= −f (̄i, t) , ī = 1. (2.16)

The definition of f (̄i, t) in Equation (2.13) contains arguments evaluated at ī,

ī−1/N and ī−1/(2N). Substituting Equation (2.13) into Equations (2.14)–(2.16),

and expanding all terms in a Taylor series about ī gives,

η
∂x

∂t
= 0, ī = 0, (2.17)

η
∂x

∂t
= − a

N

∂k

∂ī
− k

N

∂a

∂ī
+

1

N2

∂x

∂ī

∂k

∂ī
+

k

N2

∂2x

∂ī2

+O
(
N−3

)
, ī ∈ (1/N, 1),

(2.18)

η
∂x

∂t
= ak − k

N

∂x

∂ī
− k

2N

∂a

∂ī
− a

2N

∂k

∂ī
+

1

2N2

∂k

∂ī

∂x

∂ī
+

k

2N2

∂2x

∂ī2
,

+
k

4N2

∂2a

∂ī2
+

a

4N2

∂2k

∂ī2
+

1

4N2

∂k

∂ī

∂a

∂ī
+O

(
N−3

)
, ī = 1. (2.19)

To describe the continuous evolution of cell trajectories and cell properties, we

write 1/q(x, t) = x(̄i, t) − x(̄i − 1/N, t) [29, 38], and define the continuous linear

force law corresponding to Equation (2.13) as a 1D stress field,

f(x, t) = k (CCC(x, t))
(

1

q(x, t)
− a (CCC(x, t))

)
, x ∈ (0, L (t)) . (2.20)

We express Equations (2.17)–(2.19) in terms of q(x, t) and f(x, t) through a change

of variables from (̄i, t) to (x, t) [30,31]. The change of variables gives

∂x

∂ī
=
N

q
,

∂x

∂t
= −N

q

∂ī

∂t
, (2.21)

∂k

∂ī
=
∂k

∂x

∂x

∂ī
=
N

q

∂k

∂x
,

∂a

∂ī
=
∂a

∂x

∂x

∂ī
=
N

q

∂a

∂x
. (2.22)
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Complete details of the change of variables calculation are outlined in Chapter

3.1.1.

The local cell velocity, u(x, t) = ∂x/∂t, is derived by substituting Equations

(2.21)–(2.22) into the right hand side of Equation (2.18). Factorising in terms of

f(x, t) gives,

u(x, t) =
1

ηq(x, t)

∂f(x, t)

∂x
, x ∈ (0, L (t)) . (2.23)

As u(x, t) = ∂x/∂t, we substitute Equation (2.21) into the left hand side of Equa-

tion (2.23) to derive the governing equation for cell density. The resulting equation

is differentiated with respect to x to give,

∂

∂x

(
N
∂ī

∂t

)
=

∂

∂x

(
−1

η

∂f(x, t)

∂x

)
, x ∈ (0, L (t)) . (2.24)

The order of differentiation on the left hand side of Equation (2.24) is reversed,

and Equation (2.21) is used [30,31] to give,

∂q(x, t)

∂t
= −1

η

∂2f(x, t)

∂x2
, x ∈ (0, L (t)) . (2.25)

The boundary condition for the evolution of L(t) is obtained by substituting

Equations (2.21)–(2.22) into the right hand side of Equation (2.19), giving

η
∂x

∂t
= ak − k

q
− k

2q3

∂q

∂x
+

1

2q2

∂k

∂x
− 1

2q

∂

∂x
(ak)

+
1

4q

{
1

q

∂a

∂x

∂k

∂x
+ k

∂

∂x

(
1

q

∂a

∂x

)
+ a

∂

∂x

(
1

q

∂k

∂x

)}
, x = L(t).

(2.26)

As u(x, t) = ∂x/∂t, the left hand side of Equation (2.26) is equated to Equation

(2.23). Factorising in terms of f(x, t) gives the free boundary condition

0 = f(x, t) +
1

2q(x, t)

∂f(x, t)

∂x
+

1

4q(x, t)

{
1

q(x, t)

∂a (CCC(x, t))
∂x

∂k (CCC(x, t))
∂x

+ k (CCC(x, t)) ∂

∂x

(
1

q(x, t)

∂a (CCC(x, t))
∂x

)
+a (CCC(x, t)) ∂

∂x

(
1

q(x, t)

∂k (CCC(x, t))
∂x

)}
, x = L(t).

(2.27)

A similar transformation is applied to Equation (2.17) to yield the left boundary
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condition as

∂f(x, t)

∂x
= 0, x = 0. (2.28)

Equations (2.23), (2.25), (2.27) and (2.28) form a continuum limit approxi-

mation of the discrete model. Equations (2.23), (2.25) and (2.28) were reported

previously by Murphy et al. [29] who consider heterogeneous tissues of fixed length

without mechanobiological coupling. A key contribution here is the derivation of

Equation (2.27), which describes how the free boundary evolves due to the un-

derlying biological mechanisms and heterogeneity included in the discrete model.

For a homogeneous tissue where the cell stiffness and cell resting length are con-

stant and independent of Cj(x, t), Equation (2.27) is equivalent to Equation (23) in

Baker et al. [30]. Chapter 3.1.2 shows that Equations (2.23), (2.25) and (2.28) can

be derived without expanding all components of Equations (2.14)–(2.15). As the

definition of f (̄i, t) in Equation (2.13) contains arguments evaluated at ī, ī− 1/N

and ī−1/(2N), it is necessary to expand all components of Equation (2.16) about

ī to derive Equation (2.27). For consistency, Equations (2.23), (2.25) and (2.28)

are derived in the same way.

We now consider a reaction–diffusion equation for the evolution of Cj(x, t). The

reaction–diffusion equation involves terms associated with the material derivative,

diffusive transport, and source terms that reflect chemical reactions as well as the

effects of changes in cell length,

∂Cj(x, t)
∂t

+ u(x, t)
∂Cj(x, t)
∂x︸ ︷︷ ︸

material derivative

+ Cj(x, t)
∂u(x, t)

∂x︸ ︷︷ ︸
changes in cell length

−Dj
∂2Cj(x, t)
∂x2︸ ︷︷ ︸

diffusion

= Zj (CCC (x, t)) ,︸ ︷︷ ︸
chemical reactions

x ∈ (0, L(t)) .

(2.29)

The material derivative arises from differentiating Equation (2.12) with respect

to time, and describes to the propagation of cell properties along cell boundary

characteristics [29, 38]. The term describing the effects of changes in cell length

arises directly from the discrete mechanisms described in Equations (2.8)–(2.10).

The linear diffusion term arises due to the choice of jump rates in Equations (2.4)–

(2.7) of the discrete model [80]. Chemical reactions are described by Zj (CCC (x, t)),

and originate from equivalent terms in the discrete model, Z(j) (Ci).

Boundary conditions for Cj(x, t) are chosen to ensure mass is conserved at x = 0

and x = L(t). As the left tissue boundary is fixed, we set ∂Cj/∂x = 0 at x = 0.

At x = L(t), we enforce that the total flux of Cj(x, t) in the frame of reference
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co-moving with the right tissue boundary is zero for all time,

u (L(t), t) Cj (L(t), t)−Dj
∂Cj (L(t), t)

∂x︸ ︷︷ ︸
total flux at x = L(t)

− u (L(t), t) Cj(L(t), t)︸ ︷︷ ︸
moving frame of reference

= 0, (2.30)

where u (L(t), t) = dL/dt. Thus, ∂Cj/∂x = 0 at x = L(t). Writing Equation (2.29)

in conservative form gives,

∂q(x, t)

∂t
= −1

η

∂2f(x, t)

∂x2
, x ∈ (0, L (t)) , (2.31)

∂Cj(x, t)
∂t

+
∂

∂x

(
u(x, t)Cj(x, t)−Dj

∂Cj (x, t)

∂x

)
= Zj (CCC (x, t)) , x ∈ (0, L (t)) , (2.32)

0 =
∂f(x, t)

∂x
, x = 0, (2.33)

0 = f(x, t) +
1

2q(x, t)

∂f(x, t)

∂x
+

1

4q(x, t)

{
1

q(x, t)

∂a (CCC(x, t))
∂x

∂k (CCC(x, t))
∂x

+ k (CCC(x, t)) ∂

∂x

(
1

q(x, t)

∂a (CCC(x, t))
∂x

)
(2.34)

+a (CCC(x, t)) ∂

∂x

(
1

q(x, t)

∂k (CCC(x, t))
∂x

)}
, x = L(t),

u(x, t) =
1

ηq(x, t)

∂f(x, t)

∂x
, x ∈ (0, L (t)) , (2.35)

where

f (x, t) = k (CCC)
(

1

q(x, t)
− a (CCC)

)
, x ∈ (0, L (t)) , (2.36)

and ∂Cj/∂x = 0 at x = 0 and x = L(t).

Equations (2.31)–(2.36) are solved numerically using a boundary fixing trans-

formation [82]. In doing so, Equations (2.31)–(2.36) are transformed from an evolv-

ing domain, x ∈ [0, L(t)], to a fixed domain, ξ ∈ [0, 1], by setting ξ = x/L(t) [82].

The transformed equations are discretised using a standard implicit finite differ-

ence method with initial conditions q(x, 0) and Cj(x, 0). The numerical method is

outlined in Chapter 3.2.2, and key numerical algorithms to solve the continuum

model are available on GitHub.

https://github.com/tamaratambyah/Tambyah2020
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2.3 Results

To examine the accuracy of the new free boundary model, we compare solutions

from the discrete and continuum models for epithelial tissues consisting of m = 1

and m = 2 chemical species.

2.3.1 Preliminary results: Homogeneous tissue

In all simulations, an epithelial tissue with just N = 20 cells is considered. Choos-

ing a relatively small value of N is a challenging scenario for the continuum model.

Baker et al. [30] show that the accuracy of the continuum model increases as N in-

creases. Additional simulations in this study with N > 20 confirm this (results not

shown). In the discrete model, each cell i is initially the same length, li(0) = 0.5,

such that L(0) = 10. The discrete cell density is qi(t) = 1/li(t) which corresponds

to q(x, 0) = 2 for x ∈ [0, L(t)] in the continuum model.

The simplest application of the free boundary model is to consider cell popu-

lations without mechanobiological coupling. For a homogeneous tissue with one

chemical species CCC(x, t) = C1(x, t), the cell stiffness and cell resting length are

constant and independent of C1(x, t). Thus, the governing equations for q(x, t)

and C1(x, t) are only coupled through the cell velocity, u(x, t). To investigate how

non-uniform tissue evolution affects the chemical concentration of cells, we set

C1(x, 0) = 1 for x ∈ [0, L(t)] and Z1(C1) = 0.

Figure 2.2(a) demonstrates a rapid decrease in the cell density at x = L(t)

as the tissue relaxes and the cells elongate. This decreases the chemical concen-

tration (Figure 2.2(b)). As the tissue mechanically relaxes, the cell boundaries

form a non-uniform spatial discretisation on which C1(x, t) is transported (Figure

2.2(a)–(b)). Figure 2.2(c)–(d) demonstrates that the continuum model accurately

reflects the biological mechanisms included in the discrete model, despite the use

of truncated Taylor series expansions. Additional results in Chapter 3.3 show that

q(x, t), C1(x, t) and L(t) become constant as t→∞.
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Figure 2.2: Homogeneous tissue with N = 20 cells and one chemical species where
Z1(C1) = 0, and a = k = D1 = η = 1. Characteristic diagrams in (a)–(b) illustrate
the position of cell boundaries where the free boundary is highlighted in red. The
colour in (a)–(b) represents q(x, t) and C1(x, t) respectively. In (a)–(b), the black
horizontal lines indicate times at which q(x, t) and C1(x, t) snapshots are shown
in (c)–(d). In (c)–(d), the discrete and continuum solutions are compared as the
dots and solid line respectively for t = 0, 10, 25, 50, 75 where the arrow represents
the direction of time.

2.3.2 Case study 1: Rac–Rho pathway

We now apply the mechanobiological model to investigate the Rac–Rho pathway.

Rho GTPases are a family of signalling molecules that consist of two key members,

RhoA and Rac1. Rho GTPases cycle between an active and inactive state, and

regulate cell size and cell motility [42, 60, 66, 68, 83]. Additionally, Rho GTPases

play roles in wound healing [84] and cancer development [85, 86]. New experi-

mental methods [87,88] have discovered a connection between cellular mechanical

tension and Rho GTPase activity [89]. Previous studies use a discrete modelling

framework to investigate this relationship, and conclude that epithelial tissue dy-

namics is dictated by the strength of the mechanobiological coupling [60, 64]. We

extend these previous results by considering how mechanobiological coupling, and
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chemical variation associated with changes in cell length and diffusion, lead to

oscillatory and non-oscillatory tissue dynamics.

To investigate the impact of mechanobiological coupling on epithelial tissue

dynamics, we let CCC(x, t) = {C1(x, t), C2(x, t)} such that C1(x, t) is the concentration

of RhoA and C2(x, t) is the concentration of Rac1. In the discrete and continuum

models, cells are assumed to behave like linear springs [31, 61]. Thus, cellular

mechanical tension is defined as the difference between the length and resting

length of cells. Mechanobiological coupling is proportional to cellular tension, and

is included in Zj (CCC). As Rho GTPase activity increases cell stiffness [90], we choose

k (CCC) as an increasing function of either C1(x, t) or C2(x, t). Furthermore, a (CCC) is

chosen to reflect the fact that RhoA promotes cell contraction [60,64].

The effect of RhoA is considered first, where CCC(x, t) = {C1(x, t)}. We include

the same mechanobiological coupling as [60,64] and let,

Z1 (CCC) =

activation︷ ︸︸ ︷(
b+ γ

Cn1
1 + Cn1︸ ︷︷ ︸

feedback loop

+β

(
1

q
− a (C1)

)
︸ ︷︷ ︸
mechanobiological

coupling

)
(GT − C1) − δC1,︸ ︷︷ ︸

deactivation

(2.37)

where b is the basal activation rate, GT is the total amount of active and in-

active RhoA, and δ is the deactivation rate [60, 64]. The activation term con-

tains a positive feedback loop, governed by γ, to reflect the fact that RhoA self–

activates [60,64]. Mechanobiological coupling is governed by β, and is proportional

to mechanical tension.

Similar to [60], we find that the tissue either mechanically relaxes or con-

tinuously oscillates depending on the choice of β (Figure 2.3). Figure 2.3(a),(c)

illustrates non-oscillatory tissue behaviour when the mechanobiological coupling

is weak, β = 0.2. By increasing the strength of the mechanobiological coupling to

β = 0.3, we observe temporal oscillations in the tissue length and sharp transi-

tions between high and low levels of RhoA (Figure 2.3(b),(d)). Figure 2.3(e)–(h)

illustrates that the continuum model and the free boundary condition accurately

describe non-oscillatory and oscillatory tissue dynamics.
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Figure 2.3: 1D tissue dynamics where RhoA is coupled to mechanical cell ten-
sion. (a),(c),(e),(g) correspond to a non-oscillatory system where β = 0.2 and
(b),(d),(f),(h) relate to an oscillatory system where β = 0.3. Characteristic dia-
grams in (a)–(d) illustrate the evolution of cell boundaries where the free bound-
ary is highlighted in red. The colour in (a)–(b) represents C1(x, t) and q(x, t) in
(c)–(d). The black horizontal lines indicate times at which C1(x, t) and q(x, t)
snapshots are shown in (e)–(f) and (g)–(h) respectively. In (e)–(h), the discrete
and continuum solutions are compared as the dots and solid line respectively for
t = 0, 100, 220, 350, 430. In both systems, a = l0−φCp1/

(
Gp

h + Cp1
)
, k = 1 + 0.05C1,

D1 = 1, η = 1, and C1(0, t) = 1 for x ∈ [0, L(t)]. Parameters: b = 0.2, γ = 1.5,
n = 4, p = 4, GT = 2, l0 = 1, φ = 0.65, Gh = 0.4, δ = 1 .
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As diffusion is usually considered a stabilising process [1], we hypothesise that

increasing D1 could smooth the oscillations that arise when β = 0.3. Figure 2.4

illustrates that as D1 increases, a temporal phase shift arises, but the amplitude

of the oscillations remains constant. While this phase shift is not significant for

a weakly coupled system (Figure 2.4(a)), it is significant for a strongly coupled

system (Figure 2.4(b)). Thus, diffusion does not significantly dampen the oscilla-

tions. This test case provides further evidence of the ability of the new continuum

model and free boundary condition to capture key biological mechanisms included

in the discrete model (Figure 2.4).
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Figure 2.4: The effect of diffusion on the dynamics of the free boundary for (a)
a non-oscillatory system with β = 0.2 and (b) a oscillatory system with β = 0.3.
The discrete solution is shown as the dots and the continuum solution as solid line.
Parameters are as in Figure 2.3.

To examine the combined effect of RhoA and Rac1 on epithelial tissue dynam-

ics, we let CCC(x, t) = {C1(x, t), C2(x, t)} and consider [60],

Z1 (CCC) =

activation︷ ︸︸ ︷(
b1 + β̂

(
1

q
− a (C1)

)
︸ ︷︷ ︸
mechanobiological

coupling

)
1

1 + Cn2
(G1T − C1)− δ1C1,︸ ︷︷ ︸

deactivation

(2.38)

Z2 (CCC) =
b2

1 + Cn1
(G2T − C2)︸ ︷︷ ︸

activation

− δ2C2,︸ ︷︷ ︸
deactivation

(2.39)

where C1(x, t) is the concentration of RhoA and C2(x, t) is the concentration of

Rac1. In a weakly coupled system when β̂ = 1, we observe the fast transition from

the initial concentrations of RhoA and Rac1 to the steady state concentration
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(Figure 2.5(a),(c)). Analogous to Figure 2.3(a),(c), temporal oscillations arise

when the mechanobiological coupling is strong, β̂ = 2.5 (Figure 2.5(b),(d)).
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Figure 2.5: Characteristic diagrams for the interaction of RhoA and Rac1 where
the free boundary is highlighted in red. (a),(c) correspond to a non-oscillatory
system where β̂ = 1 and (b),(d) relate to an oscillatory system where β̂ = 2.5.
The colour in (a)–(b) denotes the concentration of RhoA and the concentration
of Rac1 in (c)–(d). In both systems, a = l0 − φCp1/

(
Gp

h + Cp1
)
, k = 1 + 0.1C2,

D1 = D2 = 1 and η = 1. The initial conditions are C1(0, t) = 1 and C2(0, t) = 0.5
for x ∈ [0, L(t)]. Parameters: b1 = b2 = 1, δ1 = δ2 = 1, n = 3, p = 4, G1T = 2,
G2T = 3, l0 = 1, φ = 0.65, Gh = 0.4. Discrete and continuum solutions are
compared in Chapter 3.4.

The mechanobiological coupling and intracellular signalling in Figures 2.3–

2.5 extend upon previous Rho GTPase models [60, 64]. The source terms stated

in Equations (2.37)–(2.39) can be applied to a single, spatially–uniform cell to

determine the dependence of the system stability on model parameters [60]. This

analysis is outlined in Chapter 3.4.1 and was used to inform our choices of β and

β̂.
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2.3.3 Case study 2: Activator–inhibitor patterning

Case study 2 considers an activator–inhibitor system [1, 91, 92]. Previous studies

of activator–inhibitor patterns on uniformly evolving domains have characterised

the pattern splitting and frequency doubling phenomena which occur naturally on

the skin of angelfish [51,52,72–74]. To investigate how diffusion driven instabilities

arise on a non-uniformly evolving domain, we let CCC(x, t) = {C1(x, t), C2(x, t)} with

D1 6= D2, and use Schnakenberg kinetics,

Z1 (CCC) = n1 − n2C1 + n3C2
1C2, (2.40)

Z2 (CCC) = n4 − n3C2
1C2, (2.41)

where C1(x, t) is the activator and C2(x, t) is the inhibitor [1]. The parameters, ni >

0 for i = 1, 2, 3, 4, govern activator–inhibitor interactions. Non-dimensionalisation

of the governing equations (Equations (2.25) and (2.29)) reveals that the linear

stability analysis is analogous to the classical stability analysis of Turing patterns

on fixed domains [1]. Thus, we define the relative diffusivity, d = D2/D1, with the

expectation that there exists a critical value, dc, that depends upon the choice of ni.

In doing so, it is expected that diffusion driven instabilities arise for d > dc [1,91].

A homogeneous tissue is initialised to investigate the affect of d on the evolu-

tion of activator–inhibitor patterns. For d < dc, the distribution of C1(x, t) and

C2(x, t) varies in time but remains approximately spatially uniform throughout

the tissue (Figure 2.6(a),(c),(e),(g)). Thus, only temporal patterning arises when

d < dc. Figure 2.6(b),(d),(f),(h) demonstrates that spatial–temporal patterns de-

velop when d > dc. Similar to [51, 52, 73], we observe splitting in activator peaks

for d > dc where the concentration of C1(x, t) is at a minimum. Figure 2.6(b)

shows that two distinct activator peaks arise. The long time behaviour of the

tissue is examined in Chapter 3.5. Figure 2.6(e),(g) shows excellent agreement

between the solutions of the discrete and continuum models when d < dc, whereas

Figure 2.6(f),(h) shows a small discrepancy between the solutions of the discrete

and continuum models when d > dc.
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Figure 2.6: The evolution of activator–inhibitor patterns in a homogeneous tissue
with Schnakenberg dynamics. In (a),(c),(e),(g), D1 = 2 and D2 = 3 such that
d < dc. In (b),(d),(f),(h), D1 = 0.5 and D2 = 5 such that d > dc. Charac-
teristic diagrams in (a)–(d) illustrate the evolution of cell boundaries where the
free boundary is highlighted in red. The colour in (a)–(b) represents C1(x, t) and
C2(x, t) in (c)–(d). The black horizontal lines indicate times at which C1(x, t) and
C2(x, t) snapshots are shown in (e)–(f) and (g)–(h) respectively. In (e)–(h), the
discrete and continuum solutions are compared as the dots and solid line respec-
tively for t = 0, 10, 20, 40, 90. In both systems, C1(x, 0) = 1 and C2(x, 0) = 0.5 for
x ∈ [0, L(t)] and a = k = η = 1 Parameters: n1 = 0.1, n2 = 1, n3 = 0.5, n4 = 1 and
dc = 4.9842
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2.4 Conclusion

In this study, we present a novel free boundary mechanobiological model to de-

scribe epithelial tissue dynamics. A discrete modelling framework is used to in-

clude mechanobiological coupling at the cell level. Tissue–level outcomes are de-

scribed by a system of coupled, non-linear partial differential equations, where

the evolution of the free boundary is governed by a novel boundary condition.

In contrast to previous free boundary models, the elongation of the tissue is not

pre-specified [48–52, 73, 74], or described by a classical one–phase Stefan condi-

tion [53, 54]. We take the continuum limit description of the discrete model to

derive a novel free boundary condition which describes how mechanobiological

coupling dictates epithelial tissue dynamics. In deriving the continuum model, we

make reasonable assumptions that N is sufficiently large, and that the time scale

of mechanical relaxation is sufficiently fast (mechanical relaxation is much faster

than cell proliferation [38]). Case studies involving a homogeneous cell popula-

tion, the Rac–Rho pathway and activator–inhibitor patterning demonstrate that

the continuum model reflects the biologically–motivated discrete model even when

N is relatively small. These case studies show how non-uniform tissue dynamics,

including oscillatory and non-oscillatory tissue behaviour, arises due to mechanobi-

ological coupling.

There are several possible mathematical and biological extensions of this study.

We take the most fundamental approach and choose a linear force law to describe

cell-to-cell interactions. One extension of this work is to describe cell-to-cell inter-

actions using a non-linear force law, provided there is some justification that the

linear force law is inadequate [30, 61]. Another choice we make is to suppose that

chemical transport is described by linear diffusion at the macroscopic scale. Other

choices, such as diffusion with drift, are possible [93]. Another extension of the free

boundary model is to introduce cell proliferation and cell death [30,38,94]. While

these phenomena traditionally depend on cell length [30,38], the general theoreti-

cal framework presented here is compatible with cell proliferation and death that

depend on intracellular signalling. In doing so, the model is applicable to biochem-

ical networks where biological mechanisms regulate cell proliferation in epithelial

tissues [95].
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3.1 Continuum model derivation

3.1.1 Change of variables

This section outlines the change of variables from (̄i, t) to (x, t) used in Chapter

2.2.2. Rewriting Equation (2.11), the cell density per unit length, q(x, t), is

q(x, t) = N
∂ī(x, t)

∂x
. (3.1)

To perform a change of variables from (̄i, t) to (x, t), we calculate the Jacobian of

the coordinate transformation [30,31,61],

(
∂x
∂ī

∣∣
t

∂x
∂t

∣∣̄
i

∂t
∂ī

∣∣
t

∂t
∂t

∣∣̄
i

)
=

 ∂ī
∂x

∣∣∣
t

∂ī
∂t

∣∣∣
x

∂t
∂x

∣∣
t

∂t
∂t

∣∣
x

−1

, (3.2)

=
1

∂ī
∂x

∣∣∣
t

∂t
∂t

∣∣
x
− ∂ī

∂t

∣∣∣
x

∂t
∂x

∣∣
t

 ∂t
∂t

∣∣
x
−∂ī

∂t

∣∣∣
x

− ∂t
∂x

∣∣
t

∂ī
∂x

∣∣∣
t

 , (3.3)

to arrive at the relationships,

∂x

∂ī
=
N

q
,

∂x

∂t
= −N

q

∂ī

∂t
. (3.4)

Using the chain rule, the second derivatives are,

∂2x

∂ī2
=
∂x

∂ī

∂

∂x

(
N

q

)
= −N

2

q3

∂q

∂x
, (3.5)

∂2k

∂ī2
=
∂x

∂ī

∂

∂x

(
∂k

∂x

∂x

∂ī

)
=
N2

q

∂

∂x

(
1

q

∂k

∂x

)
, (3.6)

∂2a

∂ī2
=
∂x

∂ī

∂

∂x

(
∂a

∂x

∂x

∂ī

)
=
N2

q

∂

∂x

(
1

q

∂a

∂x

)
. (3.7)

3.1.2 Derivation of governing equation for cell density in fac-

torised form

Here we outline how Equations (2.23), (2.25) and (2.28) can be obtained using the

factorised form of f (̄i, t) in Equation (2.13). The equations of motion in Equations
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(2.14)–(2.16) are restated as,

η
∂x(̄i, t)

∂t
= 0, ī = 0, (3.8)

η
∂x(̄i, t)

∂t
= f (̄i+ 1/N, t)− f (̄i, t) , ī ∈ (1/N, 1), (3.9)

η
∂x(̄i, t)

∂t
= −f (̄i, t) , ī = 1. (3.10)

To derive the local cell velocity in Equation (2.23), the right hand side of

Equation (3.9) is expanded in a Taylor series about ī,

η
∂x

∂t
=

1

N

∂f

∂ī
+O

(
N−2

)
, ī ∈ (1/N, 1). (3.11)

Neglecting non-zero higher order terms and using the chain rule gives,

η
∂x

∂t
=

1

N

∂f

∂x

∂x

∂ī
, ī ∈ (1/N, 1). (3.12)

Equation (3.4) is substituted into the right hand side of Equation (3.12) to derive

the local cell velocity, u(x, t) = ∂x/∂t, as,

u(x, t) =
1

ηq(x, t)

∂f(x, t)

∂x
, x ∈ (0, L (t)) . (3.13)

As u(x, t) = ∂x/∂t, Equation (3.4) is substituted into the left hand side of Equation

(3.13). Differentiating the resulting equation with respect to x gives,

∂

∂x

(
N
∂ī

∂t

)
=

∂

∂x

(
−1

η

∂f(x, t)

∂x

)
, x ∈ (0, L (t)) . (3.14)

The order of differentiation on the left hand side of Equation (3.14) is reversed,

and Equation (3.4) is used to give,

∂q(x, t)

∂t
= −1

η

∂2f(x, t)

∂x2
, x ∈ (0, L (t)) . (3.15)

To derive the left boundary condition in Equation (2.28), the left hand side of

Equation (3.8) is equated to Equation (3.13) giving,

∂f(x, t)

∂x
= 0, x = 0. (3.16)

Thus, we have shown that Equations (2.23), (2.25) and (2.28) can be obtained

using the factorised form of f (̄i, t) in Equation (2.13), and first order Taylor se-
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ries expansions. In the main document we do not pursue this approach. This

is because more care is required to obtain the correct form of the free bound-

ary equation in Equation (2.27). Extensive numerical exploration confirms that

the approach taken in the main document is necessary to reflect the underlying

biological mechanisms included in the discrete model.

3.2 Numerical methods

This section outlines the numerical method used to solve the discrete and con-

tinuum models with one chemical species, m = 1. Key numerical algorithms for

m = 1 and m = 2 chemical species are available on GitHub.

3.2.1 Discrete model

For N cells and one chemical species, the discrete model consists of 2N+1 ordinary

differential equations. For simplicity, we write C = C(1) = C and D1 = D.

Equations (2.1)–(2.10) are restated as:

η
dx0

dt
= 0, (3.17)

η
dxi
dt

= fi+1 − fi, i = 1, . . . , N − 1, (3.18)

η
dxN
dt

= −fN , (3.19)

dC1

dt
= Z (C1)− C1

l1

dl1
dt

+
1

l1

(
T−2 C2l2 − T+

1 C1l1
)
, (3.20)

dCi

dt
= Z (Ci)−

Ci

li

dli
dt

+
1

li

(
T+
i−1Ci−1li−1 −

(
T+
i + T−i

)
Cili + T−i+1Ci+1li+1

)
, i = 1, . . . , N − 1,

(3.21)

dCN

dt
= Z (CN )− CN

lN

dlN
dt

+
1

lN

(
T+
N−1CN−1lN−1 − T−NCN lN

)
, (3.22)

where li = xi(t)− xi−1(t) is the length of cell i and

fi = k (Ci) (xi(t)− xi−1(t)− a (Ci)) , i = 1, . . . , N. (3.23)

The transport rates for internal cells are

T−i =
2D

(yi(t)− yi−1(t)) (yi+1(t)− yi−1(t))
, i = 2, . . . , N − 1, (3.24)

T+
i =

2D

(yi+1(t)− yi(t)) (yi+1(t)− yi−1(t))
, i = 2, . . . , N − 1, (3.25)

https://github.com/tamaratambyah/Tambyah2020
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and

T+
1 =

2D

(y2(t)− y1(t)) (y2(t) + y1(t))
, (3.26)

T−N =
2D

(yN (t)− yN−1(t)) (xN (t)− yN (t)− yN−1(t))
, (3.27)

and T−1 = T+
N = 0 for boundary cells [80]. Equations (3.17)–(3.27) are solved

numerically using ode15s in MATLAB [81]. At each time step, we use a Voronoi

partition to compute the resident points, yi(t), and the transport rates, T±i .

Voronoi partition

To define a Voronoi partition, we set the resident point of cell 1, y1(t), as the

midpoint of its respective cell boundaries,

y1(t) =
x0(t) + x1(t)

2
. (3.28)

The Voronoi partition enforces that the cell boundaries correspond to the mid-

points of resident points [80]. Thus, the following relationship holds

xi−1(t) =
yi(t) + yi−1(t)

2
, i = 2, . . . , N. (3.29)

Equations (3.28) and (3.29) can be written as the following system of linear equa-

tions, 

1 0 0 0 0

1 1 0 0 0

0 1 1 0 0
...

. . .
. . .

. . .
. . .

0 0 0 1 1





y1(t)

y2(t)

y3(t)
...

yN (t)


=



(x0(t) + x1(t)) /2

2x1(t)

2x2(t)
...

2xN−1(t)


. (3.30)

Equation (3.30) is solved numerically for the resident points at each time step

of the discrete simulation. As Equation (3.30) is a lower triangular matrix system,

we use the Thomas Algorithm [96].

3.2.2 Continuum model

We now outline the numerical method used to solve the continuum model and

write CCC = C1 = C and D1 = D for simplicity. Equations (2.31)–(2.36) are restated
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as a system of coupled, non-linear partial differential equations:

∂q

∂t
= −1

η

∂2f

∂x2
, x ∈ (0, L (t)) , (3.31)

∂C
∂t

+
∂

∂x

(
uC −D∂C

∂x

)
= Z (C) , x ∈ (0, L (t)) , (3.32)

0 =
∂f

∂x
, x = 0, (3.33)

0 = f +
1

2q

∂f

∂x
+

1

4q

{
1

q

∂a

∂x

∂k

∂x

+ k
∂

∂x

(
1

q

∂a

∂x

)
+ a

∂

∂x

(
1

q

∂k

∂x

)}
, x = L(t), (3.34)

u =
1

ηq

∂f

∂x
, x ∈ (0, L (t)) , (3.35)

where

f = k

(
1

q
− a
)
, x ∈ (0, L (t)) , (3.36)

and ∂C/∂x = 0 at x = 0 and x = L(t).

A standard boundary fixing transformation is used to transform Equations

(3.31)–(3.36) from an evolving domain, x ∈ [0, L(t)], to a fixed domain, ξ ∈ [0, 1],

by setting ξ = x/L(t) [82]. Invoking this transform yields:

∂q

∂t
= − 1

ηL2

∂2f

∂ξ2
+
ξ

L

dL

dt

∂q

∂ξ
, ξ ∈ (0, 1), (3.37)

∂C
∂t

+ v
∂C
∂ξ

+
C

ηqL2

{
∂2f

∂ξ2
− 1

q

∂q

∂ξ

∂f

∂ξ

}
− D

L2

∂2C
∂ξ2

= Z (C) , ξ ∈ (0, 1), (3.38)

0 =
1

L

∂f

∂ξ
, ξ = 0, (3.39)

0 = f +
1

2qL

∂f

∂ξ
+

k

4qL2

∂

∂ξ

(
1

q

∂a

∂ξ

)
+

1

4q2L2

∂a

∂ξ

∂k

∂ξ
+

a

4qL2

∂

∂ξ

(
1

q

∂k

∂ξ

)
, ξ = 1, (3.40)

u =
1

ηqL

∂f

∂ξ
, ξ ∈ (0, 1), (3.41)

where

v =
1

ηqL2

∂f

∂ξ
− ξ

L

dL

dt
, ξ ∈ (0, 1), (3.42)

and ∂C/∂ξ = 0 at ξ = 0 and ξ = 1.
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Equations (3.37)–(3.42) are spatially discretised on a uniform mesh, with n =

1/∆ξ+ 1 nodes. The value of q(ξ, t) and C(ξ, t) at the ith spatial node and the jth

temporal node are approximated as qji and Cji respectively, where ξ = (i − 1)∆ξ

and t = j∆t. A standard implicit finite difference method is used to approximate

spatial and temporal derivatives [96].

We first consider the discretisation of the governing equation and boundary

conditions for cell density. Central difference approximations are used to discretise

Equation (3.37) as

qj+1
i − qji

∆t
= − 1

η(Lj+1)2

(
f j+1
i−1 − 2f j+1

i + f j+1
i+1

(∆ξ)2

)

+
ξ

Lj+1

(
Lj+1 − Lj

∆t

)(
qj+1
i+1 − q

j+1
i−1

2∆ξ

)
, i = 2, . . . , n− 1.

(3.43)

Equations (3.39) and (3.40) are discretised using appropriate forward and back-

ward difference approximations,

0 = f j+1
2 − f j+1

1 , (3.44)

0 = f j+1
n +

1

2qj+1
n Lj+1

(
f j+1
n − f j+1

n−1

∆ξ

)

+
kj+1
n

4qj+1
n (Lj+1)2

(
1

qj+1
n

− 1

qj+1
n−1

)(
aj+1
n − aj+1

n−1

∆ξ

)

+
aj+1
n

4qj+1
n (Lj+1)2

(
1

qj+1
n

− 1

qj+1
n−1

)(
kj+1
n − kj+1

n−1

∆ξ

)

+
1

4
(
qj+1
i

)2
(Lj+1)2

(
aj+1
n − aj+1

n−1

∆ξ

)(
kj+1
n − kj+1

n−1

∆ξ

)
.

(3.45)

We now consider the discretisation of the governing equation and boundary

conditions for C. As C propagates along cell boundary characteristics, Equation

(3.42) is used to upwind the first derivative of C in Equation (3.38). For vi > 0,

a backward difference approximation is used to approximate the first derivative

of C, and all other spatial derivates are approximated using central difference
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approximations,

Cj+1
i − Cji

∆t
+ vi

(
Cj+1
i − Cj+1

i−1

∆ξ

)
− D

(Lj+1)2

(
Cj+1
i−1 − 2Cj+1

i + Cj+1
i+1

(∆ξ)2

)

+
Cj+1
i

ηqj+1
i (Lj+1)2

{(
f j+1
i−1 − 2f j+1

i + f j+1
i+1

(∆ξ)2

)

− 1

qj+1
i

(
qj+1
i+1 − q

j+1
i−1

∆ξ

)(
f j+1
i+1 − f

j+1
i−1

∆ξ

)}
= Z

(
Cj+1
i

)
, i = 2, . . . , n− 1,

(3.46)

where

vi =
1

ηqj+1
i (Lj+1)2

(
f j+1
i+1 − f

j+1
i−1

2∆ξ

)
− ξ

Lj+1

(
Lj+1 − Lj

∆t

)
, (3.47)

i = 2, . . . , n− 1.

Similarly, forward difference approximations are used when vi < 0. The boundary

condition at ξ = 0 is

0 = C2 − C1. (3.48)

Numerical exploration revealed that a ghost node was necessary to solve ∂C/∂ξ = 0

at ξ = 1. The use of a ghost node ensured that the numerical solution of the

continuum model agreed with the solution of the discrete model. The ghost node

is placed outside the right domain boundary at i = n + 1. A central difference

approximation is applied to the zero–flux boundary condition to obtain Cj+1
n+1 =

Cj+1
n−1. To incorporate the ghost node, Equation (3.38) is factorised as

∂C
∂t

+ v
∂C
∂ξ

+
C
ηL2

∂

∂ξ

(
1

q

∂f

∂ξ

)
− D

L2

∂2C
∂ξ2

= Z (C) . (3.49)

Backward and central difference approximations are used to discretise Equation

(3.49) as

Cj+1
n − Cjn

∆t
+ vn

(
Cj+1
n − Cj+1

n−1

∆ξ

)
− D

(Lj+1)2

(
Cj+1
n−1 − 2Cj+1

n + Cj+1
n+1

∆ξ2

)

+
Cj+1
n

η (Lj+1)2

1

∆ξ

{
1

qj+1
n

(
f j+1
n − f j+1

n−1

∆ξ

)
− 1

qj+1
n−1

(
f j+1
n − f j+1

n−1

∆ξ

)}
= Z

(
Cj+1
n

)
.

(3.50)
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Substituting Cj+1
n+1 = Cj+1

n−1 into Equation (3.50) and factorising gives

Cj+1
n − Cjn

∆t
+ vn

(
Cj+1
n − Cj+1

n−1

∆ξ

)
− D

(Lj+1)2

(
2Cj+1

n−1 − 2Cj+1
n

(∆ξ)2

)

+
Cj+1
n

η (Lj+1)2

1

∆ξ

(
1

qj+1
n

− 1

qj+1
n−1

)(
f j+1
n − f j+1

n−1

∆ξ

)
= Z

(
Cj+1
n

)
,

(3.51)

where

vn =
1

ηqj+1
n (Lj+1)2

(
f j+1
n − f j+1

n−1

∆ξ

)
− ξ

Lj+1

(
Lj+1 − Lj

∆t

)
. (3.52)

Equation (3.36) is discretised as

f j+1
i = k

(
Cj+1
i

)( 1

qj+1
i

− a
(
Cj+1
i

))
, i = 1, . . . , n, (3.53)

and substituted into Equations (3.43)–(3.52) to form a non-linear system of equa-

tions.

We solve Equations (3.43)–(3.45) for qj+1
i and Equations (3.46)–(3.48),(3.51)–

(3.52) for Cj+1
i using the Newton-Raphson method [97]. At each Newton-Raphson

iteration, Equation (3.41) is used to update the position of the free boundary as

Lj+1 = Lj +
∆t

ηqj+1
n Lj

f j+1
n − f j+1

n−1

∆ξ
. (3.54)

Newton-Raphson iterations are continued until the norm of the difference between

successive solution estimates of qj+1
i and Cj+1

i are both less than a specified tol-

erance, ε. To ensure all numerical results are grid–independent, ∆ξ = 10−3,

∆t = 10−3 and ε = 10−8. All linear systems are solved using the Thomas al-

gorithm [96].
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3.3 Preliminary results: Homogeneous tissue

In Chapter 2.3.1, we examine a homogeneous tissue withN = 20 cells, one chemical

species, CCC(x, t) = C1(x, t), and no chemical source, Z1(C1) = 0. Figure 3.1(a)–

(b) demonstrates that q(x, t), C1(x, t) and L(t) become constant as t → ∞. To

obtain expressions for the long time behaviour of q(x, t), C1(x, t) and L(t), the

total number of cells, N , and total number of chemical particles, P , are computed

as,

N =

∫ L(t)

0
q(x, t) dx, P =

∫ L(t)

0
C1(x, t) dx. (3.55)

Using Equation (3.55), N = q(x, 0)L(0) and P = C1(x, 0)L(0). As the tissue

relaxes, the cells elongate such that the length of individual cells approaches the

cell resting length. Thus, q(x, t), C1(x, t) and L(t) become constant,

lim
t→∞

q(x, t) =
1

a
, lim

t→∞
C1(x, t) =

P

Na
, lim

t→∞
L(t) = Na. (3.56)

Figure 3.1(c)–(d) shows that the average cell density, q̃(x, t), and the average

chemical concentration, C̃1(x, t), approach the limits stated in Equation (3.56) as

t→∞. The free boundary in Figure 3.1(a)–(b) demonstrates that L(t) approaches

the limit stated in Equation (3.56) as t→∞.
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Figure 3.1: Homogeneous tissue consisting of one chemical species where Z1(C1) =
0 and a = k = D1 = η = 1. Characteristic diagrams in (a)–(b) illustrate the posi-
tion of cell boundaries where the free boundary is highlighted in red. The colour in
(a)–(b) represents q(x, t) and C1(x, t) respectively. Discrete and continuum solu-
tions for the average cell density, q̃(x, t), and the average chemical concentration,
C̃1(x, t) are compared in (c)–(d) respectively. The purple line in (c)–(d) shows the
asymptotic behaviour of q̃(x, t) = 1/a and C̃1(x, t) = P/(Na) respectively.

3.4 Case study 1: Rac–Rho pathway

To investigate the Rac–Rho pathway, we let CCC(x, t) = {C1(x, t), C2(x, t)} such that

C1(x, t) represents the concentration of RhoA and C2(x, t) represents the concen-

tration of Rac1. Figure 3.2 compares the discrete and continuum solutions relating

to Figure 2.5.
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Figure 3.2: 1D tissue dynamics for the interaction of RhoA and Rac1. (a),(c),(e)
correspond to non-oscillatory system where β̂ = 1 and (b),(d),(f) relate to an
oscillatory system where β̂ = 2.5. Characteristic diagrams in (a)–(b) illustrate
the behaviour of C1(x, t) where the free boundary is highlighted in red. The black
horizontal lines indicate times at which C2(x, t) and q(x, t) snapshots are shown in
(c)–(d) and (e)–(f) respectively. In (c)–(f), the discrete and continuum solutions
are compared as the dots and solid line respectively for t = 0, 1, 90, 140, 190, 300.
In both systems, a = l0 − φCp1/

(
Gp

h + Cp1
)
, k = 1 + 0.1C2, D1 = D2 = 1 and η = 1.

Parameters: b1 = b2 = 1, δ1 = δ2 = 1, n = 3, p = 4, G1T = 2, G2T = 3, l0 = 1, φ =
0.65, Gh = 0.4.
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3.4.1 Single cell model

To investigate the influence of mechanobiological coupling on cellular dynamics, a

discrete computational framework is used to model a single cell [60, 64]. We let

C(t) =
{
C(1)(t), C(2)(t)

}
where C(1)(t) represents RhoA and C(2)(t) represents

Rac1. As only a single cell is of interest, C(t) is not indexed with a subscript

(Figure 3.3). Mechanobiological coupling is introduced such that the cell resting

length, a = a (C), and the cell stiffness, k = k (C), depend on the chemical family,

C(t).

L(t) 

* *

*
x

*x

*

x

*

x

*
x

*
x

x *

x

*

x*

x

*

*

*

**

*

* *
*

*

Figure 3.3: Schematic of a single cell with length L(t). The mechanical cell proper-
ties, a and k, depend on the family of chemical signals, C(t) =

{
C(1)(t), C(2)(t)

}
.

We model the cell as an overdamped, mechanical spring [31,78] such that C(t)

tends to decrease as the cell expands, and tends to increase as the cell compresses.

Thus, the governing equations are,

dL

dt
= −ε (L− a (C)) , (3.57)

dC(j)

dt
= Z(j) (C)︸ ︷︷ ︸

chemical
reactions

− C(j)

L

dL

dt︸ ︷︷ ︸
changes in
cell length

, (3.58)

where L(t) is the cell length, ε = 2k (C) /η is the rate of contraction, η is the

mobility coefficient and Z(j) (C) governs the reactions between the chemical species

within the cell [60]. For simplicity, the cell stiffness is chosen to be independent

of C(t) such that ε is constant. The cell resting length is assumed to vary from a

fixed value, l0 [60]. By including a Hill function with amplitude φ, switch location

Gh and power p, we assume RhoA shortens the resting cell length [60],

a (C) = l0 − φ
(
C(1)

)p
Gh +

(
C(1)

)p . (3.59)

Equations (3.57) and (3.58) form a dynamical system. Phase planes are con-
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structed to characterise the dependence of the system stability on the strength

of the mechanobiological coupling. We used this analysis to inform our choice of

model parameters in Chapter 2.3.2. The equilibrium points, L̄ and C̄(j), are deter-

mined by setting the time derivatives to zero such that L̄ = a
(
C̄
)

and Z(j)
(
C̄
)

= 0.

To investigate a single cell containing only RhoA, we consider C(t) =
{
C(1)(t)

}
and let [60]

Z(1) (C) =

activation︷ ︸︸ ︷(
b+ γ

(
C(1)

)n
1 +

(
C(1)

)n︸ ︷︷ ︸
feedback loop

+β
(
L(t)− a

(
C(1)

))
︸ ︷︷ ︸

mechanobiological
coupling

)(
GT − C(1)

)

− δC(1),︸ ︷︷ ︸
deactivation

(3.60)

where b is the basal activation rate, γ is rate of feedback activation, β governs the

strength of the mechanobiological coupling, GT is the total amount of active and

inactive RhoA, and δ is the deactivation rate [60, 64]. By substituting L̄ = a
(
C̄
)

into Z(1)
(
C̄(1)

)
= 0, C̄(1) is numerically computed as the roots of,

0 = (−b− γ + δ)
(
C̄(1)

)n+1
+ (bGT + δGT)

(
C̄(1)

)n
+ (−b+ δ) C̄(1) + bGT.

(3.61)

Equation (3.61) is independent of β. Thus, we vary β to investigate how the system

stability depends on the strength of the mechanobiological coupling (Figure 3.4).

Phase planes are constructed using quiver in MATLAB [98], and trajectories are

computed using ode15s in MATLAB [81] (Figure 3.4).

Figure 3.4(a),(c) demonstrates that the equilibrium point is stable when β =

0.2, and the cell exhibits non-oscillatory behaviour. By increasing the strength

of the mechanobiological coupling to β = 0.3, a limit cycle arises, which leads to

continuous oscillations in L(t) and C(1)(t) (Figure 3.4(b),(d)). Stability analysis

reveals that the equilibrium point is unstable for β = 0.3. Thus, all solutions,

regardless of the initial condition, exhibit oscillatory behaviour when β = 0.3

(Figure 3.4(b)).

To investigate how intracellular reactions between RhoA and Rac1 impact cell
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behaviour, we consider C(t) =
{
C(1)(t), C(2)(t)

}
and let [60],

Z(1) (C) =

activation︷ ︸︸ ︷(
b1 + β̂

(
L(t)− a

(
C(1)

))
︸ ︷︷ ︸

mechanobiological
coupling

)
1

1 +
(
C(2)

)n (G1T − C
(1)
)

− δ1C
(1),︸ ︷︷ ︸

deactivation

(3.62)

Z(2) (C) =
b2

1 +
(
C(1)

)n (G2T − C
(2)
)

︸ ︷︷ ︸
activation

− δ2C
(2),︸ ︷︷ ︸

deactivation

(3.63)

where C(1)(t) is the concentration of RhoA and C(2)(t) is the concentration of

Rac1. Figure 3.5(a),(c) illustrates that when the mechanobiological coupling is

weak, β̂ = 1, the equilibrium point is stable and the cell mechanically relaxes. By

increasing the strength of the mechanobiological coupling to β̂ = 2.5, a limit cycle

arises and the cell exhibits oscillatory behaviour (Figure 3.5(b),(d)).
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Figure 3.4: Dynamics of a single cell containing RhoA. (a),(c) corresponds to a
non-oscillatory system where β = 0.2, and (b),(d) corresponds to an oscillatory
system where β = 0.3. In (a)–(b), cyan represents the L nullcline and magenta
represents the C(1) nullcline. The trajectory for

(
C(1)(0), L(0)

)
= (0.5, 1) is shown

in red. In (b), the additional trajectory for
(
C(1)(0), L(0)

)
= (0.5, 0.65) is drawn

as a dashed red line to demonstrate that all solutions exhibit oscillatory behaviour
for β = 0.3. Parameters are: b = 0.2, γ = 1.5, n = 4, p = 4, GT = 2, l0 = 1, φ =
0.65, Gh = 0.4, δ = 1, ε = 0.1 .
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Figure 3.5: Reactions between RhoA and Rac1 in a single cell. (a),(c) corresponds
to a non-oscillatory system where β̂ = 1, and (b),(d) corresponds to an oscillatory
system where β̂ = 2.5. In (a)–(b), magenta represents the C(1) nullcline and
green represents the C(2) nullcline. The trajectory for

(
L(0), C(1)(0), C(2)(0)

)
=

(0.5, 1, 0.5) in shown in red. Parameters: b1 = b2 = 1, δ1 = δ2 = 1, n = 3, p =
4, G1T = 2, G2T = 3, l0 = 1, φ = 0.65, Gh = 0.4, ε = 0.1.
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3.5 Case study 2: Activator–inhibitor patterning

Chapter 2.3.3 considers an activator–inhibitor system with CCC(x, t) = {C1(x, t), C2(x, t)},
where C1(x, t) is the activator and C2(x, t) is the inhibitor. Figure 3.6 illustrates

the long time behaviour of Figure 2.6(b),(d). Figure 3.6 demonstrates that two

distinct activator peaks evolve as t→∞ when d > dc. Thus, unlike [51,52], we do

not observe continuous peak splitting.
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Figure 3.6: The evolution of spatial–temporal patterns in a homogeneous tissue
with Schnakenberg dynamics, where D1 = 0.5 and D2 = 5 such that d > dc. (a)
illustrates the behaviour of the activator, C1(x, t), and (b) illustrates the behaviour
of the inhibitor, C2(x, t). Parameters are as in Figure 2.6.





Chapter 4

Conclusion

4.1 Summary

In this thesis, a novel free boundary mechanobiological model of epithelial tissues

is derived. Cell migration within epithelial tissues is studied by considering the

boundaries between adjacent cells, where the moving cell front is modelled as a free

boundary. One of the main outcomes of this research is including mechanobiologi-

cal coupling in a free boundary model of epithelial tissues. Previous studies inves-

tigate mechanical cell properties [29–31, 61, 62], or chemical signals [35, 43, 60, 63]

in epithelial tissues. In this study, cell–based mechanical properties are coupled to

intracellular signalling in a free boundary model, to study their combined effect

on the evolution of epithelial tissues.

In Chapter 2, a free boundary mechanobiological model of epithelial tissues

is developed in both a discrete and continuum modelling framework. One key

feature of this research is the derivation of the free boundary condition in the

continuum model. Some existing continuum models pre-specify the rate of tis-

sue elongation [48–52], or describe the free boundary using a one–phase Stefan

condition [53,54]. Other continuum models which consider tumour spheroids cou-

ple the free boundary condition to the local nutrient concentration [55–57]. In

contrast, the free boundary condition presented in this study arises due to the

underlying biological mechanisms and mechanobiological coupling included in the

discrete model. As such, the free boundary model is applicable to non-uniformly

evolving tissues, and appropriately describes the evolution of heterogeneous cell

populations. Thus, this research extends and unifies existing mathematical models

of epithelial tissues.

Extensive numerical exploration in Chapter 2 demonstrates that the continuum

model and free boundary condition successfully capture the underlying biological

51
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mechanisms included in the discrete model. Additional results and analysis in

Chapter 3 compliment the findings of Chapter 2.

4.2 Discussion

In this research, mechanobiological coupling is investigated at the cell level in a

discrete modelling framework, and the continuum model is derived to describe

tissue–level outcomes. The cell–based model consists of a system of coupled, or-

dinary differential equations which describe the mechanical relaxation of cells,

chemical reactions within cells, and diffusive transport between nearest neighbour

cells. The continuum model is derived as a system of coupled, non-linear partial

differential equations. While continuum models can be derived using a variety of

coarse–graining techniques [11,29–31,44], the continuum model in this work is de-

rived by assuming that N →∞. As epithelial tissues consist of extensive layers of

cells [25], this assumption is biologically reasonable. We further assume that the

mechanical relaxation of cells is sufficiently fast. This assumption is also appro-

priate as the timescale of mechanical relaxation is much faster than the timescale

of other cellular mechanisms, such as proliferation [99].

The accuracy of the continuum model, including the free boundary condition,

is investigated by comparing numerical solutions from the discrete and continuum

models relating to different biological scenarios. Preliminary results replicate the

work of Baker et al. [30] by considering a homogeneous cell population with no

mechanobiological coupling. In doing so, we find that the free boundary condition

derived in Chapter 2 reduces to the free boundary condition derived in Baker et

al. [30]. Numerical results in Chapters 2 and 3 demonstrate excellent agreement

between the solutions of the discrete and continuum models. Thus, the continuum

model accurately describes the dynamics of homogeneous cell populations with no

mechanobiological coupling.

To investigate the accuracy of the continuum model in epithelial tissues with

mechanobiological coupling, the model is applied in two case studies relating to

different signalling pathways. The first case study considers the Rac–Rho pathway

and investigates how RhoA and Rac1 influence the evolution of epithelial tissues.

The work of Zmurchok et al. [60] is extended by investigating how oscillatory and

non-oscillatory tissue dynamics arise as a result of mechanobiological coupling.

The oscillatory tissue dynamics provide a challenging scenario to test the accuracy

of the free boundary condition in describing non-uniform tissue evolution. Phase

plane analysis in Chapter 3 investigates how the model parameters affect the dy-

namics of the tissue. We find that non-oscillatory tissue dynamics relate to a stable
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fixed point, whereas oscillatory tissue dynamics relate to an unstable fixed point

enclosed by a limit cycle. The effect of diffusion on tissue dynamics is investigated,

and we find that increasing the diffusion coefficient does not significantly dampen

the oscillations, but introduces a temporal phase shift. In all test cases, excellent

agreement between solutions of the discrete and continuum models is observed.

The second case study considers the formation of activator–inhibitor patterns

on an evolving cellular domain. Schnakenberg kinetics are used to characterise

the pattern splitting observed on the skin of angelfish. As the free boundary

condition derived in the continuum model describes non-uniform tissue evolution,

the development of spatial–temporal patterns on a non-uniformly evolving cellular

domain is investigated. In doing so, we extend previous studies which consider

spatial–temporal patterns on uniformly evolving domains [51,52,73,74]. Numerical

results in Chapters 2 and 3 show splitting in the activator peaks, and demonstrate

agreement between the solutions of the discrete and continuum models.

Baker et al. [30] show that the accuracy of continuum models increase as

N → ∞ [30]. One potential approach to improve the accuracy of the continuum

model is to retain additional terms in the truncated Taylor series used to derive the

continuum model. We do not follow this approach for two reasons. First, retaining

higher order terms can lead to ill–posed partial differential equation models [100].

Second, extensive numerical exploration in Chapters 2 and 3 justify that the con-

tinuum model and the free boundary condition accurately reflect the biological

mechanisms included in the discrete model, for a relatively small value of N = 20.

Therefore, we conclude that retaining additional terms in the truncated Taylor

series when deriving the continuum model is not required in this study.

4.3 Future research

In deriving the discrete and continuum models, certain assumptions were made to

simplify aspects of the models. These assumptions are now addressed as extensions

of this work and opportunities for future research.

In constructing the model, a linear force law is chosen to describe cell-to-cell

interactions within the tissue. This choice is reasonable as it successfully cap-

tures the mechanical properties of cells, such as resistance to deformation and cell

size. Non-linear force laws such as the cubic or Hertz force law could be used to

expand the range of potential cell-to-cell interactions, and to capture the effect

of large separations between cells in epithelial tissues [30, 61]. Existing mathe-

matical models which consider non-linear force laws often extend previous studies

which use a linear force [30, 61]. Thus, this study presents a good foundation and
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modelling framework to include non-linear force laws. We anticipate that using

a non-linear force law will significantly affect the free boundary condition. Thus,

care is warranted when deriving the free boundary condition in the continuum

model to ensure that it reflects the discrete model.

In developing the discrete model, an unbiased, position–jump process is chosen

to describe diffusive chemical transport between neighbouring cells. The length–

and time–dependent transport rates are further chosen to correspond to a linear

diffusion mechanism in the continuum model. Other possibilities for describing dif-

fusive chemical transport at the cell level include biased, position–jump processes.

Some position–jump processes include a global directional bias to incorporate the

effects of drift [93]. These processes correspond to the advection–diffusion equa-

tion at the macroscopic level [93], and offer an alternative way to model chemical

transport within epithelial tissues.

Another extension of this work is to include cell proliferation and cell death.

Cell proliferation and death play crucial roles in tumour development as cancerous

cells are thought to proliferate at a higher rate than healthy cells, and healthy

cells commonly die due to the invasion of cancerous cells [101]. Cell proliferation

is also important in wound healing as cells are known to proliferate in the vicinity

of open wounds [102]. Previous studies investigate the role of cell proliferation

and mechanical cell properties in epithelial tissues [30, 38]. Baker et al. [30] in-

clude cell proliferation in a free boundary model for homogeneous cell populations,

whereas Murphy et al. [38] consider cell proliferation in heterogeneous tissues of

fixed length. These studies assume that cells proliferate stochastically at a rate

which depends on the current length of the cell [30,38]. We present a general mod-

elling framework with mechanobiological coupling which could extend to include

cell proliferation that depends on the chemical properties of cells. In doing so,

a free boundary mechanobiological model with cell proliferation which applies to

heterogeneous cell populations could be developed. This extension may lead to a

model which is applicable to biochemical networks where biological mechanisms

regulate the proliferation of cells in epithelial tissues [95]. Cell death could be in-

corporated in a similar fashion. Thus, by including cell proliferation and death in

the free boundary model presented in this thesis, tumour development and wound

healing can be further investigated.

In considering mechanobiological coupling in epithelial tissues, specific sig-

nalling pathways that consist of one or two chemical species are investigated. While

Schnakenberg kinetics model the splitting of activator peaks, other activator–

inhibitor interactions, such as Gierer–Meinhardt kinetics, can be used to inves-

tigate the insertion of new activator peaks [51, 52, 73]. As this study considers an
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epithelial tissue consisting of a family of chemicals species, the model can be ap-

plied to case studies involving more than two chemicals species. In particular, the

free boundary model can be used to capture the role and interaction of other mem-

bers of the Rho GTPase family, such as RhoC, Rac2 and Cdc42, which contribute

to wound healing and tumour development [70,84].

This study demonstrates the potential of mathematical models to investigate

mechanobiological coupling in epithelial tissues. In extending the free boundary

model presented in this thesis and expanding its applications, mechanobiological

coupling in epithelial tissues can be further investigated.
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