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Abstract

Burn injuries are relatively common and painful. To gain a better understanding of burns,

mathematical models can be used to describe the associated heat transfer process. In this

thesis, we present a simple continuum model that incorporates the layered, heterogeneous

structure of skin tissue. The model comprises a skin layer and a fat layer with distinct,

unknown thermal diffusivities. We then attempt to estimate the thermal diffusivities using

experimental data. The experimental data is from a recent study into the heat conduction

of living porcine (pig) tissue. One key feature of this data set is that all data is collected

from a single location. This poses a problem for parameter inference; it is difficult to infer

the behaviour in multiple layers of tissue when all data is extracted from just one of the

layers. This thesis investigates experimental designs which optimise the precision with

which we can calibrate the mathematical model, the different solution techniques to such

a model and presents the algorithms and code used throughout the investigation. We find

that a single probe is insufficient to accurately estimate the parameters in our layered con-

tinuum model, whereas two probes strategically placed makes precise parameter inference

possible.
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Chapter 1

Introduction

1.1 Overview

Burns are a common type of injury, particularly among young children (Li, 2017). Burn

injuries are painful, result in scarring and may demand long-term treatment (Sheridan,

2012). The damage to the skin tissue inflicted by the burn can be mitigated by immediate

treatment (Wood et al., 2016). Even after the initial burn, damage continues to occur

as the heat propagates throughout the tissue. By quickly cooling down the tissue, the

damage can be reduced. To gain a better understanding of this process and to gauge

the efficacy of different treatment methods, experiments could be conducted on living

animals. For ethical reasons, it is desirable to maximise the information garnered from

these experiments. To this end, a sensible strategy is to develop a mathematical model that

describes the heat transfer process, use the necessary number of experiments to determine

the parameters of this model, then use the calibrated model to make predictions about a

variety of scenarios.

Porcine skin tissue is accepted as being a reasonable approximation of human skin

tissue, due to physiological similarities (Andrews et al., 2016; Abdullahi et al., 2014;

Meyer et al., 1978; Montagna and Yun, 1964; Henriques and Moritz, 1947; Moritz and

Henriques, 1947; Sullivan et al., 2001). In light of this, Cuttle and colleagues conducted

heat transfer experiments on living pigs (Cuttle et al., 2006), as shown in Figure 1.1.

Dr Cuttle is the Head of the Burns and Trauma Research Laboratory at the Centre for

Children’s Health Research at Queensland University of Technology and was using the

experiments to learn about tissue damage and the effect of different first aid treatments.

In the experiments, a constant source of heat is applied to the surface of the skin tissue

using a scalding device, with a single subdermal temperature probe recording data. After
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the burn, treatment is applied to the surface of the inflicted area, often simply cool running

water. The experiments vary design parameters such as duration of burn, temperature

of the burn-inducing water, time of delay before treatment occurs and the temperature

of the cool water acting as the first aid treatment. The investigation is extensive and

many key findings from the experiments are published (Andrews et al., 2016; Cuttle et al.,

2008a,b, 2010, 2006). However, the results are somewhat limited in the sense that the

data is extracted at a single location in the tissue and any scenarios outside the exact

design parameters of the conducted experiments are not considered. These limitations are

understandably difficult to overcome from an experimentalist’s point of view. Using more

than one subdermal probe compromises the structural integrity of the thin skin tissue,

which is approximately 4 mm thick, and only so many experiments of different designs can

be conducted for ethical reasons. However, mathematical modelling tools can attempt to

resolve both the issue of limited spatial sampling and the issue of limited experiments.

(a) (b)

Figure 1.1: Porcine heat transfer experiments. (a) Scalding device. (b) Application of cool
running water to the burn with subdermal temperature probe recording the temperature
measurements. Images are reproduced from Simpson et al. (2017) with permission.

During the period of December 2016 to February 2017, I was involved in a summer

research project, supervised jointly by Professor Simpson, Dr Carr and Dr Cuttle. The

project aimed to develop a deeper insight into Dr Cuttle’s experimental data by calibrat-

ing the solution of a simple heat transfer model to match the experimental observations.

To describe the heat transfer in the living porcine tissue, we use a one-dimensional ho-

mogenised diffusion model. It is homogenised in the sense that we do not consider how the

thermal diffusivity of the tissue varies spatially, using a single constant thermal diffusivity

parameter. In this model, the temporal and spatial distribution of temperature, T (x, t),
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is governed by,

∂T (x, t)

∂t
= α

∂2T (x, t)

∂x2
+ β(T (x, t)− T0), (1.1)

for 0 < x < H and t > 0, subject to the following initial and boundary conditions:

T (x, 0) = T0, (1.2)

T (0, t) =

Th, 0 < t < 15,

Tc, 15 < t < 15 + td,
(1.3)

∂T (H, t)

∂x
= γ (T0 − T (H, t)) , (1.4)

where H is the total depth of the tissue including the epidermis, dermis and fat, td is

the duration for which the treatment is applied, α is the thermal diffusivity, β is a heat

transfer coefficient governing the rate at which thermal energy is lost to the blood supply,

T0 is a reference temperature which we take to be approximately equal to the temperature

of the blood and muscle, Th is the temperature of the heat source used to create the

burn, Tc is the temperature of the first aid treatment, and γ is a heat transfer coefficient

governing the rate at which thermal energy is lost to the adjacent muscle at x = H.

The unknown parameters of this model, α, β and γ, were calibrated to the experimental

data, allowing us to predict the thermal behaviour of the skin tissue at all locations and

for different experimental designs. The model calibration and prediction is presented in

Figure 1.2, Figure 1.2(a) presents the homogenised model as a simple schematic, Figure

1.2(b)-(c) shows the calibrated mathematical model plotted against the experimental data

at the probe location (x = 4 mm) and Figure 1.2(d)-(e) presents the solution of the

mathematical model for 0 ≤ x ≤ 4 at various points in time throughout the heating and

cooling process. This mathematical model could then be utilised to investigate scenarios

outside the specificities of the experiments conducted, such as different temperatures of the

scalding water, different temperatures of the cooling water and different burn durations.

In Simpson et al. (2017), we use the mathematical model to study the effect of temperature

of the cooling water on the potential damage inflicted on the skin tissue.
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Figure 1.2: Calibration of the single layer model and solution visualisation. (a) Schematic
of the homogenised model. The depth of the tissue is denoted x. (b-c) Calibration of
mathematical model to experimental data for two different treatment conditions. (d-e)
Solution of calibrated mathematical model showing spatial and temporal variations in
the temperature distribution during both the heating (red) and cooling (blue) phases of
experiments for two different treatment conditions. The direction of the arrow indicates
the forward progression of time. Images are reproduced from Simpson et al. (2017) with
permission.
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As with any investigation utilising a mathematical model, the results hinge on the

validity of the assumptions made when developing the model. One concern with the

mathematical model used was that it treated the tissue as a single homogeneous layer.

This was viewed as necessary due to the fact that the experimental data used to calibrate

the model is extracted from a single location in the tissue. It was hypothesised that trying

to deduce the thermal behaviour in multiple layers would be difficult, if not impossible,

using only information retrieved from one of the layers.

epidermis

dermis

fat

muscle

Figure 1.3: Histological image of normal porcine skin. Scale bar is 1 mm. Image is
reproduced from Simpson et al. (2017) with permission.

It is well known, however, that skin is layered (Johnson et al., 1997; van der Merwe

et al., 2006), as illustrated in Figure 1.3. This motivates us to develop a more sophisti-

cated mathematical model for heat transfer in living tissue that incorporates the layered

structure of skin. For this model to be useful in predicting real life behaviour, we must

have accurate estimates of the parameters in the model. However, it may be difficult to

calibrate a heterogeneous model using data obtained from a single location.

The aims of this thesis are to:

1. develop and solve a mathematical model that describes the heat transfer process of

living skin that incorporates the layered structure inherent with skin tissue;

2. determine whether it is possible to parameterise the model using experimental data

extracted from a single location in the tissue; and
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3. investigate how modifying the experimental design could improve the precision with

which the model parameters are inferred.

1.2 Structure of this thesis

The substance of this thesis corresponds to a scientific manuscript accepted for publication

by the editor-in-chief (as of September 14, 2018) at the International Journal of Heat and

Mass Transfer. Chapter 2 of this thesis is the main document of the paper. Chapter 3 is

a portion of the supplementary material which outlines the mathematical techniques.

In Chapter 2, we explore the process of parameterising a continuum model of heat

transfer in heterogeneous living skin with spatially limited experimental data. To describe

the heat transfer, we present a simplified two-layer mathematical model, comprising a

skin and fat layer with unknown thermal diffusivities. In past research, in vivo porcine

heat conduction experiments have been conducted, with a single subdermal temperature

probe extracting data from the bottom of the fat tissue. Synthetic data is developed to

mimic the in vivo porcine experimental data. We demonstrate that precise inference of

the two parameters in our mathematical model - the thermal diffusivities of skin and fat -

is impossible using a single probe located at the bottom of the fat tissue. We then explore

how the use of a second probe could improve the parameter inference process and suggest

the optimal location for this second probe.

In Chapter 3, we detail the solution methodology for the two-layer mathematical model

utilised in Chapter 2. This approach involves taking the Laplace transform of the govern-

ing equations and boundary conditions in the model, finding the solution of the Laplace

transform system of equations in each layer and then performing the inverse Laplace trans-

form numerically to obtain the solution of the original two-layer mathematical model. To

verify the accuracy of the solution, a finite volume scheme is also presented in detail. We

find that the Laplace approach and the finite volume scheme produces visually indistin-

guishable solutions across a variety of different parameters.

In Chapter 4, we review the key findings of this thesis and discuss possible future

avenues of research.

1.3 Statement of joint authorship

This section outlines the contribution of the Masters student in relation to the co-authors

of the joint work presented in this thesis.
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Chapter 2: Parameterising continuum models of heat transfer in heteroge-

neous living skin

This chapter corresponds to the main document of the paper titled “Parameterising con-

tinuum models of heat transfer in heterogeneous living skin using experimental data”,

accepted for publication by the editor-in-chief (as of September 14, 2018) at the Inter-

national Journal of Heat and Mass Transfer. The co-authors of this paper are Sean

McInerney, Elliot Carr and Matthew Simpson. Their contributions to this chapter are

listed below.

• Sean McInerney performed the analysis, generated the figures and drafted the manuscript.

• Elliot Carr jointly coordinated the research project, supervised the analysis and

generation of figures, and provided feedback on the drafting of the manuscript.

• Matthew Simpson jointly coordinated the research project, supervised the analysis

and generation of figures, and helped draft the manuscript.

Chapter 3: Mathematical Techniques for continuum models of heat transfer

in heterogeneous living skin

This chapter corresponds to the mathematical techniques portion of the supplementary

material of the paper titled “Parameterising continuum models of heat transfer in heteroge-

neous living skin using experimental data”, accepted for publication by the editor-in-chief

(as of September 14, 2018) at the International Journal of Heat and Mass Transfer. The

contributions of the authors are listed below.

• Sean McInerney implemented the mathematical techniques, generated the figures

and drafted the manuscript.

• Elliot Carr developed the solution to the model, supervised the implementation of

the mathematical techniques and the generation of figures, and provided feedback

on the drafting of the manuscript.

• Matthew Simpson supervised the implementation of the mathematical techniques

and the generation of figures, and helped draft the manuscript.





Chapter 2

Parameterising continuum models

of heat transfer in heterogeneous

living skin using experimental data

This chapter comprises the main text of the following manuscript:

S McInerney, EJ Carr and MJ Simpson, Parameterising continuum models of heat

transfer in heterogeneous living skin using experimental data, International Journal

of Heat and Mass Transfer, accepted for publication, September 2018.
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Abstract

In this work we consider a recent experimental data set describing heat conduction in

living porcine tissues. Understanding this novel data set is important because porcine

skin is similar to human skin. Improving our understanding of heat conduction in living

skin is relevant to understanding burn injuries, which are common, painful and can re-

quire prolonged and expensive treatment. A key feature of skin is that it is layered, with

different thermal properties in different layers. Since the experimental data set involves

heat conduction in thin living tissues of anesthetised animals, an important experimental

constraint is that the temperature within the living tissue is measured at one spatial loca-

tion within the layered structure. Our aim is to determine whether this data is sufficient

to reliably infer the heat conduction parameters in layered skin, and we use a simplified

two-layer mathematical model of heat conduction to mimic the generation of experimen-

tal data. Using synthetic data generated at one location in the two-layer mathematical

model, we explore whether it is possible to infer values of the thermal diffusivity in both

layers. After this initial exploration, we then examine how our ability to infer the thermal

diffusivities changes when we vary the location at which the experimental data is recorded,

as well as considering the situation where we are able to monitor the temperature at two

locations within the layered structure. Overall, we find that our ability to parameterise a

model of heterogeneous heat conduction with limited experimental data is very sensitive

to the location where data is collected. Our modelling results provide guidance about

optimal experimental design that could be used to guide future experimental studies.
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2.1 Introduction

Injuries caused by accidental exposure to hot liquids are common, painful and often re-

quire extensive long-term treatment (Sheridan, 2012). To improve our understanding of

how thermal energy propagates through human skin, experimental studies often work

with porcine (pig) skin because porcine skin is anatomically similar to human skin (An-

drews et al., 2016; Abdullahi et al., 2014; Meyer et al., 1978; Montagna and Yun, 1964;

Henriques and Moritz, 1947; Moritz and Henriques, 1947; Sullivan et al., 2001). Many

experimental studies deal with heat conduction in excised non-living tissues (Henriques

and Moritz, 1947; Moritz and Henriques, 1947; El-Brawany et al., 2009; Brown et al.,

1993). In contrast, the experimental protocols developed by Cuttle and colleagues (Cuttle

et al., 2006, 2008a,b, 2010) are unique because they quantify heat conduction in living

porcine tissues. Working with living tissues is far more biologically relevant than work-

ing with excised non-living tissues. Cuttle’s experimental protocol involves working with

anesthetised living pigs that are given analgesia. A thermocouple probe, referred to as the

subdermal probe, is inserted obliquely under the skin of the animal at various locations on

the body (Cuttle et al., 2006, 2008a,b, 2010). To initiate an experiment, a cylindrical scald

creation device is placed onto the surface of the skin so that the centre of the circular scald

device is above the subdermal probe. Pre-heated water is pumped into the scald device

and suctioned out of the device at an equal rate to ensure that a constant level of water at

a particular temperature is maintained in the device at all times during the experiment.

The temperature response in the living skin is measured by the subdermal probe as a

function of time during the experiment. This time series data reveals information about

how the thermal energy propagates through the living skin, and this experimental protocol

can be used to study how thermal energy propagates through skin in different locations on

the body. Further, by using pigs of different ages the same experimental protocol can be

used to study how the propagation of thermal energy depends on skin thickness (Andrews

et al., 2016).

A visual summary of Cuttle’s experimental porcine model is given in Figure 2.1. The

image in Figure 2.1(a) shows a portion of excised skin at the conclusion of an experiment

highlighting the location and size of the subdermal probe. The histology image in Figure

2.1(b) highlights the layered structure of the skin. The epidermis and dermis forms the

upper layer of the skin where hair follicles are present (Haridas et al., 2017, 2018). The

epidermis and dermis are bright pink in Figure 2.1(b), and throughout this study we treat

the epidermis and dermis as a single layer that we call the skin layer. Underneath the skin
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(a) (b)

(c) (d)

x = 0

x = l1

x = l2

skin layer

fat layer

probe

x

epidermis

dermis

fat

muscle

(e)

50 mm

4 mm

scalding device

skin layer
fat layer

probe

Figure 2.1: Developing a two-layer heterogeneous mathematical model to mimic the ex-
perimental porcine model. (a) Excised skin, showing the location of the probe and the
depth of the tissue. (b) Histological image of normal porcine skin. Scale bar is 1 mm. The
depth below the surface of the skin is denoted by x ≥ 0. (c) Conceptual two-layer model
of the tissue with a skin layer (bright pink) sitting above the fat layer (lighter pink). The
interface between the two layers is at x = l1, and the probe is located at the bottom of
the fat layer, x = l2. (d) Example of the temporal variation of dimensional temperature,
T̂ (l2, t), reported in Simpson et al. (2017). Data is obtained from a subdermal tempera-
ture probe at x = l2. The water in the scald creation device is held at 50◦C for a duration
of 120 s. (e) Schematic showing that the tissues are very thin (4 mm) compared to the
diameter of the scald creation device (50 mm). Images in (a) and (b) are reproduced from
Simpson et al. (2017) with permission.
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layer there is a layer of fat that is a lighter shade of pink in Figure 2.1(b). Throughout

this work we refer to this lower layer as the fat layer. As indicated in Figure 2.1(c), we

adopt a coordinate system where x = 0 corresponds to the skin surface. The interface

between the fat and skin is located at x = l1 > 0, we have l1 = 1.6 mm in this case. The

interface between the fat and the underlying muscle and bone is at x = l2 > l1, and we

have l2 = 4.0 mm in this case. Our conceptual idealisation of the structure of the layered

tissues is given in Figure 2.1(c) where the subdermal probe is placed at x = l2 since

experimental data reported by Cuttle involves placing the probe at the bottom of the fat

layer (Andrews et al., 2016; Simpson et al., 2017). A summary of the kind of experimental

data reported by Cuttle is given in Figure 2.1(d). In this particular experiment the probe

is located at the interface of the fat and muscle, x = l2, and a scald creation device of

diameter 50 mm is placed on the surface of the skin (Andrews et al., 2016). Water at

temperature of 50◦C is maintained in the scald creation device for a duration of 120 s,

and the time series data showing the temperature at the subdermal probe is recorded,

as shown. It is worth noting that the total depth of the tissue (4 mm) is much smaller

than the diameter of the scald creation device (50 mm), so that 4/50 = 0.08 � 1, as

illustrated in Figure 2.1(e). Since the centre of the circular scald creation device is placed

directly over the location of the probe the heat transfer downward through the skin can

be idealised as a one-dimensional process (Simpson et al., 2017).

A prominent feature of the skin, highlighted in Figure 2.1(b), is the layered structure

where we see that the fat layer is below the skin layer. This kind of histological information

has been previously incorporated into mathematical descriptions of heat transfer in skin

by explicitly accounting for the layered, heterogeneous structure of the tissue. These previ-

ous models have often been based on generalisations of Pennes’ bioheat equation (Pennes,

1948; Kengne and Lakhssassi, 2015; Mercer and Sidhu, 2006) and re-formulated as a mul-

tilayer heterogeneous heat transfer model where the thermal properties can vary between

the different layers (Diller et al., 1991; Baldwin et al., 2012; Orgill et al., 1998; Orndorff

et al., 2017; Sarker et al., 2015). A key limitation of working with such a heterogeneous

multilayer heat transfer model is that they are more challenging to parameterise than sim-

pler single layer models. This is a consequence of the fact that there are a greater number

of unknown parameter values in a multilayer heterogeneous model compared to a simpler

single layer model of heat transfer. This challenge is particularly acute if we consider

parameterising a mathematical model of heat transfer using Cuttle’s realistic experiments

that report the temperature response at one location within the layered structure. This

experimental limitation is difficult to overcome because inserting multiple probes simul-

taneously at different depths would risk compromising the integrity of the living tissues.

Our previous work has involved calibrating the solution of much simpler single layer homo-
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geneous models to match data from Cuttle’s experiments (Andrews et al., 2016; Simpson

et al., 2017). However, these previous studies suffer from the limitation that they implic-

itly treat the thermal parameters of the skin layer and fat layer together into a simplified,

vertically averaged, homogenised single layer (Simpson, 2009). While this approach is

mathematically convenient, it is unclear whether a single layer model is appropriate since

we know that one of the main biological roles of the fat layer is to provide thermal insu-

lation (Hayward and Keatinge, 1981). Therefore, we expect that the thermal properties

of the skin and fat layers could be very different.

In this work we use a two-layer heterogeneous model to describe heat conduction in liv-

ing tissues. Our aim is to perform a suite of synthetic experiments with realistic parameter

values to mimic data generated by Cuttle’s experimental protocol. With this synthetic

data we explore the extent to which we can confidently estimate the thermal diffusivity

in each layer when we have limited experimental observations where the temperature is

reported at one single location within the layered tissues. To achieve this, we use the

solution of the two-layer heterogeneous model, parameterised with biologically-relevant

estimates of the thermal diffusivity of skin and fat, to generate synthetic data that mimics

Cuttle’s experimental protocol where a single probe is placed at the bottom of the fat

layer. Given that the synthetic data is generated with known estimates of the thermal

diffusivity in the skin and fat layers, we then systematically explore the parameter space

to investigate whether the kind of data can be used to reliably determine parameters in

the heterogeneous mathematical model. Once we have demonstrated how delicate this

parameter estimation task can be, we turn our attention to the question of experimental

design. First, we explore whether our ability to determine the parameters in the two-layer

model varies when we alter the location of the single subdermal probe. Second, we explore

the extent to which our ability to estimate the parameters improves when we consider syn-

thetic experiments with two probes so that the temperature is recorded simultaneously at

two different positions within the layered skin.

2.2 Mathematical model

We model the transfer of heat through the skin and fat layers using a one-dimensional

model. This is a reasonable assumption given that the depth of the tissue is much smaller

than the width of the scald creation device used in Cuttle’s experimental protocol (An-

drews et al., 2016; Simpson et al., 2017). If the tissue depth was comparable to the

diameter of the scald creation device it would be more appropriate to use a two- or

three-dimensional mathematical model. In this work we assume that the temporal and

spatial distributions of dimensional temperature in the skin layer, T1(x, t), and the fat
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layer T2(x, t), are governed by

∂T1(x, t)

∂t
= D1

∂2T1(x, t)

∂x2
, 0 < x < l1, (2.1)

∂T2(x, t)

∂t
= D2

∂2T2(x, t)

∂x2
, l1 < x < l2, (2.2)

where D1 > 0 is the thermal diffusivity of the skin and D2 > 0 is the thermal diffusivity

of fat. We have not included any source terms in Equations (2.1)-(2.2). Although some

previous studies have incorporated source terms to account for the transfer of thermal

energy from the skin tissues to the the blood supply (Pennes, 1948), known as perfusion,

our previous work, in which we calibrated the solution of a single layer model to match

data from Cuttle’s experiments suggests that the role of perfusion is negligible in these

experiments (Simpson et al., 2017). We note that the assumption that perfusion plays a

negligible role has also been adopted in other modelling studies (Diller et al., 1991).

Experimental data suggests that the initial variation in temperature with depth is

negligible (Andrews et al., 2016). Therefore we choose the initial condition to be

T1(x, 0) = T0, 0 < x < l1, (2.3)

T2(x, 0) = T0, l1 < x < l2, (2.4)

where T0 is the initial dimensional temperature of the skin and fat layers.

The boundary condition at x = 0 corresponds to the placement of the scald creation

device on the skin surface. Cuttle’s experimental protocol carefully maintains a constant

temperature in the scald creation device by pumping water of a constant temperature

into the device at the same rate as water is pumped from the device, thus ensuring

the maintenance of a constant temperature at the skin surface (Andrews et al., 2016).

Therefore, we represent this as a Dirichlet boundary condition at x = 0. For simplicity,

we assume that the flux of thermal energy at the base of the fat layer, x = l2, is negligible

and we will comment on the validity of this assumption in Section 2.4. Together, these

boundary conditions are incorporated into the model by specifying

T1(0, t) = Th, (2.5)

∂T2(l2, t)

∂x
= 0. (2.6)

where Th is the dimensional temperature of the water in the scald creation device.

In the literature, there are several different interface conditions that can be imple-

mented in multilayer models of heat transfer (Carr and Turner, 2016; Carr et al., 2017;
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Rodrigo and Worthy, 2016; Sheils and Deconinck, 2014; Sheils, 2017). Here we take the

simplest, most fundamental approach by assuming perfect contact between the skin and

fat layers. This amounts to assuming that the temperature and the flux of thermal energy

are continuous at the interface

T1(l1, t) = T2(l1, t), (2.7)

D1
∂T1(l1, t)

∂x
= D2

∂T2(l1, t)

∂x
. (2.8)

An attractive feature of Cuttle’s experimental design is that the temperature of the

water in the scald creation device can be easily altered (Andrews et al., 2016; Simpson

et al., 2017). For example, this experimental protocol has been used previously to study

how skin responds to different temperature burns by using water at 50◦C, 55◦C and 60◦C

in the scald creation device (Andrews et al., 2016). Therefore, to ensure that our analysis

can easily incorporate this feature of the experiments we non-dimensionalise the dependent

variable in Equations (2.1)-(2.8) so that all of these different experimental conditions can

be represented by the same mathematical model without explicitly considering the role of

Th. To non-dimensionalise the dependent variable we introduce

T1(x, t) =
T1(x, t)− T0

Th − T0
, (2.9)

T2(x, t) =
T2(x, t)− T0

Th − T0
, (2.10)

where T1(x, t) ∈ [0, 1] is the non-dimensional temperature in the skin layer and T2(x, t) ∈
[0, 1] is the non-dimensional temperature in the fat layer. Re-writing the governing equa-

tions in terms of these non-dimensional variables gives

∂T1(x, t)

∂t
= D1

∂2T1(x, t)

∂x2
, 0 < x < l1, (2.11)

∂T2(x, t)

∂t
= D2

∂2T2(x, t)

∂x2
, l1 < x < l2. (2.12)

The initial condition for the non-dimensional model is

T1(x, 0) = 0, (2.13)

T2(x, 0) = 0, (2.14)
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and the relevant boundary conditions are

T1(0, t) = 1, (2.15)

∂T2(l2, t)

∂x
= 0. (2.16)

Finally, the interface conditions are written as

T1(l1, t) = T2(l1, t), (2.17)

D1
∂T1(l1, t)

∂x
= D2

∂T2(l1, t)

∂x
. (2.18)

Equations (2.11)-(2.18) constitute the mathematical model that we consider in this

study. For any particular choice of D1 and D2, the model can be solved to predict the

temporal and spatial distribution of non-dimensional temperature within the two-layer

problem, T1(x, t) and T2(x, t). These non-dimensional temperature profiles can be re-

scaled, according to Equations (2.9)-(2.10), to give T1(x, t) and T2(x, t), which represent

any particular experimental condition characterised by different choices of T0 and Th. A

convenient feature of the mathematical model is that Equations (2.11)-(2.18) can be solved,

very efficiently, using Laplace transforms (Debnath and Bhatta, 2007). This Laplace

transform solution can be evaluated at little computational cost, regardless of the choice

of D1, D2, l1 and l2. A full description of the Laplace transform solution technique, and

validation of the accuracy of this approach is given in Chapter 3. Algorithms and code

used in this work are available in the Appendix.

2.3 Results and discussion

Throughout this work we consider a fixed tissue geometry by setting l1 = 1.6 mm and

l2 = 4.0 mm, which match the histology measurements in Figure 2.1(a)-(b). To solve

Equations (2.11)-(2.18) we must specify D1 and D2. Our approach is to:

1. Select biologically-relevant estimates of the target parameters, (D̂1, D̂2);

2. Solve Equations (2.11)-(2.18) with the target parameters;

3. Extract time series data from the solution generated in Step 2 so that the synthetic

data from the mathematical model is consistent with Cuttle’s experimental data;

4. Explore the solutions of Equations (2.11)-(2.18) across the (D1, D2) parameter space

to assess how well we could estimate (D̂1, D̂2) using the synthetic data generated in

Step 3; and
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5. Use the mathematical modelling tools to explore whether we can optimise the ex-

perimental design to improve our ability to reliably estimate (D̂1, D̂2).

2.3.1 Parameter inference: single probe

To generate synthetic data we must first estimate target parameters, (D̂1, D̂2). Previ-

ous work that interprets data from Cuttle’s experiments with a simplified, single-layer,

homogenised mathematical model leads to an estimate of the homogenised effective ther-

mal diffusivity, Deff = 0.014 mm2/s. We will use this estimate to guide our choice of

(D̂1, D̂2). To achieve this we assume that Deff corresponds to the homogenised thermal

diffusivity of the two-layer tissue that is given by a weighted harmonic mean, l2/Deff =

(l2 − l1)/D̂1 + l2/D̂2 (Carr et al., 2017). In addition, we make use of the fact that a key

physiological role of the fat layer is to provide thermal insulation (Hayward and Keatinge,

1981). Therefore, we incorporate this into our heterogeneous multilayer model by requiring

that D2 < D1, and we set D̂1 = 10 D̂2 to reflect this. Combining these two biologically-

motivated assumptions gives D̂1 = 0.09 mm2/s and D̂2 = 0.009 mm2/s, and we hold these

target parameters constant throughout this work.

The solution of Equations (2.11)-(2.18) parameterised with (D1 = D̂1, D2 = D̂2) is

shown in Figure 2.2(a). Here, the initial temperature is zero, and we see that energy is

introduced into the system through the Dirichlet boundary at x = 0 mm, for t > 0. As the

solution evolves, the temperature is continuous at the interface but the spatial gradient of

temperature is discontinuous at the interface. From a modelling perspective, it is natural

for us to visualise the entire spatial and temporal features of the solution of Equations

(2.11)-(2.18) in Figure 2.2(a). However, this level of detail is not available in Cuttle’s

experimental protocol (Cuttle et al., 2006, 2008a,b, 2010) because temperature is measured

at one spatial location only. Therefore, to ensure that the synthetic data we extract from

the solution of Equations (2.11)-(2.18) is compatible with Cuttle’s experimental data, we

use the solution of the mathematical model to generate time series data, showing T2(l2, t),

at one spatial location only. At first we focus on x = l2 as the probe is placed at the

bottom of the fat layer in the experiments (Andrews et al., 2016; Simpson et al., 2017).

Later, in Section 2.3.2, we also consider the influence of varying the location of the probe.
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(a) (b)

(c) (d)

t = tc

t = tc

Figure 2.2: Solutions to Equations (2.11)-(2.18) for l1 = 1.6 mm and l2 = 4 mm. In
(a) we set the thermal diffusivities to be the target parameters, D̂1 = 0.09 mm2/s and
D̂2 = 0.009 mm2/s. The solutions of Equations (2.11)-(2.18) are plotted at t = 10, 20,
50, 100, 200, 500 and 1000 s, with the arrow showing the direction of increasing t. (b)
Synthetic time series data, T̂ (l2, t), shows the temperature at the location of the probe,
x = l2. The time series is constructed using 100 equally-spaced time point between
t = tc/100 and t = tc, where tc = 1447.5 s. (c) Comparison of T1(x, t) and T2(x, t) for two
different parameter pairs. The black curves show the solution using the target parameters,
D̂1 = 0.09 mm2/s and D̂2 = 0.009 mm2/s, and the green curves show solutions of the same
model for a very different choice of parameters, D1 = 0.45 mm2/s and D2 = 0.0077 mm2/s.
In (c) solutions are shown at t = 10, 200 and 500 s with the arrow showing the direction
of increasing t. (d) Comparison of time series T̂ (l2, t) (black) and T (l2, t) (green), over
the interval 0 ≤ t ≤ tc, using the spatiotemporal solutions in (c). The bright pink and
lighter pink background colours in (a) and (c) are chosen to correspond with the colour of
the skin and fat layers in Figure 2.1(b). Subfigures (b) and (d) contain an inset showing
the geometry of the skin layers with the brown circle showing the location of the probe,
x = l2. In (b) and (d), the vertical dashed black line indicates the critical time, tc.
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To construct the time series data from the solution of Equations (2.11)-(2.18), we must

first decide on the interval of time that we will focus on. Since our aim is to estimate

D1 and D2, it is useful to recall that an estimate of the duration of time required for

the solution of Equations (2.11)-(2.18) to asymptote to the corresponding steady state

solution will depend upon D1 and D2 (Carr and Simpson, 2018; Simpson, 2017; Landman

and McGuinness, 2000). This duration of time, called the critical time (Hickson et al.,

2009a,b), can be estimated by calculating the time required for the transient solution to

reach within some small tolerance of the corresponding steady solution. For our choice

of boundary conditions the long-time steady state solution of Equations (2.11)-(2.18) is

lim
t→∞

T1(x, t) = lim
t→∞

T2(x, t) = 1. In this work we denote the critical time as tc, and we

estimate the critical time by calculating tc that satisfies T2(l2, tc) = 0.99, corresponding to

a tolerance of 1%. For our values of l1, l2, D̂1 and D̂2 we have tc = 1447.5 s. In this work

we treat l1, l2, D̂1 and D̂2 as constants which means that tc is also a constant throughout

this study. With our estimate of the critical time we generate the time series T2(l2, tj) with

tj = jδt, where j = 1, 2, ..., 100 and δt = tc/100 s. This time series simply corresponds to

100 equally-spaced time points between t = tc/100 and t = tc, and we visualise this time

series in Figure 2.2(b) for the problem shown previously in Figure 2.2(a). This time series

confirms that T2(l2, 0) = 0, and T2(l2, t) approaches unity as t increases.

Now that we have specified the target parameters, (D̂1, D̂2), and defined how we

extract synthetic data from the solution Equations (2.11)-(2.18), we explore how well

we can estimate (D1, D2) so that the time series of T2(l2, t) matches the synthetic data.

Ideally, there would be a unique choice of (D1, D2) for which the solution of the model

matches the synthetic time series data. However, in practice we find there is large range of

parameter pairs, (D1, D2), for which the time series data matches the synthetic time series

data remarkably well. To illustrate this we show solutions of Equations (2.11)-(2.18) with

very different choice of (D1, D2) in Figure 2.2(c). Here, we show the full spatial profile of

the two solutions and it is obvious, from visual inspection alone, that the two solutions

are very different. However, for these same two solutions, we see almost no difference

when we view the time series, T2(l2, t), in Figure 2.2(d). This observation suggests that

data provided by Cuttle’s experimental protocol might not be appropriate to constrain

estimates of (D1, D2). This would be particularly challenging since Cuttle’s data will

also be subject to experimental, biological and measurement variability that we have not

accounted for in Figure 2.2. For simplicity and clarity, throughout this study we neglect

the influence of such experimental variability, and we will comment on this assumption

later, in Section 2.4.

Since the two time series in Figure 2.2(d) are difficult to visually distinguish, we in-

troduce a discrepancy measure to assist in distinguishing between these time series quan-
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titatively. In this work we use

d(D1, D2|p) =
100∑
j=1

∣∣∣T̂ (p, tj)− T (p, tj)
∣∣∣ , (2.19)

where T̂ (p, tj) is the solution of Equations (2.11)-(2.18) parameterised with the target

parameters (D̂1, D̂2), at location x = p and at time t = tj , and T (p, tj) is the solution of

Equations (2.11)-(2.18), with some other choice of (D1, D2), at location x = p and at time

t = tj . Here the sum is taken over 100 equally-spaced time points from t = tc/100 to t = tc

where tc is first calculated for each choice of (D1, D2) that we consider. The key feature

of this discrepancy measure is that there is a single probe at location x = p. Intuitively,

we expect that choices of (D1, D2) that give rise to smaller values of d(D1, D2|p) could be

reasonable estimates of (D̂1, D̂2). To help visualise which (D1, D2) parameter pairs lead

to a close match with the synthetic data we use an indicator function

]I1(D1, D2|p, ε) =

1, if d(D1, D2|p) ≤ ε,
0, otherwise.

(2.20)

The indicator function is unity if the discrepancy is smaller than some specified threshold,

ε, and zero elsewhere. Plotting I1(D1, D2|p, ε) as a function of (D1, D2) is a useful way

to visualise which combinations of (D1, D2) lead to good matches between T (p, t) and

T̂ (p, t). Plots of I1(D1, D2|p, ε) as a function of (D1, D2) are constructed by discretising

the (D1, D2) parameter space using a fine square mesh, and evaluating I1(D1, D2|p, ε) at

each point on the mesh for various choices of ε. All results presented in this work use a fine

mesh of 2001× 2001 equally-spaced values of D1 and D2. Each time we sweep across the

parameter space we evaluate the solutions of Equations (2.11)-(2.18) more than 4 million

times. Therefore, it is vitally important that the method we use to solve the governing

equations is both accurate and efficient.

Results in Figure 2.3 show the region of (D1, D2) parameter space where I1(D1, D2|l2, ε) =

1 for ε = 0.5, 1.0 and 1.5. Regardless of our choice of ε, we see that there are multiple

combinations of (D1, D2) for which the time series, T (p, t), is very close to the synthetic

time series, T̂ (p, t). As ε decreases, the area for which I1(D1, D2|l2, ε) = 1 decreases, as

the discrepancy measure is more restrictive. However, even with further reductions in

ε > 0, we still observe a very large number of (D1, D2) pairs at which it is very difficult,

if not impossible, to reliably distinguish between T̂ (p, t) and T (p, t). This result indi-

cates that relying solely upon Cuttle’s experimental protocol may not allow us to reliably

identify unique choices of (D1, D2). We note that reducing the tolerance to zero, ε = 0,

means that the region in (D1, D2) parameter space where I1(D1, D2|l2, ε) = 1 does shrink
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to a unique point. However, working with a zero tolerance is impractical as we wish to

allow for a small positive tolerance to account for some variability in the experimental

measurements. Furthermore, working with a zero tolerance on a discretised parameter

space is impractical since any regular meshing of the (D1, D2) parameter space would not

precisely coincide with (D̂1, D̂2).

Figure 2.3: Regions of bounded parameter space where I1(D1, D2|l2, ε) = 1, for l1 =
1.6 mm and l2 = 4 mm. The black circle indicates the target parameters, (D̂1, D̂2). We plot

I1(D1, D2|l2, ε) on the bounded region D
(min)
1 ≤ D1 ≤ D(max)

1 and D
(min)
2 ≤ D2 ≤ D(max)

2 ,

where D
(min)
1 = D̂1/20, D

(max)
1 = 5D̂1, D

(min)
2 = D̂2/20 and D

(max)
2 = 5D̂1. The coloured

regions satisfy I1(D1, D2|l2, ε) = 1 for ε = 0.5 (green), 1.0 (red) and 1.5 (blue). The
central inset shows a magnified region, identified by the dashed rectangle in the main
Figure, about the target parameter pair. The right-most inset indicates the geometry of
the skin layers with the brown circle showing the location of the probe, p = l2.

While the plot of I1(D1, D2|l2, ε) in Figure 2.3 is shown on the bounded region,

D̂1/20 ≤ D1 ≤ 5D̂1 and D̂2/20 ≤ D2 ≤ 5D̂2, we also generated additional results by

plotting I1(D1, D2|l2, ε) over a larger support. These additional results (not shown) indi-
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cate that increasing the support leads to further choices of (D1, D2) pairs for which T (p, t)

is very difficult to distinguish from T̂ (p, t). That is, the extent of the coloured regions in

Figure 2.3 continue to expand as the (D1, D2) support increases. This observation further

corroborates our notion that it can be very difficult to infer (D1, D2), using a single probe

located at p = l2 (Simpson et al., 2017), and this observation motivates us to consider

whether different choices of p could alter our ability to estimate (D1, D2).

2.3.2 Parameter inference: optimal placement of single probe

All results in Section 2.3.1 follow Cuttle’s experimental protocol by considering a single

probe placed at p = l2. Therefore, we now repeat the process of generating the data in the

same format as Figure 2.3 but for difference choices of probe location, p. To first explore

the role of p we assume that some reasonable alternative choices to place the probe are:

1. the centre of the skin layer, p = l1/2,

2. the layer interface, p = l1;

3. the centre of the two-layer system, p = l2/2; and

4. the centre of the fat layer, p = l1 + (l2 − l1)/2.

Results in Figure 2.4 show plots that are equivalent to Figure 2.3 except that we consider

these four different choices of p. Comparing data in Figures 2.3-2.4 shows that the choice

of p has a dramatic impact upon the sensitivity of our ability to distinguish between T (p, t)

and T̂ (p, t). Perhaps the most obvious result is that choosing p = l1/2, as in Figure 2.4(a),

leads to a very poor ability to estimate (D1, D2) since the extent of the coloured region

is very large. This result makes intuitive sense because placing a single probe in the skin

layer provides very little direct information about D2. In contrast, placing the probe at the

centre of the two-layer system, p = l1 + (l2 − l1)/2, as in Figure 2.4(c), provides a better

opportunity to estimate (D1, D2) since the extent of the coloured regions are smallest

compared to the other choices of p in Figures 2.3-2.4. Overall, it appears to be optimal to

place the probe in the fat layer, rather than the skin layer. This is a useful outcome as it

is consistent with Cuttle’s experimental protocol (Cuttle et al., 2006, 2008a,b, 2010).

All discussion of the results in Figures 2.3-2.4 are so far based on qualitative visual

interpretations of the extent of the coloured regions in these plots. To provide more

quantitative insight we introduce a metric

A1 =
1

A

∫ D
(max)
2

D
(min)
2

∫ D
(max)
1

D
(min)
1

I1 dD1dD2, (2.21)
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where A =
(
D

(max)
1 −D(min)

1

)
×
(
D

(max)
2 −D(min)

2

)
is the total area of the bounded pa-

rameter space in Figures 2.3-2.4. Here, A1 is the proportion of the bounded parameter

space where the indicator function is unity when we consider data collected at a single

probe. Although we write A1 in terms of a double integral in Equation (2.21), we find it

simplest to interpret A1 as the proportion of the parameter space in which the indicator

function is unity. Therefore, we estimate A1 by calculating I1 at each point on the dis-

cretised (D1, D2) parameter space and computing the proportion of the 20012 evaluations

of I1 that are unity. To interpret these results we note that smaller values of A1 are

associated with improved experimental designs since the region of parameter space where

T (p, t) is a close match to T̂ (p, t) is reduced when A1 is smaller. Plotting A1 as a function

of p in Figure 2.5 gives us greater quantitative insight into the role of probe placement.

Results in Figure 2.5 show that A1 appears to decrease with p for all values of ε we

consider. The data in Figure 2.5 is useful because it provides a quantitative framework for

examining the importance of the choice of probe placement, p. Overall we see that larger

values of p lead to improved experimental designs, and we see that once p > 1.8 mm that

A1 becomes relatively insensitive to any further increase in p. A simple recommendation

we can provide from this exploration is that placing a single probe into the fat layer is a

good experimental design.

All results presented in this study so far focus on the case where temperature data

is recorded at a single location, x = p. While this constraint is an important feature

of Cuttle’s experimental protocol (Cuttle et al., 2006, 2008a,b, 2010), our mathematical

modelling tools give us the flexibility to quantitatively explore the benefit of collecting

data at more than one location in a controlled manner that is not possible experimentally.

Therefore, we will now consider how our ability to estimate (D1, D2) are influenced if we

were able to collect temperature data at two locations, x = p and x = q.
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(a)

(d)(c)

(b)

Figure 2.4: The role of probe location, p. As in Figure 2.3 the target parameter pair,
(D̂1, D̂2), is highlighted with a black circle and the insets show various experimental designs
with the brown circles showing the probe location relative to the tissue geometry. In each
subfigure, the coloured regions satisfy I1(D1, D2|p, ε) = 1 for ε = 0.5 (green), 1.0 (red)
and 1.5 (blue). (a) Probe at the centre of the skin layer, p = l1/2; (b) Probe at the layer
interface, p = l1; (c) Probe at the centre of the two-layer system, p = l2/2; (d) Probe
at the centre of the fat layer, p = l1 + (l2 − l1)/2. In all cases we set l1 = 1.6 mm and
l2 = 4 mm.
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1

Figure 2.5: The influence of probe location, p, on A1 for D̂1/20 ≤ D1 ≤ 5D̂1 and D̂2/20 ≤
D2 ≤ 5D̂2, and l1 = 1.6 mm and l2 = 4 mm. Plots of A1 are shown for ε = 0.5 (green),
ε = 1.0 (red) and ε = 1.5 (blue). Calculations are performed for 20 equally-spaced values
of p, from p = 0.2 mm to p = 4 mm. The bright pink and lighter pink background colours
are chosen to correspond with the colour of the skin and fat layers in Figure 2.1(b).
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2.3.3 Parameter inference: two probes

To keep the presentation of our results manageable, when we consider the case where data

is collected at two locations, x = p and x = q, we restrict our attention to the subset

of cases where the location of the first probe, x = p, is fixed at p = l2 as in Cuttle’s

experiments (Cuttle et al., 2006, 2008a,b, 2010). With this constraint, we then focus on

how we might choose the location of the second probe, x = q. To achieve this we modify

our definition of the indicator function to be

I2(D1, D2|p, q, ε) =

1, if d(D1, D2|p) ≤ ε and d(D1, D2|q) ≤ ε,
0, otherwise,

(2.22)

where d(D1, D2|q) is defined in exactly the same way as d(D1, D2|p) except that the

spatial location is different. The key difference between I1 and I2 is that I2 measures the

closeness of T (x, t) and T̂ (x, t) at both x = p and x = q, whereas I1 measures the closeness

of T (x, t) and T̂ (x, t) at x = p only. We follow our previous approach from Section 2.3.2

by proposing four sensible choices for the placement of the second probe:

1. the centre of the skin layer, q = l1/2;

2. the layer interface, q = l1;

3. the centre of the two-layer system, q = l2/2; and

4. the centre of the fat layer, q = l1 + (l2 − l1)/2.

Results in Figure 2.6 show plots of the regions where I2(D1, D2|l2, q, ε) = 1. The arrange-

ment of the subfigures in Figure 2.6 corresponds to the arrangement of the subfigures in

Figure 2.4 except that we now have two probes in the layered system. Comparing the

extent of the coloured regions where I2(D1, D2|l2, q, ε) = 1 in Figure 2.6 to the extent of

the colored regions where I1(D1, D2|l2, ε) = 1 in Figure 2.4 provides information about

how the collection of additional data at a second location would improve our ability to

reliably distinguish between T (x, t) and T̂ (x, t) at x = l2 only (Figure 2.4), compared to

our ability to distinguish between T (x, t) and T̂ (x, t) at both x = l2 and x = q (Figure

2.6). Overall, regardless of the choice of q, we see that working with a second probe

always reduces the extent of the coloured region. Furthermore, comparing results across

the four subfigures in Figure 2.6 indicates that the configuration in Figure 2.6(b), where

the second probe is placed at the layer interface x = l1, is the best configuration of these

four possibilities since the extent of the coloured regions is smallest.
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(a)

(d)(c)

(b)

Figure 2.6: The role of the second probe location, q. As with Figure 2.4 the target
parameter pair, (D̂1, D̂2), is highlighted with a black circle and the insets show various
experimental designs with the brown circles showing the fixed first probe location and the
red circles showing the variable second probe location relative to the tissue geometry. In
each subfigure, the coloured regions satisfy I2(D1, D2|l2, q, ε) = 1 for ε = 0.5 (green), 1.0
(red) and 1.5 (blue). (a) Second probe at the centre of the skin layer, q = l1/2; (b) Second
probe at the layer interface, q = l1; (c) Second probe at the centre of the two-layer system,
q = l2/2; (d) Second probe at the centre of the fat layer, p = l1 + (l2− l1)/2. In all results
we set l1 = 1.6 mm and l2 = 4 mm.
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2.3.4 Parameter inference: optimal placement of second probe

To extend the results in Figure 2.6, we now explore whether there is some optimal place-

ment of the second probe. To explore this question we introduce

A2 =
1

A

∫ D
(max)
2

D
(min)
2

∫ D
(max)
1

D
(min)
1

I2 dD1dD2, (2.23)

where A2 is the proportion of the parameter space that satisfies I2(D1, D2|l2, q, ε) = 1.

Similar to our approach in Section 2.3.2, we seek to find q which minimises A2.

Results in Figure 2.7 show A2 as a function of q, for different choices of ε. Remarkably,

we see that setting q = 1.6 mm minimises A2, for all ε considered. This results implies

that the optimal location for a second probe, given that a first probe is already located at

the bottom of the fat tissue p = l2, is at or near the layer interface, q = l1.
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Figure 2.7: The influence of the second probe location, q, on A2 for D̂1/20 ≤ D1 ≤ 5D̂1

and D̂2/20 ≤ D2 ≤ 5D̂2, and l1 = 1.6 mm and l2 = 4 mm. Plots of A2 are shown for
ε = 0.5 (green), ε = 1.0 (red) and ε = 1.5 (blue). In all cases p = l2 and calculations are
performed for 20 equally-spaced values of q from q = 0.2 mm to q = 4 mm. The bright
pink and lighter pink background colours are chosen to correspond with the colour of the
skin and fat layers in Figure 2.1(b).
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2.4 Conclusions and future directions

In this work we consider an experiential protocol designed by Cuttle and co-workers (Cuttle

et al., 2006, 2008a,b, 2010) to quantify the conduction of heat in living porcine (pig) tissues.

This unique experimental protocol is very important because many experimental studies

that examine heat conduction in skin tissue focus on non-living excised tissues (Henriques

and Moritz, 1947; Moritz and Henriques, 1947; El-Brawany et al., 2009; Brown et al.,

1993) whereas the protocol developed by Cuttle is far more realistic because they deal

with living tissues, in situ. One of the constraints of Cuttle’s experimental protocol is

that the temperature within the living tissues is monitored using a subdermal probe at

a single location within the layered skin. Because skin is a layered structure, with the

epidermis and dermis layers overlying a deeper fat layer, it is natural for us to model

the conduction of heat in this system using a heterogeneous multilayer model where the

thermal diffusivity in each layer can be different. In this work we idealise the skin tissues as

a two-layer system with the upper layer representing the epidermis and dermis combined,

and the lower layer representing the subdermal fat. Since one of the main biological

functions of the fat layer is to provide thermal insulation (Hayward and Keatinge, 1981),

we expect that the thermal diffusivity of the fat layer to be different to the thermal

diffusivity of the skin layer.

The key question we address in this work is to explore whether temperature data at

a single location in a two-layer system is sufficient for us to reliably estimate the thermal

diffusivity in the skin and fat layers, (D1, D2). Using biologically-motivated target values,

(D̂1, D̂2), we solve the two-layer model and convert the spatiotemporal solution into a

simple time series at a single location. This data is compatible with the kind of data

recorded and reported by Cuttle and colleagues (Cuttle et al., 2006, 2008a,b, 2010). We

then systematically scan the (D1, D2) parameter space, solving the model over four million

parameter pairs, to explore the extent to which this time series data can be used to reliably

identify the target parameters, (D̂1, D̂2). Our results show that our ability to estimate the

parameters can be very sensitive using this kind of data as there are many combinations

of parameter pairs, (D1, D2), leading to virtually indistinguishable time series data at a

single location. Once we have demonstrated this sensitivity, we then explore the question

of experimental design by using the mathematical model to explore the extent to which

our ability to estimate (D1, D2) depends on the depth at which the subdermal probe is

placed. In summary, we find that it is best to place the probe in the fat layer. This result

is reassuring since Cuttle’s experimental protocol places the probe at the bottom of the fat
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layer Cuttle et al. (2006, 2008a,b, 2010). We conclude by exploring the extent to which

our ability to estimate (D1, D2) improves if we consider the case where two subdermal

probes, placed at different locations, are used. Our results show that using a second probe

always improves our ability to estimate (D1, D2), but there is still some sensitivity in

terms of the placement of the subdermal probes. In summary, if it were possible to use

two subdermal proves we find that given the first probe is placed at the bottom of the fat

layer, and second probe ought to be placed at the interface of the skin and fat layers.

There are many ways that our study could be extended since we have invoked several

simplifications and assumptions that could be relaxed. A key assumption in our work

is that we treat the synthetic data generated by the mathematical model, T̂ (p, t) and

T̂ (q, t), as being deterministic. This means that we neglect the role of experimental vari-

ability which is known to be important when dealing with biological data Jin et al. (2017);

Warne et al. (2017). If we had an estimate of the experimental variability in Cuttle’s mea-

surements, we could incorporate this into our parameter sensitivity analysis by adding an

appropriate noise signal, such as white noise, to T̂ (p, t) and T̂ (q, t), and then exploring how

the incorporation of experimental variability influences our ability to estimate (D1, D2).

Another feature of our mathematical model that could be explored further is our assump-

tion that the boundary between the bottom of the fat layer and the underlying muscle and

bone tissues, at x = l2 is perfectly insulating. In reality, we expect that there would be

some transfer of heat from the fat tissues into the underlying muscle and bone, and this

could be incorporated into the model using a Robin boundary condition. This approach

would introduce an additional unknown heat transfer coefficient, thereby increasing the

dimensionality of the parameter space to be explored. Both of these extensions could be

considered in future studies.

Another natural extension of our current work would be to treat the conduction of

heat in living skin as a three-layer problem instead of a two-layer problem. The three-layer

problem could be constructed by treating the epidermis, dermis and fat as three distinct

layers. While the semi-analytical solution strategy for solving the two-layer model gen-

eralises perfectly well to a three-layer model, the challenge of identifying three values of

the thermal diffusivity instead of two values would become even more challenging when

dealing with experimental observations where temperature is recorded at a single location

in the layered system. Given that the main result of the current work highlights how

challenging it can be to estimate parameters for a two-layer model, we anticipate that it is

presently infeasible to meaningfully interpret data from Cuttle’s current experimental pro-

tocol using a three-layer model. However, if some of the current experimental constraints

were to be alleviated and it became feasible to collect experimental temperature data at

multiple positions simultaneously, then it is possible that working with a three-layer model
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could be reasonable in the future.





Chapter 3

Mathematical techniques for

continuum models of heat transfer

in heterogeneous living skin

This chapter comprises the supplementary text of the following manuscript:

S McInerney, EJ Carr and MJ Simpson, Parameterising continuum models of heat

transfer in heterogeneous living skin using experimental data, International Journal

of Heat and Mass Transfer, accepted for publication, September 2018.
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3.1 Mathematical model

Here we briefly recall the mathematical model from the main document. In summary, we

consider heat transfer in living skin tissues, which we conceptualise as being composed of

two heterogeneous layers: the upper skin layer, and the lower fat layer. We assume that the

temporal and spatial distribution of non-dimensional temperature in skin, T1(x, t) ∈ [0, 1],

and in fat, T2(x, t) ∈ [0, 1], is governed by,

∂T1(x, t)

∂t
= D1

∂2T1(x, t)

∂x2
, 0 < x < l1, (3.1)

∂T2(x, t)

∂t
= D2

∂2T2(x, t)

∂x2
, l1 < x < l2. (3.2)

Equations (3.1)-(3.2) are subject to initial conditions

T1(x, 0) = 0, (3.3)

T2(x, 0) = 0, (3.4)

and boundary conditions

T1(0, t) = 1, (3.5)

∂T2(l2, t)

∂x
= 0. (3.6)

To close the problem, we also specify two conditions at the interface, x = l1,

T1(l1, t) = T2(l1, t), (3.7)

D1
∂T1(l1, t)

∂x
= D2

∂T2(l1, t)

∂x
. (3.8)

Here, Equation (3.7) ensures that the temperature is continuous at the interface, and

Equation (3.8) ensures that the flux of thermal energy is continuous at the interface.

Equations (3.1)-(3.8) specify a two-layer thermal diffusion problem, with perfect con-

tact at the layer interface (Carr and Turner, 2016). The initial non-dimensional tempera-

ture profile is uniformly zero, and a Dirichlet boundary condition at x = 0 (Equation 3.5)

introduces thermal energy into the system into the upper skin layer. A homogeneous Neu-

mann boundary condition at x = l2 (Equation 3.6) prevents thermal energy from leaving

the domain at the base of the fat layer (Simpson et al., 2017). This two-layer model with

these boundary conditions implies that perfusion of heat to the blood is negligible and
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that the loss of heat through the lower layer at x = l2 is negligible. It is insightful to note

that our choice of boundary conditions means that the long-time steady state solution of

the model satisfies

lim
t→∞

T1(x, t) = 1, (3.9)

lim
t→∞

T2(x, t) = 1. (3.10)

3.2 Model solution

We solve Equations (3.1)-(3.8) using a Laplace transform approach (Carr and Turner,

2016; Debnath and Bhatta, 2007; Rodrigo and Worthy, 2016). We find that it is advan-

tageous to work with a Laplace transform solution, rather than working with numerical

solutions, since the Laplace transform solution can be repeatedly evaluated, at very little

computational overhead, for any value of l1 and l2. In contrast, if we were to consider

varying l1 or l2 in a standard numerical algorithm based on a finite volume, finite differ-

ence or finite element discretisation of the governing equations we would have to consider

re-meshing the problem for different choices of l1 or l2.

The first step in the solution strategy is to introduce an unknown function of time,

g(t), which acts to uncouple the heat transfer processes in the skin and fat layers. To

achieve this, we define

g(t) = D1
∂T1(l1, t)

∂x
= D2

∂T2(l1, t)

∂x
. (3.11)

With this definition, the mathematical description of the heat transfer process in the skin

layer can now be written as

∂T1(x, t)

∂t
= D1

∂2T1(x, t)

∂x2
, 0 < x < l1, (3.12)

T1(x, 0) = 0, (3.13)

T1(0, t) = 1, (3.14)

D1
∂T1(l1, t)

∂x
= g(t). (3.15)

The mathematical description of the heat transfer process in the fat layer can now be
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written as

∂T2(x, t)

∂t
= D2

∂2T2(x, t)

∂x2
, l1 < x < l2, (3.16)

T2(x, 0) = 0, (3.17)

D2
∂T2(l1, t)

∂x
= g(t), (3.18)

∂T2(l2, t)

∂x
= 0, (3.19)

with g(t) to be determined.

In this work we denote the Laplace transform of f(t) as

f(s) =

∫ ∞
0

e−stf(t) dt, (3.20)

where s is chosen such that the improper integral converges (Debnath and Bhatta, 2007).

Taking the Laplace transform of Equations (3.12)-(3.15) with respect to t, we obtain

D1
d2T 1(x|s)

dx2
= s T 1(x|s), 0 < x < l1, (3.21)

T 1(0|s) =
1

s
, (3.22)

D1
dT 1(l1|s)

dx
= g(s), (3.23)

where we use the notation T 1(x|s) to denote the Laplace transform of T1(x, t). This

notation makes it clear that T 1(x|s) depends upon x, and that we treat the Laplace

transform variable as a constant parameter. Similarly, taking the Laplace transform of

Equations (3.16)-(3.19), we obtain

D2
d2T 2(x|s)

dx2
= s T 2(x|s), l1 < x < l2, (3.24)

D2
dT 2(l1|s)

dx
= g(s), (3.25)

dT 2(l2|s)
dx

= 0. (3.26)

The general solutions of Equation (3.21) and Equation (3.24) are given by

T 1(x|s) = A1eξ1x +B1e−ξ1x, 0 < x < l1, (3.27)

T 2(x|s) = A2eξ2x +B2e−ξ2x, l1 < x < l2, (3.28)

where ξ1 =
√
s/D1 and ξ2 =

√
s/D2. To determine A1 and B1, we enforce the boundary
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conditions given by Equations (3.22)-(3.23), resulting in

A1 +B1 =
1

s
, (3.29)

A1eξ1l1 −B1e−ξ1l1 =
g(s)

D1ξ1
. (3.30)

Equations (3.29)-(3.30) form a linear system for A1 and B1, and the solution of this system

gives

A1 =
D1ξ1e−ξ1l1 + s g(s)

2sD1ξ1 cosh(ξ1l1)
, (3.31)

B1 =
D1ξ1eξ1l1 − s g(s)

2sD1ξ1 cosh(ξ1l1)
. (3.32)

Combining Equations (3.27), (3.31) and (3.32) we have

T 1(x|s) =
cosh(ξ1[x− l1])

s cosh(ξ1l1)
+

sinh(ξ1x)

D1ξ1 cosh(ξ1l1)
g(s). (3.33)

Following a similar procedure we can enforce boundary conditions, given by Equations

(3.25)-(3.26), to obtain a linear system involving A2 and B2. Solving this linear system,

and substituting the expressions for these constants into Equation (3.28) gives

A2 =
−g(s)e−ξ2l2

2D2ξ2 sinh(ξ2[l2 − l1])
, (3.34)

B2 =
−g(s)eξ2l2

2D2ξ2 sinh(ξ2[l2 − l1])
, (3.35)

T 2(x|s) =
− cosh(ξ2[l2 − x])

D2ξ2 sinh(ξ2[l2 − l1])
g(s). (3.36)

Both Equations (3.33) and (3.36) depend upon g(s), which is unknown at present. To

determine g(s), we take the Laplace transform of Equation (3.7), which gives

T 1(l1|s) = T 2(l1|s). (3.37)

Substituting Equation (3.33) and Equation (3.36) into Equation (3.37), and re-arranging

the resulting expression allows g(s) to be determined

g(s) =
−D1ξ1D2ξ2 tanh(ξ2[l2 − l1])

s cosh(ξ1l1)[D2ξ2 tanh(ξ1l1) tanh(ξ2[l2 − l1]) +D1ξ1]
. (3.38)
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Finally, substituting the expression for g(s) into Equations (3.33) and (3.36) yields

T 1(x|s) =
cosh(ξ1[x− l1])

s cosh(ξ1l1)
− D2ξ2 sinh(ξ1x) tanh(ξ2[l2 − l1])

s cosh2(ξ1l1)[D2ξ2 tanh(ξ1l1) tanh(ξ2[l2 − l1]) +D1ξ1]
,

(3.39)

T 2(x|s) =
D1ξ1 cosh(ξ2[x− l2]) tanh(ξ2[l2 − l1])

s cosh(ξ1l1) sinh(ξ2[l2 − l1])[D2ξ2 tanh(ξ1l1) tanh(ξ2[l2 − l1]) +D1ξ1]
. (3.40)

Given our expressions for T 1(x|s) and T 2(x|s), we seek to take the inverse Laplace

transform to give T1(x, t) and T2(x, t), respectively. Simply attempting to take the inverse

Laplace transforms of Equations (3.39)-(3.40) using standard symbolic software does not

give a closed-form solution for T1(x, t) and T2(x, t). Therefore, we evaluate the inverse

Laplace transform numerically (Hoog et al., 1982; Simpson and Ellery, 2014). To achieve

this we use the algorithm described by Trefethen and colleagues (Trefethen et al., 2006).

Since we use a numerical method to invert the Laplace transform expressions we refer to

our solution method as a semi-analytical method Carr and Turner (2016). To verify the

accuracy of our semi-analytical solution, we also solve the mathematical model numerically

and visually compare the numerical and semi-analytical solutions over a range of parameter

choices in Section 3.4.

3.3 Numerical solution

We now describe a finite volume scheme that we use to solve Equations (3.1)-(3.7) nu-

merically. We intend to use these numerical solutions to verify the accuracy of the semi-

analytical solution presented in Section 3.2. The numerical method involves discretising

the domain with a spatially-uniform mesh consisting of N equally-spaced nodes. Adjacent

nodes are separated by a distance ∆x. A vertex-centered finite volume approximation is

adopted (Ozisik, 1968), with control volume faces positioned at the midpoint between

adjacent nodes. We choose ∆x so that the Kth node is located at the layer interface. The

details of the finite volume mesh are given in Figure 3.1.

To describe the numerical method, we let T
(j)
1,i and T

(j)
2,i denote the numerical approx-

imations of T1(xi, tj) and T2(xi, tj), respectively. We first consider a control volume at

an interior node that is not at the interface, and integrate Equations (3.1)-(3.2) over the

control volume. The integrals of the spatial derivative terms associated with the terms on

the right of Equations (3.1)-(3.2) are evaluated using the fundamental theorem of calculus.

The integrals of the temporal derivative terms associated with the left side of Equations

(3.1)-(3.2) are evaluated by first taking the temporal derivative outside of the integral
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(b) (c) (d)

x i− 1 x i x i+ 1x i− 1/ 2 x i+ 1 / 2

∆ x

xK − 1 xK xK + 1xK − 1/ 2 xK + 1 / 2

∆ x

xN − 1 xNxN − 1/ 2

∆ x
2

Skin Layer Fat Layer

x = 0 x = l1 x = l2

1 2 3 K − 1 K K + 1 N − 2 N − 1 N

Figure 3.1: (a) Finite volume discretisation with N nodes, with ∆x chosen so that the
Kth node is located at the interface, x = l1. Vertical dashed lines indicate the control
volume faces, and the node numbering and spatial location of nodes are as indicated. (b)
Control volume associated with the ith node in the skin layer. The location of the node is
denoted xi, and nearest neighbour nodes are located at xi±1. The locations of the control
volume faces are denoted xi±1/2, as indicated. The distance between the interior control

volume faces is ∆x. (c) Control volume associated with the Kth node at the interface.
At xK−1/2 the thermal diffusivity is D1, and at xK+1/2 the thermal diffusivity is D2. (d)

Control volume associated with the N th node, showing that the distance between the two
faces of this control volume is ∆x/2. The bright pink and lighter pink background colours
are chosen to correspond with the colour of the skin and fat layers in Figure 2.1(b).

expressions, and then evaluating the resulting integral using the midpoint rule, giving

∆x
dT1,i

dt
= D1

[
∂T1(xi+1/2, t)

∂x
−
∂T1(xi−1/2, t)

∂x

]
, 2 ≤ i ≤ K − 1, (3.41)

∆x
dT2,i

dt
= D2

[
∂T2(xi+1/2, t)

∂x
−
∂T2(xi−1/2, t)

∂x

]
, K + 1 ≤ i ≤ N − 1. (3.42)

Approximating the spatial derivatives at the control volume faces in Equations (3.41)-

(3.42) using a central difference approximation gives

∆x
dT1,i

dt
=
D1

∆x
[T1,i−1 − 2T1,i + T1,i+1] , 2 ≤ i ≤ K − 1, (3.43)

∆x
dT2,i

dt
=
D2

∆x
[T2,i−1 − 2T2,i + T2,i+1] , K + 1 ≤ i ≤ N − 1, (3.44)

where we have made use of the fact that we are dealing with a spatially uniform mesh.

We now integrate Equations (3.43)-(3.44) through time, from tj to time tj+1, where
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tj+1 = tj + ∆t. For simplicity we adopt a forward Euler approximation so that the terms

on the right of Equations (3.43)-(3.44) are evaluated at tj , giving

T
(j+1)
1,i = T

(j)
1,i +

D1∆t

(∆x)2

[
T

(j)
1,i−1 − 2T

(j)
1,i + T

(j)
1,i+1

]
, 2 ≤ i ≤ K − 1 (3.45)

T
(j+1)
2,i = T

(j)
2,i +

D2∆t

(∆x)2

[
T

(j)
2,i−1 − 2T

(j)
2,i + T

(j)
2,i+1

]
, K + 1 ≤ i ≤ N − 1. (3.46)

To specify the initial conditions, given by Equations (3.3)-(3.4), we set

T
(0)
1,i = 0, 2 ≤ i ≤ K, (3.47)

T
(0)
2,i = 0, K + 1 ≤ i ≤ N. (3.48)

To specify the boundary condition at x = 0, given by Equation (3.5), we set

T
(j)
1,1 = 1. (3.49)

Greater care must be taken to specify the boundary condition at x = l2. Unlike the rest

of the control volumes, the width of the control volume around the N th node is ∆x/2 and

the right face of this control volume is at xN , as illustrated in Figure 3.1(d). Integrating

Equation (3.2) from xN−1/2 to xN , and following the same procedure to evaluate the

integrals used previously when dealing with the interior nodes, we obtain

∆x

2

dT2,N

dt
= D2

[
∂T2(xN , t)

∂x
−
∂T2(xN−1/2, t)

∂x

]
. (3.50)

The boundary condition at x = l2, or node xN , given by Equation (3.6), can be im-

plemented by setting the first term on the right in Equation (3.50) to zero. If we then

evaluate the remaining spatial derivative term in Equation (3.50) using a central difference

approximation at the control volume face we obtain

∆x

2

dT2,N

dt
=
D2

∆x
[T2,N−1 − T2,N ] . (3.51)

Integrating Equation (3.51) through time using the same forward Euler approximation

used at the interior nodes gives

T
(j+1)
2,N = T

(j)
2,N +

2D2∆t

(∆x)2

[
T

(j)
2,N−1 − T

(j)
2,N

]
. (3.52)

The Kth node at the interface of the two layers is treated slightly differently to the

other interior nodes. The spatially-integrated analogue of Equations (3.41)-(3.42) at the
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Kth node is

∆x
dT1,K

dt
=

[
D2

∂T2(xK+1/2, t)

∂x
−D1

∂T1(xK−1/2, t)

∂x

]
, (3.53)

where we have diffusivity D1 at the left face of the control volume and diffusivity D2 at

the right face of the control volume. Note that T1,K = T2,K due to Equation (3.7) so that

we do not need to consider a separate control volume for T2,K . Approximating the spatial

derivative terms in Equation (3.53) using a central difference approximation gives

∆x
dT1,K

dt
=

1

∆x
[D1 T1,K−1 − (D1 +D2)T1,K +D2 T2,K+1] , (3.54)

where again we make use of the fact that we are dealing with a spatially uniform mesh.

We integrate Equation (3.54) through time using the same forward Euler approximation

used at the interior nodes, giving

T
(j+1)
1,K = T

(j)
1,K +

∆t

(∆x)2

[
D1 T

(j)
1,K−1 − (D1 +D2)T

(j)
1,K +D2 T

(j)
2,K+1

]
. (3.55)

In summary, our numerical scheme is given by Equations (3.45)-(3.49) and Equation

(3.55). Together, these equations can be processed efficiently in matrix form, which we

summarise as

T(j+1) = T(j) +
∆t

(∆x)2
AT(j), (3.56)

where T(j) =
[
T

(j)
1,1 , T

(j)
1,2 , . . . , T

(j)
1,K , T

(j)
2,K+1, . . . , T

(j)
2,N−1, T

(j)
2,N

]T
and A is a tridiagonal ma-

trix. When we implement the numerical solution we store A in vector form. Denoting the

lower diagonal, main diagonal and upper diagonal of A as AL, AD and AU , respectively,

we have

AL = [D1, ..., D1, D1, D2, ..., D2, 2D2]T , (3.57)

AD = [0,−2D1, ...,−2D1,−(D1 +D2),−2D2, ...,−2D2,−2D2]T , (3.58)

AU = [0, D1, ..., D1, D2, D2, ..., D2]T . (3.59)

3.4 Solution verification

We now apply the semi-analytical solution technique from Section 3.2 and the numerical

solution technique from Section 3.3 to a suite of four test problems. A visual comparison

of the semi-analytical and numerical solutions will serve as a test of the accuracy of the
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semi-analytical solution. Results for four particular test cases are shown in Figure 3.2,

where the semi-analytical solution is superimposed on the numerical solution. In these

four test cases we hold l2 constant, and we vary the location of the interface, l1. Similarly

we hold the diffusivity in the fat layer, D2 to be constant, and we vary the diffusivity

in the skin layer, D1. Results in Figure S2 show that the initial temperature is zero at

all locations. For t > 0, the temperature at x = 0 is unity and we see that thermal

energy propagates into the skin layer and across the interface into the fat layer. It is of

interest to note that the solution profile is continuous at the interface, but that the slope

of the solution is discontinuous at the interface. The discontinuity in the slope of the

solution is particularly pronounced in Figure 3.2(c) where the difference in D1 and D2 is

most pronounced. Importantly, the main result here is that the semi-analytical solution is

visually indistinguishable from the numerical solution, at this scale, for all four test cases.

It is worthwhile to note that the solutions associated with each test case in Figure

3.2 are plotted at six different values of time. However, the values of time chosen in each

subfigure are different. Since we vary l1 and D1 in each test case, we expect that each

test case will require a different duration of time to effectively asymptote to the steady

state solution, where lim
t→∞

T1(x, t) = lim
t→∞

T2(x, t) = 1. To deal with this, for each test case

we first calculate an estimate of the critical time, tc (Landman and McGuinness, 2000;

Carr, 2017; Carr and Simpson, 2018). In this work we take the critical time to be the

time at which the temperature at x = l2 reaches within 1% of the steady value. That

is, we calculate tc that satisfies T2(l2, tc) = 0.99, and we note that this value is different

for the four test cases shown in Figure 3.2. In particular we have tc = 2.7, 1.3, 0.6 and

9.7 s for the four test cases in Figure 3.2(a)-(d), respectively. Given this information we

then calculate the numerical and semi-analytical solutions at six different values of time:

t = 0.01tc, 0.05tc, 0.1tc, 0.25tc, 0.5tc and tc.
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(a) (b)

(c) (d)

Figure 3.2: Comparison of semi-analytical (lines) and numerical (dots) solutions to Equa-
tions (3.1)-(3.8). The arrows indicate the direction of increasing time. In all four test cases
we set D2 = 1 mm2/s and l2 = 1 mm. Other parameter values are: (a) D1 = 0.5 mm2/s
and l1 = 0.2 mm; (b) D1 = 2 mm2/s and l1 = 0.4 mm; (c) D1 = 10 mm2/s and
l1 = 0.5 mm; and (d) D1 = 0.2 mm2/s and l1 = 0.8 mm. Numerical solutions are obtained
with ∆t = 10−6tc s and ∆x = 0.005 mm, giving a mesh of 201 nodes. The numerical
solutions are shown at every 20th spatial node, and at times corresponding to t = 0.01tc,
0.05tc, 0.1tc, 0.25tc, 0.5tc and tc. The background colours are chosen to correspond with
Figure 2.1(b).







Chapter 4

Conclusions

4.1 Summary and Discussion

This thesis proposes a continuum model of heat transfer in heterogeneous living skin, ex-

plores the difficulty of the parameter inference process in such a model with spatially lim-

ited experimental data and outlines a solution methodology for the mathematical model.

By expanding our knowledge of heat transfer in skin tissue, we are better able to under-

stand burn injuries.

In this study, we develop a mathematical model to analyse heat conduction experi-

ments on in vivo porcine skin tissue. The model incorporates the layered structure of

the tissue, by defining a skin layer and a fat layer, each with distinct thermal diffusivites

describing heat transfer within the respective layers, (D1,D2). A notable limitation of

the heat conduction experiments is that all data is extracted from a single subdermal

temperature probe. This motivates us to investigate whether the inference of the two

thermal diffusivity parameters is possible with data from a single location and how ex-

perimental design could improve this parameter inference process. To reduce the number

of influencing factors in this investigation, we then generate synthetic experimental data

to mimic the in vivo porcine experiments. This data is obtained by evaluating the so-

lution of our two-layer mathematical model at a single location at regular time intervals

using biologically-motivated target parameter values, (D̂1,D̂2). We seek to accurately in-

fer the target parameter values using only the generated time-series data. This is done

by methodically evaluating the solution of the mathematical model for over four million

parameter pairs and testing the discrepancy between the evaluated solution and the syn-

thetic data. If the evaluated solution is sufficiently close to the data, according to some

threshold discrepancy, we consider the parameter pair that generates that solution to be

acceptable estimates of the target parameter pair. A large number of such parameter pairs
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would imply that the parameter inference process was imprecise, whereas a small number

would imply precision.

We find that the accurate inference of the thermal diffusivities of skin and fat in our

simplified two-layer diffusion model is impossible using the experimental temperature data

extracted from a single probe, regardless of the probe location. We also find that, if limited

to the use of a single probe, placing the probe in the fat layer is preferable to the skin

layer, in terms of improving precision of parameter inference. We then investigate how

the use of a second probe could improve the accuracy of the parameter estimation. We

find that if the first probe is fixed at the bottom of the fat layer, the optimal location for

the second probe is the layer interface, again in terms of accurately inferring the thermal

diffusivites of skin and fat. With this experimental configuration, the two parameters can

be approximated with a relatively high level of precision. These findings could be used

in the future to inform experimentalists who wish to obtain accurate estimates of the

parameters in a system modelled using a layered heat transfer model.

To complement the work performed exploring the parameter inference process of our

mathematical model, we also outline and verify the accuracy of the solution methodology

for the model. The particular solution methodology we implement was presented recently

in the literature (Carr and Turner, 2016; Rodrigo and Worthy, 2016) and utilises what is

referred to as a semi-analytical approach. Comparing the accuracy against a numerical

scheme, we found this approach offers an accurate solution for a low computational cost.

The semi-analytical solution can be extended to more sophisticated models with relative

ease.

4.2 Directions for Future Research

A notable limitation of the work presented in this thesis is that the findings are confined

to one particular layered heat transfer model of a particular spatial structure. Future

research may look at extending this investigation to alternative models; for example, to

models that have more than two layers or to models that do not assume perfect thermal

insulation at the bottom of the fat layer. By using a model with two layers, we obscure

some of the nuances of the tissue structure. In particular, the skin layer comprises an

epidermis layer and a dermis layer, each with different physical properties. In a three-

layer model without the imposition of thermal insulation at the bottom of the system,

the temporal and spatial distribution of the temperature in each of the layers, T1(x, t),
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T2(x, t) and T3(x, t), can be described by,

∂T1(x, t)

∂t
= D1

∂2T1(x, t)

∂x2
, 0 < x < l1, (4.1)

∂T2(x, t)

∂t
= D2

∂2T2(x, t)

∂x2
, l1 < x < l2, (4.2)

∂T3(x, t)

∂t
= D3

∂2T3(x, t)

∂x2
, l2 < x < l3, (4.3)

for t > 0, subject to initial conditions

T1(x, 0) = 0, (4.4)

T2(x, 0) = 0, (4.5)

T3(x, 0) = 0, (4.6)

boundary conditions

T1(0, t) = 1, (4.7)

∂T3(l3, t)

∂x
= −γT3(l3, t), (4.8)

and conditions at the layer interfaces

T1(l1, t) = T2(l1, t), (4.9)

D1
∂T1(l1, t)

∂x
= D2

∂T2(l1, t)

∂x
, (4.10)

T2(l2, t) = T3(l2, t), (4.11)

D2
∂T2(l2, t)

∂x
= D3

∂T3(l2, t)

∂x
. (4.12)

where D1, D2 and D3 are the unknown thermal diffusivities in each layer, l1, l2 and l3 are

the known depths of the layers and γ is an unknown heat transfer coefficient governing

the rate at which thermal energy is lost at the bottom of the system. A three-layer model

provides a better representation of the tissue than a two-layer model, as the three layers

accounts for the epidermis, dermis and fat separately, but introduces one more unknown

parameter, D3. This modification to the model makes precise parameter inference more

complicated. Similarly, by allowing the loss of heat from the system at x = l3, our model

becomes more indicative of the process we are modelling, but at the cost of introducing

another parameter, γ. An exploration could be undertaken to determine the number of

probes required to infer the four unknown parameters in this new model and the optimal

location of the probes. Earlier in this thesis, we found that two probes placed at x = l1 and
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x = l2 allowed for accurate approximations of the two unknown parameters in the two-

layer model. For a three-layer model with four unknown parameters, how many probes

would be necessary? It may be the case that three probes at x = l1, x = l2 and x = l3

would be sufficient: one for each layer. That would certainly be a reasonable guess in

the case where γ is known and the task is to infer just D1, D2 and D3, but does the

introduction of a fourth unknown parameter demand the use of a fourth probe in order

to estimate all the parameters accurately? To perform this investigation, the new model

would have to be solved and modifications would need to be made to the code provided

in the Appendix. An additional complication of this exploration is the visualisation of a

four-dimensional parameter space.

Another possible avenue of future research is an investigation into the robustness of

our findings under the variation of the spatial structure of the tissue. That is to say, are

the optimal single probe and two probe configurations consistent for systems where the

widths of the layers vary? All findings in this thesis are based on a single spatial structure:

a skin layer from 0 mm to 1.6 mm and a fat layer from 1.6 mm to 4 mm. We find that

if limited to a single probe, placing the probe in the fat layer is preferable to placing it

in the skin layer, but would this be the case if the skin layer is much thicker than the

fat layer? Also, we find that if the first probe was placed at the bottom of the system, a

second probe at the layer interface allows for precise parameter inference, but is this true

when the location of the layer interface is varied? The algorithms provided in this thesis

could be used to answer these questions, with only minor modifications.

It is my hope that this thesis is able to provide a framework for future investigations

into the parameter inference process of a variety of layered heat transfer models.
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Appendix

Appended to this thesis are the MATLAB functions and scripts used to solve and analyse

the mathematical models presented throughout the document. This code is also available

at GitHub (https://github.com/seanmcinerneyQUT/Thesis).

Model Solve.m

This function is used to evaluate the solution to the mathematical model presented in

Equations (2.11)-(2.18). It requires the use of two other functions. It requires Laplace Temperature.m,

which formulates a solution to the equations after a Laplace transform has been performed.

It then uses cf.m, which takes a numerical inverse Laplace algorithm to obtain the solu-

tion to the original equations. Model Solve.m could be used for different one-dimensional

mathematical models, as long as Laplace Temperature.m is updated appropriately.

function T = Model_Solve( x , t , D1 , D2 , L1 , L2 )

% Author: Sean McInerney; Last Update: 17/05/2018

% Solves a two layer diffusion problem, given x, t and appropriate

% model parameters. Uses numerical inverse Laplace code, cf.m, on an

% analytical Laplace solution to the problem, as formulated in

% Laplace_Temperature.m

%

% Solution to Equations (2.11)-(2.18)

%

% FUNCTION INPUTS:

% x - Depth

% t - Time

% D1 - Diffusivity in skin layer

% D2 - Diffusivity in fat layer

% L1 - Depth of layer interface
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% L2 - Depth of entire system

% FUNCTION OUTPUT:

% T - Model solution discretised as a matrix [nx by nt]

% Used for inverse Laplace

n = 14;

[z,c] = cf(n);

% Initialise T

N = length(x);

M = length(t);

T = zeros(N,M);

% TBar(S,X) formulates the Laplace solution

TBar = @(S,X) Laplace_Temperature(S,X,D1,D2,L1,L2);

% Loop over space and time

for i = 1:N

for j = 1:M

% Check if initial condition needs to be applied

if t(j) == 0

T(i,j) = 0;

else

% Perform inverse Laplace

T(i,j) = 0;

for k = 1:n/2

I = 2*k-1;

s = z(I)/t(j);

T(i,j) = T(i,j) - c(I)*TBar(s,x(i))/t(j);

end

T(i,j) = 2*real(T(i,j));

end

end

end

end
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Laplace Temperature.m

This function is used to evaluate the solutions to Equations (3.21)-(3.26), as outlined in

Equation (3.39) and Equation (3.40). The function is specific to the mathematical model

presented in Equations (3.1)-(3.8). To perform analysis on different mathematical models,

which describe different physical mechanisms, Laplace Temperature.m would have to be

modified.

function TBar = Laplace_Temperature( s , x , D1 , D2 , L1 , L2 )

% Author: Sean McInerney; Last Update: 17/05/2018

% Given s and x and the appropriate parameters, Laplace_Temperature returns

% the Laplace solution to the following two-layer thermal diffusion problem

%

% x = 0 ___________________________________________ T(0,t) = 1

% standard diffusion according to D1

% T_1(x,0) = 0

%

% x = L1 ___________________________________________ thermal flux conserved

% standard diffusion according to D2

% T_2(x,0) = 0

%

%

% x = L2 ___________________________________________ heat insulated

%

% FUNCTION INPUTS:

% s - Laplace variable

% x - Depth

% D1 - Diffusivity in skin layer

% D2 - Diffusivity in fat layer

% L1 - Depth of layer interface

% L2 - Depth of entire system

% FUNCTION OUTPUT:

% TBar - Laplace solution

% Establish intermediate parameters

xi1 = sqrt(s/D1);

xi2 = sqrt(s/D2);
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if x < L1

% Skin layer solution (Refer to Equation (3.39)_

TBar = cosh(xi1*(x-L1))/(s*cosh(xi1*L1)) - ...

(D2*xi2*sinh(xi1*x)*tanh(xi2*(L2-L1))) / ...

(s*cosh(xi1*L1)^2*(D2*xi2*tanh(xi1*L1)*tanh(xi2*(L2-L1))+D1*xi1));

else

% Fat layer solution (Refer to Equation (3.40))

TBar = (D1*xi1*cosh(xi2*(x-L2))*tanh(xi2*(L2-L1))) / ...

(s*cosh(xi1*L1)*sinh(xi2*(L2-L1))*(D2*xi2*tanh(xi1*L1)*...

tanh(xi2*(L2-L1))+D1*xi1));

end

end

cf.m

This function was not developed by me. It has been included as it is referred to in other

functions and scripts. For further information regarding cf.m, see the paper where the

function is first presented (Trefethen et al., 2006).

function [zk,ck] = cf(n)

% Computes the poles zk and residues ck by the Caratheodory-Fejer method

% for the type (n,n) best approximation to exp(z) on the negative real

% line.

%

% For full details see:

% J. A. C. Weideman L. N. Trefethen and T. Schmelzer (2006) Talbot

% quadratures and rational approximations. BIT Numer. Math., 46:653-670.

%

% The following code is given in Figure 4.1 of the above paper.

K = 75; % no of Cheb coeffs

nf = 1024; % no of pts for FFT

w = exp(2i*pi*(0:nf-1)/nf); % roots of unity

t = real(w); % Cheb pts (twice over)

scl = 9; % scale factor for stability
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F = exp(scl*(t-1)./(t+1+1e-16)); % exp(x) transpl. to [-1,1]

c = real(fft(F))/nf; % Cheb coeffs of F

f = polyval(c(K+1:-1:1),w); % analytic part f of F

[U,S,V] = svd(hankel(c(2:K+1))); % SVD of Hankel matrix

s = S(n+1,n+1); % singular value

u = U(K:-1:1,n+1)’; v = V(:,n+1)’; % singular vector

zz = zeros(1,nf-K); % zeros for padding

b = fft([u zz])./fft([v zz]); % finite Blaschke product

rt = f-s*w.^K.*b; % extended function r-tilde

rtc = real(fft(rt))/nf; % its Laurent coeffs

zr = roots(v); qk = zr(abs(zr)>1); % poles

qc = poly(qk); % coeffs of denominator

pt = rt.*polyval(qc,w); % numerator

ptc = real(fft(pt)/nf); % coeffs of numerator

ptc = ptc(n+1:-1:1); ck = 0*qk;

for k = 1:n % calculate residues

q = qk(k); q2 = poly(qk(qk~=q));

ck(k) = polyval(ptc,q)/polyval(q2,q);

end

zk = scl*(qk-1).^2./(qk+1).^2; % poles in z-plane

ck = 4*ck.*zk./(qk.^2-1); % residues in z-plane

TestParameterSpace.m

This function is used to evaluate A1 or A2 for a given choice of probe location(s), as

detailed in Equations (2.21) and (2.23). It requires the use of the functions Model Solve.m,

Laplace Temperature.m and cf.m. This is very computationally expensive if a fine mesh

of the parameter space is used to calculate A1 and A2.

function TestParameterSpace( p , q )

%% Test Parameter Space

% Author: Sean McInerney; Last Update: 18/06/2018

%

% Used to generate Figures 2.3, 2.4 and 2.6

%

% Is computational costly for high values of Npts
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%

% FUNCTION INPUTS:

% p - The first probe location

% q - The second probe location. Input ’none’, if no second probe is used

%% Set-up

close all

% Target Parameters

D1_hat = 0.09;

D2_hat = 0.009;

% Spatial Structure

L1 = 1.6;

L2 = 4;

% Set to ’yes’ if you would like to save data

saveData = ’yes’;

% Define bounds for parameter space

minD1 = D1_hat/20;

maxD1 = D1_hat*5;

minD2 = D2_hat/20;

maxD2 = D2_hat*5;

% Npts determines how fine the mesh is. Mesh is size Npts by Npts

Npts = 21; % Npts = 2001 was selected in the thesis

% Thresholds for indicator function

epsilon = [1.5,1.0,0.5];

% Colour map below. Currently set up for three indicator thresholds

map = [

0,204/255,102/255; % Green

1,0,0; % Red

0,102/255,204/255 % Blue

];
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%% Background Set-up

if strcmp(q,’none’)

x_data = p;

nx = 1; % Number of probes

else

x_data = [p,q];

nx = 2;

end

% Constructing the mesh in both vector and matrix form

D1_pts = linspace(minD1,maxD1,Npts);

D2_pts = linspace(minD2,maxD2,Npts);

[D1_mesh,D2_mesh] = meshgrid(D1_pts,D2_pts);

D1_test = D1_mesh(:);

D2_test = D2_mesh(:);

%% Generate Data

% Find appropriate point to stop temporal sampling

thresh = 0.99; % Once this temperature is reached, sampling stops

fun = @(t) Model_Solve(L2,t,D1_hat,D2_hat,L1,L2) - thresh;

t_end = fzero(fun,[0,10^10*L2^2/D2_hat]); % Initial guess is scaled accordingly

M = 100; % Number of temporal samples

delta_t = t_end/M;

t_data = delta_t:delta_t:t_end;

T_hat = Model_Solve(x_data,t_data,D1_hat,D2_hat,L1,L2);

%% Evaluate Indicator Function over Parameter Space

% Set up to evaluate indicator function at probes

Nsamples = Npts^2;

Neps = length(epsilon); % Number of different thresholds considered

I_eps = zeros(Nsamples,Neps); % Contains a collection of I for different epsilon

% Plot_heights is used to generate the figure. It keeps track of whether
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% the indicator function is satisfied for a given parameter pair. In the

% case that a parameter pairs results in I = 1 for more than one epsilon,

% the strictest such epsilon is used.

Plot_heights = NaN(Nsamples,1);

epsilon = sort(epsilon,’descend’);

% Loop over all the different parameter pairs

for ii = 1:Nsamples

T_test = Model_Solve(x_data,t_data,D1_test(ii),D2_test(ii),L1,L2);

% Loop over the different epsilon

for jj = 1:length(epsilon)

I_eps(ii,jj) = IndicatorFunc(epsilon(jj),T_test,T_hat);

if I_eps(ii,jj) == 1

Plot_heights(ii) = epsilon(jj);

end

end

end

%% Create a Figure

% Unravel the Plot_heights into a mesh for plotting

Plot_mesh = zeros(Npts,Npts);

for i = 1:Npts

Plot_mesh(1:Npts,i) = Plot_heights((i-1)*Npts+1:i*Npts);

end

% Plot

figure

hold on

surf(D1_mesh,D2_mesh,Plot_mesh,’EdgeColor’,’none’)

% Plot details

view(2)

colormap(map)

grid off

xlabel(’$D_1$ (mm$^2/$s)’,’Interpreter’,’Latex’)

ylabel(’$D_2$ (mm$^2/$s)’,’Interpreter’,’Latex’)

plot3(D1_hat,D2_hat,epsilon(Neps)+1,’ko’,’MarkerFaceColor’,[0,0,0])
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set(gca,’FontSize’,16)

set(gca,’TickLabelInterpreter’,’Latex’)

axis([minD1,maxD1,minD2,maxD2])

box on

set(gca,’Layer’,’top’)

% Save data

if strcmp(saveData,’yes’)

Results = Plot_mesh;

if nx == 1

save([’ResultsForSingleProbeAt’,num2str(10*p)],’Results’)

else

save([’ResultsForTwoProbesAt’,num2str(10*p),’and’,num2str(10*q)],’Results’)

end

end

function I = IndicatorFunc(epsilon,T_test,T_hat)

% Author: Sean McInerney; Last Update: 28/02/2018

% Evaluates the Indicator Function.

%

% Refer to Equations (2.20) and (2.22)

%

% FUNCTION INPUTS:

% epsilon - Threshold for indicator function

% T_hat - The temperature data, evaluated using target parameters

% T_test - The temperature, evaluated using test parameters

% FUNCTION OUTPUT:

% I - The evaluated indicator function: either 1 or 0

d = sum(abs(T_hat-T_test),2); % Refer to Equation (2.19)

[nx,~] = size(T_hat); % Number of probes

if nnz(d <= epsilon) == nx % If all discrepancies are below epsilon

I = 1;

else

I = 0;

end
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SolutionVerification.m

This script can be used to generate Figure 3.2. It requires the functions Model Solve.m,

Laplace Temperature.m and cf.m. The script plots both the numerical solution and the

semi-analytical solution to the mathematical model outlined in Equations (3.21)-(3.26).

The semi-analytical solution is presented in Equations (3.39)-(3.40) and the numerical

solution is presented in Equations (3.56)-(3.59).

%% Solution Verification

% Author: Sean McInerney; Last Update: 08/08/2018

%

% Used to generate Figure 3.2

%% Set-up

clear

clc

close all

% Parameters

D1 = 0.09;

D2 = 0.009;

L1 = 1.6;

L2 = 4;

% Spatial discretisation

N = 201; % Select N such that K is an integer

K = (N-1)*(L1/L2)+1;

% Find appropriate point to stop temporal sampling

thresh = 0.99; % Once this is reached, sampling stops

fun = @(t) Model_Solve(L2,t,D1,D2,L1,L2) - thresh;

t_c = fzero(fun,[0,10^10*L2^2/D2]); % Initial guess scaled

% Designate plot times

t_plot = [0.01,0.05,0.1,0.2,0.5,1]*t_c; % Plot times

nt = length(t_plot); % Number of plots
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% Set up background colours

colour = [0.8275,0.5529,0.7176; 0.8745,0.8039,0.8784];

% Plot details

figure

hold on

rectangle(’Position’,[0,0,L1,1],’FaceColor’,colour(1,:),...

’EdgeColor’,’none’)

rectangle(’Position’,[L1,0,L2-L1,1],’FaceColor’,colour(2,:),...

’EdgeColor’,’none’)

xlabel(’$x$ (mm)’,’Interpreter’,’Latex’)

ylabel(’Temperature’,’Interpreter’,’Latex’)

set(gca,’FontSize’,16)

set(gca,’TickLabelInterpreter’,’Latex’)

axis([0,L2,0,1])

annotation(’arrow’,[0.2,0.7],[0.25,0.9],’LineWidth’,1.5)

box on

% Determine which nodes are plotted for numerical solution

nx = 11; % Number of bullet points in numerical visualisation

index = round(linspace(1,N,nx),0); % Assists in numerical visualisation

%% Semi-analytical Approach

x = linspace(0,L2,N); % Spatial points where solution is evaluated

soln = Model_Solve(x,t_plot,D1,D2,L1,L2); % Semi-analytical solution

for i = 1:nt

plot(x,soln,’k’,’LineWidth’,1.5);

end

%% Numerical Approach

% Discretisation

Delta_x = x(2) - x(1);

Delta_t = 10^(-6)*t_c;

t_current = Delta_t; % Keeps track of the time

% To ensure that the numerical solution is evaluated at the times
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% designated in t_plot, Delta_t_current is introduced. It takes on the time

% until the next plot time, if t_current+Delta_t were to exceed the next

% plot time

Delta_t_current = Delta_t;

plot_count = 0; % How many of the plots have been plotted

% Initial time (Refer to Equation (3.47)-(3.48))

T = zeros(N,1); % T is the numerical approximation to the temperature

T(1) = 1; % Dirichlet BC (Refer to Equation (3.49))

% Construct A (Refer to Equations (3.57)-(3.59))

A_L = [D1*ones(1,K-1),D2*ones(1,N-K-1),2*D2];

A_D = [0,-2*D1*ones(1,K-2),-(D1+D2),-2*D2*ones(1,N-K)];

A_U = [0,D1*ones(1,K-2),D2*ones(1,N-K)];

A = sparse(diag(A_L,-1)+diag(A_D)+diag(A_U,1));

while plot_count < nt

% Iterate through time (Refer to Equation (3.56))

T = T + (Delta_t_current/Delta_x^2)*A*T;

% Check if deltat needs to be changed to obtain plot time

Delta_t_current = t_plot(plot_count+1) - t_current;

if Delta_t_current > Delta_t

Delta_t_current = Delta_t;

end

% Plot if necessary

if t_current == t_plot(plot_count+1)

plot_count = plot_count+1;

plot(x(index),T(index),’k.’,’MarkerSize’,18)

end

% Increment time

t_current = t_current + Delta_t_current;

end
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SolutionVisualisation.m

This script can be used to generate Figure 2.2. It requires the functions Model Solve.m,

Laplace Temperature.m and cf.m. All subfigures of Figure 2.2 are generated with one run

of the script.

%% Solution Visualisation

% Author: Sean McInerney; Last Update: 14/06/2018

%

% Used to generate Figure 2.2

%% Set-up

clear

clc

close all

% Target parameters

D1_hat = 0.09;

D2_hat = 0.009;

% Spatial structure

L1 = 1.6;

L2 = 4;

N = 101;

x = linspace(0,L2,N);

% Probe location

p = L2;

% Set up background colours for Figure 2.2(a) and (c)

colour = [0.8275,0.5529,0.7176; 0.8745,0.8039,0.8784];

% Plot times

t_plot_a = [10,20,50,100,200,500,1000]; % For Figure 2.2(a)

t_plot_c = [10,200,500]; % For Figure 2.2(c)
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% Parameters used for comparison in Figure 2.2(c)-(d)

D1 = [D1_hat,0.45];

D2 = [D2_hat,0.0077];

% Line colours in Figure 2.2(c)-(d)

% This would need to be adapted if more than two parameter pairs are compared

linecolours = [0,0,0; 0.15,0.65,0.15];

% Find appropriate point to stop temporal sampling

threshold = 0.99; % Once this temperature is reached at probe, sampling stops

fun = @(t) Model_Solve(p,t,D1_hat,D2_hat,L1,L2) - threshold;

t_c = fzero(fun,[0,10^10*L2^2/D2_hat]); % Initial guess is scaled

% Data points

M = 100; % Number of temporal samples

delta_t = t_c/M;

t_data = delta_t:delta_t:t_c;

% Generate synthetic temperature data

T_hat = Model_Solve(p,t_data,D1_hat,D2_hat,L1,L2);

%% Figure 2.2(a)

% Plot details

figure

hold on

rectangle(’Position’,[0,0,L1,1],’FaceColor’,colour(1,:),...

’EdgeColor’,’none’)

rectangle(’Position’,[L1,0,L2-L1,1],’FaceColor’,colour(2,:),...

’EdgeColor’,’none’)

xlabel(’$x$ (mm)’,’Interpreter’,’Latex’)

ylabel(’Temperature’,’Interpreter’,’Latex’)

axis([0,L2,0,1])

set(gca,’FontSize’,16)

box on

set(gca,’TickLabelInterpreter’,’Latex’)

annotation(’arrow’,[0.2,0.7],[0.25,0.9],’LineWidth’,1.5)
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% Plot model solution

T = Model_Solve(x,t_plot_a,D1_hat,D2_hat,L1,L2);

plot(x,T,’k’,’LineWidth’,1.5);

%% Figure 2.2(b)

% Plot details

figure

hold on

xlabel(’$t$ (sec)’,’Interpreter’,’Latex’)

ylabel(’Temperature’,’Interpreter’,’Latex’)

set(gca,’FontSize’,16)

box on

set(gca,’TickLabelInterpreter’,’Latex’)

axis([0,1.2*t_c,0,1])

plot([t_c,t_c],[0,1],’k--’)

% Plot data

plot(t_data,T_hat,’k.’)

%% Figure 2.2(c)

% Plot details

figure

hold on

rectangle(’Position’,[0,0,L1,1],’FaceColor’,colour(1,:),’EdgeColor’,’none’)

rectangle(’Position’,[L1,0,L2-L1,1],’FaceColor’,colour(2,:),’EdgeColor’,’none’)

axis([0,4,0,1])

xlabel(’$x$ (mm)’,’Interpreter’,’Latex’)

ylabel(’Temperature’,’Interpreter’,’Latex’)

set(gca,’FontSize’,16)

box on

set(gca,’TickLabelInterpreter’,’Latex’)

annotation(’arrow’,[0.2,0.7],[0.25,0.9],’LineWidth’,1.5)

% Loop over the different parameter pairs

for ii = 1:length(D1)

T_ii = Model_Solve(x,t_plot_c,D1(ii),D2(ii),L1,L2);
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% Loop over plot times

for jj = 1:length(t_plot_c)

% Plot solution using different parameter pairs

plot(x,T_ii(:,jj),’Color’,linecolours(ii,:),’LineWidth’,1.5);

end

end

%% Figure 2.2(d)

% Plot details

figure

hold on

xlabel(’$t$ (sec)’,’Interpreter’,’Latex’)

ylabel(’Temperature’,’Interpreter’,’Latex’)

set(gca,’FontSize’,16)

box on

set(gca,’TickLabelInterpreter’,’Latex’)

plot([t_c,t_c],[0,1],’k--’)

axis([0,1.2*t_c,0,1])

% Loop over different parameter pairs

for ii = 1:length(D1)

% Plot solution at probe location using different parameter pairs

T_ii = Model_Solve(p,t_data,D1(ii),D2(ii),L1,L2);

plot(t_data,T_ii,’Color’,linecolours(ii,:),’LineWidth’,1.5)

end

OptimalProbeLocation.m

This script can be used to generate Figure 2.5 and Figure 2.7. It requires the functions

TestParameterSpace.m, Model Solve.m, Laplace Temperature.m and cf.m. The script de-

termines A1 for different choices of p and A2 for different choices of q. This is very

computationally expensive if a fine mesh of the parameter space is used to calculate A1

and A2. In Figure 2.5 and Figure 2.7, over 4 million parameter pairs were tested for each

choice of experimental design.
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%% Optimal Probe Location

% Author: Sean McInerney; Last Update: 21/06/2018

%

% Used to generate Figures 2.5 and 2.7

%

% Uses TestParameterSpace.m to generate data

% Ensure that parameters in TestParameterSpace.m are appropriate and

% saveData = ’yes’ is selected

%

% Is computational costly for high values of Npts

%% Set-up

clear

clc

close all

% Spatial Structure

L1 = 1.6;

L2 = 4;

% Different probe locations

PROBES = cell(40,1);

for ii = 1:20

PROBES{ii} = 0.2*ii; % Single probe set-ups

PROBES{ii+20} = [4,0.2*ii]; % Two probe set-ups

end

% Thresholds for indicator function.

epsilon = [1.5,1.0,0.5];

% Colour scheme of lines. Currently set up for three thresholds

map = [

0,102/255,204/255 % Blue

1,0,0; % Red

0,204/255,102/255; % Green

];



80

% Set-up background colours

colour = [0.8275,0.5529,0.7176; 0.8745,0.8039,0.8784];

%% Generate Data using TestParameterSpace.m

% Loop over different probe set-ups

for ii = 1:length(PROBES)

p = PROBES{ii}(1);

if length(PROBES{ii})==2 % If there is a second probe

q = PROBES{ii}(2);

else

q = ’none’;

end

TestParameterSpace(p,q) % Generate data

end

close all

%% Work with Data

nP = length(PROBES); % Number of different probe set-ups

Neps = length(epsilon); % Number of different thresholds considered

% mathcalA will contain the proportion of area where I = 1 for each

% probe set-up and each choice of epsilon.

mathcalA = zeros(nP,Neps);

nSP = 0; % Number of single probe set-ups investigated

n2P = 0; % Number of two probe set-ups investigated

% To determine nSp and n2P:

for ii = 1:nP

x_data = PROBES{ii}; % Probe locations in this set-up

nx = length(x_data);

if nx == 1

nSP = nSP+1;

elseif nx == 2

n2P = n2P+1;

end

end
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singleProbeIndex = zeros(nSP,1); % Keeps track of 1 probe set-ups

twoProbeIndex = zeros(n2P,1); % Keeps track of 2 probe set-ups

singleProbes = zeros(nSP,1); % Locations of single probes

twoProbes = zeros(n2P,1); % 2nd probe in 2 probe set-ups

for ii = 1:nP % Loop over probe set-ups

x_data = PROBES{ii};

nx = length(x_data);

p = x_data(1);

if nx == 1 % If it is a single probe set up

load([’ResultsForSingleProbeAt’,num2str(10*p)])

for jj = 1:Neps % Loop over different choices of epsilon

% Find the parameter pairs where I_1(D1,D2|p,eps) \leq epsilon

mathcalA(ii,jj) = length(find(Results<=epsilon(jj)));

end

index = find(singleProbeIndex==0,1); % Find next index to adjust

singleProbeIndex(index) = ii;

singleProbes(index) = p; % Store the probe location

elseif nx == 2 % If it is a two probe set-up

q = x_data(2);

load([’ResultsForTwoProbesAt’,num2str(10*p),’and’,num2str(10*q)])

for jj = 1:Neps % Loop over different choices of epsilon

% Find the parameter pairs where I_1(D1,D2|p,eps) \leq epsilon

mathcalA(ii,jj) = length(find(Results<=epsilon(jj)));

end

index = find(twoProbeIndex==0,1); % Find next index to adjust

twoProbeIndex(index) = ii;

twoProbes(index) = q; % Store the second probe location

end

mathcalA(ii,:) = mathcalA(ii,:)/numel(Results); % Scale area

end

%% Produce plot

% If any single probe set-ups have been considered

if nSP > 0
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% Plot details

figure5 = figure;

axes5 = axes(’parent’,figure5);

hold on

maxSingle = max(mathcalA(singleProbeIndex));

rectangle(axes5,’Position’,[0,0,L1,1.2*maxSingle],...

’FaceColor’,colour(1,:),’EdgeColor’,’none’)

rectangle(axes5,’Position’,[L1,0,L2-L1,1.2*maxSingle],...

’FaceColor’,colour(2,:),’EdgeColor’,’none’)

axis(axes5,[0,L2,0,1.2*maxSingle])

box on

set(axes5,’FontSize’,12)

xlabel(axes5,’$p$ (mm)’,’Interpreter’,’Latex’)

ylabel(axes5,’$\mathcal{A}_1$’,’Interpreter’,’Latex’)

set(axes5,’TickLabelInterpreter’,’Latex’)

% Pre-plot sorting of indices

[singleProbes,index] = sort(singleProbes);

singleProbeIndex = singleProbeIndex(index);

% Plot

for jj = 1:Neps

plot(axes5,singleProbes,mathcalA(singleProbeIndex,jj),...

’.’,’Color’,map(jj,:),’MarkerSize’,18)

plot(axes5,singleProbes,mathcalA(singleProbeIndex,jj),...

’-’,’Color’,map(jj,:),’LineWidth’,1.5)

end

end

% If any two probe set-ups have been considered

if n2P > 0

% Plot details

figure7 = figure;

axes7 = axes(’parent’,figure7);

hold on
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maxTwo = max(mathcalA(twoProbeIndex));

rectangle(axes7,’Position’,[0,0,L1,1.2*maxTwo],...

’FaceColor’,colour(1,:),’EdgeColor’,’none’)

rectangle(axes7,’Position’,[L1,0,L2-L1,1.2*maxTwo],...

’FaceColor’,colour(2,:),’EdgeColor’,’none’)

axis(axes7,[0,L2,0,1.2*maxTwo])

box on

set(axes7,’FontSize’,12)

xlabel(axes7,’$q$ (mm)’,’Interpreter’,’Latex’)

ylabel(axes7,’$\mathcal{A}_2$’,’Interpreter’,’Latex’)

set(axes7,’TickLabelInterpreter’,’Latex’)

% Pre-plot sorting of indices

[twoProbes,index] = sort(twoProbes);

twoProbeIndex = twoProbeIndex(index);

% Plot

for jj = 1:Neps

plot(axes7,twoProbes,mathcalA(twoProbeIndex,jj),...

’.’,’Color’,map(jj,:),’MarkerSize’,18)

plot(axes7,twoProbes,mathcalA(twoProbeIndex,jj),...

’-’,’Color’,map(jj,:),’LineWidth’,1.5)

end

end
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