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Abstract

The collective migration of cells involves many competing and interplaying mechanisms,

such as undirected random motility, proliferation, and biochemical clues. However, an

exact contribution of those often remains unclear. In our work we explore the role of

previously overlooked cell motility mechanisms caused by the dynamical change in the

cell size. Researchers routinely assume that the cell size remains constant throughout

the experiment, which allows the use of fairly straightforward mathematical techniques.

In our work, we include the dynamical cell size in the discrete and continuum models

of cell migration and apply novel experimental data to provide insights into the role of

cell size in the cell front expansion. Our work suggests that ignoring the dynamical

cell size may result in a poor prediction of the population-level behaviour. Similarly,

in the literature it is normally assumed that the cell culture is uniform and contains

cells of constant properties. As such, the single-species models are routinely applied

to describe and parametrize cell population. However, it has been previously shown

that innate intrinsic differences can be even within the same cell line. We explore

the experimentally motivated heterogeneity in cell sizes, as well as the heterogeneity

in diffusivity and cell-to-cell interaction strength. Numerical simulations demonstrate

that, only for certain types of heterogeneity single-species model performs well, while

the multi-species models might be required for other types of heterogeneity.
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Chapter 1

Introduction

1.1 Background

Different types of cells in real biological systems are not isolated from each other but

rather form complex aggregates, such as tissues and organs. Interactions between cells

of different sizes and functions play a crucial role in most biophysical processes, such

as wound healing, tumour growth, and tissue development to name a few (Weinberg,

2009; Weijer, 2009; Rognoni and Watt, 2018; Bocci et al., 2019). The variations between

properties of individual cells are observed even within the same cell line (Hastings and

Franks, 1983). We refer to these innate differences as population heterogeneity. Reveal-

ing and quantifying driving mechanisms behind behaviour of heterogeneous populations

of cells is crucial for our understanding how complex biological environments function.

Figure 1.1 illustrates a typical example of heterogeneous cell population in the form of a

co-culture of two distinct cancer cell types: fibrosarcoma and adenocarcina cells. After

visually inspecting the image one can notice an immense range of cell sizes in this pop-

ulation. Additionally, different cell types can have different migratory and mechanical

properties that are much harder to quantify in comparison to the heterogeneity in cell

sizes. Biological systems such as tissues and organs can involve interactions of dozens

of different cell types which makes the problem of quantifying the role of heterogeneity

even harder. As such, heterogeneity in cell populations yet remains major problem in

the contemporary mathematical biology (Menon et al., 2018; Rutter et al., 2018).

The standard approach to emulate real biological systems utilizes in vitro cell culture

experiments (Edmondson et al., 2014). These experiments often demonstrate significant

changes in cell properties over time that constitutes an additional complication on top

of the innate heterogeneity. For example, one of the most evident examples is cells

increasing their size as they go through different stages of the cell cycle (Amodeo and

Skotheim, 2016). Figure 1.2 shows an example of the two-dimensional cell culture

experiment where PC-3 cancer cells appear to double in size over the course of an

1



1.1. BACKGROUND CHAPTER 1. INTRODUCTION

Figure 1.1: Heterogeneous population of cells containing HT1080 fibrosarcoma cells (green nuclei) in
co-culture with A549 adenocarcina cells (red nuclei). Fluorescent nuclei are automatically detected using
the IncuCyte ZOOM Live Cell Imaging System. Cancer cell nuclei were labelled using the IncuCyte
NucLight Lentivirus Reagents. Credit: Essen BioScience.

experiment. These dynamical changes in such seemingly fundamental property as the

cell size are not normally reflected in the mathematical models.

There is a variety of two-dimensional and three-dimensional cell culture assays of

different geometries designed to study cell-to-cell interactions, drug discovery, tissue

regeneration, and disease progression (Riss, 2005; Goers et al., 2014; Edmondson et al.,

2014). In the most general sense, in vitro assay is a cell cultivation set-up, in which

population of cells is grown either on a flat substrate in the case of two-dimensional

assays or on the more realistic three-dimensional architectures (Griffith and Swartz,

2006; Weigelt et al., 2014). To date, the most popular choice of in vitro assays is a

traditional two-dimensional monolayer cultures, including circular barrier assays (De

Leso and Pei, 2018), microfluidic assays (Regnault et al., 2018), scratch assays (Jin

et al., 2016a), and IncuCyte ZOOMTM assays (Essen BioScience, Ann Arbor, MI).

Even though two-dimensional cell assays have been recognised as simple and cost-

effective tool for biological research, they do not adequately model the real in vivo
environment where cells are embedded into extracellular matrix (ECM) (Rosso et al.,

2004; Edmondson et al., 2014). This drawback may become especially acute if we

consider a culture of cells where subpopulations may differ in many aspects which may

range from minor differing in phenotype to being different species. In contrast to two-

dimensional cultures, three-dimensional cultures provide more realistic modelling of the

in vivo environment due the fact that cells form aggregates within a matrix which more

2
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a b c

t = 0h t = 24h t = 48h

t = 0h t = 24h t = 48h

d e f

Figure 1.2: (a)-(c) IncuCyte ZOOMTM images of the two-dimensional cell culture containing PC-3
prostate cancer cells (Kaighn et al., 1979) for t = 0, 24, and 48 h. A red solid line indicates a scale bar
corresponding to 300 µm. (d)-(f) Zoomed-in images denoted in blue squares in Figure 1.2 (a)-(c).

closely mimic real cell-ECM relationships (Edmondson et al., 2014; Holle et al., 2016).

These in vitro experiments when combined with appropriate mathematical models

and parameter estimation techniques may provide powerful tools to describe and predict

behaviour of heterogeneous populations of cells. For example, it was shown (Eves et

al., 2003) that migration of malignant melanoma cells is enhanced in the presence of

healthy skin cells that implies special interaction between these two types of cells. In

this example it becomes clear that in order to describe invasive nature of melanoma we

should take into account interactions between normal and melanoma skin cells. Different

subpopulations of cells are not necessarily distinct but may be just labelled to allow us

track individual cells (Progatzky et al., 2013), or different functional cell groups (Trinh

et al., 2017).

3



1.1. BACKGROUND CHAPTER 1. INTRODUCTION

In a literature, the convenient and intuitive way to simulate a population of cells is to

invoke the discrete modelling framework, where cells are represented as discrete agents

with behaviour that is determined by predefined rules (Newman and Grima, 2004; Galle

et al., 2005; Gardiner et al., 2015). Discrete models can be classified into two major

groups depending on the physical domain that contains agents (Osborne et al., 2017).

Building a domain on the discrete lattice leads to the on-lattice and cellular automata

models which provide convenient tools to mimic key motility mechanisms and allow us

to obtain snapshots similar to real experiments. In this framework, cells are treated

as constant-size agents that occupy one or a few lattice sites and move only along

coordinate axes. Since the cell size is associated with the lattice grid spacing, it is

problematic to model population of cells that change in size. Previously, the dynamical

cell size has been incorporated into the two-species lattice-based model, where each

agent of type 1 is allowed to grow into an agent of type 2 doubling its size (Binder and

Simpson, 2016). The cellular Potts model is more advanced type of lattice-based models

where cells are modelled as spatially extended objects composed of many discrete agents

(Szabó and Merks, 2013). The lattice-based models have been used to simulate multi-

species populations of cells, tumor growth, and angiogenesis (Delgado-SanMartin et

al., 2017; Pillay et al., 2018), as well as a variety of in vitro experiments of different

geometries, such as circular barrier assays (Treloar et al., 2014) or scratch assays

(Khain et al., 2006). The main drawback of lattice-based models is that cells do not move

on a lattice in reality. Although the on-lattice models may be improved by imposing

finer lattice grid, we do not use them in this thesis because of their limitations when

applied to modelling dynamical cell size.

On the other hand, the off-lattice approach does not feature an artificial spatial

discretisation. This provides an improved level of realism in comparison to the lattice-

based models (Drasdo et al., 1995; Drasdo and Höhme, 2005; Johnston et al., 2013;

Osborne et al., 2017). Consequently, cells are allowed to move in any direction bounded

only by naturally imposed boundaries which exist in real experiments. We choose the

off-lattice model where migration of the population of cells is governed by the system of

Langevin stochastic differential equations (SDEs) (Middleton et al., 2014):

d~xi

dt
=

∑
j,i

~Fi j + ~ξi, i = 1, ...,N, (1.1)

where index i denotes agent label, ~xi is the position of the ith agent, ~ξi is the stochastic

undirected force, and ~Fi j is the deterministic interaction forces between agents i and j.

Normally, the interaction force, ~Fi j, is assumed to be a function of distance between

agents that suitably mimics certain phenomenological aspects of cell-to-cell interactions

(Newman and Grima, 2004; Middleton et al., 2014). In this thesis, we introduce the

4



CHAPTER 1. INTRODUCTION 1.2. RESEARCH QUESTIONS

novel approach that features the time-dependent cell-to-cell interaction force to model

populations of cells that increase in size.

An alternative approach is to invoke a continuum description which is based on ap-

plying partial differential equations (PDE) to tissue-level data, such as density profiles.

Routinely PDE-based models are obtained in the continuum limit of a grid size tend-

ing to zero transforming discrete conservation laws into the continuous form (Murray

et al., 2009; Field and Tough, 2010). One of the most popular models for describ-

ing populations of cells is the Fisher–KPP (Fisher–Kolmogorov–Petrovsky–Piskunov)

reaction-diffusion equation,

∂p
∂t

= D
∂2 p
∂x2︸︷︷︸

diffusion

+ λp
(
1 −

p
K

)
︸       ︷︷       ︸

reaction

, (1.2)

where D is the cell diffusivity, λ is the proliferation rate, K is the carrying capacity

density, and the cell density, p(x, t), is a function of space x and time t. The diffusion

term represents undirected random motility of cells, and the latter term incorporates

cell proliferation.

The Fisher–KPP type models do not include cell size parameter and therefore cannot

be used for describing populations of cells with dynamical cell size. Nevertheless, the

Fisher–KPP model is used to estimate individual-level parameters, such as diffusion

coefficient D and proliferation rate λ (Johnston et al., 2015), and to describe multi-

species cell culture experiments (Simpson et al., 2007).

We note that, Fisher–KPP model does not take into account the cell-to-cell adhesive

properties. This implies that we are not able to describe the cellular behaviour caused

by intercellular interactions. While some cells in the human body are highly adhesive

and form strong confluent layer, such as epithelial skin cells, other cells exhibit much

weaker bonds with closest neighbours (mesenchymal cells). It is therefore of interest to

use alternative continuum description to incorporate the cell-to-cell adhesion.

1.2 Research questions

This thesis explores and answers the following questions:

1. How can we develop models of collective cell migration and adhesion to

describe many, potentially distinct, subpopulations of cells?

In the literature when applying mathematical models to describe in vitro cell as-

say experiments, it is common practice to assume that all cells within population

have constant properties, such as cell sizes and diffusivities. Some individual

cell properties, for example diffusivity, can be fairly hard to measure for every

5
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single population member. On the other hand, cell size can be quantified using

semi-automatic image processing tools. In this thesis, we refer to these intrinsic

differences as population heterogeneity and allow population of cells to contain

many different subpopulations with different properties. Many popular mathemat-

ical descriptions, discrete or continuous, do not account for innate heterogeneity

and routinely use models with only one set of parameters accounting for aver-

aged population-wide characteristics. The way to address this gap is to develop

mathematical model of cell motility and adhesion able to parametrise many, poten-

tially distinct, subpopulations. We focus to do so in the first stage of our project

(Chapter 2).

2. How can we incorporate dynamically changing cell size into models of

collective cell migration and adhesion?

Many cell assay experiments indicate that the size of individual cells can change

significantly throughout the duration of the experiment, sometimes doubling over

48-72 hours. Most mathematical descriptions used to model cell assays have

limited capacity to deal with dynamical cell size. For example, in popular lattice-

based models cells are represented as an agent that moves on a discrete lattice and

the cell size is associated with the lattice spacing. As such, the cell size cannot be

set to change continuously on the lattice-based domain. Some of the continuous

models, such as models based on the Fisher–KPP equation, do not contain cell

size as a parameter, thus modelling cells as point objects. We address this issue

by extending discrete and continuous models developed in Chapter 2 to include

dynamical cell size (Chapter 3).

3. Can new models provide insights into previously overlooked cell motility

mechanisms, such as cell-to-cell pushing?

Understanding and quantifying the contribution of different mechanisms that drive

the movement of cell fronts is of great interest. Cell fronts are normally oc-

curring in a wide range of biological processes, such as wound healing, cancer

invasion, and tumour growth. A precise contribution of different individual-level

mechanisms to a population-level behaviour remains an open question. The role of

diffusivity and adhesion is well studied and is broadly discussed in the literature.

On the other hand, there are few insights into cell-to-cell pushing and its role in

the progression of the advancing cell fronts. To address this question mathemati-

cal model of cell motility and adhesion with dynamical cell size is connected to a

novel experimental data, and contribution of different cell motility mechanisms is

assessed in Chapter 4.

4. Can a cell population consisting of many distinct subpopulations be de-

6



CHAPTER 1. INTRODUCTION 1.3. OBJECTIVES AND OUTCOMES

scribed by a simple single-species model of cell motility and adhesion?

Cell populations can exhibit significant level of heterogeneity even within the same

cell line. The innate differences in cell sizes, diffusivities, or mechanical properties

of cells can heavily influence the ability of any given model to describe and predict

the collective-level behaviour of a cell population. Intuitive approach to account

for heterogeneity in a system of cells is to invoke multi-species framework where

whole population is divided into subpopulations with relatively constant properties.

The interesting question is – What differences in a cell population are really
important? In Chapter 5 we explore the heterogeneity in cell sizes and both

random and directed cell motilities to explore the ability of a single-species model

to predict behaviour of the heterogeneous cell population.

1.3 Objectives and outcomes

The primary goal of this thesis is to develop and validate new mathematical models of

cell motility and adhesion that incorporate realistic cell size dynamics.

The specific objectives of this thesis are as follows:

1. Develop novel discrete and continuum multi-species models of cell motility and

adhesion for arbitrary number of subpopulations.

2. Extend discrete and continuum models developed in Objective 1 to include dynam-

ical cell size.

3. Validate new models using novel experimental data that demonstrate significant

change in cell sizes and quantify the role of the cell-to-cell pushing.

4. Investigate the ability of a single-species model to describe behaviour of a hetero-

geneous population of cells.

This thesis is presented by publication and incorporates four publications in peer

reviewed journals. Three of these publications are published in Q1 journals (Journal

of Theoretical Biology and Bulletin of Mathematical Biology), one is published in Q2

journal (Biomedical Physics & Engineering Express). The PhD candidate is the first

author and contributed significantly to all four publications. The work presented in this

thesis fulfils Queensland University of Technology criteria for the thesis by publication.

This thesis incorporates following publications:

Matsiaka Oleksii, Penington Catherine, Baker Ruth, Simpson Matthew. Continuum

approximations for lattice-free multi-species models of collective cell migration. Journal
of Theoretical Biology, vol. 422, p. 1-11, 2017.

7
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Abstract Cell migration within tissues involves the interaction of many cells from dis-

tinct subpopulations. In this chapter, we present a discrete model of collective cell

migration where the motion of individual cells is driven by random forces, short range

repulsion forces to mimic crowding, and longer range attraction forces to mimic adhe-

sion. This discrete model can be used to simulate a population of cells that is composed

of K ≥ 1 distinct subpopulations. To analyse the discrete model we formulate a hierarchy

of moment equations that describe the spatial evolution of the density of agents, pairs

of agents, triplets of agents, and so forth. To solve the hierarchy of moment equations

we introduce two forms of closure: (i) the mean field approximation, which effectively

assumes that the distributions of individual agents are independent; and (ii) a mo-

ment dynamics description that is based on the Kirkwood superposition approximation.

The moment dynamics description provides an approximate way of incorporating spa-

tial patterns, such as agent clustering, into the continuum description. Comparing the

performance of the two continuum descriptions confirms that both perform well when

adhesive forces are sufficiently weak. In contrast, the moment dynamics description

outperforms the mean field model when adhesive forces are sufficiently large. This is a

first attempt to provide an accurate continuum description of a lattice-free, multi-species

model of collective cell migration.

Matsiaka Oleksii, Penington Catherine, Baker Ruth, Simpson Matthew. Discrete and

continuum approximations for collective cell migration in a scratch assay with cell size

dynamics Bulletin of Mathematical Biology, vol. 80, p. 738-757, 2018.

Abstract Scratch assays are routinely used to study the collective spreading of cell

populations. In general, the rate at which a population of cells spreads is driven by

the combined effects of cell migration and proliferation. To examine the effects of

cell migration separately from the effects of cell proliferation, scratch assays are often

performed after treating the cells with a drug that inhibits proliferation. Mitomycin-C

is a drug that is commonly used to suppress cell proliferation in this context. However,

in addition to suppressing cell proliferation, Mitomycin-C also causes cells to change

size during the experiment, as each cell in the population approximately doubles in size

as a result of treatment. Therefore, to describe a scratch assay that incorporates the

effects of cell-to-cell crowding, cell-to-cell adhesion, and dynamic changes in cell size,

we present a new stochastic model that incorporates these mechanisms. Our agent-

based stochastic model takes the form of a system of Langevin equations that is the

system of stochastic differential equations governing the evolution of the population of

agents. We incorporate a time-dependent interaction force that is used to mimic the

dynamic increase in size of the agents. To provide a mathematical description of the

8
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average behaviour of the stochastic model we present continuum limit descriptions using

both a standard mean-field approximation, and a more sophisticated moment dynamics

approximation that accounts for the density of agents and density of pairs of agents in

the stochastic model. Comparing the accuracy of the two continuum descriptions for

a typical scratch assay geometry shows that the incorporation of agent growth in the

system is associated with a decrease in accuracy of the standard mean-field description.

In contrast, the moment dynamics description provides a more accurate prediction of the

evolution of the scratch assay when the increase in size of individual agents is included

in the model.

Matsiaka Oleksii, Baker Ruth, Shah Esha, Simpson Matthew. Mechanistic and exper-

imental models of cell migration reveal the importance of intercellular interactions in

cell invasion. Biomedical Physics & Engineering Express, vol. 5, 045009, 2019.

Abstract Moving fronts of cells are essential for development, repair and disease pro-

gression. Therefore, understanding and quantifying the details of the mechanisms that

drive the movement of cell fronts is of wide interest. Quantitatively identifying the

role of intercellular interactions, and in particular the role of cell pushing, remains an

open question. In this work, we report a combined experimental-modelling approach

showing that intercellular interactions contribute significantly to the spatial spreading

of a population of cells. We use a novel experimental data set with PC-3 prostate can-

cer cells that have been pretreated with Mitomycin-C to suppress proliferation. This

allows us to experimentally separate the effects of cell migration from cell proliferation,

thereby enabling us to focus on the migration process in detail as the population of cells

recolonizes an initially-vacant region in a series of two-dimensional experiments. We

quantitatively model the experiments using a stochastic modelling framework, based on

Langevin dynamics, which explicitly incorporates random motility and various intercel-

lular forces including: (i) long range attraction (adhesion); and (ii) finite size effects

that drive short range repulsion (pushing). Quantitatively comparing the ability of this

model to describe the experimentally observed population-level behaviour provides us

with quantitative insight into the roles of random motility and intercellular interac-

tions. To quantify the mechanisms at play, we calibrate the stochastic model to match

experimental cell density profiles to obtain estimates of cell diffusivity, D, and the am-

plitude of intercellular forces, f0. Our analysis shows that taking a standard modelling

approach which ignores intercellular forces provides a poor match to the experimen-

tal data whereas incorporating intercellular forces, including short-range pushing and

longer range attraction, leads to a faithful representation of the experimental observa-

tions. These results demonstrate a significant role of cell pushing during cell front

movement and invasion.
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Matsiaka Oleksii, Baker Ruth, Simpson Matthew. Continuum descriptions of spa-

tial spreading for heterogeneous cell populations: theory and experiment. Journal of
Theoretical Biology, vol. 482, 109997, 2019.

Abstract Variability in cell populations is frequently observed in both in vitro and in
vivo settings. Intrinsic differences within populations of cells, such as differences in cell

sizes or differences in rates of cell motility, can be present even within a population of

cells from the same cell line. We refer to this variability as cell heterogeneity. Math-

ematical models of cell migration, for example, in the context of tumour growth and

metastatic invasion, often account for both undirected (random) migration and directed

migration that is mediated by cell-to-cell contacts and cell-to-cell adhesion. A key fea-

ture of standard models is that they often assume that the population is composed of

identical cells with constant properties. This leads to relatively simple single-species

homogeneous models that neglect the role of heterogeneity. In this work, we use a

continuum modelling approach to explore the role of heterogeneity in spatial spreading

of cell populations. We employ a three-species heterogeneous model of cell motility that

explicitly incorporates different types of experimentally-motivated heterogeneity in cell

sizes: (i) monotonically decreasing; (ii) uniform; (iii) non-monotonic; and (iv) mono-

tonically increasing distributions of cell size. Comparing the density profiles generated

by the three-species heterogeneous model with density profiles predicted by a more

standard single-species homogeneous model reveals that when we are dealing with

monotonically decreasing and uniform distributions a simple and computationally effi-

cient single-species homogeneous model can be remarkably accurate in describing the

evolution of a heterogeneous cell population. In contrast, we find that the simpler single-

species homogeneous model performs relatively poorly when applied to non-monotonic

and monotonically increasing distributions of cell sizes. Additional results for hetero-

geneity in parameters describing both undirected and directed cell migration are also

considered, and we find that similar results apply.

1.4 Structure of the thesis

Every publication mentioned in Section 1.3 corresponds to a chapter. Since every publi-

cation is an independent piece of work there is some overlap between different chapters.

For example, numerical scheme used to solve continuum models is presented in both

Chapter 2A and Chapter 3A. Team members have read statement of join authorship in

Section 1.5 and agreed for inclusion of publications in the thesis.

In Chapter 2 we introduce multi-species discrete and continuum models of cell mi-

gration and adhesion that allow us to describe populations of cells consisting of many

10
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subpopulations. In the literature discrete approach is normally invoked to describe

populations of cells on the individual-level scale. Here we choose to work with an off-

lattice model based on the Langevin stochastic differential equations (SDEs). On the

other hand, continuum models are more suitable to describe systems of cells on the

population-level scale. We develop the hierarchy of integro-partial differential equations

(IPDEs) as the limit of the corresponding discrete model, and then apply two contin-

uum approximations to simplify and solve it. Specifically, mean field approximation and

moment dynamics approximation are invoked and accuracy of both approximations is

estimated by matching solutions of the discrete model and IPDEs-based model. Dif-

ferent parameter regimes are explored in the attempt to identify suitable continuum

approximation.

In Chapter 3 we extend models presented in Chapter 2 to include dynamical change

in cell size. Here we decide to work with a fundamental case of one subpopulation only

and focus on the effects of increase in cell size. A similar analysis is performed in

which the accuracy of mean field approximation and moment dynamics approximation

is explored.

In Chapter 4 we explore the role of the cell-to-cell pushing in the cell front spread-

ing. Cell fronts are observed in many biological processes, such as wound healing,

morphogenesis, and tumour growth. Understanding the driving mechanisms behind

frontal expansion plays vital clinical role in how we approach conditions that involve

cell fronts. Previously, cell front spreading has been mostly associated with undirected

motility and proliferation, while the roles of mechanical interactions and pushing have

received little attention. Here we apply the discrete model of cell motility and adhe-

sion developed in Chapter 3 to a novel experimental data of cell cultures with cells that

demonstrate significant increase in size. We show that excluding of the cell-to-cell push-

ing and dynamical cell size from the model can lead to a poor prediction of population

behaviour.

In Chapter 5 multi-species model developed in Chapter 2 is used to provide insights

into the role of heterogeneity in cell populations. Specifically, we are interested in

the ability of simple, computationally straightforward, single-species continuum model

to describe heterogeneous cell populations. We consider heterogeneity in cell sizes,

directed and undirected cell migration, and find that for some forms of heterogeneity

single-species model is able to accurately describe the evolution of the multi-species cell

population.

Finally, in Chapter 6 we outline conclusions of our study and propose avenues for

future research.
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1.5 Statement of joint authorship

In this section we summarize the contributions of PhD candidate and coauthors to each
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Chapter 2

Continuum approximations for

lattice-free multi-species models of

collective cell migration

A paper published in the Journal of Theoretical Biology.

Matsiaka Oleksii, Penington Catherine, Baker Ruth, Simpson Matthew. Continuum

approximations for lattice-free multi-species models of collective cell migration. Journal
of Theoretical Biology, vol. 422, p. 1-11, 2017.

2.1 Abstract

Cell migration within tissues involves the interaction of many cells from distinct subpop-

ulations. In this chapter, we present a discrete model of collective cell migration where

the motion of individual cells is driven by random forces, short range repulsion forces

to mimic crowding, and longer range attraction forces to mimic adhesion. This discrete

model can be used to simulate a population of cells that is composed of K ≥ 1 distinct

subpopulations. To analyse the discrete model we formulate a hierarchy of moment

equations that describe the spatial evolution of the density of agents, pairs of agents,

triplets of agents, and so forth. To solve the hierarchy of moment equations we intro-

duce two forms of closure: (i) the mean field approximation, which effectively assumes

that the distributions of individual agents are independent; and (ii) a moment dynamics

description that is based on the Kirkwood superposition approximation. The moment dy-

namics description provides an approximate way of incorporating spatial patterns, such

as agent clustering, into the continuum description. Comparing the performance of the

two continuum descriptions confirms that both perform well when adhesive forces are
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sufficiently weak. In contrast, the moment dynamics description outperforms the mean

field model when adhesive forces are sufficiently large. This is a first attempt to provide

an accurate continuum description of a lattice-free, multi-species model of collective cell

migration.

2.2 Introduction

In vivo cell migration involves many different cell types interacting with each other.

For example, tumour invasion involves malignant cancer cells moving through normal

surrounding tissues (Weinberg, 2009). Interactions between different cell types are also

captured in certain in vitro experiments, such as the migration of malignant melanoma

cells, which is thought to be enhanced when these cells are moving amongst skin

cells (Eves et al., 2003). Multiple species of cells can also be created in experiments

where some subpopulation of cells, amongst an otherwise identical subpopulation, are

labelled and tracked over time (Simpson et al. 2006; Simpson et al., 2007). While some

mathematical models explicitly account for interactions between different subpopulations

of cells (Painter and Sherratt, 2003), most mathematical models deal with a single

population of cells only (Sherratt and Murray, 1990; Maini et al., 2004a).

A common approach to modelling cell migration is to use a lattice-based random

walk model. This approach captures details of the motion of individual cells, which

is attractive because this kind of information can be linked to time lapse images from

experiments. The continuum-limit description of such a lattice-based model can also

be used to study the group behaviour. Although some previous lattice-based models

account for interactions between different types of cells (Simpson et al., 2009a; Pen-

ington et al., 2011), these lattice-based models are unrealistic because real cells do

not move on regular lattice-based structures. Other limitations of lattice-based models

include restrictions on cell size. For example, the diameter of a typical melanoma cell

is approximately 18 µm (Treloar et al., 2013a) whereas the diameter of a typical skin

cell is approximately 25 µm (Simpson et al., 2013a). In a model with both types of

cells present, it is not possible to accommodate these differences in cell size if we use

a standard lattice-based approach where each cell occupies a single lattice site (Binder

and Simpson, 2016).

To address these limitations, we define a lattice-free model that can be used to

describe the migration of a population of cells that is composed of many potentially dis-

tinct subpopulations. We adopt a modelling framework that is an extension of previous

approaches by Newman and Grima (2004) and Middleton and co-workers (2014). The

work by Newman and Grima considered a stochastic model of individual cell migration,

with chemotactic effects, and they described the continuum limit using a Langevin for-

mulation. The work of Newman and Grima (2004) was then extended by Middleton and
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co-workers (2014) who also considered a stochastic model of individual cell migration in

terms of a Langevin formulation, however they considered both a traditional mean field

continuum approximation as well as a more sophisticated moment closure continuum

approximation that accounts for the spatial and temporal dynamics of pairs of agents. A

key feature of both these previous models is that they are appropriate for studying the

collective migration of a single populations of cells. However, many practical problems

in development and disease progression involves multiple interacting subpopulations of

cells. Therefore, the main aim of the current study is to develop a discrete model of

collective migration where the total population of cells consists of an arbitrary number

of interacting subpopulations. Our discrete model incorporates random cell motility, ad-

hesion between cells and finite size effects (crowding). We allow for differences in cell

size, cell motility and cell adhesion between the different subpopulations. In addition to

producing stochastic realisations of the discrete model, we also analyse the continuum

limit using both a standard mean field approximation and a more sophisticated moment

dynamics approximation. Comparing averaged behaviour from the discrete simulations

with the solution of the continuum models confirms that the mean field approach can

be inaccurate when adhesion is sufficiently strong. This is important because almost all

mathematical models of collective cell migration invoke the mean field approximation

(Sherratt and Murray, 1990; Painter and Sherratt, 2003; Maini et al., 2004a).

This chapter is organised in the following way. In Section 2.3 we describe the

discrete model. In Section 2.4.1, we analyse the discrete model, showing how we can

obtain a continuum description of the average behaviour of the discrete model. In partic-

ular, we focus on two different continuum descriptions: (i) a mean field approximation;

and (ii) a higher-order moment dynamics approximation. Results in Sections 2.4.2-2.4.3

compare solutions of both continuum approximations and averaged discrete results for

problems involving one and two interacting subpopulations, with additional comparisons

presented in Chapter 2A. In Section 2.4.4 we investigate how the accuracy of the MFA

and KSA approximations depends on the choice of model parameters. Finally, in Section

2.5, we summarise our work and highlight opportunities for future investigation.

2.3 Discrete model

We consider a population of N cells that is composed of an arbitrary number of sub-

populations, K ≥ 1. Illustrative schematics showing interactions between individuals

in a population with K = 1 and K = 2 subpopulations are given in Figure 2.1(a)-(b),

respectively.

We begin by assuming that each individual cell is a point mass and that its movement

can be described by an equation of motion. For simplicity, from this point on, we

restrict our attention to a one-dimensional geometry, and in Section 2.5 we discuss how
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the framework can be adapted to higher dimensions. To begin describing the collective

motion, we assume that the motion of each cell is governed by Newton’s second law,

mi
d2xi

dt2 = Vi +
∑
j,i

Ri j + ζi, i = 1, . . . ,N, (2.1)

where xi is the position of the ith cell, mi is its mass, and Ri j is an interaction force be-

tween the ith and jth cells. Vi is the viscous force between the cell and the surrounding

medium, and ζi is the stochastic force associated with random Brownian motion. Ac-

cording to Stokes’ law, the viscous force on a small spherical particle moving in a

viscous fluid is given by

Vi = −µ
dxi

dt
, (2.2)

where µ > 0 is the drag coefficient. Here we neglect inertial forces, invoke Stokes’ law

(Middleton et al., 2014), and, consequently, arrive at a system of Langevin stochastic

differential equations (SDEs) given by

dxi

dt
=

∑
j,i

Fi j + ξi, i = 1, . . . ,N, (2.3)

where Ri j = µ Fi j and ζi = µ ξi.

In summary, according to Equation (2.3), the collective migration of cells is deter-

mined by a balance between cell-to-cell interactions (short-range crowding and longer

range adhesion), stochastic forces, and viscous forces. Collective cell migration that

is driven by unbiased stochastic forces is thought to be relevant in many applications,

such as collective cell spreading in many single-species in vitro experiments (Simpson

et al., 2013a). Therefore, we focus on unbiased stochastic forces by sampling ξi from a

Gaussian distribution with zero mean and zero auto-correlation (Middleton et al. 2014).

It is biologically reasonable to model the interaction forces between cells, Fi j, to

have different amplitudes for subpopulations of cells. This is relevant if we wish to

specify different adhesion forces between different subpopulations (Steinberg, 1996).

For simplicity, we assume Fi j = −F ji, and we specify the interaction force to be

Fi j = f0Z(r) sgn(xi − x j), (2.4)

where f0 is the dimensional amplitude of the interaction force, Z(r) is the dimensionless

force law function that depends on the separation distance, and r = |xi− x j|. The function

sgn is the signum function. The particular choice of Z(r) depends on phenomenological

cellular behaviour we wish to model. Several force laws have been suggested, including

a linear spring model (Murray et al., 2009) and non-linear force laws such as Morse

(Middleton et al., 2014) or Lennard-Jones (Jeon et al., 2010) potentials. In this chapter
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Figure 2.1: (a)-(b) Representative plot of single- and multi-species systems of cells, respectively. In (a)
we show the intraspecies force, F(r), and in (b) we show both intraspecies forces, F11(r) and F22(r), and
interspecies forces, F12(r) and F21(r). Here, r is the distance between cells. (c) Dimensionless force law
function Z(r), given by Equation (3.6), for various values of a. Here, δ = 25 µm corresponds to a typical
cell diameter.

we adopt a modified Morse potential force law, so that

Z(r) =


2
(

exp(−2a (r − δ)) − exp(−a (r − δ))
)
, r < 2δ,

2
(

exp(−2a (r − δ)) − exp(−a (r − δ))
)

g(r), 2δ ≤ r ≤ 3δ,

0, r > 3δ,

(2.5)

where a is a parameter that controls the shape of the force function, as illustrated in

Figure 2.1(c), and δ is the cell diameter. The distance r = δ corresponds to the case
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where two cells are just in contact with each other. In this model we have Z(δ) = 0
and Z(r) = 0 for r > 3δ. Introducing the cell diameter δ in Equation (2.5) allows

us to more realistically model the behaviour of multi-species populations of cells with

different diameters.

Equation (2.5) incorporates the Tersoff cut-off function, g(r) (Tersoff, 1988), to

capture a finite interaction range between cells. This function is given by

g(r) =
1
2

(
1 − sin

(
π

2r − δ
2δ

))
. (2.6)

The interaction range has been chosen to be 3δ (Srinivas et al., 2004).

A representative plot of Z(r) for different values of a is given in Figure 2.1(c).

The force function consists of two regimes: short-range repulsion and longer range

attraction. The repulsive term mimics crowding effects while the attractive tail models

adhesion. While all of the results presented in this chapter are for this particular choice

of force law, it is straightforward to incorporate other choices of Z(r).

2.4 Results and discussion

2.4.1 Mathematical model for an arbitrary number of subpopula-

tions

We consider a total population of N cells that come from K subpopulations of cells, so

that N =
∑K

k=1 nk, where nk is the number of cells in subpopulation k. This framework

can be used to model both situations where each subpopulation is distinct (Eves et al.,

2003) and situations where each subpopulation is composed of tagged, but otherwise

identical cells (Simpson et al., 2006a; Simpson et al., 2007). In addition, these distinct

subpopulations may differ in many ways, such as differences in diameter, motility rates,

or interaction forces and they can be arbitrarily arranged in space.

We define the one-cell probability density function (PDF), Pi
1(x, t), as the probability

that the position of cell i is in the small neighbourhood [x, x+ dx] at time t. Similarly, we

define the two-cell PDF, Pi j
2 (x, y, t), as the probability that cells i and j lie in [x, x + dx]

and [y, y + dy], respectively, at time t. At present, we do not specify which of the

subpopulations these cells belong to.

Given that the motile behaviour of cells is governed by Equation (2.3), we can relate

the PDFs to the position of cells as follows (van Kampen, 1976),

Pi
1(x, t) = 〈δ(N)(x − xi(t))〉, (2.7)

Pi j
2 (x, y, t) = 〈δ(N)(x − xi(t)) δ(N)(y − y j(t))〉, (2.8)
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where xi(t) and y j(t) are the positions of cells given by Equation (2.3). The angled

brackets indicate an average over a sufficiently large number of identically prepared

initial conditions and a sufficiently large number of realisations of the stochastic force.

Further background explanation about Equations (2.7) and (2.8) is given in Chapter 2A.

The time evolution of Pi
1(x, t) is governed by a Fokker-Planck equation (Chapter 2A),

∂Pi
1(x, t)
∂t

= D∆Pi
1(x, t) − ∇

(
fi Pi

1(x, t)
)
, (2.9)

which describes the motion of particles under the influence of random forces, propor-

tional to the diffusivity, D, and directed drift forces, fi. Here operator ∆ is defined as

∆ = ∂2/∂x2, and ∇ = ∂/∂x. The force fi acting on cell i in subpopulation l may be ex-

pressed as the sum of two types of forces: intraspecies forces exerted by other members

of subpopulation l, and interspecies forces exerted by cells from all other subpopulations,

giving

fi =
∑
j,i

F ll
i j +

K∑
k,l

∑
j∈k

F lk
i j . (2.10)

Combining Equations (2.7), (2.9) and (2.10), and taking the convolution of the interac-

tion force and a δ-function centred at y j, we obtain

∂Pi
1(x, t)
∂t

= D∆Pi
1(x, t)

− ∇
〈 ∑

j∈l, j,i

∫
Ω

F ll(xi − y) δ(x − xi(t)) δ(y − y j(t)) dy
〉

−

K∑
k,l

∇
〈∑

j∈k

∫
Ω

F lk(xi − y) δ(x − xi(t)) δ(y − y j(t)) dy
〉
, (2.11)

where Ω denotes the domain. The second and third terms on the right hand side of

Equation (2.11) are advection terms that incorporate intraspecies and interspecies forces,

respectively. Combining Equations (2.8) and (2.11), and interchanging summation and

integration, we obtain

∂Pi
1(x, t)
∂t

= D∆Pi
1(x, t) − ∇

∫
Ω

F ll(x − y)
∑

j∈l, j,i

Pi j
2 (x, y, t) dy

−

K∑
k,l

∇

∫
Ω

F lk(x − y)
∑
j∈k

Pi j
2 (x, y, t) dy, (2.12)

where, from this point forward, we drop the subscript i on xi.

To make the transition from individual level behaviour in a discrete simulation to
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the population level dynamics, we define the following quantities,

pl
1(x, t) =

1
nl

∑
i∈L

Pi
1(x, t), (2.13)

pll
2(x, y, t) =

1
nl(nl − 1)

∑
i∈L

∑
j∈L, j,i

Pi j
2 (x, y, t), (2.14)

plm
2 (x, y, t) =

1
nlnm

∑
i∈L

∑
j∈L

Pi j
2 (x, y, t), l , m, (2.15)

where pl
1(x, t) is the normalised one-cell density distribution of subpopulation l, pll

2(x, y, t)
is the density-density correlation function that captures intraspecies correlations, and

plm
2 (x, y, t) is the density-density correlation function that captures interspecies correla-

tions.

To proceed, we sum over the index i in Equation (2.12) and apply the definitions

given in Equations (2.13)-(2.15). We repeat this procedure K times for each subpopu-

lation to yield a system of K non-linear integro partial differential equations (IPDEs),

that can be written as

∂pl
1(x, t)
∂t

= D∆pl
1(x, t) − (nl − 1)∇

( ∫
Ω

F ll(x − y) pll
2(x, y, t) dy

)
−

K∑
k,l

nk ∇
( ∫

Ω

F lk(x − y) plk
2 (x, y, t) dy

)
, (2.16)

for each subpopulation l. We define the PDF of the total population of N cells as a

weighted sum of the individual distributions,

ptotal
1 (x, t) =

1
N

K∑
k=1

nk pk
1(x, t). (2.17)

Equation (2.16) shows that the evolution of pl
1(x, t) depends on pll

2(x, y, t). To derive an

evolution equation for pll
2(x, y, t) we begin with the two-cell Fokker-Planck equation,

∂Pi j
2 (x, y, t)
∂t

= D∆Pi j
2 (x, y, t) −

∂

∂x

(
fi Pi j

2 (x, y, t)
)
−
∂

∂y

(
f j Pi j

2 (x, y, t)
)
, (2.18)

where cells i and j both belong to subpopulation l, and operator ∆ is defined as ∆ =

∂2/∂x2 + ∂2/∂y2. The forces fi and f j, applied to cells i and j, can be written as the sum

of intraspecies and interspecies forces. For example, the force on an arbitrary cell z can

be written as

fz =
∑
s,z

F ll
zs +

K∑
k,l

∑
s∈k

F lk
zs. (2.19)

Adopting the interaction force law, Equation (2.4), using the definition of the two-cell
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PDF as given by Equation (2.8), and evaluating the required convolutions, we can

rewrite Equation (2.18) as

∂Pi j
2 (x, y, t)
∂t

= D∆Pi j
2 (x, y, t)

−
∂

∂x

〈
F ll(x − y) δ(x − xi(t)) δ(y − y j(t))

〉
−
∂

∂y

〈
F ll(y − x) δ(x − xi(t)) δ(y − y j(t))

〉
−
∂

∂x

〈 ∑
g∈l,g,i, j

∫
Ω

F ll(x − z) δ(x − xi(t)) δ(y − y j(t)) δ(z − zg(t)) dz
〉

−
∂

∂y

〈 ∑
g∈l,g,i, j

∫
Ω

F ll(y − z) δ(x − xi(t)) δ(y − y j(t)) δ(z − zg(t)) dz
〉

−

K∑
k,l

∂

∂x

〈∑
g∈k

∫
Ω

F lk(x − z) δ(x − xi(t)) δ(y − y j(t)) δ(z − zg(t)) dz
〉

−

K∑
k,l

∂

∂y

〈∑
g∈k

∫
Ω

F lk(y − z) δ(x − xi(t)) δ(y − y j(t)) δ(z − zg(t)) dz
〉
, (2.20)

where the second and third terms on the right hand side of Equation (2.20) represent

interactions between cells i and j, the fourth and fifth terms on the right hand side

of Equation (2.20) represent interactions between cells i and j and other cells within

subpopulation l, and the sixth and seventh terms on the right hand side of Equation

(2.20) represent interactions between cells i and j and cells in other subpopulations.

The three-particle normalised density functions can be defined as,

plms
3 (x, y, z, t) =

1
nlnmns

∑
i∈l

∑
j∈m

∑
g∈s

Pi jg
3 (x, y, z, t), (2.21)

plls
3 (x, y, z, t) =

1
nl(nl − 1)ns

∑
i∈l

∑
j∈l, j,i

∑
g∈s

Pi jg
3 (x, y, z, t), (2.22)

plll
3 (x, y, z, t) =

1
nl(nl − 1)(nl − 2)

∑
i∈l

∑
j∈l, j,i

∑
g∈l,g,i, j

Pi jg
3 (x, y, z, t). (2.23)

We therefore require a definition for the three particle PDF, Pi jg
3 (x, y, z, t), similar to

Equation (2.8),

Pi jg
3 (x, y, z, t) = 〈δ(x − xi(t)) δ(y − y j(t)) δ(z − zg(t))〉. (2.24)

To proceed we divide Equation (2.20) by nl(nl−1), and combine Equations (2.20)-(3A.21),
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summing over the indices i and j, to obtain an expression for the evolution of pll
2(x, y, t),

∂pll
2(x, y, t)
∂t

= D∆pll
2(x, y, t)

−
∂

∂x

(
F ll(x − y) pll

2(x, y, t)
)

−
∂

∂y

(
F ll(y − x) pll

2(x, y, t)
)

− (nl − 2)
∂

∂x

∫
Ω

F ll(x − z) plll
3 (x, y, z, t) dz

− (nl − 2)
∂

∂y

∫
Ω

F ll(y − z) plll
3 (x, y, z, t) dz

−

K∑
k,l

nk
∂

∂x

∫
Ω

F lk(x − z) pllk
3 (x, y, z, t) dz

−

K∑
k,l

nk
∂

∂y

∫
Ω

F lk(y − z) pllk
3 (x, y, z, t) dz. (2.25)

The total system of equations governing the evolution of the density-density cor-

relation functions for K subpopulations consists of K equations in the form of Equa-

tion (2.25), and K! equations for the interspecies density-density correlation functions,

pkl
2 (x, y, t).

This procedure for deriving evolution equations for the density and density-density

correlation functions can be repeated to yield a hierarchy of N −1 systems of IPDEs and

a system of Fokker-Planck equations that govern the N-level density. At each level d,

where d ∈ [1,N], the d-density function pd depends on the next order, pd+1. This means

that the full hierarchy of equations is, in general, both analytically and numerically

intractable. Therefore, we must invoke some approximations to proceed, and we will

now discuss two different approximations.

Mean field approximation

The simplest way to approximate the hierarchy is to truncate it at the first level by

writing the density-density correlation function in terms of the one-cell density functions

(Baker and Simpson, 2010),

plm
2 (x, y, t) = pl

1(x, t) pm
1 (y, t). (2.26)

This approximation, often called the Mean Field Approximation (MFA), implies that the

probability of finding one cell at [x, x + dx] at time t is independent of the probability of

finding another cell at [y, y + dy] at the same time. MFA-based equations are, by far,

the most popular way to describe collective cell migration (Sherratt and Murray, 1990;
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Painter and Sherratt, 2003; Maini et al., 2004a).

We now present MFA equations for the cases relevant to both monoculture (K = 1)
and co-culture (K = 2) experiments. First, for K = 1, substituting Equation (2.26) into

Equation (2.16), we obtain

∂p1(x, t)
∂t

= D∆p1(x, t) − (N − 1)∇(p1(x, t) V(x, t)), (2.27)

where

V(x, t) =

∫
Ω

F(x − y) p1(y, t) dy, (2.28)

is the velocity field induced by interactions between cells. Second, for K = 2, the MFA

leads to two coupled equations,

∂p1
1(x, t)
∂t

= D∆p1
1(x, t) − (n1 − 1)∇

(
p1

1(x, t) V11(x, t)
)

− n2∇
(
p1

1(x, t) V12(x, t)
)
, (2.29)

∂p2
1(x, t)
∂t

= D∆p2
1(x, t) − (n2 − 1)∇

(
p2

1(x, t) V22(x, t)
)

− n1∇
(
p2

1(x, t) V21(x, t)
)
, (2.30)

V lm(x, t) =

∫
Ω

F lm(x − y) pm
1 (y, t) dy, (2.31)

where indices l,m = 1, 2.

Moment dynamics approximation

A more sophisticated approach is to use a closure relation to write for the three-particle

correlation function in terms of the two-particle correlation function (Baker and Simp-

son, 2010; Middleton et al., 2014). A commonly-used closure relations is the Kirkwood

superposition approximation (KSA) (Kirkwood, 1935), which can be written as

plms
3 (x, y, z, t) =

plm
2 (x, y, t) pls

2 (x, z, t) pms
2 (y, z, t)

pl
1(x, t) pm

1 (y, t) ps
1(z, t)

, (2.32)

where the subpopulations l, m and s are not necessarily distinct.

For monoculture experiments with K = 1, the KSA continuum model can be written

as
∂p1(x, t)

∂t
= D∆p1(x, t) − (N − 1)∇

( ∫
Ω

F(x − y) p2(x, y, t) dy
)
, (2.33)
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∂p2(x, y, t)
∂t

= D∆p2(x, y, t)

−
∂

∂x

(
F(x − y) p2(x, y, t)

)
−
∂

∂y

(
F(y − x) p2(x, y, t)

)
− (N − 2)

∂

∂x

∫
Ω

F(x − z)
p2(x, y, t) p2(x, z, t) p2(y, z, t)

p1(x, t) p1(y, t) p1(z, t)
dz

− (N − 2)
∂

∂y

∫
Ω

F(y − z)
p2(x, y, t) p2(x, z, t) p2(y, z, t)

p1(x, t) p1(y, t) p1(z, t)
dz. (2.34)

It is useful to note that there is more than one way to solve a problem with K = 1
using the KSA framework. One approach would be to solve Equations (2.33) and (2.34)

simultaneously. However, it is more computationally efficient to solve Equation (2.34)

to give p2(x, y, t), and then to obtain p1(x, t) by numerical integration

p1(x, t) =

∫
Ω

p2(x, y, t) dy. (2.35)

For co-culture experiments with K = 2, the KSA continuum model can be written as

∂p1
1(x, t)
∂t

= D∆p1
1(x, t) − (n1 − 1)∇

( ∫
Ω

F11(x − y) p11
2 (x, y, t) dy

)
− n2 ∇

( ∫
Ω

F12(x − y) p12
2 (x, y, t) dy

)
, (2.36)

∂p2
1(x, t)
∂t

= D∆p2
1(x, t) − (n2 − 1)∇

( ∫
Ω

F22(x − y) p22
2 (x, y, t) dy

)
− n1 ∇

( ∫
Ω

F21(x − y) p21
2 (x, y, t) dy

)
, (2.37)
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∂p11
2 (x, y, t)
∂t

= D∆p11
2 (x, y, t)

−
∂

∂x

(
F11(x − y) p11

2 (x, y, t)
)

−
∂

∂y

(
F11(y − x) p11

2 (x, y, t)
)

− (n1 − 2)
∂

∂x

∫
Ω

F11(x − z)
p11

2 (x, y, t) p11
2 (x, z, t) p11

2 (y, z, t)
p1

1(x, t) p1
1(y, t) p1

1(z, t)
dz

− (n1 − 2)
∂

∂y

∫
Ω

F11(y − z)
p11

2 (x, y, t) p11
2 (x, z, t) p11

2 (y, z, t)
p1

1(x, t) p1
1(y, t) p1

1(z, t)
dz

− n2
∂

∂x

∫
Ω

F12(x − z)
p11

2 (x, y, t) p12
2 (x, z, t) p12

2 (y, z, t)
p1

1(x, t) p1
1(y, t) p2

1(z, t)
dz

− n2
∂

∂y

∫
Ω

F12(y − z)
p11

2 (x, y, t) p12
2 (x, z, t) p12

2 (y, z, t)
p1

1(x, t) p1
1(y, t) p2

1(z, t)
dz, (2.38)

∂p22
2 (x, y, t)
∂t

= D∆p22
2 (x, y, t)

−
∂

∂x

(
F22(x − y) p22

2 (x, y, t)
)

−
∂

∂y

(
F22(y − x) p22

2 (x, y, t)
)

− (n2 − 2)
∂

∂x

∫
Ω

F22(x − z)
p22

2 (x, y, t) p22
2 (x, z, t) p22

2 (y, z, t)
p1

1(x, t) p1
1(y, t) p1

1(z, t)
dz

− (n2 − 2)
∂

∂y

∫
Ω

F22(y − z)
p22

2 (x, y, t) p22
2 (x, z, t) p22

2 (y, z, t)
p1

1(x, t) p1
1(y, t) p1

1(z, t)
dz

− n1
∂

∂x

∫
Ω

F21(x − z)
p22

2 (x, y, t) p21
2 (x, z, t) p21

2 (y, z, t)
p1

1(x, t) p1
1(y, t) p2

1(z, t)
dz

− n1
∂

∂y

∫
Ω

F21(y − z)
p22

2 (x, y, t) p21
2 (x, z, t) p21

2 (y, z, t)
p1

1(x, t) p1
1(y, t) p2

1(z, t)
dz, (2.39)
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∂p12
2 (x, y, t)
∂t

= D∆p12
2 (x, y, t)

−
∂

∂x

(
F12(x − y) p12

2 (x, y, t)
)

−
∂

∂y

(
F12(y − x) p12

2 (x, y, t)
)

− (n2 − 1)
∂

∂x

∫
Ω

F12(x − z)
p12

2 (x, y, t) p12
2 (x, z, t) p22

2 (y, z, t)
p1

1(x, t) p2
1(y, t) p2

1(z, t)
dz

− (n1 − 1)
∂

∂x

∫
Ω

F11(x − z)
p12

2 (x, y, t) p11
2 (x, z, t) p21

2 (y, z, t)
p1

1(x, t) p2
1(y, t) p1

1(z, t)
dz

− (n1 − 1)
∂

∂y

∫
Ω

F21(y − z)
p12

2 (x, y, t) p11
2 (x, z, t) p21

2 (y, z, t)
p1

1(x, t) p2
1(y, t) p1

1(z, t)
dz

− (n2 − 1)
∂

∂y

∫
Ω

F22(y − z)
p12

2 (x, y, t) p12
2 (x, z, t) p22

2 (y, z, t)
p1

1(x, t) p2
1(y, t) p2

1(z, t)
dz, (2.40)

∂p21
2 (x, y, t)
∂t

= D∆p21
2 (x, y, t)

−
∂

∂x

(
F21(x − y) p21

2 (x, y, t)
)

−
∂

∂y

(
F21(y − x) p21

2 (x, y, t)
)

− (n1 − 1)
∂

∂y

∫
Ω

F21(y − z)
p21

2 (x, y, t) p21
2 (x, z, t) p11

2 (y, z, t)
p2

1(x, t) p1
1(y, t) p1

1(z, t)
dz

− (n2 − 1)
∂

∂y

∫
Ω

F22(y − z)
p21

2 (x, y, t) p22
2 (x, z, t) p12

2 (y, z, t)
p2

1(x, t) p1
1(y, t) p2

1(z, t)
dz

− (n2 − 1)
∂

∂x

∫
Ω

F12(x − z)
p21

2 (x, y, t) p22
2 (x, z, t) p12

2 (y, z, t)
p2

1(x, t) p1
1(y, t) p2

1(z, t)
dz

− (n1 − 1)
∂

∂x

∫
Ω

F11(x − z)
p21

2 (x, y, t) p21
2 (x, z, t) p11

2 (y, z, t)
p2

1(x, t) p1
1(y, t) p1

1(z, t)
dz. (2.41)

Again, there are multiple strategies for solving the KSA equations when K = 2. Here,

we solve Equations (2.38) and (2.39) to give p11
2 (x, y, t) and p22

2 (x, y, t), respectively.

Using these results we calculate p1
1(x, t) and p2

1(x, t) by numerical integration, similar to

Equation (2.35). To obtain p12
2 (x, y, t) and p21

2 (x, y, t), we use p12
2 (x, y, t) = p1

1(x, t)p2
1(y, t)

and p21
2 (x, y, t) = p2

1(x, t)p1
1(y, t), respectively.

Now that we have documented both the MFA and KSA continuum approximations

for both single species monoculture (K = 1) and two-species co-culture (K = 2) experi-
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ments, we will now solve these governing equations for both cases and compare results

with averaged data from discrete simulations.

2.4.2 Application to monoculture experiments, K = 1

We first consider the situation where we have one population of cells, K = 1. In all of

our numerical results we always fix the diffusivity to be D = 300 µm2h−1 (Treloar et al.,

2013a). To emphasize the importance of non mean-field effects, all simulation results

in Chapter 2 involve strong adhesion, where f0 is sufficiently large. This situation is

relevant when we apply our model to mimic the collective migration of epithelial cells

(Treloar et al., 2013a). In contrast, if the models are applied to deal with the collective

migration of mesenchymal cells, without significant adhesion (Simpson et al., 2013a),

then additional results in Chapter 2A with reduced f0 are more relevant.

Since we consider unbiased random forces, we sample ξi from a Gaussian distribution

with zero mean and zero auto-correlation〈
ξi(t)ξ j(t′)

〉
=

2D
∆t
δi jδtt′ , (2.42)

which is a white noise limit (Chapter 2A). The variance of ξi is given by

Var(ξi) =
2D
∆t
, (2.43)

where ∆t is the duration of the time step used in the discrete simulations.

The initial distribution of cells in the monoculture simulations is given by

α(x) =


0, 0 µm ≤ x < 600 µm,

25 × 10−3, 600 µm ≤ x ≤ 1400 µm,

0, 1400 µm < x ≤ 2000 µm,

(2.44)

on 0 ≤ x ≤ 2000 µm, which is a typical length scale for an in vitro cell migration

experiment (Jin et al., 2016a). Here, α(x) is a function of position, and we sample from

this function to define the initial distribution of cells in the discrete simulations. This

initial distribution corresponds to a confined group of cells in the centre of the domain.

When presenting results from simulations we refer to both the dimensional density

of cells, p1(x, t) [cells/µm], as well as the non-dimensional density of cells relative

to the carrying capacity density, p1(x, t)/C, where C is the carrying capacity density

that is given by C = Nδ/L, where N is the maximum number of cells of diameter

δ that can be distributed along a domain of length L without compression. Periodic

boundary conditions are imposed for all simulations. To solve the MFA model, we set

p1(x, 0) = α(x), and to solve the KSA model, we note that since cells are randomly
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/h.
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placed according to Equation (2.44), there are no spatial correlations in the initial

positions of the cells. Therefore, the initial conditions for the KSA model are given by

p1(x, 0) = α(x) and p2(x, y, 0) = α(x)α(y). With this information, Equations (2.27) and

(2.34) are solved using the method of lines with spatial and temporal discretisations

chosen to be sufficiently fine that the numerical solutions are grid independent. The

discrete model, Equation (2.3), is numerically integrated using a fourth order Runge-

Kutta (RK4) method (Press et al., 2007) and density distributions are obtained by

considering a large number of identically prepared simulations. Results in Figure 2.2

compare numerical solutions of the MFA and KSA continuum descriptions with averaged

data from discrete simulations. Snapshots of the discrete simulations are shown in

Figure 2.2(a)-(b). A comparison of the ensemble averaged data and the solution of

the MFA and KSA models are given in Figure 2.2(c) and Figure 2.2(e), respectively.

To clearly compare the performance of the MFA and KSA models near the position of

the spreading profile, we show a magnified region of the profiles in Figures 2.2(d) and

Figure 2.2(f).

In summary, we see that both the KSA and MFA models capture the overall spread-

ing behaviour of the collective migration reasonably well, as shown in Figure 2.2(c) and

Figure 2.2(e). However, when we examine the performance of MFA model more closely,

as illustrated in Figure 2.2(d), we see that the solution of the MFA continuum model

is not as steep as the discrete density data. In contrast, the performance of the KSA

model, as shown in Figure 2.2(f), provides an improved match to the averaged discrete

data. We now examine the relative performance of the MFA and KSA approaches for

two multi-species problems.

2.4.3 Application to co-culture experiments, K = 2

We now consider the evolution of two types of two-species problems. These two prob-

lems involve different experimental designs. In both cases we choose the size of the

cells in subpopulations 1 and 2 to be different. Here, the diameter of cells in the first

subpopulation is δ1 = 18 µm, and the diameter of cells in the second subpopulation is

δ2 = 25 µm. We also introduce differing interspecies interaction parameters such as the

interspecies force amplitude, f 12
0 , shape parameter, a12, and the interspecies diameter,

δ12, which corresponds to the average radius of the different cell types.

The first experiment involves one population of cells spreading through another

background population of cells, and this mimics the way that an initially confined

population of tumour cells might spread through surrounding healthy tissue (Eves et

al., 2003). To specify the initial condition for this problem we must describe the initial
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location of both subpopulations,

α1(x) =


0, 0 µm ≤ x < 600 µm,

25 × 10−3, 600 µm ≤ x ≤ 1400 µm,

0, 1400 µm < x ≤ 2000 µm,

(2.45)

α2(x) =


10.8 × 10−3, 0 µm ≤ x < 600 µm,

0, 600 µm ≤ x ≤ 1400 µm,

10.8 × 10−3, 1400 µm < x ≤ 2000 µm,

(2.46)

where α1(x) is a function of position that describes the initial location of cells from the

first subpopulation, and α2(x) is a function of position that describes the initial location

of cells from the second subpopulation. This initial condition corresponds to the situation

where the region 600 ≤ x ≤ 1400 µm is relatively densely occupied by subpopulation

1, and the remaining space is less densely populated by subpopulation 2. To initialise

the discrete simulations we sample from α1(x) and α2(x), and snapshots showing 200

realisations of discrete model are given in Figure 2.3(a)-(c) at t = 0, 12 and 24 hours,

showing how the two subpopulations mix.

The second experiment that we consider corresponds to two initially adjacent sub-

populations of cells. The initial location of both subpopulations is given by

α1(x) =


0, 0 µm ≤ x < 600 µm,

25 × 10−3, 600 µm ≤ x < 1000 µm,

0, 1000 µm < x ≤ 2000 µm,

(2.47)

α2(x) =


0, 0 µm ≤ x < 1000 µm,

25 × 10−3, 1000 µm ≤ x ≤ 1400 µm,

0, 1400 µm < x ≤ 2000 µm.

(2.48)

To initialise the discrete simulations we sample from α1(x) and α2(x), and snapshots

showing 200 realisations of discrete model for the second initial condition are given in

Figure 2.5(a)-(c) at t = 0, 12 and 24 hours. Here we see that the two subpopulations

mix near x = 1000 µm. Furthermore, we also see that both subpopulations spread into

the initially vacant surrounding regions.

To obtain continuum results for the two-species problems, the MFA and KSA contin-

uum models, given by Equations (2.29)-(2.30) and Equations (2.38)-(2.39), respectively,

are solved using the method of lines with spatial and temporal discretisations chosen

to be sufficiently fine that the numerical solutions are grid independent (Chapter 2A).

Results in Figures 2.3 and 2.5 compare the performance of the MFA approach with the
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averaged discrete data. Since these simulations involve significant interaction forces, we

see that the solution of the MFA model does not always accurately capture the details

of how the subpopulations spread and interact with each other. Results in Figures 2.4

and 2.6 compare the performance of the KSA approach with the averaged discrete data.

Comparing the performance of the KSA and MFA models confirms that, similar to our

results for the single-species problem in Figure 2.2, the KSA approach outperforms the

MFA model.

2.4.4 Parameter sensitivity

In this section we investigate how the accuracy of the both continuum approximations

depends on the choice of the model parameters. To explore this question we re-examine

the results of the first co-culture experiment, as illustrated in Figures 2.3–2.4, and we

quantify how the accuracy of the KSA and MFA continuum models depends on the

strength of adhesion and the ratio of the two cell sizes in the co-culture experiment.

To explore this we repeat the discrete simulations and vary the force amplitude f 11
0 ,

which determines strength of the cell-to-cell adhesion, as well as varying the ratio

δ1/δ2. To keep our analysis as straightforward as possible, we vary these two quantities

separately.

To quantify the accuracy of both the MFA and KSA continuum approximations we

define the following quantities,

EMFA(t) =
1
I

I∑
i=1

[S MFA(i, t) − S discrete(i, t)]2, (2.49)

EKSA(t) =
1
I

I∑
i=1

[S KSA(i, t) − S discrete(i, t)]2, (2.50)

where EMFA(t) and EKSA(t) indicate mean squared error associated with the MFA and

KSA approximations, respectively. The index i denotes the spatial node, and I = 200 is

the total number of spatial nodes across the domain. To construct these mean squared

errors we compare the total density profiles so that S MFA(i, t) = p1
1(i, t)+ p2

1(i, t) is the total

population density predicted by the MFA continuum approximation, S KSA(i, t) = p1
1(i, t) +

p2
1(i, t) is the total population density predicted by the KSA continuum approximation,

and S discrete(i, t) = p1
1(i, t) + p2

1(i, t) is the total population density obtained by considering

an ensemble average of the discrete model.

Results in Figure 2.7 show EMFA(t) and EKSA(t) as a function of δ1/δ2 and f 11
0 . The

vertical lines correspond to choices of δ1/δ2 and f 11
0 that are identical to the parameter

values used to construct the results in Figures 2.3-2.4. Overall, the results in Figure

2.7 show three main trends: (i) for all parameter choices considered in the sensitivity

analysis, the KSA approximation outperforms the MFA approximation; (ii) the accuracy
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of both the MFA and KSA approximations decrease with both δ1/δ2 and f 11
0 ; and (iii)

the accuracy of both the MFA and KSA approximations is more sensitive to changes in

δ1/δ2 than changes in f 11
0 for the range of parameters considered.
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Figure 2.7: (a) Comparison of the accuracy of the MFA and KSA continuum approximations as a function
of δ1/δ2 at time t = 24 h for the first co-culture experiment. All results in (a) correspond to δ2 = 25 µm,
and the ratio δ1/δ2 is varied by altering δ1. (b) Comparison of the accuracy of the MFA and KSA
continuum approximations as a function of f 11

0 at time t = 24 h for the first co-culture experiment. All
data in (b) correspond to a fixed choice of f 22

0 = 1.0 µm/h. Both subfigures show EMFA(t) (red dots) and
EKSA(t) (blue dots), and the dashed vertical line indicates the parameter values presented previously in
Figures 2.3-2.4. All continuum models are solved numerically with ∆x = 4 µm and ∆t = 5 × 10−3 h.

2.5 Conclusions

In this chapter, we develop a discrete multi-species model of collective cell migration.

Our framework is very general, and can deal with genuine multi-species problems where

the subpopulations are distinct (Eves et al., 2003), as well as other types of experiments

where an otherwise identical subpopulation of cells is labelled (Simpson et al., 2007).

Our discrete modelling framework can include various effects such as: random unbiased

stochastic motion of individual cells; short range finite size effects to account for crowd-

ing interactions; longer range adhesive forces; as well as dealing with subpopulations of

cells that have different cell diameters.

To analyse the discrete model, we derive a hierarchy of continuum moment equations

to describe the spatial dynamics of agents, pairs of agents, triplets of agents, and so

forth. We then develop two different approximate solutions of the hierarchy of moment

equations. Firstly, using the MFA, and secondly, using the KSA. We compare both

continuum approximations with ensemble averages from discrete simulations.

Overall, both continuum approximations match the broad features of the discrete

results reasonably well. When there is little or no adhesion, both continuum models
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match the averaged discrete results extremely well. However, once the adhesive force

is sufficiently strong, the KSA continuum model matches the averaged discrete results

much better than MFA model. This difference is the consequence of adhesion causing

correlations in the positions of agents in the discrete simulations (Baker and Simpson,

2010). These effects are neglected in the MFA model, however the KSA model explicitly

includes the effects of pairwise correlations, p2(x, y, t).
There are many potential extensions which we leave for future analysis. All our

analysis has been in one dimension, but many biological experiments are in two or three

dimensions (Treloar et al., 2013a; Eves et al., 2003). It is relatively straightforward

to apply our continuum models to higher dimensional problems, however we choose

to take the most fundamental approach here and focus on one dimension only. As it

stands, isolated individual cells in our discrete model move due to unbiased random

motion. However, in many applications cells move with a bias, such as in chemotaxis

(Keller and Segel, 1971). To extend our model to deal with chemotaxis we would need

to introduce an evolution equation for some kind of nutrient, and to allow individual

cells to move with some bias in response to the spatial gradient of the nutrient (Keller

and Segel, 1971). We also note that all non-MFA results are obtained by approximately

closing the system of continuum equations using the KSA, however other kinds of

closure relations could also be used (Murrell et al., 2004; Frasca and Sharkey, 2016).
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Chapter 2A

Additional results for Chapter 2

2A.1 Derivation of one- and two-cell PDF and corre-

sponding Fokker-Planck equations

To write down explicit expressions for P1(x, t) and P2(x, y, t) we start with the Langevin

equations, given by Equation (2.3). We introduce an agent density function, ρ(x, t). The

evolution of the agent density is given by

∂ρ(x, t)
∂t

= −
∂J
∂x
, (2A.1)

where J is the flux of agents. Assuming J = ρ dx/dt, we have

∂ρ(x, t)
∂t

= −

N∑
i=1

∂

∂xi

(∑
j,i

Fi j + ξi

)
ρ(x, t), (2A.2)

where
∑

j,i Fi j + ξi is the right hand side of Equation (2.3) and ξi is treated as a fixed

parameter.

Suppose that ξi is a random variable, and we have obtained a solution to Equation

(2A.2) with the initial conditions

ρ(x, 0) =

N∏
i=1

δ(x − xi(0)) = δ(N)(x − xi(0)), (2A.3)

where δ is the Dirac delta-function, and xi(0) is the initial position of the ith cell. For

any initial density distribution, ρ(x, 0), we assume that we can obtain 〈ρ(x, t)〉ξ, where

the average is taken over many different realisations of the stochastic force ξi.

Let Pi
1(x, t) be the probability density distribution for an individual agent. Then the
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one-cell PDF is given by (van Kampen, 1976)

Pi
1(x, t) = 〈〈ρ(x, t)〉ξ〉IC, (2A.4)

where the average is taken over different realisations of the initial distribution and the

random variable ξi. Since the averaged local density can be expressed as

〈〈ρ(x, t)〉ξ〉IC = 〈〈δ(N)(x − xi(t))〉ξ〉IC, (2A.5)

we can define the one-cell PDF in the following way,

Pi
1(x, t) = 〈〈δ(N)(x − xi(t))〉ξ〉IC, (2A.6)

where ξi, and xi(t) is the position of the ith cell at time t, as given by Equation (2.3).

Similarly, we define the two-cell PDF by the following

Pi j
2 (x, y, t) = 〈〈δ(N)(x − xi(t)) δ(N)(y − y j(t))〉ξ〉IC. (2A.7)

For the present, we begin with the general case of having space-time correlated stochas-

tic movement of cells. This is a generalisation of Brownian motion. In this general case

we have an autocorrelation function for the stochastic force, ξi, in the form of

〈ξi(x, t)ξ j(y, t′)〉ξ = Dω

(
x − y
λ

;
|t − t′|
τ

)
, (2A.8)

where the function ω describes correlations in the stochastic force, D is the diffusivity,

and λ and τ describe the spatial and temporal correlation lengths. In the case of Brown-

ian motion, when there are no correlation in either space and time, the ω takes the form

of the product of two δ functions. This is known as the white noise limit. In the study

of collective cell migration we are interested in the case where isolated cells undergo an

unbiased random walk, which corresponds to vanishing space-time correlations of the

stochastic force, ξi, such that λ → 0 and τ → 0. Under these conditions, the evolution

of Pi
1(x, t) and Pi j

2 (x, y, t) are given by (Garcı́a-Ojalvo and Sancho, 1999)

∂Pi
1(x, t)
∂t

=D∆Pi
1(x, t) −

∂

∂x

(
fi Pi

1(x, t)
)
, (2A.9)

∂Pi j
2 (x, y, t)
∂t

=D∆Pi j
2 (x, y, t) −

∂

∂x

(
fi Pi j

2 (x, y, t)
)
−
∂

∂y

(
f j Pi j

2 (x, y, t)
)
. (2A.10)
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2A.2 Additional results for alternative parameter choices

We now present additional results that compare the performance of the MFA and KSA

approximations for different choices of the force parameters for the problems in Chap-

ter 2 where K = 2. The only differences between these additional comparisons and

the comparisons in Chapter 2 are changes in the values of f0 and a. The main point

of these additional comparisons is to illustrate the improved performance of the MFA

approximation when f0 is sufficiently small. Results in Figures (2A.1)-(2A.4) show that

the MFA and KSA models produce almost identical results in these additional cases.
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2A.3 Discretisation scheme for the MFA model

In this section we present the discretisation scheme used to obtain the numerical solu-

tion of the equation governing the evolution of p1(x, t) in the MFA framework. Here we

deal only with the case where we have K = 1, and the extension of this method to deal

with the multi-species problems follows from the results we present here. In summary,

the governing equation that we consider is as follows,

∂p1(x, t)
∂t

= D∆p1(x, t) − (N − 1)∇(p1(x, t) V(x, t)), (2A.11)

where

V(x, t) = f0

∫ L

0
Z(|x − y|) sgn(x − y) p1(y, t) dy. (2A.12)

To present the numerical method as succinctly as possible, we define

β(x, y, t) = f0Z(|x − y|) sgn(x − y) p1(y, t), (2A.13)

Il = p1(xl, t)
∫ L

0
β(xl, y) dy

= p1(xl, t)
h
2

∑
s

[
β(xl, ys+1) + β(xl, ys)

]
+ O(h2), (2A.14)

where the trapezoidal rule with step h is used for numerical integration, and indices l

and s denote the equally-spaced spatial mesh nodes.

Using the definitions in Equations (2A.13)-(2A.14), we apply the method of lines

to Equation (2A.11) and obtain the following system of coupled ordinary differential

equations,

dp1
i

dt
=

D
h2

[
pi+1 − 2pi + pi−1

]
− (N − 1)

1
2h

[
Ii+1 − Ii−1

]
, (2A.15)

where index i denotes a spatial mesh node. Since we consider periodic boundary con-

ditions, this general expression at an interior node, i, can be adapted at the boundaries

of the domain. This systems of ordinary differential equations is solved using a fourth

order Runge-Kutta algorithm with constant time steps of duration ∆t. The values of

spatial discretisation, h, and time step, ∆t, are chosen to be sufficiently small so that

numerical solutions of Equation (2A.11) using h and ∆t are visually indistinguishable

from solutions obtained using discretisations h/2 and ∆t/2.
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2A.4 Discretisation scheme for the KSA model

We now present the related discretisation scheme used to obtain the numerical solution

to the equation governing the evolution of p2(x, y, t) in the KSA framework. We note

that we only solve the equation for p2(x, y, t) and obtain p1(x, t) by numerical integration.

Again, we deal only with the case where we have K = 1, and we note that the extension

of these methods to deal with multi-species problems follows from the results we present

here.

The governing equation that we consider is as follows,

∂p2(x, y, t)
∂t

= D∆p2(x, y, t)

− f0

( ∂
∂x
−
∂

∂y

)(
Z(|x − y|) sgn(x − y) p2(x, y, t)

)
− f0(N − 2)

∂

∂x

∫ L

0
Z(|x − z|) sgn(x − z)

p2(x, y, t) p2(x, z, t) p2(y, z, t)
p1(x, t) p1(y, t) p1(z, t)

dz

− f0(N − 2)
∂

∂y

∫ L

0
Z(|y − z|) sgn(y − z)

p2(x, y, t) p2(x, z, t) p2(y, z, t)
p1(x, t) p1(y, t) p1(z, t)

dz.

(2A.16)

To present the numerical method as succinctly as possible, we define

γ(x, y, t) = f0Z(|x − y|) sgn(x − y) p2(x, y, t), (2A.17)

φ(x, y, z, t) = f0Z(|x − z|) sgn(x − z)
p2(x, z, t) p2(y, z, t)

p1(z, t)
, (2A.18)

ψ(x, y, z, t) = f0Z(|y − z|) sgn(y − z)
p2(x, z, t) p2(y, z, t)

p1(z, t)
. (2A.19)

Upon substituting Equations (2A.17)-(2A.19) into Equation (2A.16), the evolution equa-

tion for p2(x, y, t) can be written as

∂p2(x, y, t)
∂t

= D∆p2(x, y, t) −
∂

∂x
γ(x, y, t) +

∂

∂y
γ(x, y, t)

− (N − 2)
∂

∂x

[
p2(x, y, t)

p1(x, t) p1(y, t)

∫ L

0
φ(x, y, z, t) dz

]
− (N − 2)

∂

∂y

[
p2(x, y, t)

p1(x, t) p1(y, t)

∫ L

0
ψ(x, y, z, t) dz

]
. (2A.20)

49



2A.4. KSA DISCRETISATION CHAPTER 2A. ADDITIONAL RESULTS

We now introduce the discretised quantities

Ql,k =
p2(xl, yk, t)

p1(xl, t) p1(yk, t)

∫ L

0
φ(xl, yk, z, t) dz

=
p2(xl, yk, t)

p1(xl, t) p1(yk, t)
h
2

∑
s

[
φ(xl, yk, zs+1, t) + φ(xl, yk, zs, t)

]
+ O(h2), (2A.21)

Yl,k =
p2(xl, xk, t)

p1(xl, t) p1(yk, t)

∫ L

0
ψ(xl, yk, z, t) dz

=
p2(xl, yk, t)

p1(xl, t) p1(yk, t)
h
2

∑
s

[
ψ(xl, yk, zs+1, t) + ψ(xl, yk, zs, t)

]
+ O(h2), (2A.22)

where the trapezoidal rule with step h on an equally spaced mesh is used to approximate

the integrals. We now apply the method of lines to Equation (2A.20) and obtain the

following system of coupled ordinary differential equations,

dp2
i j

dt
=

D
h2

[
pi+1, j − 2pi j + pi−1, j + pi, j+1 − 2pi j + pi, j−1

]
−

1
2h

[
γi+1, j − γi−1, j

]
+

1
2h

[
γi, j+1 − γi, j−1

]
− (N − 2)

1
2h

[
Qi+1, j − Qi−1, j

]
− (N − 2)

1
2h

[
Yi, j+1 − Yi, j−1

]
, (2A.23)

where indices i, j denote spatial mesh nodes, and γl,m = γ(xl, ym, t). Since we consider

periodic boundary conditions, this general expression at an interior node can be adapted

at the boundaries of the domain. This systems of ordinary differential equations is

then solved using a fourth order Runge-Kutta algorithm with constant time steps of

duration ∆t. The values of spatial discretisation, h, and time step, ∆t, are chosen to be

sufficiently small so that numerical solutions of Equations (2A.16) using h and ∆t are

visually indistinguishable from solutions obtained using discretisations h/2 and ∆t/2.
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Chapter 3

Discrete and continuum

approximations for collective cell

migration in a scratch assay with cell

size dynamics

A paper published in the Bulletin of Mathematical Biology.

Matsiaka Oleksii, Penington Catherine, Baker Ruth, Simpson Matthew. Discrete and

continuum approximations for collective cell migration in a scratch assay with cell size

dynamics Bulletin of Mathematical Biology, vol. 80, p. 738-757, 2018.

3.1 Abstract

Scratch assays are routinely used to study the collective spreading of cell populations.

In general, the rate at which a population of cells spreads is driven by the combined

effects of cell migration and proliferation. To examine the effects of cell migration

separately from the effects of cell proliferation, scratch assays are often performed after

treating the cells with a drug that inhibits proliferation. Mitomycin-C is a drug that

is commonly used to suppress cell proliferation in this context. However, in addition

to suppressing cell proliferation, Mitomycin-C also causes cells to change size during

the experiment, as each cell in the population approximately doubles in size as a result

of treatment. Therefore, to describe a scratch assay that incorporates the effects of

cell-to-cell crowding, cell-to-cell adhesion, and dynamic changes in cell size, we present

a new stochastic model that incorporates these mechanisms. Our agent-based stochastic

model takes the form of a system of Langevin equations that is the system of stochastic
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differential equations governing the evolution of the population of agents. We incorporate

a time-dependent interaction force that is used to mimic the dynamic increase in size

of the agents. To provide a mathematical description of the average behaviour of the

stochastic model we present continuum limit descriptions using both a standard mean-

field approximation, and a more sophisticated moment dynamics approximation that

accounts for the density of agents and density of pairs of agents in the stochastic model.

Comparing the accuracy of the two continuum descriptions for a typical scratch assay

geometry shows that the incorporation of agent growth in the system is associated with

a decrease in accuracy of the standard mean-field description. In contrast, the moment

dynamics description provides a more accurate prediction of the evolution of the scratch

assay when the increase in size of individual agents is included in the model.

3.2 Introduction

In vitro cell biology assays are used to study the invasive properties of malignant cells,

to quantify different mechanisms of wound repair, as well as in the discovery of potential

drugs (Riss, 2005; Edmondson et al., 2014; Shah et al., 2016). Typically, cells are placed

on a two-dimensional substrate, and are allowed to migrate, proliferate, and interact with

each other, as illustrated in Figure 3.1(a)-(b). Different experimental geometries, such

as circular barrier assays, are possible, and modern imaging technologies provide means

of collecting high resolution images of the cell population as it evolves (Johnston et al.,

2015).

An example of a two-dimensional cell biology assay is given in Figure 3.1(a)-(b).

This kind of experimental design is routinely referred to as a scratch assay. Scratch

assays are initiated by uniformly distributing a population of cells on a cell culture

plate, which is then incubated for some time to allow cells to attach to the substrate and

for the density of the monolayer of cells to increase. After incubation, a sharp-tipped

instrument is used to scratch the monolayer to produce an artificial wound (Liang et al.,

2007; Jin et al., 2016; Grada et al., 2017). The rate of the recolonisation of the wound

space is then observed over time and has been demonstrated to depend on the rate of cell

motility, the rate of cell proliferation, and the strength of cell-to-cell interaction forces. It

is well known that quantifying the roles of these different mechanisms is challenging, as

similar population-level outcomes can arise from different relative contributions of these

separate mechanisms (Treloar et al., 2013a). One way of overcoming these issues is to

modify the experimental procedure to deliberately separate the effects of cell migration

from the effects of cell proliferation, and this approach is routinely used to improve our

understanding of the role of cell motility in wound healing and malignant spreading

(Glenn et al., 2016; Nyegaard et al., 2016; Grada et al., 2017). The experimental

images in Figure 3.1(c)-(d) show a scratch assay that is prepared in exactly the same
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Figure 3.1: (a)-(b) An example of a typical scratch assay, where cells are allowed to close an artificially
created gap. In this experiment the cells are PC-3 prostate cancer cells (Kaighn et al., 1979). (c)-(d)
Scratch assay with PC-3 cells pretreated with Mitomycin-C to prevent proliferation. In (a)-(d) the scale
bars correspond to 300 µm. (e)-(f) Images showing individual 3T3 fibroblast cells in a circular barrier
assay where the cells are treated with Mitomycin-C. In these images a cell nucleus stain is used, and
each individual cell is superimposed with a black disk. We denote the two-dimensional coordinates as
{x1, x2}, as indicated. Images in (e)-(f) show a square region of length 400 µm. The images in (a)-(d) are
reproduced with permission from Springer (Shah et al. 2016). The images in (e)-(f) are reproduced with
permission from The Royal Society (Simpson et al., 2013b).

way as the experimental images in Figure 3.1(a)-(b) except that the cells are treated

with a drug to inhibit proliferation (Shah et al., 2016). A visual comparison of the

images in Figure 3.1(a)-(b) and Figure 3.1(c)-(d) shows that the combined effects of

cell migration and cell proliferation lead to a more rapid wound closure. The experiment

in Figure 3.1(c)-(d) involves treating the cells with a drug called Mitomycin-C (Sadeghi

et al., 1998). Mitomycin-C is a chemotherapy drug that suppresses mitosis by blocking

DNA replication (Sadeghi et al., 1998). While Mitomycin-C is known to prevent cell

proliferation without inhibiting cell migration (Simpson et al., 2013b), a consequence

of treating cells with Mitomycin-C is that cells increase in size, as if they are about to

divide into two daughter cells, but the process of division does not take place. Therefore,

cells that are treated with Mitomycin-C do not divide, but instead they approximately
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double in size over a period of approximately 24 hours, as illustrated in Figure 3.1(e)-

(f), where we show fibroblast cells in a circular barrier assay. The images in Figure

3.1(e)-(f) include a nuclear stain in red, and it is clear that the Mitomycin-C treated

cells approximately double in size during the experiment. This change in cell size is

typically neglected in mathematical models that describe the collective spreading of cell

populations (Simpson et al., 2013b; Jin et al., 2016).

Many experimental images, such as the images in Figure 3.1(c)-(f), demonstrate

the potential for significant changes in cell size which may influence the behaviour of

the entire cell population since crowding effects are thought to be important in two-

dimensional cell biology assays (Simpson et al., 2013b). Many classical continuum

models of collective cell behaviour do not incorporate any measure of cell size (Maini

et al., 2004; Sherratt and Murray, 1990). To address this limitation, another common

approach to model collective cell behaviour is to use lattice-based stochastic models,

where individual agents are allowed to move on a discrete lattice (Penington et al.,

2011; Markham et al., 2015). Lattice-based models are attractive because they are

conceptually straightforward, computationally efficient, and produce time-lapse images

that are similar to images obtained from experiments (Simpson et al., 2013b). While

lattice-based models typically associate the cell size with the lattice spacing (Simp-

son et al., 2013b), modelling the collective behaviour of populations of cells involving

cell-to-cell crowding effects and dynamic changes in the size of individual cells in this

approach is not straightforward. In particular, in a lattice-based model it is difficult to

represent the cell size as a continuous function of time (Binder and Simpson, 2016).

An alternative approach is to use a lattice-free stochastic model (Codling et al., 2008;

Galle et al., 2005; Newman and Grima, 2004). Lattice-free models can be more com-

putationally demanding than lattice-based models when dealing with crowding effects.

However, lattice-free models are much more appealing than lattice-based models be-

cause agents in the simulation can assume a continuous size, which may be allowed to

change dynamically.

While computational implementations of stochastic models are well suited to cap-

turing individual-level details, experimental data is routinely presented in the form of

population-level and tissue-level data. Consequently, it is convenient to have access to

some continuum approximation to describe the collective behaviour associated with the

stochastic simulations. The continuum description often takes the form of a partial dif-

ferential equation (Penington et al., 2011; Dyson et al., 2012). Most continuum-based

models used to describe collective behaviour of cell populations invoke the mean-field

approximation (MFA) (Sherratt and Murray, 1990; Maini et al., 2004a; Penington et

al., 2011; Simpson et al., 2013b). In effect, the MFA amounts to assuming that the

positions of individuals in the population are independent. This assumption is widely

invoked, both implicitly (Sherratt and Murray, 1990; Maini et al., 2004a) and explicitly
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(Penington et al., 2011; Dyson et al., 2012; Simpson et al., 2013b). However, since

spatial structure, such as clustering and patchiness, is often observed experimentally,

the MFA is not always appropriate. Clustering and patchiness are observed in a range

of natural processes, including cell biology experiments (Steinberg, 1996; Treloar et al.,

2013a) and ecology (Levin and Whitfield, 1994), therefore it is also of interest to derive

continuum limit descriptions that avoid the MFA, where appropriate. To achieve this,

in this chapter we describe a lattice-free model of the collective spreading of a popula-

tion of cells that incorporates cell motility, dynamic cell size changes, crowding effects,

and cell-to-cell adhesion. We derive a continuum description using the standard MFA,

as well as introduce an alternative continuum description using a more sophisticated

moment dynamics approach (Middleton et al., 2014). Moment dynamics approaches

are often used to describe spatially correlated populations in ecological applications and

in the study of epidemics (Bolker and Pacala, 1997; Keeling et al., 1997; Sharkey et

al., 2006; Sharkey et al., 2015). However, moment dynamics approaches are less com-

mon in the study of collective cell behaviour. Moment dynamics approaches can invoke

many different approximations to account for spatial correlations (Murrell et al., 2004;

House, 2014; Plank and Law, 2015; Binny et al., 2015; Binny et al., 2016a; Binny

et al., 2016b), and in this chapter we use the Kirkwood superposition approximation

(KSA) which was originally developed to describe the spatial arrangement of molecules

in liquids (Kirkwood, 1935; Singer, 2004), and only much later adopted to describe

the spatial arrangement of individual cells in the collective cell spreading (Baker and

Simpson, 2010; Middleton et al., 2014).

In this chapter we present discrete and continuum descriptions of collective cell

behaviour formulated in both one and two dimensions. Two-dimensional models allow

us to reproduce the dynamics of experiments such as those depicted in Figure 3.1, and

are perfectly suited for visualisation of the experiments. However, as we demonstrate

in Chapter 3A, there is little motivation to use two-dimensional descriptions for the

scratch assay geometry because the agent density, on average, does not depend on the

vertical coordinate.

We denote the position of an arbitrary point in the computational domain by the

vector ~u = {x1, x2}. The positions of two other arbitrary points in the domain are given

by the vectors ~u′ = {y1, y2} and ~u′′ = {z1, z2}, and so on. We utilise the notation x, y,

and z to denote the positions of distinct points in the one-dimensional domain when

introducing continuum descriptions in one dimension. The position of the ith agent on

a two-dimensional domain is u(i). The position of an agent i in the one-dimensional

discrete simulations is given by x(i). This choice of notation allows us to distinguish

between the positions of agents in the discrete simulations and the coordinates of fixed

points in the continuum description. Furthermore, it is consistent with our previous

work which does not involve dynamical changes in agent size (Matsiaka et al., 2017;
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Chapter 2).

This chapter is organised as follows. In Section 3.3.1 we describe a stochastic lattice-

free model of collective cell migration. The model incorporates cell migration, cell

crowding effects and cell-to-cell adhesion, and allows individual cells in the population

to change size dynamically. In Section 3.3.2 we introduce two continuum descriptions of

the stochastic model: (i) a mean-field based approximation; and (ii) a moment dynamics

approximation, based on the KSA. In Section 3.4 we compare the averaged data obtained

from repeated simulations of the stochastic model with numerical solutions of both

continuum approximations. Finally, in Section 3.5 we summarise our findings and

discuss the opportunities for further research.

3.3 Methods

3.3.1 Langevin stochastic model

In this section we describe the lattice-free stochastic model used to simulate the col-

lective behaviour of a population of N agents. Many two-dimensional cell biology

experiments, such as the scratch assays depicted in Figure 3.1(a)-(d), can be described

using a one-dimensional coordinate system because the density of cells is independent

of the vertical coordinate (Johnston et al., 2015). Therefore, we focus our attention

and discussion on the one-dimensional discrete model in Chapter 3. Additional results

and discussion relating to justifying the use of a one-dimensional model to describe a

two-dimensional cell culture experiment is presented in Chapter 3A.

In this chapter we denote the cell diameter using δ(t) > 0, and assume that the

dynamic change in cell diameter is logistic,

δ(t) =
2δ(0)

1 + exp(−kt)
, (3.1)

where the parameter k > 0 describes the growth rate, δ(0) is the initial cell diameter,

and lim
t→∞

δ(t) = 2δ(0). Plots showing typical δ(t) for different choices of k are given in

Figure 3.2. We note that the choice of using a logistic function for δ(t) is not essential,

and all of the analysis presented here can be applied to any other suitable choice of

growth model.

We assume that the movement of individual agents in the stochastic model is de-

scribed by an equation of motion (Newman and Grima, 2004; Middleton et al., 2014).

We adopt the Langevin stochastic model where the collective behaviour of the population
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Figure 3.2: Logistic increase in agent diameter, given by Equation (3.1), for k = 0.3 /h (red) and k = 0.2 /h
(blue). In both cases δ(0) = 25 µm and lim

t→∞
δ(t) = 2δ(0).

is described by a system of Langevin equations that can be written as

du(i)

dt
=

∑
j,i

Fi j + ξi, i = 1, . . . ,N, (3.2)

where u(i) is the position of the ith agent in a two-dimensional space, Fi j is the interaction

force between agent i and agent j, ξi is the stochastic force acting on the ith agent, and

N is the number of agents in the simulation.

The corresponding one-dimensional model is given by

dx(i)

dt
=

∑
j,i

Fi j + ξi, i = 1, . . . ,N. (3.3)

Since we consider unbiased movements of isolated individuals, we sample ξi from a

Gaussian distribution (Newman and Grima, 2004) with variance

Var(ξi) =
2D
∆t
, (3.4)

where ∆t is the value of the time step used to solve the system of Langevin equations

in a simulation of the stochastic model. Choosing ∆t in this way ensures that the

mean squared displacement of an isolated individual agent is independent of the time

step chosen to simulate the stochastic model, and the mean squared displacement of an

isolated agent is therefore 2Dt.
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The force function, Fi j, is chosen to be

Fi j = f0 Z(r, t) sgn(x(i) − x( j)), (3.5)

where f0 is a constant that describes the strength of the interaction forces, Z(r, t) is the

dimensionless function describing how the interaction force depends on the separation

of the agents, r = |x(i) − x( j)|, t is time, and sgn is the signum function (Middleton et

al., 2014; Matsiaka et al., 2017; Chapter 2). A schematic showing the arrangement of

agents in the model is given in Figure 3.3(a)-(b), where we can see the effects of agent

movement and the increase in the size of the agents with time.

We consider two main features of agent-to-agent interactions: (i) a short range

repulsion force, which can be thought of as a resistance to deformations and crowding;

and, (ii) longer range attraction forces which can be thought of as adhesion between

agents. To model these two forces we use a modified Morse potential,

Z(r, t) =


2
(

exp(−2a [r − δ(t)]) − exp(−a [r − δ(t)])
)
, r < 2δ(t),

2
(

exp(−2a [r − δ(t)]) − exp(−a [r − δ(t)])
)

g(r, t), 2δ(t) ≤ r ≤ 3δ(t),

0, r > 3δ(t),

(3.6)

where a > 0 is a parameter that controls the shape of the force function, δ(t) is the time-

dependent agent diameter, given by Equation (3.1) or some other appropriate functional

form. Here, the spatial range of interactions is finite, and set to three agent diameters,

giving Z(r, t) = 0 for r > 3δ(t). The function g(r) is the Tersoff cut-off function (Tersoff

et al., 1987), which is included to capture the finite range of interactions,

g(r, t) =
1
2

(
1 − sin

[π(2r − δ(t))
2δ(t)

])
. (3.7)

Figure 3.3(c) shows a typical interaction function, Z(r, t), over a period of 24 hours.

At each instant in time the interaction force function incorporates repulsion at short

distances, and attraction at longer distances, up to a finite range of three agent diam-

eters. Since δ(t) increases with t, the interaction function also changes with time, and

we can interpret the change in Z(r, t) with t in Figure 3.3(c) as a result of the increase

in agent diameter with time. The choice of the force function in Equation (3.6) is not

unique, but rather one of many other possible functional forms that incorporate short

range repulsion and longer range attraction such as the Lennard-Jones potential, Hertz

potential, or a nonlinear spring model (Byrne and Preziosi, 2003; Jeon et al., 2010;

Murray et al., 2012).
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Figure 3.3: (a)-(b) Schematic illustration of individual agent motility and interaction forces in a population
of agents where the diameters of individual agents double over an interval of approximately t = 24 h, as
described by Equation (3.1). (c) Dimensionless potential, Z(r, t), at t = 0, 12, and 24 h in black, orange and
red, respectively. All plots correspond to k = 0.2 /h and δ(0) = 25 µm. The horizontal line at Z(r, t) = 0
denotes the change from short range repulsion (Z(r, t) > 0) to longer range attraction (Z(r, t) < 0). The
series of three vertical dashed lines indicate the diameter of the agent at t = 0, 12 and 24 hours.

3.3.2 Continuum description

In this section we present two different continuum approximations of the lattice-free

stochastic model described in Section 3.3.1. In particular, we present both a standard

continuum approximation, based on invoking the MFA, and a moment dynamics contin-

uum approximation, based on invoking the KSA. We note that the process of deriving

both continuum approximations has been presented previously in the simpler case where
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the agent diameter is a constant (Middleton et al. 2014; Matsiaka et al. 2017; Chapter

2). The focus of the current study is to consider the continuum approximations for

the case where the agent diameter increases with time. Therefore, we do not repeat

the derivation of the continuum limit descriptions here in Chapter 3. Instead, complete

details of the derivations are given in Chapter 3A, and here we focus on reporting the

continuum descriptions and examining the accuracy of the continuum descriptions.

Two-dimensional continuum model

Here we first present the two-dimensional continuum limit of the stochastic model, and

later consider the one-dimensional analogue of this model. The mean-field continuum

description is given by an integro-partial differential equation (IPDE),

∂p1(u, t)
∂t

= D∆p1(u, t) − (N − 1)∇(p1(u, t)V(u, t)), (3.8)

where the agent density, p1(u, t), depends on the position u = {x1, x2} and time t, D

is the diffusivity, N is the number of agents, operator ∆ = ∂2/∂x2
1 + ∂2/∂x2

2, operator

∇ = ∂/∂~u = {∂/∂x1, ∂/∂x2}, and

V(u, t) =

∫
Ω

F(u − u′, t) p1(u′, t) du′ (3.9)

is the velocity field induced by the agent-to-agent interactions. The force function

F(u − u′, t) is defined as

F(u − u′, t) = f0 Z(|u − u′|, t)
u − u′

|u − u′|
, (3.10)

and depends on the separation distance, |u − u′| and time t.

The two-dimensional moment dynamics model, based on the KSA approximation

(Singer, 2004; Middleton et al., 2014), can be written as

60



CHAPTER 3. CELL SIZE DYNAMICS 3.3. METHODS

∂p1(u, t)
∂t

= D∆p1(u, t) − (N − 1)∇
( ∫

Ω

F(u − u′, t) p2(u,u′, t) du′
)
, (3.11)

∂p2(u,u′, t)
∂t

= D∆p2(u,u′, t)

−
∂

∂u

(
F(u − u′, t) p2(u,u′, t)

)
−

∂

∂u′
(
F(u′ − u, t) p2(u,u′, t)

)
− (N − 2)

∂

∂u

∫
Ω

F(u − u′′, t)
p2(u,u′, t) p2(u,u′′, t) p2(u′,u′′, t)

p1(u, t) p1(u′, t) p1(u′′, t)
du′′

− (N − 2)
∂

∂u′

∫
Ω

F(u′ − u′′, t)
p2(u,u′, t) p2(u,u′′, t) p2(u′,u′′, t)

p1(u, t) p1(u′, t) p1(u′′, t)
du′′,

(3.12)

where p2(u,u′, t) is the density-density correlation function that captures correlations in

the positions of agents at locations u and u′, at time t (Middleton et al., 2014), operator

∆ is defined as ∆ = ∂2/∂x2
1 +∂2/∂x2

2 in Equation (3.11), and ∆ = ∂2/∂x2
1 +∂2/∂x2

2 +∂2/∂x2
1
′+

∂2/∂x2
2
′ in Equation (3.12), respectively.

Simplified one-dimensional continuum model

The experimental images depicted in Figure 3.1(a)-(d) demonstrate the evolution of the

cell population on a two-dimensional substrate. We note that the cell density in a scratch

assay is independent of the vertical coordinate (Figure 3.1(a)-(d)) so that the experi-

ment can be described in terms of a one-dimensional coordinate system. The underlying

discrete model for Equation (3.8) and Equations (3.11)-(3.12) is a system of Langevin

equations, Equation (3.3), as described in Section 3.3.1. To justify the one-dimensional

approach we reproduce the experimental image in Figure 3.1(a) using two-dimensional

Langevin model, and compare the density profiles obtained from the two-dimensional

model with the results from the one-dimensional stochastic model (Chapter 3A). Results

presented in Figure 3A.1 (Chapter 3A) show that the simpler one-dimensional model

produces similar results to the two-dimensional model for this special initial condition

where the agent density is independent of the vertical coordinate. Motivated by these

considerations, we neglect density variations in the vertical direction and write Equa-

tion (3.8) and Equations (3.11)-(3.12) in a one-dimensional format. We note that the

use of one-dimensional continuum models to understand and interpret multidimensional

transport phenomena with appropriate symmetry imposed by the initial conditions and

boundary conditions is relatively common in both the mathematical biology literature

(Callaghan et al., 2006; Khain et al., 2011; Smith et al., 2017), as well as in other areas

of engineering and applied science (Simpson, 2009b).
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The mean-field continuum limit of the one-dimensional stochastic model is given by

an IDPE that can be written as

∂p1(x, t)
∂t

= D∆p1(x, t) − (N − 1)∇(p1(x, t) V(x, t)), (3.13)

where the agent density, p1(x, t), depends on the position x and time t, operator ∆ =

∂2/∂x2, operator ∇ = ∂/∂x, and

V(x, t) =

∫
Ω

F(x − y, t) p1(y, t) dy, (3.14)

is the velocity field induced by the interactions between agents. We note that the diffu-

sivity in Equation (3.13) is directly related to the stochastic force, ξi, in the stochastic

model, Equation (3.3).

As stated previously, continuum limit descriptions based on the MFA amount to

assuming that the positions of agents are independent. However, in many practical

situations, cells and other living organisms can adhere to each other and form clusters

(Steinberg, 1996). In these situations the assumptions underpinning MFA-based con-

tinuum models are questionable. To address this limitation, we now make use of a more

sophisticated moment dynamics continuum description that accounts for the density of

agents and the density of pairs of agents. The moment dynamics model, based on the

KSA, can be written as

∂p1(x, t)
∂t

= D∆p1(x, t) − (N − 1)∇
( ∫

Ω

F(x − y, t) p2(x, y, t) dy
)
, (3.15)

∂p2(x, y, t)
∂t

= D∆p2(x, y, t)

−
∂

∂x

(
F(x − y, t) p2(x, y, t)

)
−
∂

∂y

(
F(y − x, t) p2(x, y, t)

)
− (N − 2)

∂

∂x

∫
Ω

F(x − z, t)
p2(x, y, t) p2(x, z, t) p2(y, z, t)

p1(x, t) p1(y, t) p1(z, t)
dz

− (N − 2)
∂

∂y

∫
Ω

F(y − z, t)
p2(x, y, t) p2(x, z, t) p2(y, z, t)

p1(x, t) p1(y, t) p1(z, t)
dz, (3.16)

where p1(x, t) is the average density of agents at location x and time t, and p2(x, y, t)
is the density-density correlation function that captures correlations in the positions of

agents at locations x and y at time t, operator ∆ is defined as ∆ = ∂2/∂x2 in Equation

(3.15), and ∆ = ∂2/∂x2 + ∂2/∂y2 in Equation (3.16), respectively.

62



CHAPTER 3. CELL SIZE DYNAMICS 3.4. RESULTS

3.4 Results and discussion

Here we focus our attention on a typical scratch assay geometry (Figure 3.1(a)-(d)). In

this experiment the cell density does not depend, on average, on the vertical position

(Figure 3.1(a)-(d)). Therefore, we can approximate this experiment as a one-dimensional

problem.

The experimental images in Figure 3.1(a)-(d)) show only a small region of the

population, which extends well beyond the vertical boundaries of the image (Johnston

et al., 2015). We apply periodic boundary conditions in all simulations (Middleton et

al., 2014). The initial condition is given by sampling from a distribution, α(x), that is

given by

α(x) =


12.5 × 10−3, 0 µm ≤ x < 600 µm,

0, 600 µm ≤ x ≤ 1400 µm,

12.5 × 10−3, 1400 µm < x ≤ 2000 µm,

(3.17)

where the length of the domain, 2000 µm, is a typical width of an experimental image

(Jin et al., 2016). To initialise the stochastic simulations we randomly place agents in

the two intervals, 0 ≤ x ≤ 600 µm, and 1400 ≤ x ≤ 2000 µm. This initial distribution

of agents in the simulations mimics the initial distribution of cells in the images of

scratch assays, given in Figure 3.1(a) and Figure 3.1(c). In all of our results we report

the agent density profiles in terms of both the dimensional density of agents, p1(x, t)
[agents/µm], as well as a non-dimensional agent density, p1(x, t)/C, where C = Nδ(0)/L
is the carrying capacity density of agents with diameter δ(0). Here N is the maximum

number of agents of diameter δ(0) that can be distributed, without compression, along

a line of length L. In Equation (3.17) we choose the maximum density to be 12.5 ×
10−3 cells/µm because this corresponds to a non-dimensional density of approximately

p1(x, t)/C = 0.625, and this is a typical initial density used in practice (Jin et al 2016;

Liang et al. 2007). To initialise our simulations we place agents of diameter δ(0),
at random, until the density of agents in the two intervals, 0 ≤ x ≤ 600 µm, and

1400 ≤ x ≤ 2000 µm, is p1(x, t)/C = 0.625.

We describe the evolution of the scratch assay in three different ways. First, we

perform individual realisations of the stochastic model to produce individual snapshots

showing the distribution of agents in each simulation. Second, we perform a large num-

ber of identically prepared realisations of the stochastic model, and count the numbers of

agents in I equally-spaced intervals across the domain. Averaging the number of agents

in each interval allows us to quantify the spatial variation in the average agent density.

Finally, we solve both the MFA- and KSA-based continuum models numerically, and

compare the solutions of the continuum models with the average data from the suite of
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stochastic simulations to examine the accuracy of the two continuum descriptions. To

quantify the accuracy of the two continuum descriptions we use

EMFA(t) =
1
I

I∑
i=1

[
p1,MFA(i, t) − p1,discrete(i, t)

]2
, (3.18)

EKSA(t) =
1
I

I∑
i=1

[
p1,KSA(i, t) − p1,discrete(i, t)

]2
, (3.19)

where, the index i denotes spatial node, I is the total number of nodes used to quantify

the averaged agent density, p1,MFA(i, t) is the density of agents predicted by the MFA-

based continuum model, p1,KSA(i, t) is the density of agents predicted by the KSA-based

continuum model, and p1,discrete(i, t) is the density of agents predicted by averaging a

suite of identically prepared realizations of the stochastic Langevin model. Here, EMFA(t)
is a measure of the error associated with the MFA-based continuum description, and

EKSA(t) is a measure of the error associated with the KSA-based continuum description.

We first examine the most straightforward situation where we consider a scratch

assay with a population of cells where the diameter of cells remains constant. Following

this preliminary case, we then examine two additional situations where we consider

the same scratch assay except that the diameter of individual agents in the populations

increases at different rates: (i) relatively slow growth, k = 0.2 /h; and (ii) faster growth,

k = 0.3 /h. In all cases we fix the diffusivity to be a typical value for the PC-3 prostate

cancer cell line, D = 1200 µm2/h (Jin et al. 2016).

The stochastic model, Equation (3.3), is solved numerically using a first order ex-

plicit Euler method (Press et al. 2007). The number of individual realisations used

to construct the density profiles is chosen to be 105. This choice produces averaged

density data with fluctuations that are two orders of magnitude smaller than the density

data. For example, at t = 0, the density in the region x < 600 µm is approximately

10−2 agents/µm, whereas the standard deviation of the agent density is approximately

10−4 agents/µm. After performing 105 identically prepared simulations of the stochas-

tic model, the spatio-temporal distribution of agent density is estimated by averaging

results from identically-prepared realisations. The initial condition for the MFA-based

continuum model, Equation (3.13), is p1(x, 0) = α(x), and the solution of the MFA-based

continuum model is obtained by solving Equation (3.13) numerically, as described in

Chapter 3A. Since we choose the positions of agents in the stochastic simulations to

be random at t = 0, there are no correlations in the initial distribution of agents. Con-

sequently, the initial condition for the KSA-based continuum model, Equations (3.15)-

(3.16), is p1(x, 0) = α(x), and p2(x, y, 0) = α(x)α(y). To predict the evolution of the

system using the KSA-based continuum model, numerical solutions of Equations (3.15)-

(3.16) are obtained using techniques outlined in Chapter 3A. In all cases, the numerical
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solutions of both continuum models are obtained using a sufficiently fine spatial and

temporal discretisation that the results are grid independent.

The results in Figures 3.4-3.6 compare solutions of the MFA- and KSA-based con-

tinuum models with the averaged results from stochastic simulations in the cases of:

(i) no growth, k = 0 /h; (ii) relatively slow growth, k = 0.2 /h; and (iii) faster growth,

k = 0.3 /h. To quantify the performance of the MFA and KSA models we compute the

time evolution of EMFA(t) and EKSA(t), given by Equations (3.18)–(3.19), respectively.

The only difference between the continuum-stochastic comparisons in Figures 3.4-3.6

is the rate of increase of the agent diameter, k. All other parameters in the simulations

in Figures 3.4-3.6 are held constant to avoid ambiguity and to highlight the influence

of agent growth on the dynamics of the population and the performance of the two

different continuum descriptions.

The results in Figure 3.4(a)-(c), Figure 3.5(a)-(c) and Figure 3.6(a)-(c) show stochas-

tic simulations evolving from different realisations of the initial condition, Equation

(3.17), to give a spatial distribution of agents after 24 and 48 hours. Note that the

distributions of agents in Figure 3.4(a)-(c), Figure 3.5(a)-(c) and Figure 3.6(a)-(c) are

given as a series of 100 separate, one-dimensional simulations that are plotted adjacent

to each other (Matsiaka et al., 2017; Chapter 2). Presenting the stochastic results in

this way is convenient because it highlights the randomness in the stochastic model. In

general, we see that over a period of 48 hours the wound, of initial width 800 µm, be-

comes recolonised by agents and the wound appears to close. Comparing the evolution

of the stochastic models in Figure 3.4(a)-(c), Figure 3.5(a)-(c) and Figure 3.6(a)-(c)

with the experimental images in Figure 3.1(c)-(d) suggests that this choice of parame-

ters in the stochastic model is reasonable, as the rate of wound closure in the stochastic

simulations is similar to the rate of wound closure in the experimental images.

In the case where there is no growth (Figure 3.4), the solution of the MFA-based

continuum model matches the averaged agent density profile from the stochastic simu-

lations very well (Figure 3.4(d)). Similarly, comparing the solution of the KSA-based

continuum model with the averaged agent density profile (Figure 3.4(e)) reveals an

excellent match. In this case, there seems to be little justification for use of the more

complicated KSA-based continuum model as the simpler MFA-based model captures

the evolution of the averaged agent density extremely well. Furthermore, quantitative

comparison of the accuracy of the MFA-based continuum model with the accuracy of

the KSA-based continuum model (Figure 3.4(f)) confirms that there is no advantage in

using the KSA-based model for this problem where the size of the agents remains fixed.

In contrast, when we consider the situation where agents increase in size, k > 0
(Figures 3.5 and 3.6), the improved performance of the KSA-based continuum model

becomes clear. Results in Figure 3.5(d) compare the evolution of the MFA-based model

and averaged agent density data from the stochastic model, showing that there is a
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clear and visually discernible difference between two sets of profiles. This difference

is quantified in Figure 3.5(f). In contrast, the accuracy of the KSA-based continuum

model, shown in Figure 3.5(f), remains excellent. Similar comparisons between the

performance of the MFA- and KSA-based continuum models in Figure 3.6 for faster

growth confirms the improved accuracy of the KSA-based continuum model in the case

when the agents are allowed to increase in size dynamically.
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3.5 Conclusions

In this chapter we present stochastic and continuum models of collective cell migration

that can be applied to mimic scratch assays. In particular, we pay careful attention to

allow for the case where the agents in the stochastic simulation change size dynamically.

This feature can be important when we consider scratch assays with cells that are

treated with Mitomycin-C to prevent proliferation. The stochastic model we present

takes the form of a system of Langevin equations, and this framework can be used

to describe the collective behaviour of a population of cells with constant size, or the

collective behaviour of a population of cells with variable size. In addition to considering

variable cell size, the stochastic framework describes random cell motility, crowding

effects via a short range repulsive force, and cell-to-cell adhesive effects via longer

range attraction. There is a crucial difference between two key parameter regimes that

we consider: constant agent size, and dynamically increasing agent size. In the case

when agent size remains constant, the average force acting on each individual agent

remains approximately constant in regions of spatially uniform density. In contrast,

increasing the size of individual agents leads to increased interactions between agents.

Consequently, when we consider cases where the agent size increases dynamically, the

MFA continuum description provides poorer match to the averaged discrete results at

later times (Figure 3.5(d), Figure 3.6(d)). We note that the growth rate introduced in

the stochastic model does not depend on the spatial positions of agents. As a result,

it means that certain biological phenomena, such as contact growth inhibition, are not

included in the model and local cell density can be over 100% if interaction forces are

strong.

In addition to relying on repeated stochastic simulations, we also wish to develop

continuum approximations of the stochastic model so that we can predict population-

level and tissue-level data. To achieve this we first consider a continuum description

based on the usual MFA that neglects correlations in the positions of agents. In this

approach the position of any individual agent is treated as being independent of the

positions of all other agents. The MFA-based model is relatively fast to simulate, as it

takes only a few minutes to produce results depicted in Figure 3.4d, Figure 3.5d, and

Figure 3.6d on a single desktop machine. While the MFA leads to a straightforward

continuum model, the neglect of spatial correlations suggests that the approach might

not always be valid, for example in situations where spatial structure and clustering

develops. To overcome these potential limitations we also make use of a more advanced

moment dynamics approach using the KSA. The KSA-based continuum description is

more complicated to derive and much more numerically intense than the MFA-based

approach, but it is attractive since it avoids inaccuracies of the MFA.

Generally, both the MFA- and KSA-based continuum models lead to reasonable pre-
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dictions of the averaged stochastic results for the experimentally motivated problems

that we describe here. In the case when the agent size remains constant, both the

MFA- and KSA-based continuum models lead to an excellent match with the averaged

data from the stochastic simulations. In this case, the simpler MFA-based contin-

uum model is preferable to the computationally expensive KSA-based continuum model.

However, in cases where agents increase in size, the KSA-based model outperforms the

MFA-based model. This is due to the fact that agent growth increases agent-to-agent

crowding effects, and these effects are incorporated in a relatively simplistic way in

the MFA-based continuum model. Instead of simply concluding that the KSA-based

model is always preferable to the MFA-based model, we acknowledge that the increased

accuracy of the KSA-based approach comes at the cost of significantly increased compu-

tational expense. Specifically, it takes a couple of days to produce the results shown in

Figure 3.4(e), Figure 3.5(e), and Figure 3.6(e) on high performance computing facilities

without parallelizing techniques (QUT High Performance Computing). Therefore, we

take a flexible view and present both continuum models. Furthermore, we acknowledge

that the MFA-based approach will be preferable in some circumstances, whereas the

KSA-based approach will be preferable in other circumstances.

There are many ways that the work presented here can be extended. For example,

all cases presented here involve particular choices of functional forms for δ(t) and Z(r, t),
yet many other choices are possible. Note that the stochastic algorithm described here,

and the two continuum approximations are sufficiently flexible that other functional

forms for δ(t) and Z(r, t) can be used directly in these frameworks, if required. We note

that, here we consider the change in cell diameter since this is the simplest possible

way that we can mimic an increase in cell size. However, alternative approaches are

possible, such as modelling dynamic changes in cell volume. Our modelling approach

can be used to mimic dynamic changes in volume by assuming that cells are spherical,

and expressing the radius as a function of volume. Here we do not pursue this approach

as the experimental images in Figure 3.1 provide little information about the three-

dimensional shape of the cells, so we feel it is more natural to work with a simpler

measure, namely the approximate diameter, δ(t). Another assumption that we make

is that all agents in the population behave identically in that each agent has the same

initial size and grows at the same rate. An interesting extension of this work would be to

consider a heterogeneous population of cells that is made up of distinct subpopulations.

Using the framework presented it would be possible to consider different subpopulations

with different initial sizes, and to consider different subpopulations that grow at different

rates. This kind of model could be described using a more complicated multi-species

framework (Matsiaka et al., 2017; Chapter 2). However, since this is the first time that

a model of collective cell migration in a scratch assay that incorporates crowding effects

and cell size dynamics has been explored, we leave this extension to the multi-species
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case for future consideration.
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Chapter 3A

Additional results for Chapter 3

3A.1 Comparing results from the two-dimensional and

one-dimensional stochastic models

In this section we present results from solving the Langevin equations (Equation (3.3))

for the scratch assay geometry in two dimensions, and compare them with the corre-

sponding solutions to the Langevin equations in one dimension. Employing the vector

notation introduced in Chapter 3 we can write the Langevin equations for the two-

dimensional model as follows,

du(i)

dt
=

∑
j,i

Fi j + ξi, i = 1, . . . ,N, (3A.1)

where u(i) is the position of the ith agent, Fi j is the interaction force between agent i

and agent j, ξi is the stochastic force acting on the ith agent, and N is the number of

agents in the simulation.

The initial positions of agents in both the two-dimensional and one-dimensional

simulations are chosen from the following distribution

α(x) =


12.5 × 10−3, 0 µm ≤ x < 600 µm,

0, 600 µm ≤ x ≤ 1400 µm,

12.5 × 10−3, 1400 µm < x ≤ 2000 µm.

(3A.2)

In the case of the two-dimensional simulation, the vertical positions of agents are

placed at random to form a homogeneous density distribution. It ensures that there is

no density gradient in the vertical direction.

We fix all model parameters to be the same in both the two-dimensional and one-

dimensional simulations to avoid any other possible source of variability. The size of

agents is fixed to a typical size of skin cell size of 25 µm (Simpson et al., 2013b).
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We choose the number of agents in each one-dimensional simulation to be 15. The

number of agents in each two-dimensional simulation is 534. The number of agents

in both simulations is chosen so that the initial nondimensional density outside of the

scratched region is p1/C = 0.625, where C is the carrying capacity density of agents with

diameter 25 µm. The size of the domain in the two-dimensional simulations is 2000 µm×
1400 µm, which is typical for scratch assay experiments (Figure 3.1). Periodic boundary

conditions are imposed in both the two-dimensional and one-dimensional simulations.

Results are summarised in Figure 3A.1. To compare the one-dimensional and two-

dimensional simulations we average results from the two-dimensional model in the

vertical direction to obtain a one-dimensional agent density distribution. We show that

averaged two-dimensional results demonstrate very similar population level behaviour

compared to simple one-dimensional model provided all model parameters and initial

densities are fixed.

3A.2 Derivation of the p1(x, t) and p2(x, y, t) governing

equations for the one-dimensional model

In this section we derive the equations for the evolution of the density p1(x, t) and the

pair-correlation density p2(x, y, t) presented in Chapter 3. These equations represent the

first two levels of the full hierarchy of equations that incorporates all spatial moments

(Middleton et al., 2014; Matsiaka et al., 2017; Chapter 2). To begin, we introduce an

agent density function, ρ(x, t). The evolution of the agent density is given by continuity

equation (van Kampen, 1976):

∂ρ(x, t)
∂t

= −

N∑
i=1

∂Ji

∂x(i) , (3A.3)

where Ji is the component of the total flux of agents associated with the agent i, and N

is the total number of agents. If Ji = ρ dx(i)/dt, we have

∂ρ(x, t)
∂t

= −

N∑
i=1

∂

∂x(i)

(∑
j,i

Fi j + ξi

)
ρ(x, t), (3A.4)

where
∑

j,i Fi j + ξi is the right hand side of Equation (3.3) and ξi is treated as a fixed

parameter (van Kampen, 1976).

Suppose we treat ξi as a random variable. We can obtain a solution to Equation
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(3A.4) with the initial conditions

ρ(x, 0) =

N∏
i=1

δ(x − x(i)(0)) = δ(N)(x − x(i)(0)), (3A.5)

where δ is the Dirac delta function, and x(i)(0) is the initial position of the ith agent. For

any initial density distribution, ρ(x, 0), we assume that we can obtain the average over

many different realisations of the stochastic force ξi, 〈ρ(x, t)〉ξ.

Let Pi
1(x, t) be the probability density function (PDF) for an individual agent. Then

the one-agent PDF is given by (van Kampen, 1976)

Pi
1(x, t) = 〈〈ρ(x, t)〉ξ〉IC, (3A.6)

where the average is taken over different realisations of the initial distribution and the

random variable ξi. Since the averaged local density can be expressed as

〈〈ρ(x, t)〉ξ〉IC = 〈〈δ(N)(x − x(i)(t))〉ξ〉IC, (3A.7)

we can define the one-agent PDF in the following way,

Pi
1(x, t) = 〈〈δ(N)(x − x(i)(t))〉ξ〉IC, (3A.8)

where x(i)(t) is the position of the ith agent at time t, as given by Equation (3.3).

Similarly, we define the two-agent PDF as

Pi j
2 (x, y, t) = 〈〈δ(N)(x − x(i)(t)) δ(N)(y − y( j)(t))〉ξ〉IC. (3A.9)

The evolution of Pi
1(x, t) and Pi j

2 (x, y, t) are given by (Garcı́a-Ojalvo and Sancho, 1999)

∂Pi
1(x, t)
∂t

= D∆Pi
1(x, t) −

∂

∂x

(
fi Pi

1(x, t)
)
, (3A.10)

∂Pi j
2 (x, y, t)
∂t

= D∆Pi j
2 (x, y, t) −

∂

∂x

(
fi Pi j

2 (x, y, t)
)
−
∂

∂y

(
f j Pi j

2 (x, y, t)
)
, (3A.11)

where the total force fi acting on agent i can be expressed as

fi =
∑
j,i

Fi j. (3A.12)

Combining Equations (3A.8), (3A.10) and (3A.12), and taking the convolution of the
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interaction force and a δ function centred at y( j), we obtain

∂Pi
1(x, t)
∂t

= D∆Pi
1(x, t)

− ∇
〈 ∑

j∈L, j,i

∫
Ω

F(x(i) − y, t) δ(x − x(i)(t)) δ(y − y( j)(t)) dy
〉
, (3A.13)

where Ω denotes the domain and L is the set of agents. The second term on the right

hand side of Equation (3A.13) is an advection term. Combining Equations (3A.9) and

(3A.13), and interchanging summation and integration, we obtain

∂Pi
1(x, t)
∂t

= D∆Pi
1(x, t) − ∇

∫
Ω

F(x − y, t)
∑

j∈L, j,i

Pi j
2 (x, y, t) dy, (3A.14)

where, from this point forward, we drop the subscript i on x(i).

To make the transition from individual level behaviour in a discrete simulation to

population level dynamics, we define the following quantities,

p1(x, t) =
1
N

∑
i∈L

Pi
1(x, t), (3A.15)

p2(x, y, t) =
1

N(N − 1)

∑
i∈L

∑
j∈L, j,i

Pi j
2 (x, y, t), (3A.16)

where p1(x, t) is the normalised one-agent density distribution, and p2(x, y, t) is the

density-density correlation function that captures correlations in agent positions.

To proceed, we sum over the index i in Equation (3A.14) and apply the definitions

given in Equations (3A.15)-(3A.16) to obtain

∂p1(x, t)
∂t

= D∆p1(x, t) − (N − 1)∇
( ∫

Ω

F(x − y, t) p2(x, y, t) dy
)
. (3A.17)

To derive an evolution equation for p2(x, y, t) we begin with the two-agent Fokker-

Planck equation,

∂Pi j
2 (x, y, t)
∂t

= D∆Pi j
2 (x, y, t) −

∂

∂x

(
fi Pi j

2 (x, y, t)
)
−
∂

∂y

(
f j Pi j

2 (x, y, t)
)
, (3A.18)

where indices i and j denote arbitrary agents in population.

Adopting the interaction force law, Equation (3.10), using the definition of the two-

agent PDF, as given by Equation (3A.9), and evaluating the required convolutions,
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allows us to rewrite Equation (3A.18) as

∂Pi j
2 (x, y, t)
∂t

= D∆Pi j
2 (x, y, t)

−
∂

∂x

〈
F(x − y, t) δ(x − x(i)(t)) δ(y − y( j)(t))

〉
−
∂

∂y

〈
F(y − x, t) δ(x − x(i)(t)) δ(y − y( j)(t))

〉
−
∂

∂x

〈 ∑
g∈L,g,i, j

∫
Ω

F(x − z, t) δ(x − x(i)(t)) δ(y − y( j)(t)) δ(z − z(g)(t)) dz
〉

−
∂

∂y

〈 ∑
g∈L,g,i, j

∫
Ω

F(y − z, t) δ(x − x(i)(t)) δ(y − y( j)(t)) δ(z − z(g)(t)) dz
〉
, (3A.19)

where the second and third terms on the right hand side of Equation (3A.19) represent

interactions between agents i and j, the fourth and fifth terms on the right hand side of

Equation (3A.19) represent interactions between agents i and j and other agents within

the population.

The three-agent normalised density functions can be defined as

p3(x, y, z, t) =
1

N(N − 1)(N − 2)

∑
i

∑
j,i

∑
g,i, j

Pi jg
3 (x, y, z, t). (3A.20)

We therefore require a definition for the three-agent PDF, Pi jg
3 (x, y, z, t). Similar to

Equation (3A.9),

Pi jg
3 (x, y, z, t) = 〈δ(x − x(i)(t)) δ(y − y( j)(t)) δ(z − z(g)(t))〉. (3A.21)

To proceed we divide Equation (3A.19) by N(N − 1), and combine Equations (3A.19)-

(3A.21), summing over the indices i and j, to obtain an expression for the evolution of

p2(x, y, t)

∂p2(x, y, t)
∂t

= D∆p2(x, y, t)

−
∂

∂x

(
F(x − y) p2(x, y, t)

)
−
∂

∂y

(
F(y − x) p2(x, y, t)

)
− (N − 2)

∂

∂x

∫
Ω

F(x − z, t) p3(x, y, z, t) dz

− (N − 2)
∂

∂y

∫
Ω

F(y − z, t) p3(x, y, z, t) dz. (3A.22)

This procedure can be repeated to yield the hierarchy of N − 1 coupled integro

partial differential equations and one Fokker-Planck equation. At any arbitrary level d ∈
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[1,N − 1] of this hierarchy, the d-density, pd, depends on the higher order density, pd+1.

This means that full hierarchy of equations is intractable for analysis. Consequently, we

invoke two approximations to simplify the hierarchy of density equations: (i)the standard

mean-field approximation (MFA); and (ii) the Kirkwood superposition approximation

(KSA).

The MFA approximates the pair correlation function p2(x, y, t) in terms of p1(x, t) and

p1(y, t):
p2(x, y, t) = p1(x, t)p1(y, t). (3A.23)

This expression implies that the probability of finding an agent at x is statistically

independent of the probability of finding an agent at y. The KSA approximates the

three-agent normalised density function as the product of two-agent density functions,

and can be written as (Singer, 2004; Middleton et al., 2014)

p3(x, y, z, t) =
p2(x, y, t) p2(x, z, t) p2(y, z, t)

p1(x, t) p1(y, t) p1(z, t)
. (3A.24)

3A.3 Discretisation scheme for the one-dimensional MFA

model

In this section we present the discretisation scheme used to solve Equation (3.13)

governing the evolution of the agent density p1(x, t) in one dimension. The MFA-based

continuum equation is qiven by

∂p1(x, t)
∂t

= D∆p1(x, t) − (N − 1)∇(p1(x, t) V(x, t)), (3A.25)

where

V(x, t) =

∫
Ω

F(x − y, t) p1(y, t) dy, (3A.26)

and Ω is the integration domain.

We introduce the following quantities

β(x, y, t) = F(x − y, t) p1(y, t) = f0 Z(r, t) sgn(x − y) p1(y, t), (3A.27)

Il = p1(xl, t)
∫

Ω

β(xl, y, t) dy

= p1(xl, t)
h
2

∑
s

[
β(xl, ys+1, t) + β(xl, ys, t)

]
+ O(h2), (3A.28)

where the trapezoidal rule with a stepsize h is used for numerical integration, and the

indices l and s denote equally-spaced spatial mesh nodes. Here, the stepsize is chosen to

be h = 4 µm, while the binsize used in discrete results presented in Chapter 3 is 10 µm.
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Using the definitions presented in Equations (3A.27)-(3A.28), we now apply the

method of lines to Equation (3A.25) and obtain the system of ordinary differential

equations

dp1
i

dt
=

D
h2

[
pi+1 − 2pi + pi−1

]
− (N − 1)

1
2h

[
Ii+1 − Ii−1

]
, (3A.29)

where the index i denotes a spatial mesh node. This system of ordinary differential

equations is solved using the first order explicit Euler method with a constant time step

∆t. This expression is valid for an arbitrary interior node and, since we apply periodic

boundary conditions, it can be easily adapted on the boundaries of the domain.

3A.4 Discretisation scheme for the one-dimensional KSA

model

We now write down the discretisation scheme used to solve Equation (14) governing

the evolution of p2(x, y, t) in the KSA-based framework. Note that we only solve the

equation for p2(x, y, t) and obtain p1(x, t) by numerical integration, using

p1(x, t) =

∫
Ω

p2(x, y, t)dy. (3A.30)

The governing equation that we consider is as follows,

∂p2(x, y, t)
∂t

= D∆p2(x, y, t)

− f0

( ∂
∂x
−
∂

∂y

)(
Z(|x − y|, t) sgn(x − y) p2(x, y, t)

)
− f0(N − 2)

∂

∂x

∫
Ω

Z(|x − z|, t) sgn(x − z)
p2(x, y, t) p2(x, z, t) p2(y, z, t)

p1(x, t) p1(y, t) p1(z, t)
dz

− f0(N − 2)
∂

∂y

∫
Ω

Z(|y − z|, t) sgn(y − z)
p2(x, y, t) p2(x, z, t) p2(y, z, t)

p1(x, t) p1(y, t) p1(z, t)
dz.

(3A.31)

In order to present the numerical method as briefly as possible, we define the fol-

lowing quantities

γ(x, y, t) = f0 Z(|x − y|, t) sgn(x − y) p2(x, y, t), (3A.32)

φ(x, y, z, t) = f0 Z(|x − z|, t) sgn(x − z)
p2(x, z, t) p2(y, z, t)

p1(z, t)
, (3A.33)

ψ(x, y, z, t) = f0 Z(|y − z|, t) sgn(y − z)
p2(x, z, t) p2(y, z, t)

p1(z, t)
. (3A.34)

Upon substituting Equations (3A.32)-(3A.34) into Equation (3A.31), the evolution equa-
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tion for p2(x, y, t) becomes

∂p2(x, y, t)
∂t

= D∆p2(x, y, t) −
∂

∂x
γ(x, y, t) +

∂

∂y
γ(x, y, t)

− (N − 2)
∂

∂x

[
p2(x, y, t)

p1(x, t) p1(y, t)

∫
Ω

φ(x, y, z, t) dz
]

− (N − 2)
∂

∂y

[
p2(x, y, t)

p1(x, t) p1(y, t)

∫
Ω

ψ(x, y, z, t) dz
]
. (3A.35)

We now introduce the discretised quantities

Ql,k =
p2(xl, yk, t)

p1(xl, t) p1(yk, t)

∫
Ω

φ(xl, yk, z, t) dz

=
p2(xl, yk, t)

p1(xl, t) p1(yk, t)
h
2

∑
s

[
φ(xl, yk, zs+1, t) + φ(xl, yk, zs, t)

]
+ O(h2), (3A.36)

Yl,k =
p2(xl, xk, t)

p1(xl, t) p1(yk, t)

∫
Ω

ψ(xl, yk, z, t) dz

=
p2(xl, yk, t)

p1(xl, t) p1(yk, t)
h
2

∑
s

[
ψ(xl, yk, zs+1, t) + ψ(xl, yk, zs, t)

]
+ O(h2), (3A.37)

where the trapezoidal rule with stepsize h on an equally spaced mesh is used to approx-

imate the integrals. We now apply the method of lines to Equation (3A.35) and obtain

the following system of equations

dp2
i j

dt
=

D
h2

[
pi+1, j − 2pi j + pi−1, j + pi, j+1 − 2pi j + pi, j−1

]
−

1
2h

[
γi+1, j − γi−1, j

]
+

1
2h

[
γi, j+1 − γi, j−1

]
− (N − 2)

1
2h

[
Qi+1, j − Qi−1, j

]
− (N − 2)

1
2h

[
Yi, j+1 − Yi, j−1

]
, (3A.38)

where indices i, j denote spatial mesh nodes, and γl,m = γ(xl, ym, t). This expression is

valid for an arbitrary interior node and, since we apply periodic boundary conditions,

it can be easily adapted on the boundaries of the domain. This systems is then solved

using the first order explicit Euler method with a constant time step of duration ∆t.
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Chapter 4

Mechanistic and experimental models

of cell migration reveal the

importance of cell-to-cell pushing in

cell invasion

A paper published in the Biomedical Physics & Engineering Express.

Matsiaka Oleksii, Baker Ruth, Shah Esha, Simpson Matthew. Mechanistic and exper-

imental models of cell migration reveal the importance of intercellular interactions in

cell invasion. Biomedical Physics & Engineering Express, vol. 5, 045009, 2019.

4.1 Abstract

Moving fronts of cells are essential for development, repair and disease progression.

Therefore, understanding and quantifying the details of the mechanisms that drive the

movement of cell fronts is of wide interest. Quantitatively identifying the role of intercel-

lular interactions, and in particular the role of cell pushing, remains an open question.

In this chapter, we report a combined experimental-modelling approach showing that

intercellular interactions contribute significantly to the spatial spreading of a population

of cells. We use a novel experimental data set with PC-3 prostate cancer cells that have

been pretreated with Mitomycin-C to suppress proliferation. This allows us to experi-

mentally separate the effects of cell migration from cell proliferation, thereby enabling

us to focus on the migration process in detail as the population of cells recolonizes an

initially-vacant region in a series of two-dimensional experiments. We quantitatively

model the experiments using a stochastic modelling framework, based on Langevin dy-
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namics, which explicitly incorporates random motility and various intercellular forces

including: (i) long range attraction (adhesion); and (ii) finite size effects that drive short

range repulsion (pushing). Quantitatively comparing the ability of this model to describe

the experimentally observed population-level behaviour provides us with quantitative in-

sight into the roles of random motility and intercellular interactions. To quantify the

mechanisms at play, we calibrate the stochastic model to match experimental cell den-

sity profiles to obtain estimates of cell diffusivity, D, and the amplitude of intercellular

forces, f0. Our analysis shows that taking a standard modelling approach which ignores

intercellular forces provides a poor match to the experimental data whereas incorporat-

ing intercellular forces, including short-range pushing and longer range attraction, leads

to a faithful representation of the experimental observations. These results demonstrate

a significant role of cell pushing during cell front movement and invasion.

4.2 Introduction

Moving cell fronts occur during many physiological processes, such as wound healing,

morphogenesis, and malignant invasion (Tao et al., 2007; Friedl et al., 2004; Ramis-

Conde et al., 2008; Kabla, 2012). Typically, cell fronts are observed as advancing, sharp

boundaries between densely occupied and vacant regions, or as a moving interface

between two distinct populations of cells (Hakim and Silberzan, 2017). An example of

the first scenario is wound healing, where populations of cells close and recolonize an

initially vacant space (Maini et al., 2004b; Jin et al., 2016a), as shown in Figure 4.1. An

advancing interface between two populations of cells is often associated with malignant

invasion into surrounding tissues (Eves et al., 2003; Lowengrub et al., 2010). Improving

our understanding of how cell populations spread can provide important, clinically-

relevant information about the nature of moving cell fronts. Historically, moving cell

fronts have been studied, both in vitro and in vivo, to provide both qualitative and

quantitative information about the mechanisms that drive front movement. We note that

quantifying the precise contributions of various cellular-level mechanisms that lead to

population-level front behavior is a nontrivial task that requires the integration of many

different types of experimental data (Treloar et al., 2013a). Often it is assumed that

the movement of advancing cell fronts is driven by the combined effects of undirected

cell migration and carrying capacity-limited cell proliferation (Treloar et al., 2013a). At

present, a fundamental question, which remains largely overlooked in the mathematical

biology literature, is what is the role of cell-to-cell pushing and how does it influence
population-level front movement?

Cell motility is a complicated process involving both the interplay and competition

between various individual-level mechanisms (Treloar et al., 2013a; Treloar et al., 2014;

Hakim et al., 2017). One of the most well-studied individual-level cell motility mech-
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X

Y

A B

X

Y

Figure 4.1: What drives the movement of cell fronts? A: Experimental image showing the leading edge
of a moving front of PC-3 prostate cancer cells. This front is moving in the positive x direction. B:
Schematic of A showing the position of the front (vertical dashed line) with the front moving in the
positive x direction. The location of the region in A is the blue rectangle superimposed in Figure 4.1(A).

anisms is lamellipodial cell migration where cells undergo undirected movement due

to myosin-powered contractions of the actin network under the cytoplasmic membrane

(Nickaeen et al., 2017). Since this process is observed in many cell types, it remains

prevalent in many mathematical modelling frameworks. As such, the assumption that

cells undergo Brownian motion is often invoked and cells are represented, either im-

plicitly or explicitly, as non-interacting point particles that move according to a white

Gaussian process (Codling et al., 2008). While this approach is appealing due to its

simplicity, it neglects the effects of intercellular interactions, such as adhesion and finite

size (crowding) effects. The neglect of cell-to-cell adhesion can be problematic because

it is known that mesenchymal cell types, such as keratinocytes, can be strongly affected

by cell-to-cell adhesion during wound healing (Nardini et al., 2016). Furthermore, ad-

herent cells can form clusters that exhibit qualitatively different behaviour from isolated

cells (Steinberg, 1996; Nadell et al., 2010; Painter et al., 2010; Carmona-Fontaine et al.,

2011). For example, strongly adherent groups of cells can undergo movement mediated

by adherens junctions and move as a whole in coordinated process known as locomotion
(George et al., 2017; Etienne-Manneville, 2014). During this motion cells can change

shape because of the imbalance between traction and friction forces induced by leader

and follower cells (Trepat, 2009). A few individual cells can heavily influence front

expansion in a process known as trailblazing and form finger-like protrusions (McLen-

nan, 2015; Köpf and Pismen, 2013). Tightly packed interacting monolayers of cells can

exhibit properties similar to the solid state matter with a transition to the fluid-like
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Figure 4.2: Experimental data. A-B: Images from an IncuCyte ZOOMTM assay with Mitomycin-C
pretreated PC-3 prostate cancer cells. The scale bar in each image corresponds to 300 µm. The green
solid lines show the initial position of the two opposingly directed cell fronts. The blue rectangle denotes
the location of the subregion highlighted in Figure 4.1(A). C: Cell diameter data as a function of time,
δ(t), from a sample of 30 randomly chosen cells at each time point. Black dots indicate the sample mean
and the error bars denote the sample standard deviation about the sample mean. Red solid line represents
the best-fit linear approximation, δ(t) = 29.26 + 0.33t. R2 is the adjusted coefficient of determination
measuring the goodness of fit.

behaviour (Park et al., 2015).

Arguably, some of the most striking examples of the front-like spreading of a cell

population occur during embryonic development, such as neural crest cell invasion in

the developing gut tissues, which is thought to arise as a consequence of combined undi-

rected Brownian cell motility and carrying capacity limited cell proliferation (Simpson
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et al., 2006b; Simpson et al., 2009b; Weijer, 2009). However, previous investigations

have made the point that short range cell pushing can also play a role in driving the

movement of cell fronts in confined environments, such as living tissues (Hawkins et

al., 2009). Henceforth, we hypothesize that cells in a confined space may generate pop-

ulation pressure, driven by finite size effects and local repulsion, which can stimulate

spatial expansion of the population.

Perhaps the most popular mathematical framework for modelling the movement

of cell fronts involves using reaction-diffusion equations (Fisher, 1937; Sherratt and

Murray, 1990; Johnston et al., 2015), including the Fisher–Kolmogorov equation, and

generalisations thereof. Previously, the lack of individual-level experimental data meant

that classical reaction-diffusion models were a useful way to conceptualize and simulate

collective cell behaviour. However, with the increasing availability of individual-level

information it is becoming important to develop mathematical models that provide both

population-level information and individual-level information. There is a vast number of

discrete models that focus on many individual-level features of cell behaviour (Buske

et al., 2011; Gardiner et al., 2015; Osborne et al., 2017). The downside of many mod-

elling frameworks presented in the literature is a large number of free parameters which

makes parameter estimation problems computationally intractable and simulations hard

to interpret. For example, in Buske et al., 2011 the authors develop a comprehensive

mathematical model of stem cells dynamics in the intestinal crypt. This model requires

the selection of 25 free parameters. Some of these parameters are not directly mea-

surable, and other parameters in the model had not been estimated before this study.

Consequently, quantifying the precise contribution of different factors that control cell

colony behaviour and dynamics is very challenging. To deal with this question of over

parameterization, we deal only with a fundamental model that is characterized by a

minimal number of degrees of freedom that we can use experimental data to identify

the parameters in the model and hence to quantitatively explore the roles of undirected

migration and cell-to-cell pushing in our experiments.

Previously, cell pushing has been incorporated into lattice-based models of cell motil-

ity where agents move on a spatial domain that is represented as a regular lattice (Nan

et al., 2018; Yates et al., 2015). However, these previous studies about the role of

cell pushing are primarily theoretical studies that do not consider calibrating models

to quantitatively match any experimental data. Our current work is the first attempt

to incorporate short range cell pushing into a more realistic spatially continuous, off-

lattice discrete model of cell migration. Importantly, we directly apply the model to

quantitatively mimic a novel experimental data set. Figure 4.2 illustrates the IncuCyte

ZOOMTM scratch assay experimental protocol that we use in this chapter, at t = 0 h

and t = 48 h. In our experiments we isolate the role of cell migration from the effects of

cell proliferation by working with a population of cells that has been pre-treated with a
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chemotherapy drug, Mitomycin-C, to block DNA replication and, consequently, suppress

proliferation (Sadeghi et al., 1998). This means that the number of cells present in the

experimental field of view over the duration of the experiment remains approximately

constant. However, a side effect of Mitomycin-C pretreatment is that individual cells

increase in size during the experiment as the cells prepare to proceed through the cell

cycle but are unable to divide (Simpson et al., 2013). This dynamic increase in cell size,

which is typically neglected in previous modelling studies (Simpson et al., 2013), can

significantly influence intercellular interactions during the experiment and so we take

great care to incorporate these effects into our mathematical model. Our approach for

incorporating dynamic cell size effects in the model is justified by also working with

a simpler model that neglects dynamic changes in cell size; we find that the simpler,

standard model leads to a much poorer match with the experimental data.

This chapter is structured as follows. We begin by describing the IncuCyte ZOOMTM

experimental protocol, the experimental data, and the procedure we use to process the

experimental images. We then introduce the discrete mathematical model which ac-

counts for random motility and intercellular interactions, including short range pushing

and longer range attraction, as well as incorporating a mechanism for describing dy-

namic cell size changes. We refer to this model as Model I since it incorporates all four

mechanisms that are thought to be relevant to the experimental system. To quantita-

tively explore the significance of these various cell-level mechanisms we systematically

repeat the model calibration process for a range of simpler, more commonly used models.

These simplified models account for: (i) random motility and intercellular forces (Model
II); (ii) intercellular forces only (Model III); and (iii) random motility only (Model IV).

We discuss the performance of each model when applied to the IncuCyte ZOOMTM data

in the Results and Discussion. Finally, in the Conclusions we summarize our findings

and discuss alternative applications and extensions of our modelling framework.

4.3 Materials and methods

4.3.1 IncuCyte ZOOMTM experimental data

Monolayer scratch assays are performed using the IncuCyte ZOOMTM system (Essen

BioScience, Ann Arbor, MI) as shown in Figure 4.2(A)-(B). All experiments are per-

formed using the PC-3 prostate cancer cell line (Kaighn et al., 1979) from the American

Type Culture Collection (ATCC, Manassas, USA). The procedure of growing the cell

culture in a flask is outlined by Jin et al., (2016b). After growing, cells are removed

from the flask using TrypLETM (Life Technologies) in phosphate buffered saline, resus-

pended in medium and seeded at a density of 20,000 cells per well in 96-well ImageLock

plates (Essen BioScience, Ann Arbor, MI) as shown in Figure 4.3. The diameter of each
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individual well is 9000 µm.

BA

C D

96-well plate

9000 μm

1979 μm

740 μm

Figure 4.3: Experimental geometry. A: Image of a 96-well culture plate. The diameter of each well is
9000 µm. B: Schematic demonstrating the monolayer of cells (black dots) with approximately constant
density. C: Schematic showing an artificial wound (white) in the monolayer of cells. D: Field of view of
the experimental images showing that the field of view is much smaller than the extent of the well in the
96-well plate.

Mitomycin-C is added at a concentration of 10 g/mL for two hours before a scratch

is made in the monolayer of cells (Sadeghi et al., 1998; Kumari et al., 2009; Tlili et

al., 2018). A WoundMakerTM (Essen BioScience, Ann Arbor, MI) is used to create

identical scratches in the uniformly distributed populations. Medium is aspirated after

scratching; each well is washed twice and refilled with fresh medium (100 µL). Plates

are incubated in IncuCyte ZOOMTM and photographed every 2 hours for 48 hours. In

total, these experiments are performed in eight of the 96 wells on the 96-well plate.

After a preliminary visual inspection of the resulting eight experimental images, we

selected four typical wells for analysis. Throughout this chapter we will refer to these

four identically prepared experiments as Experiment A, B, C and D, respectively. All
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experiments are initiated with a monolayer of cells close to confluence. Even though the

cell culture was treated with Mitomycin-C, which ensures the absence of proliferation

and approximately constant cell count during an experiment, the monolayer of cells

remains close to confluence throughout the duration of the experiment due to increase

in the size of individual cells (Figure 4A.1, Chapter 4A).

By the end of the experiment, summarised in Figure 4.2(A)-(B), we see that the

Mitomycin-C pretreated cells have approximately doubled in size (Simpson et al., 2013).

There is little information about the change in volume of cells since all data is in the

form of 2D images. However, we note that, due to effects of Mitomycin-C pretreatment

that allows cells to go through cell cycle to the point when they are ready to divide,

the observed growth is rather volumetric and reflects actual change in cell size. To

quantify this increase in cell size we randomly choose 30 cells from the experimental

images at t = 0, 12, 24, 36 and 48 h and use these cells to estimate the average diameter

as a function of time, δ(t). To do this we estimate the area on the image occupied by

each particular cell, and then convert this estimate of area into an equivalent diameter,

δ =
√

4A/π, where A is the area estimate. With 30 estimates of the diameter at

t = 0, 12, 24, 36 and 48 h, we compute the sample mean and sample standard deviation

at each time point and plot the data in Figure 4.2(C). Visually we see that the average

diameter appears to increase approximately linearly with time, and so we fit a linear

model to the data. The cell diameter data and the linear model are shown in Figure

4.2(C). Note that had our experiments been performed over a longer period of time it

would be more appropriate to use a different model, such as the logistic growth function,

to model the temporal cell size dynamics.

4.3.2 Image analysis

An example of a raw experimental image and a detailed description of the procedure

we use to extract density information from that image are summarized in Figure 4.4.

Here, the size of the field of view is (Lx × Ly) = (1979 µm× 1439 µm), as shown in Figure

4.4(A). Throughout this chapter we use data from four identically-prepared experimental

replicates of the scratch assay. Experimental images at the beginning of the experiment

for each of the four replicates are shown in Figure 4.5. For completeness, the time

series of experimental images for all four identically prepared experiments is given in

Chapter 4A (Figure 4A.1), giving a total of 20 experimental images.

To process each experimental image we first separate the background of the image

from the cells using Ilastik (Sommer et al., 2011). Ilastik is a machine learning tool that

enables automatic object identification, and allows us to separate the cells in each image

from the background. An example of a grey scale segmented image is shown in Figure

4.4(B). A visual comparison of the raw image in Figure 4.4(A) with the segmented
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Figure 4.4: Processing of raw experimental images from the IncuCyte ZOOMTM scratch assay. A:
Raw experimental image showing the field of view, of dimension (Lx × Ly) = (1979 µm × 1439 µm). The
scale bar corresponds to 300 µm. B: Binary image obtained after segmenting the raw image with
Ilastik. C: Zoomed-in image showing the region contained within the blue rectangle in B after processing
with CellProfiler. Faint green outlines denote individual objects that are identified as cells. D: The
one-dimensional cell density profile is estimated by counting the number of objects per equally-spaced
column. Shaded regions in D show boundary regions that are neglected owing to the presence of scale
bar and time label that are automatically superimposed on the IncuCyte ZOOMTM images.

image in Figure 4.4(B) confirms that the identification of cells from the background in

the image is accurate. Since the density of cells in the original images is independent of

the vertical coordinate, as shown in Figure 4.5, we divide each image into 40 equally-

spaced columns, 49.5 µm wide each. We then use CellProfiler to automatically estimate

the number of cells per column (Carpenter et al., 2016). With this data we divide the

number of cells per column by the area of each column to give an estimate of the cell

density across the horizontal coordinate of the experimental images.

A typical column-averaged cell density profile, shown in Figure 4.4(D), summarizes

the spatial variations in density as a function of the horizontal coordinate. We employ

this technique to extract density profiles at each time point, t = 0, 12, 24, 36, and 48
h, for each experimental replicate. The data presented in Figure 4.4(D) shows the
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Figure 4.5: Experimental images of four identically prepared IncuCyte ZOOMTM scratch assays just after
the scratch has been made, t = 0 h. A-D: In each experimental replicate the positions of individual cells
are extracted using CellProfiler and highlighted with red dots.

average cell density that we associate with the centre of each column. This particular

density profile is relatively noisy because it is associated with the single image in Figure

4.4(A). Before we proceed, we discard density data from the two right-most columns of

each image because the time label and scale bar are automatically superimposed on the

IncuCyte ZOOMTM images and these objects partially obscure the numbers of cells in

these subregions of each images. We also discard the left-most column from each image,

which leaves us with a slightly smaller image that is discretized into 37 equally-spaced

columns of width 49.5 µm, and a reduced domain width of 1831 µm. Next, to reduce the

magnitude of the fluctuations in the cell density profile, we average the density profiles

associated with each of the four experimental replicates to obtain a single averaged cell

density profile as a function of time, as summarized in Figure 4.6. For completeness,

the relatively noisy column-averaged cell density profiles associated with each of the

four individual experimental replicates are given in Chapter 4A (Figure 4A.3).

Now that we have quantified our experimental observations in terms of the temporal
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Figure 4.6: Averaged cell density profiles. A-E: Averaged cell density profiles at t = 0, 12, 24, 36, and
48 h, as indicated. All profiles report the sample mean density computed using four identically prepared
experimental replicates. The error bars denote the sample standard deviation.
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variation in the column-averaged cell density profiles, further averaged across four

identically prepared experimental replicates, we will now attempt to use a suite of

discrete mathematical models to mimic the experimental data set. To provide the most

realistic discrete simulations, we always take care to initialize each discrete simulation

using the exact same number and locations of cells that are present in the experimental

images at t = 0 h (Figure 4.5).

4.3.3 Discrete stochastic model

To simulate our experimental data set we use a two-dimensional discrete model of cell

motility that incorporates random motility, intercellular interactions including both long

range cell-to-cell adhesion and short range cell pushing, as well as capturing dynamic

changes in cell size. We refer to this model as Model I since it describes the situation

where all four processes are acting simultaneously. We choose to work with a discrete

modelling framework because discrete individual-based approaches are more natural to

compare with experimental images than continuum models (Sepulveda et al., 2013;

Chiou et al., 2012). Such discrete individual-based models are used to study a range of

cell biology phenomena, including malignant invasion (Zhu et al., 2015), wound healing

(De Jesus et al., 2016), self-organization (Osborne et al., 2017), angiogenesis (Peirce,

2008) and embryonic development (Weijer, 2007). Since we work with an off-lattice

discrete framework, each agent is allowed to move in any direction on a continuous

domain. This off-lattice approach is more realistic than a simpler lattice-based model

where the locations of agents are restricted to an artificial lattice structure (Codling et

al., 2008; Osborne et al., 2017; Ermentrout and Edelstein-Keshet, 1993; Wynn et al.,

2013).

We begin by introducing Model I and then describe three simplifications of this

model in which we systematically neglect certain features. To explore the relevance

of the mechanisms inherent in these four models we carefully calibrate each model to

match the density data summarized in Figure 4.6 and quantitatively compare the results

of the calibration procedure.

Model I: random motility, long range cell-to-cell adhesion, short range cell

pushing and dynamic changes in cell size

A key novelty of our approach is that we simulate the dynamic change in agent diameter,

δ(t). This approach is very different to standard approaches where agents in discrete

models are thought of as having either no size or a constant size. Here, to match our

experimental measurements presented in Figure 4.2(C), we assume that δ(t) increases

linearly,

δ(t) = 29.26 + 0.33t, (4.1)
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where t is time, measured in hours.

We employ a Langevin stochastic framework (Middleton et al., 2014), where a popu-

lation of N cells is modelled by a system of N first order stochastic differential equations

du(i)

dt
=

directed force︷       ︸︸       ︷∑
j,i

Fi j(r, t) +

random noise︷︸︸︷
ξi , i = 1, . . . ,N, (4.2)

where u(i) is the position vector of the ith agent on a two-dimensional domain, Fi j is the

deterministic interaction force between agents i and j that are separated by distance r

(Mousavi et al., 2014), and ξi is a random stochastic force exerted on the ith agent. The

stochastic force ξi is sampled from the Gaussian distribution (Middleton et al., 2014)

with zero mean and variance 2D/∆t, where D is the diffusivity, and ∆t is the time step

used to numerically solve Equation (4.2). Since the Langevin equation formalism does

not include any inertial forces, this framework implicitly neglects agent acceleration.

This assumption is reasonable at low Reynolds numbers, and is routinely invoked at

cellular length scales (Berg, 1993). The model given by Equation (4.2) does not address

possible directional bias near the edge of a wound resulting from the chemical signalling

responses to wounding (Nikolic et al., 2006). Including directional bias and chemotaxis

will result in additional free parameters in the system (Johnston et al., 2015), that we

have little prior knowledge about, which, in turn, will make the parameter estimation

problem significantly harder. Increasing number of parameters in the model requires

increased complexity of the experimental data to avoid ambiguities in the parameter

estimation (Warne et al., 2019). As such, we focus on describing a cell population using

the fundamental model where the cell migration is mediated by a directional movement

due to cell-to-cell adhesive and repulsive forces, Fi j, and the undirected stochastic force,

ξi.

The details of the deterministic interaction force, Fi j, can be chosen to incorporate

a range of relevant phenomena such as long range attraction and short range repulsion

(Matsiaka et al., 2018; Chapter 3), as illustrated in Figure 4.7. In this chapter we

specify that the interaction force, Fi j, depends upon the distance between agents, r, and

time, t, and is given by

Fi j(r, t) = f0 Z(r, t)
u(i) − u( j)

|u(i) − u( j)|
, (4.3)

where f0 is dimensional magnitude of the interaction force, Z(r, t) is a dimensionless

function describing how the interaction force depends on the separation between the

agents, r = |u(i) − u( j)|. As with all models of the form of Equation (4.2), the dimen-

sional magnitude of the interaction force, f0, has dimension of velocity. Previously, the

interaction forces between cells in the epithelial monolayer have been inferred using a

discrete framework by Chiou et al., (2012), where the authors explicitly demonstrate
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the significance of population pressure and mechanically driven population spreading

(Ranft et al., 2010). The key novelty in the expression for the force function, Equa-

tion (4.3), is the time dependent cell-to-cell interaction potential, Z(r, t), Figure (4.7).

This approach allows us to explicitly parameterise the dynamic change in cell size and

simulate mechanically driven cell pushing, which is in contrast to many models of cell

motility and adhesion present in the literature where cells have constant size (Huang et

al., 2005). The cell-to-cell pushing is expressed by a combination of cell-to-cell repul-

sive forces incorporated in the force function, Equation (4.3), dynamical change in cell

size, and cell random motility. Here, we address basic phenomenological principles of

cell-to-cell adhesion without considering biochemical pathways that facilitate adhesion,

such as E-cadherin protein junctions (Cai et al., 2014; Peglion et al., 2014).

In this chapter we use the dimensionless function Z(r, t) to incorporate three main

features of cell-to-cell interactions: (i) short range repulsion forces which mimic cell

pushing; (ii) longer range attraction forces which mimic cell-to-cell adhesion; and (iii)

dynamic changes in agent size. The short range repulsion forces can be interpreted

as cell resistance to deformation, which leads to crowding and volume exclusion effects

(Bruna and Chapman, 2012). In contrast, the longer range attraction forces mimic inter-

cellular attraction. These cell-to-cell attraction forces are thought to be a predominant

factor in the cell-to-cell adhesion (De Palo et al., 2017). To incorporate these effects we

use a modified Morse potential (Matsiaka et al., 2017; Chapter 2),

Z(r, t) =


2
(

exp(−2a [r − δ(t)]) − exp(−a [r − δ(t)])
)
, r < 2δ(t),

2
(

exp(−2a [r − δ(t)]) − exp(−a [r − δ(t)])
)

g(r, t), 2δ(t) ≤ r ≤ 3δ(t),

0, r > 3δ(t),

(4.4)

where δ(t) is the time-dependent agent diameter, a > 0 is a parameter that controls the

shape of the force function, and g(r, t) =
(
1− sin

[
(2πr− πδ(t))/2δ(t)

])
/2 is the Tersoff cut-

off function (Tersoff, 1988) which ensures a finite range of interactions. The cell-to-cell

interaction range is finite, and set to three agent diameters (Middleton et al., 2014). As

such, the interaction force is zero for separation distances of greater than three agent

diameters. For all results presented here we set a = 0.08 which implies that the agents

are relatively rigid and highly unlikely to overlap (Matsiaka et al., 2017; Chapter 2).

Schematics showing the key features of Z(r, t) at t = 0 h and t = 48 h are shown in

Figure 4.7(C-D). Here we see that at short separation distances we have strong positive

Z(r, t), which captures short range repulsion and pushing, owing to finite size effects.

Over longer separation distances we have smaller negative Z(r, t) which models attrac-

tion, such as adhesion. Finally, over sufficiently large distances we have no interactions

as Z(r, t) = 0. To capture the effects of the increase in cell size, all length scales in

Figure 4.7(C-D) are given in terms of the average cell diameter, δ(t), which can vary
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Figure 4.7: Schematic showing how short and long range forces are introduced in the model through the
dimensionless force function, Z(r, t). A-B: Green circles denote isolated agents that are unaffected by cell-
to-cell interactions and, as a consequence, undergo random migration. Red circles indicate agents that
are sufficiently close to other agents that they interact with them. Comparing the schematics in A and B
shows that the increase in agent size leads to additional agent-to-agent interactions because agent growth
reduces the distance between agents. The arrows in A and B indicate the direction of the deterministic
forces Fi j. C-D: Dimensionless force function Z(r, t) for t = 0 h and t = 48 h. δ0 is the agent size at the
start of the experiment, t = 0 h. The red shaded regions indicate a sufficiently small distance between
agents, r ≤ 3δ(t), where agent-to-agent interactions are present. The green shaded regions indicate a
sufficiently large distance between agents, r > 3δ(t), so that there is no interaction.

with time. In this chapter we use a linear function for δ(t) because this matches our

experimental observations, however other functional forms for δ(t) are possible. In all

simulations we apply the Langevin model on a domain of size 1831.5 µm × 1439 µm,
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which is the size of the experimental field of view after the boundary columns have

been neglected.

Reduced models

• Model II: constant cell size (δ(t) = 29.26 µm) with cell diffusion and intercellular

forces

• Model III: variable cell size with intercellular forces but no cell diffusion, D = 0
and f0 > 0

• Model IV: variable cell size with diffusion and without intercellular forces, f0 = 0
and D > 0

To simulate Models I–IV we must apply appropriate boundary conditions to reflect

the conditions relevant to the experiment. To determine these boundary conditions, we

note that the experimental images, shown in Figure 4.2(A)-(B), correspond to a field of

view that is much smaller than the spatial extent of the experiment. For example, the

width of the field of view in Figure 4.2(A)-(B) is 1979 µm, which is much smaller than

the diameter of the well in the 96-well plate (9000 µm), as shown in Figure 4.3. The

schematic in Figure 4.3 is important because it emphasizes that the images from this

kind of assay only show a small proportion of the population of cells present in the well.

In particular, it is important to remember that the boundaries around the field of view

are not physical boundaries since the spatially uniform population of cells extends far

beyond the boundaries around the field of view. This means that whenever the density

is below confluence, cells will migrate, in each direction, across the boundaries of the

field of view. However, since the population of cells is placed uniformly into each well of

the 96-well plate, the net flux of cells across the boundaries of the field of view will be

approximately zero owing to symmetry. To justify zero net flux boundary conditions we

also count a number of cells in each experimental replica at t = 0, 12, 24, 36, and 48 hours

(Figure 4A.2, Chapter 4A). These additional results demonstrate that cell counts remain

approximately constant with average fluctuations of 8.1% of cell count at t = 0 h across

four experiments. Similar experimental set up without Mitomycin-C pretreatment would

have resulted in about 100 % increase in cell count due to proliferation. Therefore, we

impose zero net flux boundary conditions around all boundaries of the field of view

(Simpson et al., 2018). We implement these boundary conditions by simply aborting

any potential movement event that would take a particular agent across one of the

boundaries.
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4.4 Results and Discussion

To quantitatively compare the suitability of Models I–IV to describe our experimental

data set, we calibrate each model to provide the best match to the experimental density

data. For Model I our aim is to estimate the two model parameters, (D, f0), that lead to

the best match with the experimental measurements. To facilitate this we introduce a

measure of the discrepancy between the experimental data and the model solution,

E(D, f0) =
1

148

4∑
j=1

37∑
i=1

[
pdata(xi, t j) − pmodel(xi, t j)

]2
, (4.5)

where E(D, f0) measures the discrepancy between the experimental cell density, pdata(xi, t j),
and the density predicted by the model, pmodel(xi, t j), for given values of D and f0. The

index i denotes column number along the x coordinate, and index j denotes time so that

j = 1, 2, 3 and 4 correspond to the experimental time points t = 12, 24, 36, and 48 h,

respectively. The experimental density estimates, pdata(xi, t), correspond to the averaged

experimental density, where the average is taken across all four identically-prepared

experimental replicates. We find that it is necessary to estimate E(D, f0) using averaged

experimental data, rather than working with the four experimental data sets separately

since the fluctuations in the data from the individual replicates lead to sufficiently large

fluctuations in our estimates of E(D, f0). We will refer to the function E(D, f0) as an

error surface. We will visualize the surface and seek to find values of D and f0 that

minimize E(D, f0), and we denote these estimates as D̄ and f̄0, respectively. All re-

sults, for Models I–IV, are obtained by numerically integrating the governing equations

in two-dimensional space using a forward Euler method with a constant time step of

duration δt = 0.02 h. This choice of time step is sufficiently small that our results

are grid-independent. We then construct one-dimensional density distributions from the

model output, pmodel(xi, t j), using the same procedure that is used to convert the distri-

bution of cells in the two-dimensional experimental images into one-dimensional density

profiles.

Since we have access to four identically prepared initial conditions for our experimen-

tal data set, each time we attempt to match the models with the averaged experimental

data we repeat the process four times using the four different choices of initial condi-

tions associated with experimental data sets A, B, C and D. This approach means that

we can estimate and visualize the error surface four times for each particular model.

A mathematical model that is compatible with the data ought to lead to estimates of

D and f0 that are consistent across the four initial conditions, and so we will examine

Models I–IV to see whether they are capable of providing parameter estimates that are

consistent across the four different initial conditions.

Previous modelling studies based on using reaction-diffusion equations indicate that
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Figure 4.8: E(D, f0) for Model I. A-D: Error surface contours, E(D, f0), for four identically-prepared
IncuCyte ZOOMTM scratch assays. Each surface contour plot is constructed using seven values of the
diffusivity in 0 ≤ D ≤ 1100 µm2/h, and 12 equally-spaced values of the force amplitude in 0 ≤ f0 ≤ 0.11
µm/h. E-H: Refined error surface contours obtained by estimating E(D, f0) on a refined discretisation of
the parameter space within the red rectangles in A-D. The values of E(D, f0) are shown on the color bar.
The location of the best-fit estimate (D̄, f̄0) is shown as a red circle in each subfigure.

estimates of diffusivity for PC-3 prostate cancer cells varies significantly, from about

300 µm2/h for low density conditions to approximately 1000 µm2/h for high density con-

ditions (Jin et al., 2016a). Consequently, we focus our search for parameter estimates

in the interval 0 ≤ D ≤ 1100 µm2/h. In contrast, there are no previous estimates of f0

for the PC-3 cell line. Since we have little initial guidance about an appropriate choice
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Figure 4.9: Comparison of the calibrated solutions of Model I and experimental profiles from experiment
D. Results in A-B compare the experimental data (red, green) and Model I solution (black) at t = 0 and
t = 48 h, respectively, for N = 1 model realization. Results in C-D compare the experimental data (red,
green) and Model I solution (black) at t = 0 and t = 48 h, respectively, averaged over N = 100 identically
prepared realizations of the model. The best-fit parameter estimates are (D̄, f̄0) = (250, 0.06) from Figure
4.8(H).

of f0, we first conducted a series of preliminary simulations (not shown) to determine

an acceptable range of f0 for each model. This exercise suggests that acceptable ranges

are approximately 0 ≤ f0 ≤ 0.11 µm/h for Model I; 0 ≤ f0 ≤ 0.6 µm/h for Model II; and

0 ≤ f0 ≤ 0.11 µm/h for Model III.

To estimate D̄ and f̄0 for Model I we estimate discrete values of E(D, f0) by using

a series of numerical solutions of Equation (3A.1) over many (D, f0) pairs. For each

parameter pair we generate an ensemble of 100 identically prepared realizations of the

stochastic model and then estimate E(D, f0) by averaging the density data from the

100 identically prepared realizations. Results in Figure 4.8(A)-(D) show the error sur-

faces constructed using seven values of diffusivity, D = 0, 100, 300, 500, 700, 900, 1100
µm2/h and 12 equally-spaced values of the force amplitude in the interval 0 ≤ f0 ≤ 0.11
µm/h. All contour lines in Figure 4.8 are obtained using the Matlab spline interpolation

function griddedInterpolant. Since the initial positions of agents in the discrete

simulations exactly correspond to the positions of cells in experimental images, given

in Figure 4.5, the magnitude of the fluctuations in the experimental data are consistent

with the magnitude of the fluctuations from one realization of the stochastic model.

In general, the magnitude of the fluctuations in the stochastic model decreases as the
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Figure 4.10: E(D, f0) for Model II. A-D: Error surface contours, E(D, f0), for four identically-prepared
IncuCyte ZOOMTM scratch assays. Each surface contour plot is constructed using seven values of
diffusivity in 0 ≤ D ≤ 1100µm2/h and seven equally-spaced values of the force amplitude in 0 ≤ f0 ≤ 0.6
µm/h. The values of E(D, f0) are shown on the color bar. In each case the location of the best-fit estimate
(D̄, f̄0) is shown as red circle.

number of realisations increases, ∼ 1/
√
N . Therefore, our choice of using N = 100

realizations leads to averaged discrete density profiles with fluctuations that are approx-

imately one order of magnitude smaller than fluctuations in the experimental data.

Preliminary estimates of D̄ and f̄0 are obtained by evaluating the error surface across

a relatively coarse discretisation of the parameter space. These estimates are shown in

Figure 4.8(A)-(D) as red circles. We then refine our estimates of D̄ and f̄0 by considering

a refined discretisation of a subregion surrounding each red circle in Figure 4.8(A)-(D).

These subregions are shown as red rectangles in Figure 4.8(A)-(D). Refined plots of

the error surface in Figure 4.8(E)-(H) are obtained by calculating E(D, f0) across five

equally-spaced values of D in 100 ≤ D ≤ 500 µm2/h and five equally-spaced values of f0

in 0.05 ≤ f0 ≤ 0.07 µm/h. Each individual plot of E(D, f0) in Figure 4.8(E)-(H) shows

that we have a well-defined minmum from which we can estimate D̄ and f̄0. Comparing

data in Figure 4.8(E)-(H) shows that our estimates of D̄ and f̄0 are consistent between

the four experimental replicates. In fact, three of the four refined plots give remarkably

consistent estimates of (D̄, f̄0) = (250, 0.06). Only one of the experimental replicates,

shown in Figure 4.8(E), gives slightly different parameter estimates, (D̄, f̄0) = (150,

0.065).

To visualize the quality of match between the experimental data and discrete profiles

predicted by the stochastic model we use the best-fit parameter estimates (D̄, f̄0) = (250,
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Figure 4.11: Comparison of the calibrated solutions of Model II and experimental profiles from experiment
D. Results in A-B compare the experimental data (red, green) and Model II solution (black) at t = 0 and
t = 48 h, respectively, for N = 1 model realization. Results in C-D compare the experimental data (red,
green) and Model II solution (black) at t = 0 and t = 48 h, respectively, averaged over N = 100 identically
prepared realizations of the model. The best-fit parameter estimates are (D̄, f̄0) = (500, 0.3) from Figure
4.10(D).

0.06) for experiment D. First, we solve Model I with (D̄, f̄0) = (250, 0.06) and calculate

the density profiles from the simulations as before. Second, we superimpose density

profiles from the discrete simulations with the experimental density distributions, as

shown in Figure 4.9. The choice of initial conditions in the stochastic model guarantees

that we have an exact match between the experimental density profile and the simulation

density profiles at t = 0 h. However, since we are dealing with stochastic experimental

data and a stochastic mathematical model we do not expect there to be an exact match

at later times. Results in Figure 4.9(A)-(B) show that we have a reasonable match

between the calibrated simulation results and the experimental density data for a single

realization of the stochastic model. Similarly, results in Figure 4.9(C)-(D) show that

we also have a good match between the simulation results and the experimental density

data over 100 identically prepared realizations of the stochastic model where we see that

the magnitude of the fluctuations in the averaged stochastic data are reduced.

We now turn our attention to calibrating Model II to match the experimental data.

To achieve this we repeat the exact same calibration process except that we implement

Model II with constant agent size. Comparing results in Figure 4.9(A)-(D) and Figure

4.10(A)-(D) shows that the best fit parameters in Model II lead to a larger value of
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Figure 4.12: E( f0) and E(D) for Models III and IV. A: E( f0) for Model III constructed for each exper-
imental replicate with 11 equally-spaced values of f0 in 0.01 ≤ f0 ≤ 0.11 µm/h. B: E(D) for Model IV
constructed for each experimental replicate with eight equally-spaced values of D in 100 ≤ D ≤ 1500
µm2/h.

E(D, f0). Furthermore, comparing estimates of D̄ and f̄0 for Model II between the four

identically prepared experimental data sets shows that we have a much higher degree

of variability between our parameter estimates for Model II than we did for Model I.

Overall, these results suggest that Model I is more consistent with our experimental

data than Model II, and so we do not proceed with any further refinement of our

parameter estimates for Model II. This result shows that the traditional approach of

neglecting the dynamical changes in cell size has clear impact on the ability of the

model to describe the behaviour of the entire cell population.

To visualize the quality of match between the experimental data and best-fit den-

sity profiles predicted by Model II we use the best-fit parameter estimates (D̄, f̄0) =

(500, 0.3) for experimental replicate D. Again, we solve Model II with these parameter

estimates and then estimate the density profiles from those simulations. Results in

Figure 4.11 show the density profiles from the discrete simulations superimposed on

the corresponding experimental density distributions. Visually, we see that the quality

of match in Figure 4.11(B) and Figure 4.11(D) is notably poorer than the quality of

match in Figure 4.9(B) and Figure 4.9(D). This visual difference is consistent with the

quantitative differences in E(D, f0) in Figure 4.8 and Figure 4.10.

Finally, we calibrate Models III and IV to match the experimental data. Note that

Model III neglects the role of random motility so our parameter estimation involves

just one parameter, f0. Similarly, Model IV neglects the role of intercellular forces

so our parameter estimation involves just one parameter, D. Following a now familiar

procedure, we compute measures of discrepancy, E( f0) and E(D), for Models III and
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Figure 4.13: Comparison of the calibrated solutions of Model III and experimental profiles from exper-
iment D. Results in A-B compare the experimental data (red, green) and Model III solution (black) at
t = 0 and t = 48 h, respectively, for N = 1 model realization. Results in C-D compare the experimental
data (red, green) and Model II solution (black) at t = 0 and t = 48 h, respectively, averaged over N = 100
identically prepared realizations of the model. The best-fit parameter estimate is f̄0 = 0.08 µm/h from
Figure 4.12(A).

IV, respectively. Results in Figure 4.12(A) show a well-defined minimum for each

of the four experimental replicates for Model III, however the best-fit estimates are

in the range 0.07 ≤ f0 ≤ 0.1 µm/h, which is approximately double the estimate we

identified previously for Model I. In contrast, results in Figure 4.12(B) show that we

have relatively poorly-defined minimum for all four experimental replicates for Model

IV. In this case the best-fit estimates are in the range 700 ≤ D ≤ 1000 µm2/h which is

approximately four times greater than the estimates we obtained for Model I.

Results in Figure 4.13 compare the discrete density profiles obtained using Model

III parameterized with the best-fit estimate f0 = 0.09 µm/h and the experimental density

profiles from experiment D. We note that Model III is deterministic and produces the

same density distribution regardless of the number of model realizations. The quality of

match between calibrated Model III and the experimental data for experimental replicate

D is reasonable, however the value of E( f̄0) is greater than the value of E(D̄, f̄0) for Model

I, thereby indicating that Model I produces an improved match to the experimental

data. Results in Figure 4.14 compares discrete density profiles obtained using Model IV

parameterized with the best-fit estimate D = 700 µm2/h where we see no improvement

in the quality of match between the calibrated mathematical model and the experimental
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Figure 4.14: Comparison of the calibrated solutions of Model IV and experimental profiles from exper-
iment D. Results in A-B compare the experimental data (red, green) and Model IV solution (black) at
t = 0 and t = 48 h, respectively, for N = 1 model realization. Results in C-D compare the experimental
data (red, green) and Model II solution (black) at t = 0 and t = 48 h, respectively, averaged over N = 100
identically prepared realizations of the model. The best-fit parameter estimates is D̄ = 700 µm2/h from
Figure 4.12(B).

data relative to Model 1.

All results presented in this section of Chapter 4 focus on comparing the quality

of match between Models I–IV and the experimental data using experimental replicate

D. Similar comparisons between the best-fit solution of Models I–IV and experimental

data from experimental replicates A, B and C are given in Chapter 4A (Figures 4A.4-

4A.15). These additional comparisons are consistent with the comparisons made here

in Chapter 4.

4.5 Conclusions

In this chapter we use a combined experimental-mathematical modelling approach to

quantitatively explore the contribution of cell-to-cell pushing and random motility in

driving the movement of cell fronts. We perform a series of IncuCyte ZOOMTM

scratch assay experiments in which cells are pretreated with the chemotherapy drug,

Mitomycin-C. This approach is useful because Mitomycin-C suppresses proliferation,

thereby allowing us to focus on the role of cell migration in the experiments.

We quantitatively assess the role of cell-to-cell interactions, including short range
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pushing and longer range adhesion, by calibrating an off-lattice discrete stochastic model

to match our experimental data set. The mathematical model that we use accounts for

random cell motility, long range cell-to-cell attraction (adhesion), short range cell-to-cell

repulsion (pushing) and dynamic cell size changes. We refer to this model as Model
I. To explore the significance of these various cell-level mechanisms we systematically

repeat the model calibration process for a range of simpler, more commonly used mod-

els. These simplified models account for: (i) random cell motility, long range cell-to-cell

attraction (adhesion) and short range cell-to-cell repulsion (pushing) without any dy-

namical changes in cell size (Model II); (ii) long range cell-to-cell attraction (adhesion)

and short range cell-to-cell repulsion (pushing) (Model III); and (iii) random cell motility

only (Model IV).

The novelty in our work resides in the use of the time-dependent cell-to-cell in-

teraction function, Equation (4.3), that allows us to model the dynamical increase in

the cell size during the experiments. In contrast, in most of the existing literature it

is commonly assumed that cell size remains constant over the time scale of the ex-

periments. We focus on examining the role of the cell-to-cell pushing as a result of

combined effects of cell-to-cell repulsion, motility, and dynamic increases in cell size.

The role of cell-to-cell pushing is not normally discussed when individual-based models

are applied to the experimental data. Here, we use experimental data with cells that

grow in size as a result of Mitomycin-C treatment to suppress proliferation. As such,

the effects of pushing are much more pronounced in our experiments, as opposed to

other experiments where the dynamic change in cell size is not as important.

The phenomenological principles of cell-to-cell interactions modelled in our work are

applicable to a range of cell types. However, different cell types can have different

balances of mechanisms. For example, epithelial skin cells are normally tightly packed

in thin sheets with strong cell-to-cell bonds, while mesenchymal stem cells are highly

motile. Consequently, applying our model to a specific cell type would require specific

adjustments. Also, we do not consider biochemical pathways of cell-to-cell adhesion

and motility, such as E-Cadherin junctions, trailblazing and leader-follower interactions.

The leader-follower interactions have a potential to severely influence estimates of the

leading edge position, which is normally used to evaluate the rate of spatial spreading of

the cell colony. Incorporating these effects is theoretically possible, however, they are

not always pronounced in the experimental results and are case specific.

The crucial advantage of our framework is that even in the most advanced Model I
cell motility is parametrised by only two free parameters. This is important because we

are able to explore parameter space reasonably efficiently. In contrast, many discrete

models presented in the literature are not as much plausible for calibrating experimental

data while addressing same aspects of individual-level behaviour. We note that there

is still a certain degree of freedom associated with the choice of cell-to-cell interaction
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function. However, our choice is fairly typical and is suitable for our purposes.

Comparing the calibration of these four models to our experimental data provides

insight into which model provides the most faithful representation of the experimen-

tal observation. Comparing estimates of E(D̄, f̄0) between the four models shows that

Model I provides the best match to the experimental data. This result suggests that

properly accounting for random motility, intercellular forces, including short range push-

ing and longer range attraction, as well as dynamic changes in cell size, are important

for this fairly typical experimental protocol. In contrast, calibrating Models II-IV to

the data always provides estimates of model parameters that give the best match to the

experimental data, but this does not mean that these simpler frameworks are the best

model of the underlying biological processes. This is an important result because often

in the mathematical biology literature a single type of model will be used to mimic

an experiment, without investigation of the more important question of whether that

model provides a reasonable description of the underlying biological processes. Here, by

systematically comparing the performance of four different, but related, mathematical

models to our novel experimental data set, we provide insight into the underlying biolog-

ical mechanisms in a way that is not possible when working with a single mathematical

model in isolation. This approach of calibrating multiple competing mathematical mod-

els to match a single data set is a useful way to provide insight into the underlying

biological processes, as well as providing insight into the important question of model

selection (Jin et al., 2016a; Ciupe et al., 2006).

There are many ways in which our study could be extended to provide additional

insight. A key simplifying assumption that we make in our modelling of the experi-

ments is that we give all agents in the simulations the same size at the beginning of the

simulation, δ(0) = δ0. While our estimates of this initial size are based on experimental

estimates given in Figure 4.2(C), our approach is to represent the distribution of ob-

served cell sizes using a sample mean. A close examination of the experimental images

in Figure 4.5 shows that there is considerable variability in the distribution of cell sizes

at the beginning of the experiment. This variability is captured in the error bars in

Figure 4.2(C) but neglected in our analysis. Therefore, a reasonable extension of the

current analysis would be to incorporate this initial variability into the stochastic models

with a view to understanding how this initial variability influences the population-level

motion of the cell fronts. In our work we do not analyse cell-to-cell correlations or

spatial structure (Binder and Simpson, 2013). Previously, velocity-velocity correlations

have been used to study cell swarming and mechanical waves during tissue expansion

and similar analysis could be applied to the experimental data used in our work (Tlili et

al., 2018; Serra-Picamal et al., 2018; Zaritsky et al., 2014). We leave these extensions

for future consideration.
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Chapter 4A

Additional results for Chapter 4

4A.1 Images of IncuCyte ZOOMTM scratch assay ex-

periments A, B, C, and D at times t = 0, 12, 24,

36, and 48 h.

Experiment A

t =
 0

 h

Experiment B Experiment C Experiment D

t =
 1

2 
h

t =
 2

4 
h

t =
 3

6 
h

t =
 4

8 
h

Figure 4A.1: Images of IncuCyte ZOOMTM scratch assay experiments A, B, C, and D at times t = 0, 12,
24, 36, and 48 h.
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4A.2 Cell counts for experiments A, B, C, and D at

times t = 0, 12, 24, 36, and 48 h.
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Figure 4A.2: Cell counts for experiment A (blue solid), experiment B (green solid), experiment C (red
solid), and experiment D (black solid) at times t = 0, 12, 24, 36, and 48 h.
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4A.3 Cell density distributions for experiments A, B,

C, and D at times t = 0, 12, 24, 36, and 48 h.
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Figure 4A.3: Cell density distributions for experiments A, B, C, and D at times t = 0, 12, 24, 36, and 48
h.
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4A.4 Additional results for Models I-IV
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Figure 4A.4: Comparisons of the calibrated solutions of Model I and density profiles obtained from
experiment A. Black solid lines denote solutions of the stochastic model constructed from one single
realisation, subfigures A-B, and constructed from the averaged solutions of 100 identically prepared
realisations of the stochastic model, subfigures C-D, respectively. Discrete profiles are constructed using
best-fit estimates D̄ = 150 µm2/h and f̄0 = 0.065 µm/h. Red and green solid lines represent cell density
distributions in experiment A for the time points t = 0 and 48 hours.
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Figure 4A.5: Comparisons of the calibrated solutions of Model I and density profiles obtained from
experiment B. Black solid lines denote solutions of the stochastic model constructed from one single
realisation, subfigures A-B, and constructed from the averaged solutions of 100 identically prepared
realisations of the stochastic model, subfigures C-D, respectively. Discrete profiles are constructed using
best-fit estimates D̄ = 250 µm2/h and f̄0 = 0.06 µm/h. Red and green solid lines represent cell density
distributions in experiment B for the time points t = 0 and 48 hours.
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Figure 4A.6: Comparisons of the calibrated solutions of Model I and density profiles obtained from
experiment C. Black solid lines denote solutions of the stochastic model constructed from one single
realisation, subfigures A-B, and constructed from the averaged solutions of 100 identically prepared
realisations of the stochastic model, subfigures C-D, respectively. Discrete profiles are constructed using
best-fit estimates D̄ = 250 µm2/h and f̄0 = 0.06 µm/h. Red and green solid lines represent cell density
distributions in experiment C for the time points t = 0 and 48 hours.
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Figure 4A.7: Comparisons of the calibrated solutions of Model II and density profiles obtained from
experiment A. Black solid lines denote solutions of the stochastic model constructed from one single
realisation, subfigures A-B, and constructed from the averaged solutions of 100 identically prepared
realisations of the stochastic model, subfigures C-D, respectively. Discrete profiles are constructed using
best-fit estimates D̄ = 150 µm2/h and f̄0 = 0.4 µm/h. Red and green solid lines represent cell density
distributions in experiment A for the time points t = 0 and 48 hours.
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Figure 4A.8: Comparisons of the calibrated solutions of Model II and density profiles obtained from
experiment B. Black solid lines denote solutions of the stochastic model constructed from one single
realisation, subfigures A-B, and constructed from the averaged solutions of 100 identically prepared
realisations of the stochastic model, subfigures C-D, respectively. Discrete profiles are constructed using
best-fit estimates D̄ = 500 µm2/h and f̄0 = 0.3 µm/h. Red and green solid lines represent cell density
distributions in experiment B for the time points t = 0 and 48 hours.
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Figure 4A.9: Comparisons of the calibrated solutions of Model II and density profiles obtained from
experiment C. Black solid lines denote solutions of the stochastic model constructed from one single
realisation, subfigures A-B, and constructed from the averaged solutions of 100 identically prepared
realisations of the stochastic model, subfigures C-D, respectively. Discrete profiles are constructed using
best-fit estimates D̄ = 150 µm2/h and f̄0 = 0.4 µm/h. Red and green solid lines represent cell density
distributions in experiment C for the time points t = 0 and 48 hours.
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Figure 4A.10: Comparisons of the calibrated solutions of Model III and density profiles obtained from
experiment A. Black solid lines denote solutions of the stochastic model constructed from one single
realisation, subfigures A-B, and constructed from the averaged solutions of 100 identically prepared re-
alisations of the stochastic model, subfigures C-D, respectively. Discrete profiles are constructed using
best-fit estimate f̄0 = 0.09 µm/h. Red and green solid lines represent cell density distributions in experi-
ment A for the time points t = 0 and 48 hours.
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Figure 4A.11: Comparisons of the calibrated solutions of Model III and density profiles obtained from
experiment B. Black solid lines denote solutions of the stochastic model constructed from one single
realisation, subfigures A-B, and constructed from the averaged solutions of 100 identically prepared re-
alisations of the stochastic model, subfigures C-D, respectively. Discrete profiles are constructed using
best-fit estimate f̄0 = 0.09 µm/h. Red and green solid lines represent cell density distributions in experi-
ment B for the time points t = 0 and 48 hours.
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Figure 4A.12: Comparisons of the calibrated solutions of Model III and density profiles obtained from
experiment C. Black solid lines denote solutions of the stochastic model constructed from one single
realisation, subfigures A-B, and constructed from the averaged solutions of 100 identically prepared re-
alisations of the stochastic model, subfigures C-D, respectively. Discrete profiles are constructed using
best-fit estimate f̄0 = 0.08 µm/h. Red and green solid lines represent cell density distributions in experi-
ment C for the time points t = 0 and 48 hours.
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Figure 4A.13: Comparisons of the calibrated solutions of Model IV and density profiles obtained from
experiment A. Black solid lines denote solutions of the stochastic model constructed from one single
realisation, subfigures A-B, and constructed from the averaged solutions of 100 identically prepared re-
alisations of the stochastic model, subfigures C-D, respectively. Discrete profiles are constructed using
best-fit estimate D̄ = 900 µm2/h. Red and green solid lines represent cell density distributions in experi-
ment A for the time points t = 0 and 48 hours.
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Figure 4A.14: Comparisons of the calibrated solutions of Model IV and density profiles obtained from
experiment B. Black solid lines denote solutions of the stochastic model constructed from one single
realisation, subfigures A-B, and constructed from the averaged solutions of 100 identically prepared re-
alisations of the stochastic model, subfigures C-D, respectively. Discrete profiles are constructed using
best-fit estimate D̄ = 900 µm2/h. Red and green solid lines represent cell density distributions in experi-
ment B for the time points t = 0 and 48 hours.
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Figure 4A.15: Comparisons of the calibrated solutions of Model IV and density profiles obtained from
experiment C. Black solid lines denote solutions of the stochastic model constructed from one single
realisation, subfigures A-B, and constructed from the averaged solutions of 100 identically prepared re-
alisations of the stochastic model, subfigures C-D, respectively. Discrete profiles are constructed using
best-fit estimate D̄ = 900 µm2/h. Red and green solid lines represent cell density distributions in experi-
ment C for the time points t = 0 and 48 hours.
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Chapter 5

Continuum descriptions of spatial

spreading for heterogeneous cell

populations: theory and experiment

A paper published in the Journal of Theoretical Biology.

Matsiaka Oleksii, Baker Ruth, Simpson Matthew. Continuum descriptions of spa-

tial spreading for heterogeneous cell populations: theory and experiment. Journal of
Theoretical Biology, vol. 482, 109997, 2019.

5.1 Abstract

Variability in cell populations is frequently observed in both in vitro and in vivo settings.

Intrinsic differences within populations of cells, such as differences in cell sizes or differ-

ences in rates of cell motility, can be present even within a population of cells from the

same cell line. We refer to this variability as cell heterogeneity. Mathematical models

of cell migration, for example, in the context of tumour growth and metastatic invasion,

often account for both undirected (random) migration and directed migration that is

mediated by cell-to-cell contacts and cell-to-cell adhesion. A key feature of standard

models is that they often assume that the population is composed of identical cells with

constant properties. This leads to relatively simple single-species homogeneous models

that neglect the role of heterogeneity. In this chapter, we use a continuum modelling

approach to explore the role of heterogeneity in spatial spreading of cell populations. We

employ a three-species heterogeneous model of cell motility that explicitly incorporates

different types of experimentally-motivated heterogeneity in cell sizes: (i) monotoni-

cally decreasing; (ii) uniform; (iii) non-monotonic; and (iv) monotonically increasing
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distributions of cell size. Comparing the density profiles generated by the three-species

heterogeneous model with density profiles predicted by a more standard single-species

homogeneous model reveals that when we are dealing with monotonically decreasing

and uniform distributions a simple and computationally efficient single-species homoge-

neous model can be remarkably accurate in describing the evolution of a heterogeneous

cell population. In contrast, we find that the simpler single-species homogeneous model

performs relatively poorly when applied to non-monotonic and monotonically increasing

distributions of cell sizes. Additional results for heterogeneity in parameters describing

both undirected and directed cell migration are also considered, and we find that similar

results apply.

5.2 Introduction

In vitro cell migration experiments play an important role in the discovery and testing

of putative drug treatments, the study of malignant tumour growth and metastasis, as

well as tissue regeneration and repair (Savla et al., 2004; Sengers et al., 2007; Tremel et

al., 2009; Sarapata and de Pillis, 2010; Gerlee, 2013; Edmondson et al., 2014; Shah et

al., 2016). Mathematical models of many biological processes involved in these exper-

iments normally require certain assumptions to make the problem mathematically and

computationally tractable. When modelling large populations of cells, one of the most

intuitive approaches is to assume that all cells have fixed properties, such as assuming

all cells have constant size and constant diffusivity (Sherratt and Murray, 1990; Galle et

al., 2005; Simpson et al., 2013). In this framework a cell population is considered to be a

homogeneous population, and single-species homogeneous models are routinely invoked

(Maini et al., 2004a; Maini et al., 2004b; Sepulveda et al., 2013; Simpson et al., 2013;

George et al., 2017; Vo et al., 2015). Single-species homogeneous models are much

less computationally expensive than more elaborate multi-species heterogeneous models

and, as a result, are frequently used relative to multi-species counterparts. In addition,

multi-species frameworks usually involve a significantly larger number of free model pa-

rameters that we may have little prior knowledge about and so the process of calibrating

multi-species heterogeneous models to match experimental observations is significantly

more challenging than calibrating single-species homogeneous models. This is an im-

portant consideration because it is well-known that parameterising mathematical mod-

els of biological processes can be challenging, often requiring computationally-intensive

methods (Pozzobon and Perré, 2018; Warne et al. 2019).

Although heterogeneity in cell populations is frequently observed in experiments,

there is relatively little guidance or consensus in the literature about how to incorporate

such heterogeneity into the mathematical models used to replicate and predict such

experiments (An et al., 2001; Altschuler et al., 2010; Menon et al., 2018). Figure
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Figure 5.1: Heterogeneity in a population of PC-3 prostate cancer cells (Kaighn et al., 1979). (a)
Experimental image of an advancing cell population and corresponding cell size distribution. The red
solid line denotes position of the leading edge. (b) Detailed image of the subregion denoted in the blue
rectangle in Figure 5.1(a). (c) Cell size distribution with a bin size of 2.3 µm. The cell size distribution
is obtained from the sample of 184 cells randomly selected from the population. (d) Cell size distribution
with a bin size of 15 µm. The histogram in Figure 5.1(d) is constructed using the same sample of 184
cells.

5.1(a)-(b) shows a typical experiment where we can clearly visually observe cells of

different sizes. The measured cell size distribution in Figure 5.1(c) quantifies this

heterogeneity in cell sizes and raises the question if the most straightforward approach

of applying a single-species homogeneous model can be reasonably used to predict the

spatial spreading of this clearly heterogeneous population. In addition to the clear visual

heterogeneity in cell sizes, it could be relevant to consider that cells of different sizes

can exhibit different behaviour such as different rates of motility, or different mechanical

properties including resistance to deformation and adhesion. Therefore, it could be

possible that there are multiple types of heterogeneity acting in even this very simple

experiment. Previously, heterogeneity in cell populations has been introduced in both

discrete and continuum models of cell motility (Simpson et al., 2014; Jin et al., 2016b;
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Sundstrom et al., 2016; Matsiaka et al., 2017; Chapter 2). Previous work has also

attempted to estimate parameters in heterogeneous models that describe glioblastoma

progression (Rutter et al., 2018). However, these previous modelling studies do not

address the basic question of identifying whether it is absolutely necessary to apply a

multi-species heterogeneous models to obtain a faithful description of the behaviour of

the heterogeneous population and whether different forms of heterogeneity affect the

answer to this fundamental question.

In our chapter we use an experimentally-motivated approach to investigate the role

of heterogeneity in two-dimensional scratch assays, and we compare the performance of

a single-species homogeneous model relative to a heterogeneous multi-species model.

We use numerical solutions of the multi-species heterogeneous model to produce syn-

thetic test data that we use to investigate the performance of a simpler single-species

homogeneous model. To mimic experimental data, such as depicted in Figure 5.1, we

use the multi-species continuum approach introduced by Matsiaka et al. (2017) (Chap-

ter 2). To keep our work tractable, we describe the heterogeneity by dividing the total

population into three subpopulations with varying properties. The choice of working

with three subpopulations allows us to keep the model computationally tractable while

capturing important differences in the population properties, as illustrated in Figure

5.1(d). Throughout this chapter we consider four distinct distributions of cell sizes: (i)

monotonically decreasing (Set Ia); (ii) uniform (Set Ib); (iii) non-monotonic (Set Ic);

and (iv) monotonically increasing (Set Id). The monotonically decreasing distribution,

as shown in Figure 5.3(a), is a fairly accurate approximation of the experimentally ob-

served cell size distribution in Figure 5.1(d). The other three kinds of distributions are

included in our work for completeness. Our findings suggest that, for certain cell size

distributions, namely monotonically decreasing and uniform distributions, the single-

species homogeneous model performs remarkably well with an excellent match between

the density profiles generated by the three-species heterogeneous model and density

profiles predicted by its single-species homogeneous analogue. Therefore, our results

imply that applying a single-species homogeneous model to describe experiments with

monotonically decreasing or uniform cell size distributions might be sufficient for accu-

rately predicting population-level behaviour. In contrast, the data with non-monotonic

and monotonically increasing cell size distributions might require the application of

multi-species models to account for differences in population.

This chapter is organised in the following way. In Section 5.3 we describe experimen-

tal data for a series of two-dimensional scratch assays that clearly involve a significant

level of heterogeneity among the population. In Section 5.4 we introduce a mathematical

model of the cell motility and adhesion. In particular, we focus on two analogues of the

mathematical model: (i) a three-species heterogeneous model of cell motility where pa-

rameters including cell size, cell diffusivity and cell adhesion strength can vary between
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the subpopulations; and (ii) a more traditional single-species homogeneous model of cell

motility where all cells in the population are treated as having the same cell size, cell

diffusivity and cell adhesion strength. Results in Section 5.5 compare performance of the

single-species homogeneous model as applied to data generated using the three-species

heterogeneous model for different cell size distributions. Additional results presented in

Chapter 5A explore the role of: (i) heterogeneity in undirected (diffusive) migration, Set

II; and (ii) heterogeneity in directed (adhesion/cell-to-cell contacts) migration, Set III.

Finally, in Section 5.6 we summarise our result and propose potential extensions.

5.3 Experimental data

Monolayer scratch assays are performed using the IncuCyte ZOOMTM system (Essen

BioScience). In all experiments we use the PC-3 prostate cancer cell line (Kaighn et al.,

1979) from the American Type Culture Collection (ATCCTM, Manassas, USA). After

growing, cells are removed from the flask using TrypLETM (ThermoFisher Scientific)

in phosphate buffered saline, resuspended in growth medium and seeded at a density of

20,000 cells per well in 96-well ImageLock plates (Essen BioScience). The diameter of

each individual well is 9000 µm.

Mitomycin-C is added at a concentration of 10 g/mL for two hours before a scratch

is made in the monolayer of cells (Sadeghi et al., 1998). Mitomycin-C is a chemotherapy

drug that blocks DNA replication and, consequently, stops proliferation. As a result of

treatment the number of cells in the assay remains approximately constant since cells

neither proliferate or die on the timescale of the experiment. Often scratch assays are

performed using mitomycin-C treated cells so that the experiment focuses only upon

the role of cell migration as opposed to the combined effects of cell migration and cell

proliferation. A WoundMakerTM (Essen BioScience) is used to create identical scratches

in the uniformly distributed populations. Medium is aspirated after scratching; each

well is washed twice and refilled with fresh medium (100 µL). Plates are incubated in

the IncuCyte ZOOMTM and photographed every two hours for 48 hours. In total, these

experiments are performed in eight of the 96 wells on the 96-well plate. In our work

we use one of the experimental replicates at t = 0 h, shown in Figure 5.1, to quantify

the heterogeneity in a cell population.

To quantify the heterogeneity in cell size we randomly select 184 cells from the

experimental image in Figure 5.1(a) at t = 0 h. Assuming each cell can be treated as

a disc, we estimate the equivalent diameter of each individual cell using the following

approach. First, we use the histogram tool in Photoshop CS5 to count a number

of pixels in the area occupied by each individual cell. The pixel count is converted

to an area, A. Second, we estimate the equivalent diameter, δ =
√

4A/π and use

this data to produce histograms to illustrate and visualise the variability in cell size
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within the experiment. The resulting cell size distribution, presented as a histogram

constructed with bin width 2.3 µm, is shown in Figure 5.1(c). The bin width 2.3 µm is

chosen to demonstrate the fine structure within the cell population that is not normally

incorporated in mathematical models of cell migration. However, the computational

simulation of a population with the cell size distribution shown in Figure 5.1(c) is

impractical since it would require significant computational resources to simulate the

dynamics of 17 distinct subpopulations. As a compromise, we increase the bin width

to reduce the number of distinct subpopulations while still retaining a sufficient number

of bins to allow us to broadly characterise the heterogeneity in the population. Figure

5.1(d) demonstrates the histogram of cell sizes constructed using the same sample of

cells with a larger bin size width of 15 µm. Here, we have three subpopulations that

capture the key trends in the heterogeneity in Figure 5.1(c) without needing to deal

with 17 distinct subpopulations.

In this chapter we use experimental data to extract the cell size distribution at t = 0 h
and use this data to generate the initial conditions in the three-species heterogeneous

model (Set Ia, Figure 5.3). An interesting side effect of Mitomycin-C pretreatment

is that cells increase in size abnormally fast compared to similar experiments without

pretreatment. As a result of pretreatment, the cell size distribution changes significantly

with time, which, in turn, represents an additional degree of freedom in the problem.

To keep our work tractable, we consider the most fundamental problem where we treat

the cell size distribution as being constant through time, and we leave an extension to

the case where the cell size distribution varies with time for future analysis.

5.4 Mathematical model

Discrete, stochastic models are often used to describe the spatial spreading of a popula-

tion of cells, especially when the population of cells is not too large. Here, cells move

and interact with each other via predefined force function, as illustrated schematically in

Figure 5.3 (Newman and Grima, 2004; Callaghan et al., 2006; Hasenauer et al., 2011;

Frascoli et al. 2013; Osborne et al., 2017). This approach is individual-based in the

sense that knowledge about the movement of each individual is essential to infer the

evolution of a density on the population-level scale. One of the most popular individual-

based modelling approaches makes the assumption that the motion of each cell can be

described by a Langevin stochastic differential equation (Newman and Grima, 2004;

Middleton et al., 2014). As such, the system of N cells is described by a system of N

stochastic differential equations of the form

d~xi

dt
=

∑
i, j

~Fi j + ~ξi, (5.1)
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Figure 5.2: (a) An idealisation of the front-like distribution of cells in the experimental design shown in
Figure 5.1(a). Here all cells are of constant size. Fi j is the interaction force between cell i and cell j. The
vertical dashed line represents the approximate leading edge of the population. (b) A typical cell-to-cell
interaction force function in the form of the modified Morse potential, Z(r), (Equation (3.6)) used to
mimic adhesion and repulsion between individual cells. The vertical dashed line represents the diameter
of individual agents, δ. The horizontal line at Z(r) = 0 shows the change from long-range attraction
(Z(r) < 0 for r > δ) to short-range repulsion (Z(r) > 0 for r < δ).

where ~xi is the position vector of the ith cell, ~Fi j is the interaction force between cells

i and j, and ~ξi is the random stochastic force acting upon cell i (Middleton et al., 2014;

George et al., 2017; Osborne et al., 2017). The interaction force, ~Fi j, can be used to

parametrise various features of cell populations, including heterogeneity. In fact, it is

relatively straightforward to model heterogeneity in cell sizes in a discrete framework

since the interaction force, ~Fi j, can be chosen to explicitly include the cell size as a

parameter (Matsiaka et al., 2018; Chapter 3). Here we can easily differentiate the

population into an arbitrary number of subpopulations by assigning the value of the cell

size to each member of the population. Despite the many advantages of this kind of

individual-based modelling approach, such individual-based models are computationally

inefficient as the number of cells, N, increases. This is because the computation time

required to simulate such models increases with N.

In contrast, continuum models based on partial differential equations (PDEs) are

much more convenient to model large cell populations because the time taken to solve

continuum PDE models is independent of the size of the population (Sherratt and Mur-

ray, 1990; Sheardown and Cheng, 1995; Cai et al., 2007; Wise et al., 2008). Often,

PDE models are derived using continuum-limit approximations of underlying discrete

models and, as such, are able to retain certain features of a discrete model (Middleton
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et al., 2014; O’Dea and King, 2012). In this chapter we focus on a continuum model

that is derived by taking the limit of a three-species heterogeneous individual-based

model (Matsiaka et al., 2017; Chapter 2). This approach allows us to conceptually

incorporate key features of the heterogeneous cell populations into a discrete modelling

framework, and then using a computationally efficient approach to solve the resulting

continuum-limit PDE description of the underlying heterogeneous model.

We note that, due to the geometry of experiments presented in Figure 5.1, we are

interested in the net movement of cells in only one direction, in this case the horizontal

direction (Jin et al., 2016a). This is due to the fact that the net flux of cells in the

vertical direction is, on average, zero because of the symmetry in the initial conditions

of a scratch assay. Consequently, we focus on a one-dimensional continuum model and

consider the evolution of the total cell population in the horizontal direction only. The

use of a one-dimensional framework to describe two-dimensional scratch assays has

been previously demonstrated to be a convenient approach to reduce the computational

complexity while still describing the key features of the experiment (Matsiaka et al.,

2018; Chapter 3).

Here we employ a mean field model describing the spatial spreading of a population

of cells composed of three distinct subpopulations. In one-dimension, the model can be

written as

∂p(1)(x, t)
∂t

= D1∆p(1)(x, t) + ∇(p(1)(x, t) V (1,1)(x, t)) (5.2)

−

3∑
m=1

nm∇(p(1)(x, t) V (1,m)(x, t)),

∂p(2)(x, t)
∂t

= D2∆p(2)(x, t) + ∇(p(2)(x, t) V (2,2)(x, t)) (5.3)

−

3∑
m=1

nm∇(p(2)(x, t) V (2,m)(x, t)),

∂p(3)(x, t)
∂t

= D3∆p(3)(x, t) + ∇(p(3)(x, t) V (3,3)(x, t)) (5.4)

−

3∑
m=1

nm∇(p(3)(x, t) V (3,m)(x, t)),

V (l,m)(x, t) =

∫
Ω

F(l,m)(x − y) p(m)(y, t) dy, (5.5)

where p(1)(x, t), p(2)(x, t), and p(3)(x, t) are the cell densities associated with each sub-

population and depend on position x and time t. In this heterogeneous model, D1, D2,

and D3 are diffusivities of subpopulations 1, 2, and 3, n1, n2 and n3 are the numbers of

cells in each subpopulation, operator ∆ is defined as ∆ = ∂2/∂x2, operator ∇ = ∂/∂x, and

V (l,m)(x, t) is the velocity field of subpopulation l induced by subpopulation m (Matsiaka

126



CHAPTER 5. HETEROGENEOUS POPULATIONS 5.4. DISCRETE MODEL

et al., 2017; Chapter 2). The diffusivity constants parameterise the undirected migration

of each subpopulation and the velocity fields describe the directed migration of each sub-

population that is driven by a combination of cell-to-cell adhesion and crowding effects.

Overall, the parameter regime used here to simulate three-species populations of cells

is consistent with the parameter regime for which mean field model have previously

demonstrated to be in a good agreement with the individual-based model (Chapter 2

and Chapter 3).

The interaction force between subpopulations l and i that describes directed migration

is given by

F(l,i)(x − y) = f (i)
0 Zi(r) sgn(x − y), (5.6)

where f (i)
0 is the dimensional amplitude of the interaction force acting on subpopulation

i, Zi(r) is a dimensionless function that parametrises different features of the cell-to-cell

interactions, and sgn is the signum function. We choose to include long-range attrac-

tion that models cell-to-cell adhesion, and a short-range repulsion that reflects volume

exclusion effects (Frascoli et al., 2013; Painter et al., 2010). A number of different

phenomenological laws, Zi(r), are used to model repulsive and adhesive intercellular

forces (Murray et al., 2009; Jeon et al., 2010; Middleton et al., 2014). In our work we

adopt modified Morse potential in the form

Z(r) =


2
(

exp[−2a (r − δ)] − exp[−a (r − δ)]
)
, r < 2δ,

2
(

exp[−2a (r − δ)] − exp[−a (r − δ)]
)

g(r), 2δ ≤ r ≤ 3δ,

0, r > 3δ,

(5.7)

where a is the parameter that controls the shape of the force function, δi is the cell

size in the subpopulation i, i = 1, 2, 3, and r = |x − y|. We fix the value of the shape

parameter at a = 0.08 µm−1 (Matsiaka et al., 2017; Chapter 2). The function gi(r) =(
1 − sin

[
(2πr − πδi)/2δi

])
/2 is the Tersoff cut-off function introduced to impose a finite

range of intercellular interactions (Tersoff, 1988). A sketch of the potential function

given by Equation (5.7) for different values of the parameter a is shown in Figure 5.2(b)

confirming that this potential function describes short range repulsion, longer range

attraction and no interactions at over much longer distances. In summary, the key

parameters in the heterogeneous three-species model are: (i) the cell sizes, δ1, δ2 and

δ3; (ii) the cell diffusivities, D1, D2 and D3; and (iii) the amplitudes of interaction forces,

f (1)
0 , f (2)

0 and f (3)
0 . In this chapter we will systematically explore how heterogeneity in

each of these three key parameters influences whether we need to consider a complex

heterogeneous multi-species model or whether we can describe the spatial spreading of

a cell population using relatively simple homogeneous, single-species models. Since our

experimental data in Figure 5.1 allows us to explicitly characterise the heterogeneity
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in cell size, all results in Chapter 5 focus on cell size. Additional results in Chapter

5A focus on heterogeneity in diffusivity and amplitude of interaction forces to provide

additional insight into the role of heterogeneity in these kinds of experiments.

We define the total density of the heterogeneous population as

P(x, t) =

3∑
i=1

[
p(i)(x, t)

]
, (5.8)

where p(i)(x, t) is the cell density of subpopulation i = 1, 2, 3 predicted by Equations (5.2)-

(5.4), and P(x, t) is the total cell density. It is important to interpret the solutions of

Equations (5.2)-(5.4) in terms of total cell density since standard experimental protocols

do not normally facilitate the measurement of spatial and temporal distributions of

various subpopulations (Cai et al., 2007; Treloar et al., 2014).

We can reduce the three-species heterogeneous system of equations, Equations (5.2)-

(5.4), to obtain a single-species homogeneous model in the form,

∂P(x, t)
∂t

= D̄∆P(x, t) − (N − 1)∇
(
P(x, t) V(x, t)

)
, (5.9)

where P(x, t) is the cell density of the total population, N =
∑3

i=1 ni is the total number

of cells in the population. Here we assume that the cell size, diffusivity and strength

of the interaction force for each population is constant, giving δi = δ̄, Di = D̄, and

f (i)
i = f̄0 for i = 1, 2, 3. The key differences between the homogeneous single-species

model, Equation (5.9), and the three-species heterogeneous model, Equations (5.2)-(5.4)

are: (i) the three-species heterogeneous model incorporates three advection-diffusion

equations while the single-species homogeneous model is given by a single advection-

diffusion equation; (ii) the three-species heterogeneous model contains up to nine free

parameters as opposed to three parameters in the single-species homogeneous model.

The initial conditions in all simulations are chosen to mimic a cell front, such as

that shown in our experimental data set, Figure 5.1(a). As such, we adopt an initial cell

distribution in the form of the one-dimensional step function,

P(x, 0) = P(x, 0) =

23.9 × 10−3 cells/µm, 0 µm < x < 1000 µm,

0 cells/µm, 1000 µm < x < 2000 µm,
(5.10)

on 0 < x < 2000 µm, which is consistent with a length-scale of a typical in vitro ex-

periment (Jin et al., 2016a). The initial cell distribution in the heterogeneous model is

given by the sum of initial densities of three subpopulations, P(x, 0) =
∑

i p(i)(x, 0), where

the density of each subpopulation, p(i)(x, 0), varies between each cell size distribution

and can be inferred from the histograms in Figures 5.3(a)-5.6(a). The value of the

initial density of the total population is chosen to represent fairly confluent population
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of cells. For example, the simulation of the three-species population with the mono-

tonically decreasing cell size distribution, Set Ia, is initiated with the confluence level

of approximately 65% of maximum packing density, which is fairly typical for scratch

assay experiments (Jin et al., 2016; Matsiaka et al., 2017; Chapter 2). We note that

the boundary of the experimental image in Figure 5.1(a) is not a physical boundary

and cells can freely move across this boundary because the image captures only a small

fraction of a much larger experimental domain (Simpson et al., 2018). During the ex-

periment, cells freely migrate, in each direction, across the boundary. However, since

the density of cells away from the scratch is spatially uniform, the net flux of cells

across the boundary of the image is zero. To capture this situation we impose zero net

flux boundary conditions at x = 0 µm and x = 2000 µm.

All continuum results for single-species homogeneous and three-species heteroge-

neous models, given by Equation (5.9) and Equations (5.2)-(5.4), respectively, are

solved numerically using the method of lines with ∆x = 4 µm and ∆t = 0.005 h on

0 µm < x < 2000 µm domain (Matsiaka et al., 2017; Chapter 2). The spatial and tempo-

ral discretisations are chosen sufficiently fine to produce grid independent results. The

detailed discretisation scheme used in this chapter is presented in the Chapter 5A.

5.5 Results and Discussion

To investigate the ability of a single-species homogeneous model to capture the be-

haviour of the three-species heterogeneous analogue, we consider a series of case stud-

ies. In these case studies we vary only one parameter at a time to simplify our analysis

and to focus on the impact of each individual parameter. Another approach would be to

use the mathematical models to explore heterogeneity multiple parameter at the same

time. However, in this first instance, we prefer to take a more fundamental approach

and examine the role of heterogeneity in each parameter separately. In the first set of ex-

periments, Set I, we vary the cell size, δ̄, while keeping D̄ and f̄0 fixed at D̄ = 250 µm2/h
and f̄0 = 1.0 µm/h. The values of Di and f (i)

0 in the heterogeneous three-species model

are fixed at Di = 250 µm2/h and f (i)
0 = 1.0 µm/h for i = 1, 2, 3. These values of diffu-

sivity and amplitude of cell-to-cell interaction forces are based on detailed experimental

measurements reported previously (Matsiaka et al., 2019; Chapter 4).

There are number of ways to quantify performance of the single-species homoge-

neous model in our framework. The position of the leading edge of the spreading

population is routinely used by experimentalists to provide quantitative insights into the

rate of spatial spreading of a cell population (Treloar and Simpson, 2013; Johnston et al.,

2014; Kollimada et al., 2016; Nardini et al., 2016; Bobadilla et al., 2019). Therefore, we

quantify the discrepancy between the solution of the heterogeneous three-species model

and the homogeneous single-species model using an error measure, E(δ̄), associated
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with the position of the leading edge,

E(δ̄) =
1
α

∑
j

[
S(t j) − S (t j)

]2
, (5.11)

where S(t j) is the position of the leading edge according to the three-species hetero-

geneous model at time t j, S (t j) is the position of the leading edge predicted by the

single-species homogeneous model, and α = 49 is the number of discrete time points we

use to compute E(δ̄). In both scenarios the position of the leading edge is computed as

the coordinate on the one-dimensional domain where the density is 1% of the initial den-

sity (Treloar and Simpson, 2013). An alternative approach is to use an error measure

based on the discrepancy between cell density profiles. At first, this approach of using

the entire cell density profile might be thought to be preferable to working with leading

edge data since density profiles incorporate much more detailed spatial information than

just using the position of the leading edge. However, extracting the density data from

experiments is much more tedious because it often involves manual cell counting in

regions where cell densities are high and this is both difficult to reproduce and very

time consuming (Treloar et al. 2014). Therefore, to keep our work as practical as

possible, here we present only results with an error measure solely based on the leading

edge data. Additional result that measure the discrepancy between the models using

the entire density information are presented in Chapter 5A (Figure 5A.1 and Figure

5A.2), and we find that this more complicated approach gives very similar results to the

leading edge data. Therefore, in this chapter, we focus on the using leasing edge data.

The experimental distribution of cell sizes in Figure 5.1(d) provides insights into

potential choices of the cell size distribution in Equations (5.2)-(5.4). Here we define

three subpopulations based on the equivalent cell size: small (δ1 = 18 µm), medium

(δ2 = 34 µm), and large cells (δ3 = 50 µm). For simplicity, we set the fractions

of small and medium cells to be equal and refer to this distribution as a monotoni-

cally decreasing distribution of cell sizes (Set Ia, Figure 5.3). After considering the

experimentally-motivated monotonically decreasing distribution, we then systematically

explore: (i) uniform (Set Ib, Figure 5.4), (ii) non-monotonic (Set Ic, Figure 5.5), and

(iii) monotonically increasing distributions (Set Id, Figure 5.6).

Figure 5.3(b) compares the leading edge prediction, S(t), given by the three-species

heterogeneous model with the associated best-fit match, S (t), predicted by the single-

species homogeneous model. Our systematic computation of the error measure, E(δ̄),
demonstrates a clear minimum which ensures the unique choice of a best-fit cell size, δ̄.

Results in Figure 5.3(d) superimposes the solution of the three-species heterogeneous

model with the solution of the single-species homogeneous model parameterised with

the best fit cell size. Comparing the time evolution of the spreading density profiles

in Figure 5.3(d) (with additional details at the leading edge shown in the magnified
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region in Figure 5.3(e)) we see that the appropriately parameterised single-species

homogeneous model captures the temporal evolution of the spreading profile given by the

heterogeneous model remarkably accurately. In particular, the density profiles predicted

by the single-species homogeneous model match both the position and shape of the

density profiles generated by the three-species heterogeneous model. These results

imply that in this case it would be reasonable to use a much simpler single-species

homogeneous model to describe and predict this spatial spreading.

Visual inspection of the results in Figures 5.3 - 5.6 suggests that we can always find

a unique, well-defined value of the cell size in the single-species homogeneous model

to provide an accurate prediction of the temporal evolution of the position of a lead-

ing edge of the spreading heterogeneous cell populations regardless of the underlying

cell size distribution in the three-species heterogeneous model (Figures 5.3(b)-5.6(b)).

In contrast, the quality of match between the shape of the density profiles for the

three-species heterogeneous model and the single-species homogeneous model varies

significantly between different cell size distributions. For example, the experimen-

tally motivated distribution in Figure 5.3(a) (Set Ia) leads to a remarkably good match

between the three-species heterogeneous model and the single-species homogeneous

model. Similarly, the uniform distribution shown in Figure 5.4(a) (Set Ib) also leads to

a reasonably good quality of match between two different models. In contrast, the den-

sity profiles associated with the non-monotonic cell size distribution (Figure 5.5, Set Ic)

and monotonically increasing cell size distribution (Figure 5.6, Set Id) show a relatively

poor match. In these cases, it would seem prudent not to use a simpler single-species

homogeneous model to simulate and predict these experiments.

The values of the cell size, δ̄, that produce best match between the single-species

homogeneous and three-species heterogeneous models vary significantly between differ-

ent cell size distributions. For example, the best-fit value of the cell size for the uniform

distribution (Figure 5.4, Set Ib), δ̄ = 36 µm, is quite close to the weighted average value

of 34 µm for the distribution in Figure 5.4(a). This indicates that the choice of a simple

weighted average of the cell sizes might be a reasonable way to to parameterise the

single-species homogeneous model if the experimentally observed distribution is close

to uniform. We observe similar agreement for best-fit values of the cell size in the

case of monotonically decreasing (Set Ia) and monotonically increasing (Set Id) cell size

distributions, shown in Figure 5.3 and Figure 5.6, respectively. In contrast, the best-fit

value of the cell size for the non-monotonic distribution (Set Ic), δ̄ = 40 µm, differs

significantly from the weighted average of 34 µm. Therefore, these results suggest that

great care ought to be exercised when taking a distribution of parameter values and

attempting to select the most appropriate single representative value of that parameter.

In addition to the results in Figures 5.3 - 5.6 exploring the role of heterogeneity in

cell size, we present an additional suite of results, called Set II and Set III, that systemat-
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ically explore the role of heterogeneity in the diffusivity and interaction strength. These

additional results are presented in Chapter 5A. Both Set II and Set III data sets demon-

strate exceptional quality of match between the three-species heterogeneous simulation

data and its best-fit single-species homogeneous equivalent. Again, these additional re-

sults provide guidance about when it is reasonable to approximate a more complicated

heterogeneous mathematical model with a simpler single-species homogeneous model.
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5.6 Conclusions

In this chapter, we explore the role of heterogeneity in the context of studying how

an initially confined population of cells can spread into surrounding initially unoccupied

regions, as in the case of a scratch assay. We use a three-species heterogeneous model

of cell motility, account for undirected cell motility, short range repulsion (crowding)

and longer range adhesion, to capture experimentally observed heterogeneity in cell

sizes from a new experimental data set from a two-dimensional scratch assay as shown

in Figure 5.1. Our continuum models account for the undirected random motility, cell-

to-cell adhesion, and cell crowding. The single-species homogeneous model is applied

to each set of three-species heterogeneous simulation data in an attempt to match cell

density profiles.

To analyse the performance of the single-species homogeneous model to capture

data from our three-species heterogeneous model we consider four different cell size

distributions: (i) monotonically decreasing distribution, (ii) uniform distribution, (iii)

non-monotonic distribution, and (iv) monotonically increasing distribution. Overall, for

a set of experimentally-motivated parameter combinations, we find that the standard

single-species homogeneous model is able to accurately predict the position of the lead-

ing edge for all case studies presented. However, the quality of the match between the

shape of the density profiles varies significantly depending on the details of the form

of the heterogeneity present. For example, the monotonically decreasing distribution

(Set Ia) demonstrates remarkable goodness of fit between the two sets of density pro-

files, as shown in Figure 5.3(d). This result is important because the monotonically

decreasing cell size distribution is chosen to mimic the distribution of the cell sizes

observed in our new experimental data set, shown in Figure 5.1. Similarly, the ho-

mogeneous distribution, Figure 5.4, shows that single-species homogeneous model is

able to accurately replicate the three-species heterogeneous model results. This is an

expected result because in this special case the cells of each subpopulation are the same

size. In contrast, the single-species homogeneous model does not perform so well when

applied to both non-monotonic and monotonically increasing distributions in Figures

5.5-5.6, respectively. Additionally we explore potential heterogeneity in diffusivity and

amplitude of the cell-to-cell interactions (Chapter 5A). Overall, our results suggest that

for certain cell size distributions, a simple and computationally efficient single-species

homogeneous model is preferable over a thee-species heterogeneous model.

There are number of ways this chapter can be extended which we leave for future

analysis. All our simulations and analysis focus on treating the heterogeneity in the

population of cells by considering the total population to be composed of three dis-

tinct subpopulations. For more extreme forms for heterogeneity, such as multi-modal

distributions, the results presented in this chapter could be extended by considering
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additional subpopulations. Another simplification that we invoke is to assume that the

measured heterogeneity remains constant for the duration of the experiment. Future

studies could address the significantly more complicated question of allowing the dis-

tributions to evolve in time on the same time scale as the experiment to see if it is

still possible to use a simpler homogeneous model in this more complicated scenario.

Another avenue for further exploration would be to consider heterogeneity in more than

one parameter at a time, whereas in this chapter we have taken the most fundamental

approach and examined heterogeneity in just one parameter in isolation from the others.

For both of these extensions, the modelling framework presented in this study can be

extended to explore these additional features, and we leave such extensions for future

consideration. Another option for extending the work would be to consider further de-

tails in the mathematical models, such as the effects of combined cell migration and

combined cell proliferation. Here we have not pursued this approach because our ex-

perimental data set has been carefully prepared to exclude the effects of proliferation so

that we can focus just on cell migration and heterogeneity in cell migration alone.
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Chapter 5A

Additional results for Chapter 5

5A.1 Heterogeneity in the cell size assessed using den-

sity profile data

In this section we repeat the analysis contained in Figure 5.3 and Figure 5.5 (Chapter 5),

except that we use a different measure of the discrepancy, that is instead of using the

leading edge data, we use a measure that is based on the entire cell density profile.

In this analysis we keep Di and f (i)
0 fixed at Di = 250 µm2/h and f (i)

0 = 1.0 µm/h for

i = 1, 2, 3, respectively (Set I, Chapter 5). The main difference is that here we define

the error measure, E(δ̄), as the mean square difference between the density profiles

given by the three-species heterogeneous model and profiles predicted the single-species

homogeneous model,

E(δ̄) =
1
αN

∑
i

∑
j

[
P(xi, t j) − P(xi, t j)

]2
, (5A.1)

where P(xi, t j) is the total agent density given by the three-species heterogeneous model,

P(xi, t j) is the agent density predicted by the single-species homogeneous model, α = 49
is the number of discrete time points that we used to compute E(δ), and N = 500 is the

number of discrete spatial points in the discretisation scheme.

Results in Figures 5A.1-5A.2 are analogous to those results in Figure 5.3 and Figure

5.5 (Chapter 5). The best-fit value of the cell size, δ̄ = 26 µm, is relatively close to a

best-fit estimate of δ̄ = 28 µm reported in Chapter 5 using the error measure, E(δ̄),
based on the position of the leading edge (compare Figure 5A.1(b) and Figure 5.3(c) in

Chapter 5). Here we find that the single species homogeneous model can be used to

accurately describe the three-species heterogeneous data for both error measures, and

this is obvious when we visually compare Figure 5A.1(c) and Figure 5.3(d) in Chapter 5.

In contrast, the density profiles associated with the best-fit homogeneous model in

Figure 5A.2(c) do not provide an accurate match the three-species heterogeneous data
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generated. This means that the heterogeneous density profiles associated with the

non-monotonic distribution cannot be faithfully replicated using a simpler homogeneous

model. We note that, for all cases presented, the discrepancy between the three-species

and single-species density profiles significantly increases with time, and this might be

an important factor to take into account when choosing appropriate model. In summary,

the conclusions we draw in Chapter 5 about the suitability of the homogeneous model

to accurately describe results generated using the heterogeneous model are the same

regardless of whether we use leading edge data or the entire cell density profile to

measure the discrepancy between the two modelling frameworks.
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Figure 5A.1: Heterogeneity in cell sizes: monotonically decreasing distribution. (a) Cell size distribution
adopted in the three-species heterogeneous model, Equations (5.2)-(5.4), (Chapter 5). Here the propor-
tions of cells of different sizes are set to: (i) n1/N = 0.472; (ii) n2/N = 0.472; (iii) n3/N = 0.056. (b)
Error measure, E(δ̄), between the cell density profiles, P(x, t), given by the three-species heterogeneous
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cell size, δ̄. The black arrow denotes the best-fit value of cell size, δ̄ = 26 µm. (c)-(d) Cell density profiles
predicted by the three-species heterogeneous model, P(x, t) (solid red), superimposed with density profiles
given by the single-species homogeneous model calibrated with the best-fit value of δ̄, P(x, t) (solid blue).
The continuum results for both models are presented at t = 0, 12, 24, 36, and 48 h. Black arrows denote
the direction of increasing time. Results in (d) show a close-up comparison right near the leading edge,
denoted by the gray shaded region in (c).
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5A.2 Heterogeneity in the interaction force, f0

In this data set we explore the heterogeneity in the interaction forces where we fix values

of the diffusivity, Di = 250 µm2/h, and the cell size, δi = 34 µm for i = 1, 2, 3. We note

that these estimates are typical parameter values for PC-3 cells (Matsiaka et al., 2019;

Chapter 4). To analyse performance of the single-species homogeneous model (Equation

(5.9)) applied to data generated by the three-species heterogeneous model (Equations

(5.2)-(5.4)) we consider four interaction force distributions: (i) uniform distribution,

Figure 5A.3(a), (ii) monotonically decreasing distribution, Figure 5A.4(a), (iii) non-

monotonic distribution, Figure 5A.5(a), and (iv) monotonically increasing distribution,

Figure 5A.6(a). For all cases presented we are able to predict a position of the leading

edge as well as accurately describe cell density profiles given by the three-species

heterogeneous model.
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5A.3 Heterogeneity in the diffusivity, D

In this data set we explore the heterogeneity in the diffusivity where we fix values of

the amplitude of the interaction force, f (i)
0 = 0.05 µm/h, and the cell size, δi = 34 µm

for i = 1, 2, 3. We note that these estimates are typical parameter values for PC-3 cells

(Matsiaka et al., 2019; Chapter 4). To analyse performance of the single-species homo-

geneous model (Equation (5.9)) applied to data generated by the three-species heteroge-

neous model (Equations (5.2)-(5.4)) we consider four different diffusivity distributions:

(i) uniform distribution, Figure 5A.7(a), (ii) monotonically decreasing distribution, Fig-

ure 5A.8(a), (iii) non-monotonic distribution, 5A.9(a), and (iv) monotonically increasing

distribution, Figure 5A.10(a). For all cases presented we are able to predict a position

of the leading edge as well as accurately describe cell density profiles given by the

three-species heterogeneous model.
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5A.4 Discretisation scheme for the single-species ho-

mogeneous model and heterogeneous three-species

model

In this section we present the discretisation scheme used to obtain the numerical solu-

tion of the single-species homogeneous model in the mean-field framework. In summary,

the governing equation that we consider is as follows,

∂P(x, t)
∂t

= D∆P(x, t) − (N − 1)∇(P(x, t) V(x, t)), (5A.2)

where

V(x, t) =

∫
F(x − y) P(y, t) dy (5A.3)

is the velocity filed induced by intercellular interaction forces, and N = 36 is the total

number of cells in the simulations.

To present the numerical scheme as succinctly as possible, we define

σ(x, y, t) = F(x − y) P(y, t), (5A.4)

Is = P(xs, t)
∫

σ(xs, y) dy

= P(xs, t)
h
2

∑
i

[
σ(xs, yi+1) + σ(xs, yi)

]
+ O(h2), (5A.5)

where the rectangle rule with step h is used for numerical integration, and indices s and

i denote the equally-spaced spatial mesh nodes.

Using the definitions in Equations (5A.4)-(5A.5), we apply the method of lines to

Equation (5A.2) and obtain the following system of coupled ordinary differential equa-

tions,

dPi

dt
=

D
h2

[
Pi+1 − 2Pi + Pi−1

]
− (N − 1)

1
2h

[
Ii+1 − Ii−1

]
, (5A.6)

where index i denotes a spatial mesh node. This systems of ordinary differential equa-

tions is solved using an explicit forward Euler algorithm with constant time steps of

duration ∆t.

Similarly, the three-species model is given by three coupled integro-PDEs in the

following form,
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∂p(1)

∂t
= D1∆p(1) − (n1 − 1)∇(p(1) V (11)) − n2∇(p(1) V (12)) − n3∇(p(1) V (13)), (5A.7)

∂p(2)

∂t
= D2∆p(2) − (n2 − 1)∇(p(2) V (22)) − n1∇(p(2) V (21)) − n3∇(p(2) V (23)), (5A.8)

∂p(3)

∂t
= D3∆p(3) − (n3 − 1)∇(p(3) V (33)) − n1∇(p(3) V (31)) − n2∇(p(3) V (32)), (5A.9)

V (lk) =

∫
Ω

F(lk)(x − y) p(k)(y, t) dy. (5A.10)

We define

σlk(x, y, t) = F(lk)(x − y) p(k)(y, t), (5A.11)

Ilk
s = p(l)(xs, t)

∫
σlk(xs, y) dy

= p(l)(xs, t)
h
2

∑
i

[
σlk(xs, yi+1) + σlk(xs, yi)

]
+ O(h2), (5A.12)

where k = 1, 2, 3 is the subpopulation index, indices i and s denote the equally-spaced

spatial mesh nodes, and h is spatial discretisation step.

Using the definitions in Equations (5A.11)-(5A.12), we apply the method of lines to

Equations (5A.7)-(5A.9) and obtain the following system of coupled ordinary differential

equations,

dp(k)
i

dt
=

Dk

h2

[
P(k)

i+1 − 2P(k)
i + P(k)

i−1

]
− (nk − 1)

1
2h

[
Ikk
i+1 − Ikk

i−1

]
−

∑
l,k

nl
1

2h

[
Ilk
i+1 − Ilk

i−1

]
, (5A.13)

where k = 1, 2, 3 is the subpopulation index.
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Chapter 6

Conclusions

In this chapter we summarise the results of our work and propose possible extensions.

6.1 Summary of the research

Our study uses combined experimental and modelling approach in the attempt to de-

scribe and quantify previously overlooked cell motility mechanisms caused by dynamical

changes in cell size and cell-to-cell mechanical interactions. Additionally we explore the

role of cell heterogeneity in the model choice for description of complex multi-species

populations. In our work we use experimental data in the form of two-dimensional

scratch assays containing malignant PC-3 prostate cancer cells. These cells had been

pretreated before the experiment with the chemotherapy drug Mytomocyn-C that blocks

proliferation and leads to abnormally fast increase in cell size, as shown in Chapter 4.

The increase in cell size allows us to explore the role of cell-to-cell pushing and me-

chanical interactions in collective cell migration and cell front expansion. We develop a

multi-species discrete and continuum approach that is able to parametrise and describe

heterogeneous cell populations.

The primary objectives of this thesis are to:

1. Develop novel discrete and continuum models of cell motility and adhesion that

are able to describe multi-species populations of cells.

2. Extend models developed in Objective 1 to allow for dynamical cell size.

3. Validate new models with a novel experimental data that shows significant increase

in cell sizes and quantify the role of cell-to-cell pushing.

4. Explore the ability of a single-species model to describe heterogeneous cell popu-

lations.
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Chapter 2 and Chapter 3 constitute model development part of the thesis. In Chap-

ter 2 we develop discrete and continuum multi-species models of cell motility and ad-

hesion and test different approximations in order to simplify the continuum model. The

continuum model takes a form of the hierarchy of integro-partial differential equations

(IPDEs) that requires certain approximations to make it computationally feasible. We

consider two different continuum approximations: (i) mean-field approximation, and (ii)

moment dynamics approximation in the form of Kirkwood Superposition Approximation

(KSA). The mean-field approximation neglects correlations in the cell-to-cell positions

and is commonly invoked to describe cell populations. In contrast, the moment dy-

namics approximation is much more sophisticated and is able to capture correlations in

cell positions resulting from cell crowding and volume exclusion effects (Binny et al.,

2015). Moment dynamics models are widely represented in mathematical ecology and

epidemiology literature for their ability to capture spatio-temporal correlations and clus-

tering in populations (Bolker and Pacala, 1997; Bolker et al., 2003; Keeling, 1997). We

explore the accuracy of both approximations as applied to novel multi-species models of

cell migration and adhesion in Chapter 2 and investigate different parameter regimes.

In Chapter 3 we introduce dynamical cell size into models presented in Chapter 2.

Currently, mean-field approximation remains popular assumption in many models

in mathematical biology (Capasso and Frandoli, 2019). The major downside of the

mean-field assumption resides in neglecting correlations in cell-to-cell positions that

can be especially pronounced in crowded environments and clusters. Recently, there

have been attempts to partially incorporate the effects of cell-to-cell correlations into

the modified mean-field models of cell migration (Baker and Simpson, 2010; Markham

et al., 2013). However, the only reliable method to model correlations is to explicitly

include cell-to-cell correlation function in the model. On the other side, moment dynam-

ics models tend to be computationally demanding with increasing number of cells and

strength of the cell-to-cell interactions and, as such, are much less plausible to describe

larger populations. In this thesis, we compare the mean-field and more sophisticated

KSA-based modelling frameworks and demonstrate that the strength of cell-to-cell inter-

actions, which intuitively translates to the adhesion strength on the population scale, is

a paramount factor determining the suitability of each approximation. We demonstrate

that when the cell-to-cell interactions are strong enough, mean-field approximation pro-

vides inadequate description of the discrete stochastic data. Therefore, great care should

be taken when applying mean-field model to describe and parametrise populations of

cells with notable adhesion. This result is especially important in the context of popula-

tions of cells that increase in size (Chapter 3) because increasing size of each individual

implies more frequent interaction which, consequently, induce correlations and volume

exclusion effects.

Chapter 4 and Chapter 5 present model validation part of the thesis. In Chapter 4
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we use a novel experimental data in conjunction with a discrete modelling framework

to provide insights into the role of cell-to-cell pushing. Specifically, we use the range

of discrete models: (i) Model I, which includes cell diffusion, cell-to-cell interaction

forces, and dynamical cell size; (ii) Model II: constant cell size with cell diffusion

and cell-to-cell interaction forces; (iii) Model III: dynamical cell size with no diffusion

but cell-to-cell interaction forces; (iv) Model IV: diffusion only. Here Model I is the

most complete model which includes all cell motility mechanisms we are interested in.

A parameter estimation technique is applied in the attempt to match experimentally

measured cell density profiles with density profiles predicted by Models I-IV. These

results are presented in Chapter 4 and demonstrate that models that assume the constant

cell size (Model II), or no cell size at all (Model IV) always underperform in comparison

to the Model I and Model III and suggest that the mechanical cell-to-cell pushing plays

important role in the spreading of the cell colony. We note that the cell-to-cell pushing is

strikingly pronounced in our experiments since cells increase in size at an increased rate.

However, our results do not imply that cell pushing is exclusive to cells that increase in

size. In a crowded environments where volume exclusion effects play important role and

collisions are frequent cell pushing may contribute significantly to a collective behaviour

of the entire population.

In Chapter 5 we use the multi-species continuum model developed in Chapter 2 to

explore the ability of a single-species model describe behaviour of the heterogeneous

cell population. We explore the heterogeneity in cell size, δ, diffusivity, D, (undirected

motility), and amplitude of cell-to-cell interactions, f0, (directed motility and adhesion).

For each of the aforementioned parameters we consider four different distributions:

homogeneous, monotonically increasing, monotonically decreasing, and non-monotonic

distribution. Our results in Chapter 5 show that for certain types of heterogeneity,

such as monotonically decreasing heterogeneity in cell sizes, single-species model can

accurately describe behaviour of the heterogeneous multi-species population. This is

an important result, because single-species models tend to be computationally more

efficient than their multi-species counterparts. On the other hand, non-homogeneous

distribution in cell sizes demonstrates a poor match between density profiles generated

by the multi-species heterogeneous model and profiles predicted by the single-species

model. Therefore, the choice between single-species and multi-species models should

be made after carefully assessing the degree of heterogeneity in a population. We

acknowledge the fact, that some forms of heterogeneity might be fairly straightforward

to identify and quantify as demonstrated in Chapter 5 for the heterogeneity in cell sizes.

However, heterogeneity in interaction forces is much more challenging and there is no

established procedure to measure cell-to-cell interaction forces efficiently.
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6.2 Future work

In this section we present four most broad pathways for potential extensions to our

discrete and continuum modelling frameworks and summarise them in Figure 6.1.

• Pathway I: Introducing proliferation (mitosis) in the single species discrete and

continuum models of cell motility and adhesion. Green disks denote agents that

increase in size until they are ready to divide (12 h) and then split into two

daughter cells (24 h). The time scale is chosen to be arbitrary for illustrative

purposes.

Discrete and continuum models presented in Chapter 2 and Chapter 3 are de-

veloped assuming constant number of cells, that is neglecting proliferation. This

assumption is justified when we work with the experiments where proliferation has

been inhibited, such as presented in Chapter 4. Approximately constant cell count

can be also justified when applying models to the experimental data with cells

that have doubling time much longer than duration of the experiments. Although

it is relatively straightforward to extend discrete model to include proliferation,

it is non-trivial to extend IPDE-based models to include proliferation. Including

proliferation will require different derivation procedure due to some underlying

assumptions based around van Kampen lemma used in Chapter 2A.

• Pathway II: Two-species heterogeneous model of cell motility and adhesion with

proliferation. Here, all model parameters can potentially vary between populations

including proliferation rate and rate of change of the cell size. Similarly to scenario

presented in Pathway I, cells increase in size until they are about to divide (12 h)

and then split into two daughter cells (24 h). Green and blue cells can be either

different cell types, or cells of different sizes going through different stages of

their cell cycle.

In the context of this thesis, all parameter estimation procedures presented in

Chapter 4 were performed assuming that all cells have the same size at the begin-

ning of the experiment. Although the cell size heterogeneity is major topic of this

thesis, Chapter 4 is focused on the effects of the dynamical cell size on the move-

ment of cell fronts and does not address how the differences in cell sizes could

possibly affect our estimates of the model parameters. Simulations in Chapter 4

assume that all cells increase in size at the same rate. As such, it is of interest

to explore how including the heterogeneity in a cell growth rate can extend our

understanding of the cell front expansion and collective cell migration in general.

Quantifying the innate differences in rates of increasing of the cell sizes might

require sophisticated cell tracking procedures.
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• Pathway III: Multi-species heterogeneous model of cell motility, adhesion, and

proliferation with continuous heterogeneity in all parameters. In this model, every

single cell can be assigned unique values of model parameters, or entire population

split into arbitrary number of functional groups, types, and sizes. Green disks of

various shades of green denote cells of different sizes and types.

The model of the cell-to-cell interaction forces can be extended to explicitly in-

corporate the dynamics of E-cadherin protein bonds responsible for adhesion on a

cellular level. This way adhesive forces between cells can be modelled to depend

on the cell-to-cell contact area rather then the intercellular distance. Through-

out this thesis we assume that the friction forces resulting from movement of a

cell in a viscous environment do not depend on its size (Equation 2.2). Taking

into account increased friction as the cell size increases with time is a potential

extension to improve realism of the discrete model.

• Pathway IV: In silico reconstruction of living tissue environment including cell

motility, adhesion, proliferation, extracellular matrix, and biochemical clues. The

green disks of various shades of green denote cells of different sizes and types. The

orange solid lines denote extracellular matrix. The blue zigzag arrows show the

direction of chemotactic gradient that only small light-green cells are responsive

to.
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Figure 6.1: Pathways for potential extensions: (I) Single-species model of cell motility, adhesion and
proliferation; (II) Two-species heterogeneous model of cell motility, adhesion, and proliferation; (III)
Multi-species heterogeneous model of cell motility, adhesion, and proliferation with continuous hetero-
geneity in parameters; (IV) In silico reconstruction of living tissue environment.
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F. Collective cell migration without proliferation: density determines cell velocity and

wave velocity. Royal Society Open Science, vol. 5, 172421, 2018.

174



Treloar, K.K, Simpson, M.J., Haridas, P., Manton, K.J., Leavesley, D.I., McElwain,

D.L.S., Baker, R.E. Multiple types of data are required to identify the mechanisms

influencing the spatial expansion of melanoma cell colonies. BMC Systems Biology,
vol. 7, 137, 2013a.

Treloar, K.K., Simpson, M.J. Sensitivity of edge detection methods for quantifying cell

migration assays. PLoS ONE, vol. 8(6), e67389, 2013b.

Treloar, K.K., Simpson, M.J., McElwain, D.L.S., Baker, R.E. Are in vitro estimates

of cell diffusivity and cell proliferation rate sensitive to assay geometry? Journal of
Theoretical Biology, vol. 356, pp. 71-84, 2014.

Tremel, A., Cai, A., Tirtaatmadja, N., Hughes, B.D., Stevens, G.W., Landman, K.A.,

O’Connor, A.J. Cell migration and proliferation during monolayer formation and wound

healing. Chemical Engineering Science, vol. 64, pp. 247-253, 2009.

Trepat, X., Wasserman, M.R., Angelini, T.E., Millet, E., Weitz, D.A., Butler, J.P.,

Fredberg, J.J. Physical forces during collective cell migration. Nature Physics, vol. 5,

pp. 426-430, 2009.

Trinh, A.L., Chen, H., Chen, Y., Hu, Y., Li, Z., Siegel, E.R., Linskey, M.E., Wang,

pp.H., Digman, M.A., Zhou, Y.H. Tracking functional tumor cell subpopulations of ma-

lignant glioma by phasor fluorescence lifetime imaging microscopy of NADH. Cancers,
vol. 9(12), E168, 2017.

Van Kampen, N.G. Stochastic differential equations. Physics Reports, vol. 24c(3), pp.

171-228, 1976.

Warne, D.J., Baker, R.E., Simpson, M.J. Using experimental data and information

criteria to guide model selection for reactiondiffusion problems in mathematical biology.

Bulletin of Mathematical Biology, vol. 81(6), pp.1760-1804, 2019.

Weigelt, B., Ghajar, C.M., Bissell, M.J. The need for complex 3D culture models to

unravel novel pathways and identify accurate biomarkers in breast cancer. Advanced
Drug Delivery Reviews, vol. 69-70, pp. 42-51, 2014.

Weijer, C.J. Collective cell migration in development. Journal of Cell Science, vol.

122(18), pp. 3215-3223, 2009.

175



Weinberg, R.A. The biology of cancer. Second edition. Garland Science, 2009.

Wise, S.M., Lowengrub, J.S., Frieboes, H.B., Cristini, V. Three-dimensional multi-

species nonlinear tumor growth–I Model and numerical method. Journal of Theoretical
Biology, vol. 253(3), pp. 524-543, 2008.

Wynn, M.L., Rupp, P., Trainor, P.A., Schnell, S., Kulesa, P.M. Follow-the-leader cell

migration requires biased cell-cell contact and local microenvironmental signals. Phys-
ical Biology, vol. 10(3), 035003, 2013.

Yates, C., Parker, A., Baker, R.E. Incorporating pushing in exclusion-process models of

cell migration. Physical Review E, vol. 91, 052711, 2015.

Zaritsky, A., Kaplan, D., Hecht, I., Natan S., Wolf, L., Gov, N.S., Ben-Jacob, E.,

Tsarfaty, I. Propagating waves of directionality and coordination orchestrate collective

cell migration. PLoS Computational Biology, vol. 10(7), e1003747, 2014.

Zhu, J., Liang, L., Jiao, Y., Liu, L., US-China Physical Sciences-Oncology Alliance.

Enhanced invasion of metastatic cancer cells via extracellular matrix interface. PLoS
ONE, vol. 10(2), e0118058, 2015.

176


	Abstract
	Acknowledgments
	List of publications
	Introduction
	Background
	Research questions
	Objectives and outcomes
	Structure of the thesis
	Statement of joint authorship
	Chapter 2: Continuum approximations for lattice-free multi-species models of collective cell migration
	Chapter 3: Discrete and continuum approximations for collective cell migration in a scratch assay with cell size dynamics
	Chapter 4: Mechanistic and experimental models of cell migration reveal the importance of cell-to-cell pushing in cell invasion
	Chapter 5: Continuum descriptions of spatial spreading for heterogeneous cell populations: theory and experiment


	Continuum approximations for lattice-free multi-species models of collective cell migration 
	Abstract
	Introduction
	Discrete model
	Results and discussion
	Mathematical model for an arbitrary number of subpopulations
	Application to monoculture experiments, K = 1
	Application to co-culture experiments, K = 2
	Parameter sensitivity

	Conclusions
	Additional results for Chapter 2
	Derivation of one- and two-cell PDF and corresponding Fokker-Planck equations
	Additional results for alternative parameter choices
	Discretisation scheme for the MFA model
	Discretisation scheme for the KSA model
	Discrete and continuum approximations for collective cell migration in a scratch assay with cell size dynamics
	Abstract
	Introduction
	Methods
	Langevin stochastic model
	Continuum description

	Results and discussion
	Conclusions
	Additional results for Chapter 3
	Comparing results from the two-dimensional and one-dimensional stochastic models
	Derivation of the p1(x, t) and p2(x, y, t) governing equations for the one-dimensional model
	Discretisation scheme for the one-dimensional MFA model
	Discretisation scheme for the one-dimensional KSA model
	Mechanistic and experimental models of cell migration reveal the importance of cell-to-cell pushing in cell invasion
	Abstract
	Introduction
	Materials and methods
	IncuCyte ZOOMTM experimental data
	Image analysis
	Discrete stochastic model

	Results and Discussion
	Conclusions
	Additional results for Chapter 4
	Images of IncuCyte ZOOMTM scratch assay experiments A, B, C, and D at times t = 0, 12, 24, 36, and 48 h.
	Cell counts for experiments A, B, C, and D at times t = 0, 12, 24, 36, and 48 h.
	Cell density distributions for experiments A, B, C, and D at times t  = 0, 12, 24, 36, and 48 h.
	Additional results for Models I-IV
	Continuum descriptions of spatial spreading for heterogeneous cell populations: theory and experiment
	Abstract
	Introduction
	Experimental data
	Mathematical model
	Results and Discussion
	Conclusions
	Additional results for Chapter 5
	Heterogeneity in the cell size assessed using density profile data 
	Heterogeneity in the interaction force, f0
	Heterogeneity in the diffusivity, D
	Discretisation scheme for the single-species homogeneous model and heterogeneous three-species model
	Conclusions
	Summary of the research
	Future work

	Literature cited












