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Abstract

Mathematical modelling of diffusion-controlled transport is a fundamental tool applied across
numerous disciplines, including biology, physics and medicine. Important applications include
drug delivery from cylindrical and spherical capsules and the drying of thin agricultural prod-
ucts. In this thesis, we consider diffusion-controlled release of particles from geometries with
radial symmetry. A quantity commonly used to characterise such diffusive processes is the pro-
portion of particles remaining within the geometry over time, denoted as P(t). Traditionally,
P(t) is modelled using a stochastic or continuum approach. However, the stochastic approach
is time-consuming, computationally expensive and lacks analytical insight into the influence of
key physical parameters on the release profile. Furthermore, the continuum approach yields
complicated infinite series solutions which obscure the precise effect of each physical parameter
on P(t) and convolute the fitting of experimental release data. To address these issues, we
develop surrogate models that provide relatively simple closed-form analytical approximations
of P(t) which are computationally inexpensive to evaluate. Surrogate models are frequently
used in drug delivery and thin-layer drying applications to describe quantities analogous to
P(t). These models provide meaningful insight into the precise influence of important physical
parameters on the release profile. This implies, for example, that a drug delivery capsule or
drying chamber can then be optimised to achieve a desired release profile while minimising
experimental testing.

Here, we develop several simple one-term, two-term and weighted two-term surrogate models
to approximate P(t) by matching moments with the continuum analogue of the stochastic
diffusion model. These models are developed for homogeneous slab, circular, annular, spherical
and spherical shell geometries with a constant particle movement probability and heterogeneous
slab, circular, annular and spherical geometries comprised of two concentric layers with different
particle movement probabilities. Each model is easy to evaluate and provides analytical insight
into the influence of key physical parameters of the diffusive transport system, including the
dimension, diffusivity, geometry and boundary conditions, on P(t). The weighted two-term
model captures the stochastic and continuum descriptions of P(t) with the highest degree of
accuracy.

iii



Contents

Keywords i

Acknowledgements ii

Abstract iii

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Application to drug delivery and food drying . . . . . . . . . . . . . . . 3
1.1.2 Surrogate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Objectives and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Simplified models of diffusion in radially-symmetric geometries 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Stochastic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Homogeneous geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Heterogeneous geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Calculation of P(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Continuum model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Homogeneous geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Heterogeneous geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Calculation of P(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Surrogate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Surrogate model 1: One-term exponential model . . . . . . . . . . . . . 17
2.4.4 Surrogate model 2: Two-term exponential model . . . . . . . . . . . . . 19

iv



2.4.5 Surrogate model 3: Weighted two-term exponential model . . . . . . . . 22
2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Supporting information for surrogate model development 31
3.1 Analysis of analytical solutions for Pc(t) . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Separation of variables and eigenfunction expansion . . . . . . . . . . . . 31
3.1.2 Limitations of continuum models . . . . . . . . . . . . . . . . . . . . . . 33
3.1.3 Initial value problem for Pc(t) . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Surrogate model development and analysis . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 One-term model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Two-term model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Weighted two-term model . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.4 Parameter estimation using one-term model (2.35) . . . . . . . . . . . . 46

3.3 Finite volume and time stepping schemes . . . . . . . . . . . . . . . . . . . . . . 46
3.3.1 Homogeneous materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Heterogeneous materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.3 Crank-Nicolson method . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Results for one- and three-dimensional geometries . . . . . . . . . . . . . . . . . 51
3.5 Additional project considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Non-zero steady-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.2 Smooth diffusivity function . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.3 Addition of reaction term . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Conclusion 59
4.1 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Appendix 62

Bibliography 64

v



List of Figures

1.1 Diffusion-controlled release of particles from homogeneous radially-symmetric
geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Stochastic and continuum models of particle release from a homogeneous annular
geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Stochastic and continuum values for P(t) compared with example surrogate
exponential models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Stochastic and continuum calculations for P(t) compared with an example sur-
rogate model for a homogeneous annular geometry . . . . . . . . . . . . . . . . 9

2.2 Surrogate exponential models compared with stochastic and continuum models
for the homogeneous test cases (two-dimensional geometries) . . . . . . . . . . . 28

2.3 Surrogate exponential models compared with stochastic and continuum models
for the heterogeneous test cases (two-dimensional geometries) . . . . . . . . . . 29

3.1 Series solutions for continuum models compared with numerical results for a
homogeneous slab, disc and sphere . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Comparison between analytical and numerical solutions for M0(r) . . . . . . . . 37
3.3 Comparisons between analytical and numerical solutions for M1(r) . . . . . . . 42
3.4 Schematic of a vertex-centred finite volume discretisation for a homogeneous

radially-symmetric geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Schematic of a vertex-centred finite volume discretisation for a heterogeneous

radially-symmetric geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Surrogate exponential models compared with stochastic and continuum models

for the homogeneous test cases (one-dimensional geometries) . . . . . . . . . . . 52
3.7 Surrogate exponential models compared with stochastic and continuum models

for the homogeneous test cases (three-dimensional geometries) . . . . . . . . . . 53
3.8 Surrogate exponential models compared with stochastic and continuum models

for the heterogeneous test cases (one-dimensional geometries) . . . . . . . . . . 54
3.9 Surrogate exponential models compared with stochastic and continuum models

for the heterogeneous test cases (three-dimensional geometries) . . . . . . . . . . 54

vi



List of Tables

2.1 Geometry and boundary parameters for seven cases . . . . . . . . . . . . . . . . 18
2.2 Geometry and boundary parameter values for seven test cases . . . . . . . . . . 27
2.3 Mean absolute errors for the Weibull model of Carr [18] . . . . . . . . . . . . . . 30

3.1 Numerical roots of transcendental equations . . . . . . . . . . . . . . . . . . . . 34

A1 Surrogate model parameters (one-dimensional geometries) . . . . . . . . . . . . 62
A2 Surrogate model parameters (two-dimensional geometries) . . . . . . . . . . . . 62
A3 Surrogate model parameters (three-dimensional geometries) . . . . . . . . . . . 63

vii



Chapter 1

Introduction

1.1 Overview
Mathematical modelling of transport phenomena is a valuable tool applied across numerous
disciplines, including biology [1–5], ecology [4, 6, 7], physics [8–10], medicine [11, 12] and other
fields [13, 14]. The most ubiquitous component of transport processes is arguably diffusion,
and many fields of research require an understanding of systems that are diffusion-controlled
or dominated [1, 4, 14]. To elaborate, a mathematical interpretation of diffusive transport is,
for example, fundamental for the estimation of material thermal properties [15, 16], a useful
tool for providing insight into animal migration patterns [4] and vital for the improvement
of effective disease treatment [5, 11, 17]. Here, we focus on the diffusion-controlled release of
particles over time from geometries with radial symmetry, such as discs, annuli, spheres and
spherical shells, which arise in drug delivery and food drying applications (Fig. 1.1).

A quantity frequently used to characterise diffusive processes is the proportion of parti-
cles remaining within the geometry over time, denoted as P(t) [18–21]. Traditionally, P(t) is
modelled using a stochastic or continuum approach. The stochastic approach requires perform-
ing repeated simulations of an unbiased random walk model governing particle movement in
a radially-symmetric domain. The quantity P(t) is computed by normalising the number of
remaining particles over time for each simulation by the total number of particles (see section
2.2) (Fig. 1.2(a)). In this work, we assume that particles are initially uniformly distributed
throughout the geometry. For the continuum approach, P(t) is computed by determining
the continuum analogue of the stochastic model (Fig. 1.2(b)) and then calculating the spatial
average of the solution (see section 2.3) (Fig. 1.2(c)).

However, the stochastic and continuum approaches have their limitations. Firstly, comput-
ing P(t) using the stochastic approach can be time-consuming and computationally expensive.
Furthermore, there is limited insight that can be obtained into the effect of physical parameters
(e.g. dimension, diffusivity, geometry and boundary conditions) on the release profile1. More-
over, the continuum approach yields complicated infinite series solutions for P(t) [18, 22, 23].
Although these continuum expressions are analytical, their use requires truncation and repeated

1The term ‘release profile’ refers to the quantity P(t).
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Figure 1.1: Diffusion-controlled release of particles from homogeneous (a) circular, (b) annular,
(c) spherical and (d) spherical shell geometries. Here, particles are initially uniformly dis-
tributed and diffuse until they are absorbed at a boundary (see section 2.2).

Figure 1.2: Stochastic and continuum models of particle release from a homogeneous annular
geometry with a fixed radius L, reflecting inner boundary and absorbing outer boundary. (a)
stochastic analogue of P(t), denoted as Ps(t), obtained from a single simulation of the random
walk model (see section 2.2). (b) dimensionless particle concentration c(r, t) obtained by solving
the continuum analogue of the stochastic diffusion model (see section 2.3), where the arrow
indicates the direction of increasing time. (c) continuum description of P(t), denoted as Pc(t),
obtained by calculating the spatial average of c(r, t) (see section 2.3).
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numerical calculations (see section 3.1). This complexity obscures the precise influence of each
physical parameter on P(t) and complicates the fitting of experimental release data [18, 22]. To
address these issues, we develop surrogate models that provide simple closed-form analytical
approximations of P(t) [24]. In comparison to the stochastic and continuum approaches, these
models are computationally inexpensive to compute and provide meaningful analytical insight
into the effect of key physical parameters on P(t).

1.1.1 Application to drug delivery and food drying

Surrogate models are utilised in numerous disciplines, including in the design and optimisation
of drug delivery capsules [12, 25]. Typically, surrogate models within this scope are developed
to describe the normalised drug mass released or remaining over time, which is a quantity
analogous to P(t) [12, 17, 22, 23, 26, 27]. In general, mathematical models of drug release can
provide meaningful insight into the effect of physical parameters, such as the radius, geometry,
diffusivity and boundary conditions, on the drug release profile. The physical properties of a
device can then be optimised to achieve a desired release profile while reducing experimental
testing [22, 23, 26, 28]. The most influential mechanism in controlling drug release rates is
diffusion, among other effects such as device erosion [23, 26, 29, 30]. In the literature, significant
research has been presented on modelling diffusion-controlled drug release from single or multi-
layered spherical microcapsules [25, 28, 29, 31] and other radially-symmetric devices [11, 12, 22,
23, 32–34]. The benefits include potential enhancement of disease treatment effectiveness [17],
improvements in the safety and efficacy of drug delivery [11] and greater control over release
rates and duration for drug absorption into the blood or tissues [27, 35, 36].

Moreover, surrogate models are frequently used to obtain insight into the kinetics of drying
processes for thin slices of fruits or vegetables. A mathematical understanding of the moisture
release, controlled by diffusion [37], that occurs during the drying of thin-layered agricultural
products is critical for the improvement and optimisation of drying environment design and
product quality [38, 39], while avoiding extensive experimentation [40]. In other words, a
purely experimental approach to food drying that disregards a mathematical interpretation of
drying kinetics can have a negative impact on drying efficiency and the cost of production [39].
Many simple surrogate models have been developed to describe the average moisture content,
analogous to P(t), of a thin-layered product over time subject to different drying conditions
[39, 41, 42].

1.1.2 Surrogate models

Surrogate models describing P(t) and analogous quantities can typically be separated into three
distinct categories: theoretical, semi-theoretical and empirical [41, 43]. The most common
theoretical model is Fick’s second law of diffusion (see section 2.3) [39, 41, 42, 44]. However,
as previously discussed, this model yields infinite series solutions which obscure the precise
influence of each physical parameter on the release profile [18, 22]. Rather, the most widely
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applied surrogate models are semi-theoretical and empirical [39, 45]. However, the primary
issue associated with empirical models is their sole reliance on experimental data and statistical
methods to estimate the model parameters [18, 27, 46]. Although these models provide a good
fit with data, there is limited potential for useful analytical insight into the mass transfer process
[25, 45, 46] as the parameters have no physical meaning [41, 42].

Semi-theoretical models can be considered as a compromise between theoretical and empir-
ical models [47] and are of primary of interest in this thesis. These models have the potential
to provide meaningful analytical insight into the precise influence of physical parameters on
P(t). In the literature, exponential, Weibull and other exponential-like functions are com-
monly utilised as surrogate models for P(t) and related quantities [48, 49]. These models
are generally derived by simplifying the infinite series solutions of Fick’s second law or using
Newton’s law of cooling [39, 41, 42, 46]. In drug delivery literature, previous work includes sur-
rogate models for homogeneous slab, circular and spherical geometries with radial symmetry
[12, 18, 22, 23, 26, 33, 50]. Moreover, there exist several semi-theoretical surrogate models for
the average moisture ratio in food drying applications, as summarised by Akpinar [41], Ertekin
et al. [42] and Onwude et al. [39]. Examples include exponential models for the drying of
strawberry [51], mushroom [43] and pumpkin [52], Weibull models for quince drying [53], and
other exponential-like models for the drying of banana [54] and chickpea [55].

Recently, Carr [18] presented several one-term exponential and Weibull models for P(t) ob-
tained by matching moments2 with the continuum analogue (see section 2.3) of the stochastic
diffusion model (see section 2.2) for P(t). The work considers homogeneous slab, circular, an-
nular, spherical and spherical shell geometries. The moment-matching approach is attractive as
it captures key temporal behaviour of P(t) yields relatively simple closed-form expressions that
depend explicitly on known physical parameters of the system, including the radius, diffusivity,
dimension and boundary conditions. Hence, meaningful analytical insight into the influence of
key physical parameters on P(t) is able to be obtained. This approach is inspired by previous
work which shows that simple closed-form expressions can be obtained for the temporal mo-
ments of particle exit time for homogeneous and heterogeneous radially-symmetric geometries
[56, 57]. The main drawback of the one-term exponential model is that it tends to overestimate
the early decay, and underestimate the later stages of decay, of P(t) [42]. Moreover, the one-
term Weibull model offers a more accurate description of P(t), but sacrifices model simplicity
and reduces meaningful analytical insight by introducing approximations for model parameters.
Additionally, the surrogate models are developed under the assumption of a constant diffusiv-
ity. However, surrogate models have the potential to provide meaningful analytical insight into
the influence of heterogeneous diffusion on the release profile. This is particularly important in
drug delivery applications, where multi-layered spherical capsules are designed to give greater
control over the drug release rate [17, 25, 56].

2Strictly speaking, the term ‘matching moments’ in this thesis refers to matching temporal moments with
the continuum analogue of P(t), not spatial moments.
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Figure 1.3: Stochastic and continuum values for the proportion of particles remaining over time,
P(t), compared with example (a) two-term and (b) weighted two-term exponential models (see
sections 2.4.3–2.4.5). Here, particles are released from a homogeneous annular geometry with
a reflecting inner boundary and absorbing outer boundary.

1.1.3 Thesis contributions

In this thesis, motivated by Carr [18] and models in the thin-layer drying literature [39, 41, 42],
we develop two-term and weighted two-term exponential models for P(t) (Fig. 1.3). These novel
surrogate models accurately capture the early and late-time decay of P(t) for a collection of test
cases and are simpler in construction than the one-term Weibull model of Carr [18]. We assume
that P(t) takes a functional form with parameters determined by matching moments with the
continuum analogue (see section 2.3) of the stochastic diffusion model (see section 2.2). First,
we reproduce the work of Carr [18] and present one-term models for P(t) obtained by matching
the zeroth moment with the continuum analogue (see section 2.4.3). Secondly, we develop two-
term models for P(t) by matching the zeroth and first moments with the continuum analogue
(see section 2.4.4). Thirdly, we explore weighted two-term models for P(t) by matching the
zeroth, first and second moments with the continuum analogue (see section 2.4.5). In this work,
we consider three distinct cases: (i) homogeneous slab, circular and spherical geometries, (ii)
homogeneous slab, annular or spherical shell geometries and (iii) heterogeneous slab, circular
and spherical geometries. Here, the heterogeneous geometries are comprised of two distinct
homogeneous layers.

1.2 Objectives and structure
There are two main research objectives that motivate this thesis:

1. Develop novel accurate surrogate models for diffusion-controlled release from homoge-
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neous radially-symmetric geometries.

2. Develop novel accurate surrogate models for diffusion-controlled release from heteroge-
neous radially-symmetric geometries.

The main body of this thesis is comprised of a publication (chapter 2) and supporting infor-
mation (chapter 3). In chapter 2, we present the manuscript published in Physica A (July
2023) which addresses both objectives. This chapter provides several novel surrogate models
for diffusion-controlled release from radially-symmetric geometries. We consider three different
types of boundary conditions and develop surrogate models for seven distinct cases. The first
five cases pertain to homogeneous geometries and the later two are for heterogeneous geome-
tries. Finally, the surrogate models, for two-dimensional radially-symmetric geometries, are
compared to stochastic and continuum values for P(t) for seven test cases. The published
manuscript is available online (https://doi.org/10.1016/j.physa.2023.129067) and code imple-
menting the stochastic, continuum and surrogate models and reproducing the results of the
paper is available on GitHub (https://github.com/lukefilippini/Filippini_2023.git). Addition-
ally, the candidate has also disseminated the work presented in chapter 2 on several occasions:

1. QANZIAM Conference (Brisbane, July 2022)

2. CTAC (Brisbane, Nov-Dec 2022)

3. AMSI Summer School (Melbourne, Jan 2023) [Best presentation prize winner]

4. ANZIAM (Cairns, Feb 2023)

Chapter 3 includes supporting details on project conceptualisation, methodology and results
that were not included in the submitted manuscript. Firstly, we discuss in greater detail exact
solutions of the continuum analogue of P(t) and the limitations associated with this approach.
Secondly, we provide a detailed derivation of the three general surrogate models and consider
solutions for three specific cases. Thirdly, we outline the finite volume and time-stepping
schemes used to compute numerical solutions of the continuum model for homogeneous and
heterogeneous geometries. Additionally, we present comparisons, for one- and three-dimensional
radially-symmetric geometries, between the surrogate models and stochastic and continuum
values for P(t). We consider the same seven test cases as in chapter 2. Finally, we discuss
additional project ideas that we were discontinued but could potentially be explored as future
work.

In Chapter 4, we summarise the key aspects and findings of the thesis and discuss avenues
for potential future research in this area.
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Chapter 2

Simplified models of diffusion in
radially-symmetric geometries

2.1 Introduction
Mathematical modelling of diffusion-controlled transport is applied across many disciplines,
including biology [3, 4, 58], ecology [4], medicine [12, 26, 27] and physics [10, 59]. Important
applications include drug delivery from cylindrical [11, 23] and spherical [23, 25–27, 29] devices
and the drying of fruit and vegetable products [38, 39, 43, 60]. Motivated by such applications,
in this paper, we explore diffusion-controlled release from d-dimensional radially-symmetric
geometries (Fig. 2.1(a)). Here, particles diffuse within the geometry until they are absorbed
at a boundary (Fig. 2.1(b)). A key quantity commonly used to characterise such diffusion
processes is the proportion of particles remaining within the geometry over time, denoted as
P(t). This quantity is equivalent to the survival probability [20, 21] of an arbitrary particle
and decreases over time as the number of absorbed particles increases. The shape and slope of
P(t) (Fig. 2.1(d)) is influenced by key parameters such as the dimension, diffusivity, geometry
and boundary conditions of the diffusive transport system [18].

Traditionally, P(t) is calculated using a stochastic or continuum approach. In the stochas-
tic approach, computing P(t) involves repeated simulations of a random walk model gov-
erning the motion of each individual particle. In the continuum approach, computing P(t)

involves solving the continuum analogue of the stochastic model for the particle concentra-
tion (Fig. 2.1(c)). Both of these approaches have their drawbacks. Firstly, the stochastic
approach is time-consuming and lacks analytical insight into key parameters. Secondly, the
continuum approach yields complicated expressions for P(t) [22, 23] that obscure the influence
of key parameters and complicate the process of fitting experimental release data [18, 22]. To
address these issues, surrogate modelling aims to develop a simplified model that accurately
approximates P(t) and is computationally inexpensive (Fig. 2.1(d)). Previous work includes
exponential, Weibull and other exponential-like models for P(t) and related quantities [48, 49]
for slab, circular, and spherical geometries with radial symmetry [19, 22, 23, 26, 27, 39, 58].

In this paper, we develop several new accurate surrogate models for P(t) by matching mo-
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Figure 2.1: (a)–(b) Diffusion-controlled release of particles from a homogeneous annular geom-
etry with a reflecting inner boundary and absorbing outer boundary. Here, particles diffuse
until they are absorbed out of the system (see section 2.2). (c) dimesionless particle concentra-
tion c(r, t) obtained by solving the continuum analogue of the stochastic diffusion model (see
section 2.3) with the arrow indicating the direction of increasing time. (d) stochastic and con-
tinuum calculations for the proportion of particles remaining over time, P(t), with an example
surrogate model (see sections 2.4.3–2.4.5) providing a simple accurate approximation to P(t).

ments with the continuum analogue of the stochastic diffusion model. This approach yields
surrogate models that explicitly depend on, and provide analytical insight into, key parameters
of the diffusive transport system. Firstly, we revisit the work of Carr [18] and present one-term
exponential models to approximate P(t), obtained by matching the zeroth moments. Secondly,
we present new two-term exponential models to approximate P(t), obtained by matching the
zeroth and first moments. Finally, we present new weighted two-term exponential models in-
volving an arbitrary weighting of the two exponential terms, obtained by matching the zeroth,
first and second moments. Our scope includes both homogeneous geometries with a constant
particle movement probability and heterogeneous geometries comprised of two concentric layers
with different particle movement probabilities. In addition to standard absorbing and reflecting
boundary conditions, we also consider semi-absorbing boundary conditions, where particles are
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either absorbed or reflected with specified probabilities. Both semi-absorbing boundaries and
heterogeneous geometries find application to drug delivery applications, where heterogeneous
multi-layer spherical capsules encapsulated with semi-absorbing permeable outer shells are de-
signed to better control the drug release rate [17, 25, 29]. In total, we present new surrogate
models for three main problems: (i) homogeneous slab, circular and spherical geometries with
an absorbing or semi-absorbing boundary, (ii) homogeneous slab, annular and spherical shell
geometries with absorbing, reflecting and/or semi-absorbing boundaries and (iii) heterogeneous
slab, circular and spherical geometries with an absorbing or semi-absorbing boundary. Each
model is easy to evaluate, agrees well with both stochastic and continuum calculations of P(t)

and provides analytical insight into the physical parameters of the diffusive transport system:
dimension, diffusivity, geometry and boundary conditions.

The remaining sections of this work is structured as follows. Firstly, we discuss the stochastic
(section 2.2) and continuum (section 2.3) models and outline how P(t) is calculated in each
case. Secondly, we develop the new one-term (section 2.4.3), two-term (section 2.4.4) and
weighted two-term (section 2.4.5) surrogate models for P (t). Thirdly, we assess the accuracy of
the surrogate models against P(t) obtained from the stochastic and continuum models (section
2.5). Finally, we summarise the main elements of the work and suggest avenues for future
research (section 2.6).

2.2 Stochastic model
We now describe the stochastic approach for calculating P(t) using a random walk model
for diffusive transport in d-dimensional radially-symmetry geometries. We consider both a
homogeneous geometry (ℓ0 < r < ℓ1) with constant particle movement probability, P , and a
heterogeneous geometry (ℓ0 < r < ℓ2) comprised of two concentric layers (ℓ0 < r < ℓ1 and
ℓ1 < r < ℓ2) with different movement probabilities, P1 and P2. Our analysis allows for slab
geometries with both an inner (left) and outer (right) boundary, circular/spherical geometries
(ℓ0 = 0) with an outer boundary only and annular/spherical-shell geometries (ℓ0 > 0) with
both an inner and outer boundary.

Consider Np non-interacting particles and let xj(t) denote the position of the jth particle
at time t. Initially, the particles are uniformly distributed across the geometry:

xj(0) =


rj, if d = 1,

rj[cos(θj), sin(θj)], if d = 2,

rj[cos(θj) sin(ϕj), sin(θj) sin(ϕj), cos(ϕj)], if d = 3,

(2.1)

where rj = (ℓd0+uj(ℓ
d
m−ℓd0))

1/d (m = 1 for homogeneous geometry and m = 2 for heterogeneous
geometry), ϕj = cos−1(1 − 2vj), θj ∼ U(0, 2π), uj ∼ U(0, 1) and vj ∼ U(0, 1) [18]. Thereafter,
each particle participates in a random walk with constants steps of distance δ > 0 and duration
τ > 0, where during each time step, each particle undergoes a movement or rest event with
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probabilities depending on the geometry under consideration.

2.2.1 Homogeneous geometry

For a homogeneous geometry, the jth particle moves to a new position

xj(t+ τ) = xj(t) +


δ sign(uj − 0.5), if d = 1,

δ[cos(θj), sin(θj)], if d = 2,

δ[cos(θj) sin(ϕj), sin(θj) sin(ϕj), cos(ϕj)], if d = 3,

(2.2)

with probability P , or remains at its current position, implying xj(t+ τ) = xj(t), with proba-
bility 1− P . Here, ϕj = cos−1(1− 2vj), θj ∼ U(0, 2π), uj ∼ U(0, 1) and vj ∼ U(0, 1).

2.2.2 Heterogeneous geometry

For a heterogeneous geometry, we follow [57], where the jth particle undergoes a movement
or rest event depending on the possible new movement positions described by Sd(xj(t); δ), the
line (d = 1), circle (d = 2) or sphere (d = 3) of radius δ centred on xj(t). During each time
step, there are three possibilities.

1. If Sd(xj(t); δ) does not intersect the interface (r = ℓ1) and xj(t) is located in the inner
layer (ℓ0 < r < ℓ1), then the jth particle moves to a new position (2.2) with probability
P1 or remains at its current position with probability 1− P1.

2. If Sd(xj(t); δ) does not intersect the interface (r = ℓ1) and xj(t) is located in the outer
layer (ℓ1 < r < ℓ2) then the jth particle moves to a new position (2.2) with probability P2

or remains at its current position with probability 1− P2.

3. If Sd(xj(t); δ) intersects the interface r = ℓ1, then the jth particle moves to a new position
or remains at its current position with probabilities depending on the dimension d. For
d = 1, the jth particle moves to a new position

xj(t+ τ) = xj(t) +

−δ, with probability P1/2,

δ, with probability P2/2,

or remains at its current position with probability 1 − P1/2 − P2/2. Here, Pk is the
probability associated with the layer in which the position xj(t)+ δ/2(−1)k is located. For
d = 2, the jth particle moves to a new position

xj(t+ τ) = xj(t) +



δ[cos(θ1), sin(θ1)], with probability P1/n,

δ[cos(θ2), sin(θ2)], with probability P2/n,
... ...

δ[cos(θn), sin(θn)], with probability Pn/n,
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or remains at its current position with probability 1 −
∑n

k=1 Pk/n. Here, n is a specified
integer (see section 2.5), θk = 2π(k − 1)/n and Pk is the probability associated with the
layer in which the position xj(t) + δ/2[cos(θk), sin(θk)] is located [57]. For d = 3, the jth
particle moves to a new position

xj(t+ τ) = xj(t) +



δ[cos(θ1) sin(ϕ1), sin(θ1) sin(ϕ1), cos(ϕ1)], with probability P1,1/n,

δ[cos(θ1) sin(ϕ2), sin(θ1) sin(ϕ2), cos(ϕ2)], with probability P1,2/n,
... ...

δ[cos(θ1) sin(ϕn2), sin(θ1) sin(ϕn2), cos(ϕn2)], with probability P1,n2/n,

δ[cos(θ2) sin(ϕ1), sin(θ2) sin(ϕ1), cos(ϕ1)], with probability P2,1/n,
... ...

δ[cos(θn1) sin(ϕn2), sin(θn1) sin(ϕn2), cos(ϕn2)], with probability Pn1,n2/n,

or remains at its current position with probability 1−
∑n1

k=1

∑n2

m=1 Pk,m/n, where n = n1n2.
Here, n1 and n2 are specified integers (see section 2.5), θk = 2π(k− 1)/n1, ϕm = cos−1(1−
2(m − 1)/n2) and Pk,m is the probability associated with the layer in which the position
xj(t) + δ/2 [cos(θk) sin(ϕm), cos(θk) sin(ϕm), cos(ϕm)] is located [57].

2.2.3 Boundary conditions

In our stochastic model, boundaries are designated as absorbing, reflecting or semi-absorbing.
If a particle attempts to pass through an absorbing boundary, it is removed from the system,
whereas, if it attempts to pass through a reflecting boundary, it is returned to its previous
position, implying xj(t+τ) = xj(t). On the other hand, if a particle attempts to pass through a
semi-absorbing inner boundary, it is absorbed with probability PI and reflected with probability
1 − PI, while if a particle attempts to pass through a semi-absorbing outer boundary, it is
absorbed with probability PO and reflected with probability 1− PO [18, 61].

2.2.4 Calculation of P(t)

For the stochastic model, P(t) is defined as [17]

Ps(t) =
N(t)

Np

, (2.3)

where N(t) is the number of particles in the system at time t.

2.3 Continuum model
We now describe the continuum approach for calculating P(t) using the continuum analogue
of the stochastic model. For both the homogeneous and heterogeneous geometries, the contin-
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uum model takes the form of an initial-boundary value problem for the dimensionless particle
concentration, c(r, t), and is a valid approximation of the stochastic model in the regime of
small δ and τ [3, 4].

2.3.1 Homogeneous geometry

For the homogeneous geometry, c(r, t) satisfies the d-dimensional radially-symmetric diffusion
equation [4, 20, 22, 31, 44, 59],

∂c

∂t
=

D

rd−1

∂

∂r

(
rd−1 ∂c

∂r

)
, ℓ0 < r < ℓ1, t > 0, (2.4)

subject to the initial and boundary conditions,

c(r, 0) = 1, ℓ0 ≤ r ≤ ℓ1, (2.5)

a0c(ℓ0, t)− b0
∂c

∂r
(ℓ0, t) = 0, t > 0, (2.6)

a1c(ℓ1, t) + b1
∂c

∂r
(ℓ1, t) = 0, t > 0, (2.7)

where D = Pδ2/(2dτ) is the diffusivity. Note that c(r, t) = c̃(r, t)/c̃0, where the particle
concentration c̃(r, t) is initially uniform, c̃(r, 0) = c̃0. Here, c̃(r, t) and c̃0 are dimensional
quantities that represent the number of particles and initial number of particles per unit
length/area/volume [18].

2.3.2 Heterogeneous geometry

For the heterogeneous geometry, the dimensionless particle concentration is a piecewise function

c(r, t) =

c1(r, t), ℓ0 ≤ r ≤ ℓ1,

c2(r, t), ℓ1 ≤ r ≤ ℓ2,

where c1(r, t) and c2(r, t) satisfy the d-dimensional radially-symmetric diffusion equation in the
inner and outer layers respectively [25, 29, 62, 63]

∂c1
∂t

=
D1

rd−1

∂

∂r

(
rd−1∂c1

∂r

)
, ℓ0 < r < ℓ1, t > 0, (2.8)

∂c2
∂t

=
D2

rd−1

∂

∂r

(
rd−1∂c2

∂r

)
, ℓ1 < r < ℓ2, t > 0, (2.9)
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subject to the initial, boundary and interface conditions,

c1(r, 0) = 1, ℓ0 ≤ r ≤ ℓ1, c2(r, 0) = 1, ℓ1 ≤ r ≤ ℓ2, (2.10)

a0c1(ℓ0, t)− b0
∂c1
∂r

(ℓ0, t) = 0, t > 0, (2.11)

a1c2(ℓ2, t) + b1
∂c2
∂r

(ℓ2, t) = 0, t > 0, (2.12)

c1(ℓ1, t) = c2(ℓ1, t), t > 0, (2.13)

D1
∂c1
∂r

(ℓ1, t) = D2
∂c2
∂r

(ℓ1, t), t > 0. (2.14)

Here, D1 = P1δ
2/(2dτ) and D2 = P2δ

2/(2dτ) are the diffusivities for the inner and outer layers,
respectively. The interface conditions (2.13) and (2.14) specify continuity of concentration and
flux at the interface, which assumes perfect contact between the layers [62, 63]. Note that
c1(r, t) = c̃1(r, t)/c̃0 and c2(r, t) = c̃2(r, t)/c̃0, where the quantities c̃1(r, t) and c̃2(r, t) represent
the number of particles per unit length/area/volume in the inner and outer layers, respectively.

2.3.3 Boundary conditions

The coefficients in the boundary conditions (2.6)–(2.7) and (2.11)–(2.12) depend on whether
the boundaries are absorbing, reflecting or semi-absorbing:

[a0, b0] =


[1, 0], if the inner boundary is absorbing,

[0, 1], if the inner boundary is reflecting,

[1, β0], if the inner boundary is semi-absorbing,

(2.15)

[a1, b1] =


[1, 0], if the outer boundary is absorbing,

[0, 1], if the outer boundary is reflecting,

[1, β1], if the outer boundary is semi-absorbing,

(2.16)

with β0 = δ/PI and β1 = δ/PO [18]. Note that for the case of the circular or spherical geometry
with no inner boundary (ℓ0 = 0), we set [a0, b0] = [0, 1] for radial symmetry at the origin.

2.3.4 Calculation of P(t)

For both the homogeneous continuum model (2.4)–(2.7) and the heterogeneous continuum
model (2.8)–(2.14), P(t) is defined as [18, 19]

Pc(t) =

∫
Ωd

c(r, t) dV∫
Ωd

c(r, 0) dV
,

where Ω1 = {x ∈ R | ℓ0 < x < ℓm} and Ωd = {x ∈ Rd | ℓ0 < ∥x∥2 < ℓm} for d = 2, 3 (m = 1 for
homogeneous geometry and m = 2 for heterogeneous geometry). Using radial symmetry and
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the constant initial conditions (2.5) and (2.10), Pc(t) simplifies to [18, 19]:

Pc(t) =
d

ℓd1 − ℓd0

∫ ℓ1

ℓ0

rd−1c(r, t) dr, (2.17)

Pc(t) =
d

ℓd2 − ℓd0

[∫ ℓ1

ℓ0

rd−1c1(r, t) dr +

∫ ℓ2

ℓ1

rd−1c2(r, t) dr

]
, (2.18)

for the homogeneous and heterogeneous geometries, respectively.
Clearly, calculating Pc(t) requires solving the homogeneous continuum model (2.4)–(2.7)

and heterogeneous continuum model (2.8)–(2.14). Alternatively, one may think of applying the
averaging operators (2.17) or (2.18) to the homogeneous or heterogeneous continuum model to
derive an initial value problem for Pc(t). Unfortunately, this initial value problem involves c(r, t)
itself except for the special case of reflecting boundary conditions, where trivially, Pc(t) = 1 for
all time as no particles exit the system [18] (see section 3.1.3).

2.4 Surrogate models

2.4.1 Motivation

Exact expressions for Pc(t) can be obtained by solving the homogeneous continuum model (2.4)–
(2.7) or heterogeneous continuum model (2.8)–(2.14) using separation of variables [25, 62, 63]
and then averaging the solution by applying (2.17) or (2.18) (see section 3.1.1). For example,
for the case of a homogeneous disc (d = 2) with ℓ0 = 0, ℓ1 = L, radial symmetry at the origin
([a0, b0] = [0, 1]) and a semi-absorbing boundary ([a1, b1] = [1, β1]), we obtain

Pc(t) =
2

L2

∞∑
n=1

[
∫ L

0
rJ0(ηnr) dr]

2∫ L

0
rJ0(ηnr)2 dr

e−η2nDt, (2.19)

where ηn for n ∈ N+ are the positive roots of the transcendental equation

ηn
J1(ηnL)

J0(ηnL)
=

1

β1

, (2.20)

and Jν(·) is the Bessel function of the first kind of order ν. The problem, however, is that (2.19)
takes the form of an infinite series of exponential terms with complicated coefficients and the
values of ηn have to be determined numerically since closed-form expressions for the roots of
(2.20) are not able to be determined. Moreover, to achieve sufficient accuracy for small values
of time, a large number of terms need to be taken in the series (2.19) (see section 3.1.2). All
of these issues complicate both fitting experimental release data and interpreting the effect of
known physical parameters, such as L, D and β1, on Pc(t) [18, 22], motivating the need for
surrogate modelling [18, 22].
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2.4.2 Moments

In this work, we develop surrogate models for P(t) by matching moments with the continuum
model. As we will see later in sections 2.4.3–2.4.5, this process defines surrogate models in
terms of spatially-averaged moments of the continuum model. We now outline how exact
expressions for these spatially-averaged moments can be calculated for both the homogeneous
and heterogeneous continuum models.

Homogeneous geometry

For the homogeneous continuum model (2.4)–(2.7), the kth moment is defined by

Mk(r) =

∫ ∞

0

tk c(r, t) dt, k = 0, 1, 2, . . . . (2.21)

Closed-form solutions for Mk(r) can be obtained, without prior calculation of c(r, t), since
Mk(r) satisfies the differential equation [56, 57]:

D

rd−1

d

dr

(
rd−1dMk

dr

)
=

−1, k = 0,

−kMk−1(r), k = 1, 2, . . . ,
(2.22)

subject to the boundary conditions,

a0Mk(ℓ0)− b0
dMk

dr
(ℓ0) = 0, (2.23)

a1Mk(ℓ1) + b1
dMk

dr
(ℓ1) = 0. (2.24)

Note that this is the same boundary value problem satisfied by the mean particle lifetime for
a particle initially located at a distance r from the origin [20, 57]. Given Mk(r), the spatial
average of the kth moment is then defined as

⟨Mk(r)⟩ =
d

ℓd1 − ℓd0

∫ ℓ1

ℓ0

rd−1Mk(r) dr. (2.25)

Heterogeneous geometry

For the heterogeneous continuum model (2.8)–(2.14), the kth moment is defined by

Mk(r) =

M
(1)
k (r), ℓ0 < r < ℓ1,

M
(2)
k (r), ℓ1 < r < ℓ2,

(2.26)

M
(1)
k (r) =

∫ ∞

0

tk c1(r, t) dt, M
(2)
k (r) =

∫ ∞

0

tk c2(r, t) dt. (2.27)
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Closed-form solutions for M
(1)
k (r) and M

(2)
k (r) can be obtained without prior calculation of

c1(r, t) and c2(r, t), since M
(1)
k (r) and M

(2)
k (r) satisfy the differential equations [56, 57]:

D1

rd−1

d

dr

(
rd−1dM

(1)
k

dr

)
=

−1, k = 0,

−kM
(1)
k−1(r), k = 1, 2, . . . ,

(2.28)

D2

rd−1

d

dr

(
rd−1dM

(2)
k

dr

)
=

−1, k = 0,

−kM
(2)
k−1(r), k = 1, 2, . . . ,

(2.29)

subject to the boundary and interface conditions

a0M
(1)
k (ℓ0)− b0

dM
(1)
k

dr
(ℓ0) = 0, (2.30)

a1M
(2)
k (ℓ2) + b1

dM
(2)
k

dr
(ℓ2) = 0, (2.31)

M
(1)
k (ℓ1) = M

(2)
k (ℓ1), (2.32)

D1
dM

(1)
k

dr
(ℓ1) = D2

dM
(2)
k

dr
(ℓ1). (2.33)

Given M
(1)
k (r) and M

(2)
k (r), the spatial average of the kth moment is then defined as

⟨Mk(r)⟩ =
d

ℓd2 − ℓd0

[∫ ℓ1

ℓ0

rd−1M
(1)
k (r) dr +

∫ ℓ2

ℓ1

rd−1M
(2)
k (r) dr

]
. (2.34)

2.4.3 Surrogate model 1: One-term exponential model

We now consider a surrogate model for Pc(t) consisting of a single exponential term [18],

S1(t) = e−λt, (2.35)

where λ > 0 is a constant which depends on the dimension, diffusivity, geometry and boundary
conditions. Note that (2.35) is a sensible candidate model since it agrees with Pc(t) at initial
time (t = 0) and has the correct limiting behaviour at large times (t → ∞) (see, e.g., Pc(t) in
equation (2.19)). To determine λ, we follow [18] and match the zeroth moments of S1(t) (2.35)
and Pc(t) (2.17), ∫ ∞

0

S1(t) dt =

∫ ∞

0

Pc(t) dt. (2.36)

Substituting S1(t) (2.35) and Pc(t) ((2.17) or (2.18)) into equation (2.36), integrating exactly
on the left hand side, reversing the order of integration on the right hand side and rearranging
yields

λ =
1

⟨M0(r)⟩
, (2.37)
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Case Geometry Inner Boundary Outer Boundary a0 b0 a1 b1
A homogeneous – absorbing 0 1 1 0
B homogeneous – semi-absorbing 0 1 1 β1

C homogeneous reflecting absorbing 0 1 1 0
D homogeneous reflecting semi-absorbing 0 1 1 β1

E homogeneous absorbing absorbing 1 0 1 0
F heterogeneous – absorbing 0 1 1 0
G heterogeneous – semi-absorbing 0 1 1 β1

Table 2.1: Geometry and boundary parameters for Cases A–G. Note that for Cases A, B, F
and G there is no inner boundary (ℓ0 = 0), so we set [a0, b0] = [0, 1] for radial symmetry at the
origin.

where ⟨M0(r)⟩ is defined in section 2.4.2.
We now present several one-term exponential models for P(t). The models are developed

for the seven distinct cases outlined in Table 2.1 involving both homogeneous (Cases A–E)
and heterogeneous (Cases F–G) geometries and various combinations of boundary conditions.
Each model is presented by providing a closed-form expression for λ appearing in the one-
term exponential model (2.35). For the homogeneous geometries, λ is calculated by solving the
boundary value problem (2.22)–(2.24) for M0(r), calculating ⟨M0(r)⟩ (2.25) and then computing
λ (2.37). For the heterogeneous geometries, λ is calculated by solving the boundary value
problem (2.28)–(2.33) for M (1)

0 (r) and M
(2)
0 (r), calculating ⟨M0(r)⟩ (2.34) and then computing

λ (2.37) (see section 3.2.1). For Cases C–E, we note that λ is expressed generally for any
dimension d using the definite integral

∫ ℓ1
ℓ0

r1−d dr, which is equal to ℓ1−ℓ0, ln(ℓ1/ℓ0), 1/ℓ0−1/ℓ1

for d = 1, 2, 3, respectively.

Case A: homogeneous slab, circular or spherical geometry (ℓ0 = 0 and ℓ1 = L) with radial
symmetry at the origin ([a0, b0] = [0, 1]) and an absorbing outer boundary ([a1, b1] = [1, 0])

λ =
d(d+ 2)D

L2
. (2.38)

Case B: homogeneous slab, circular or spherical geometry (ℓ0 = 0 and ℓ1 = L) with radial
symmetry at the origin ([a0, b0] = [0, 1]) and a semi-absorbing outer boundary ([a1, b1] = [1, β1])

λ =
d(d+ 2)D

L2 + β1L(d+ 2)
. (2.39)

Case C: homogeneous slab, annular or spherical shell geometry (ℓ0 > 0) with a reflecting inner
boundary ([a0, b0] = [0, 1]) and an absorbing outer boundary ([a1, b1] = [1, 0])

λ =
d(d+ 2)(ℓd1 − ℓd0)D

ℓd+2
1 + (d+ 2)[ℓ2d0

∫ ℓ1
ℓ0

r1−d dr − ℓd0(ℓ
2
1 − ℓ20)]− ℓd+2

0

. (2.40)

Case D: homogeneous slab, annular or spherical shell geometry (ℓ0 > 0) with a reflecting inner
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boundary ([a0, b0] = [0, 1]) and a semi-absorbing outer boundary ([a1, b1] = [1, β1])

λ =
d(d+ 2)(ℓd1 − ℓd0)D

ℓd+2
1 + (d+ 2)[ℓ2d0

∫ ℓ1
ℓ0

r1−d dr − ℓd0(ℓ
2
1 − ℓ20) + β1ℓ

1−d
1 (ℓd1 − ℓd0)

2]− ℓd+2
0

. (2.41)

Case E: homogeneous slab, annular or spherical shell geometry with absorbing inner ([a0, b0] =
[1, 0]) and outer ([a1, b1] = [1, 0]) boundaries

λ =
4d(d+ 2)(ℓd1 − ℓd0)D

4(ℓd+2
1 − ℓd+2

0 )− (d+ 2)(ℓ21 − ℓ20)
2[
∫ ℓ1
ℓ0

r1−d dr]−1
. (2.42)

Case F: heterogeneous slab, circular or spherical geometry (ℓ0 = 0, ℓ2 = L) with radial
symmetry at the origin ([a0, b0] = [0, 1]) and an absorbing boundary ([a1, b1] = [1, 0])

λ =
d(d+ 2)D1D2

L2D1 + ℓd+2
1 (D2 −D1)/Ld

. (2.43)

Case G: heterogeneous slab, circular or spherical geometry (ℓ0 = 0, ℓ2 = L) with radial
symmetry at the origin ([a0, b0] = [0, 1]) and a semi-absorbing boundary ([a1, b1] = [1, β1])

λ =
d(d+ 2)D1D2

(L2 + β1L(d+ 2))D1 + ℓd+2
1 (D2 −D1)/Ld

. (2.44)

The above results yield easy-to-evaluate surrogate models that provide analytical insight into
the role of dimension, diffusivity, geometry and boundary conditions on the proportion of
particles remaining over time, P(t). For Case A (2.38), we observe that increasing the dimension
d, increasing the diffusivity D or decreasing the radius L increases the decay rate λ. For
Case B (2.39), decreasing β1 (i.e. increasing the absorption probability PO) also increases the
decay rate λ. All these observations make physical sense when considering the homogeneous
stochastic model (section 2.2) as particles are more likely to move outward than inward when
the number of dimensions d is increased, particles jump more frequently or jump further when
D is increased, particles have have less distance to reach the absorbing boundary when L is
decreased and particles are more likely to be absorbed when reaching the outer boundary when
β1 is decreased. For Case F (2.43) and Case G (2.44), moving the interface (r = ℓ1) closer
to the outer boundary (r = L) increases λ if D2 < D1 while moving the interface (r = ℓ1)
closer to the origin (r = 0) increases λ if D2 > D1. Both observations are consistent with the
heterogeneous stochastic model (section 2.2).

2.4.4 Surrogate model 2: Two-term exponential model

The one-term exponential model (2.35) fails to accurately capture the fast early decay and slow
late decay of P(t) [18]. To address this, we explore a surrogate model for Pc(t) consisting of
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two exponential terms,

S2(t) =
1

2
[e−λ1t + e−λ2t], (2.45)

where λ1 > 0 and λ2 > 0 are constants that depend on the dimension, diffusivity, geometry and
boundary conditions. The two-term exponential model (2.45) represents the simplest possible
extension to two exponential terms with the factor of 1/2 ensuring that S2(0) = 1. The inclusion
of a second exponential term in (2.45) yields a time-dependent decay rate λ̃2(t) = −S ′

2(t)/S2(t),
which decreases monotonically from (λ1 + λ2)/2 at t = 0 to min(λ1, λ2) as t → ∞. The two-
term exponential model therefore accommodates faster early decay and slower late decay that
cannot be captured by the constant decay rate of the one-term exponential model (2.35).

To obtain λ1 and λ2, we match the zeroth and first moments of S2(t) and Pc(t),∫ ∞

0

S2(t) dt =

∫ ∞

0

Pc(t) dt, (2.46)∫ ∞

0

t S2(t) dt =

∫ ∞

0

tPc(t) dt. (2.47)

Substituting S2(t) (2.45) and Pc(t) ((2.17) or (2.18)) into equations (2.46) and (2.47), integrat-
ing exactly on the left hand side and reversing the order of integration on the right hand side
yields

1

2

[
1

λ1

+
1

λ2

]
= ⟨M0(r)⟩, (2.48)

1

2

[
1

λ2
1

+
1

λ2
2

]
= ⟨M1(r)⟩, (2.49)

where ⟨M0(r)⟩ and ⟨M1(r)⟩ are defined in section 2.4.2. The exact solution of equations (2.48)
and (2.49) is given by

λ1,2 =
1

⟨M0(r)⟩ ±
√

⟨M1(r)⟩ − ⟨M0(r)⟩2
, (2.50)

which is easily verified by substitution.
We now present several two-term exponential models for P(t). The models are again de-

veloped for the seven cases outlined in Table 2.1, with each model presented by providing
closed-form expressions for λ1 and λ2 appearing in the two-term exponential model (2.45). For
the homogeneous geometries (Cases A–E), λ1 and λ2 are calculated by solving the boundary
value problem (2.22)–(2.24) for k = 0, 1, calculating ⟨Mk(r)⟩ (2.25) for k = 0, 1 and then
computing λ1 and λ2 (2.50). For the heterogeneous geometries (Cases F–G), λ1 and λ2 are cal-
culated by solving the boundary value problem (2.28)–(2.33) for k = 0, 1, calculating ⟨Mk(r)⟩
(2.34) for k = 0, 1 and then computing λ1 and λ2 (2.50) (see section 3.2.2). Results for Cases
C/D and Cases F/G are combined for succinctness. In these cases, the formulas are given for
Case D and G only, with the formulas for Case C and F obtained by setting β1 = 0.
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Case A: homogeneous slab, circular or spherical geometry (ℓ0 = 0, ℓ1 = L) with radial
symmetry at the origin ([a0, b0] = [0, 1]) and an absorbing boundary ([a1, b1] = [1, 0])

λ1,2 =
d(d+ 2)D

L2(1±
√

d/(d+ 4))
. (2.51)

Case B: homogeneous slab, circular or spherical geometry (ℓ0 = 0, ℓ1 = L) with radial sym-
metry at the origin ([a0, b0] = [0, 1]) and a semi-absorbing boundary ([a1, b1] = [1, β1])

λ1,2 =
d(d+ 2)D

L2(1±
√

d/(d+ 4)) + β1L(d+ 2)
. (2.52)

Case C/D: homogeneous slab, annular or spherical shell geometry (ℓ0 > 0) with a reflecting
inner boundary ([a0, b0] = [0, 1]) and a semi-absorbing outer boundary ([a1, b1] = [1, β1])

Slab (d = 1)

λ1,2 =
3D

(ℓ1 − ℓ0)2(1± 1/
√
5) + 3β1(ℓ1 − ℓ0)

.

Annular (d = 2)

λ1,2 =
8D(ℓ21 − ℓ20)

(ℓ21 − ℓ20)(ℓ
2
1 − 3ℓ20) + 4ℓ40 log(ℓ1/ℓ0) + 4β1(ℓ21 − ℓ20)

2/ℓ1 ±
√

κ2/3
,

κ2 = (ℓ21 − ℓ20)
3(ℓ21 − 7ℓ20)− 24ℓ40ℓ

2
1 log(ℓ1/ℓ0)(2ℓ

2
0 log(ℓ1/ℓ0) + ℓ20 − ℓ21).

Spherical shell (d = 3)

λ1,2 =
15D(ℓ31 − ℓ30)

(ℓ1 − ℓ0)3(ℓ21 + 3ℓ0ℓ1 + 6ℓ20 + 5ℓ30/ℓ1 ±
√
3κ3/7) + 5β1(ℓ31 − ℓ30)

2/ℓ21
,

κ3 = ℓ41 + 6ℓ0ℓ
3
1 + 21ℓ20ℓ

2
1 + 41ℓ30ℓ1 + 36ℓ40.

Case E: homogeneous slab, annular or spherical shell geometry (ℓ0 > 0) with absorbing inner
([a0, b0] = [1, 0]) and outer ([a1, b1] = [1, 0]) boundaries

Slab (d = 1)

λ1,2 =
12D

(ℓ1 − ℓ0)2(1± 1/
√
5)
. (2.53)

Annular (d = 2)

λ1,2 =
8D log(ℓ1/ℓ0)

(ℓ20 + ℓ21) log(ℓ1/ℓ0)− (ℓ21 − ℓ20)±
√

ξ2,1/3
, (2.54)

ξ2,1 = 3(ℓ21 − ℓ20)
2 − 3(ℓ41 − ℓ40) log(ℓ1/ℓ0) + (ℓ21 − ℓ20)

2 log2(ℓ1/ℓ0). (2.55)
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Spherical shell (d = 3)

λ1,2 =
60D(ℓ31 − ℓ30)

(ℓ1 − ℓ0)3(4ℓ20 + 7ℓ0ℓ1 + 4ℓ21 ±
√

3ξ3,1/7)
, (2.56)

ξ3,1 = 16ℓ41 + 26ℓ0ℓ
3
1 + 21ℓ20ℓ

2
1 + 26ℓ30ℓ1 + 16ℓ40. (2.57)

Case F/G: heterogeneous slab, circular or spherical geometry (ℓ0 = 0, ℓ2 = L), radial symme-
try at the origin ([a0, b0] = [0, 1]) and a semi-absorbing boundary ([a1, b1] = [1, β1])

λ1,2 =
d(d+ 2)D1D2

[L2 + β1L(d+ 2)]D1 + [ℓd+2
1 (D2 −D1)±

√
σd/(d+ 4)]/Ld

, (2.58)

σd = d(d+ 4)(D2 −D1)D1L
d+2ℓd+2

1 − (d+ 4)(D1 −D2)
2ℓ2d+4

1 +

(d+ 2)((d+ 2)D2
1 − (d+ 4)D1D2 + 2D2

2)L
dℓd+4

1 + dD2
1L

2d+4.
(2.59)

The above results yield easy-to-evaluate surrogate models that provide analytical insight into
the role of dimension, diffusivity, geometry and boundary conditions on the proportion of
particles remaining over time, P(t). As mentioned earlier, the two-term exponential model
(2.45) accommodates faster early decay and slower late decay that cannot be captured by the
constant decay rate of the one-term exponential model (2.35). This behaviour is clearly evident
for Case A, where the expressions for λ1 and λ2 in the two-term exponential model (2.51)
take a similar form to the expression for λ in the one-term exponential model (2.38), with
the exception of correction terms in the denominator depending on the dimension d. Using
these expressions for λ1 and λ2, we see that the two-term exponential model exhibits an initial
decay rate of (λ1 + λ2)/2 = d(d + 2)(d + 4)D/(4L2), which exceeds its late decay rate of
λ1 = d(d + 2)D/[L2(1 +

√
d/(d+ 4))] for all d = 1, 2, 3. Comparing these decay rates to the

constant decay rate of λ = d(d+ 2)D/L2 for the one-term exponential model (2.38), it is clear
that the two-term exponential model exhibits a larger initial decay rate and a smaller late decay
rate. For Case A, we also observe that the early decay rate for the two-term exponential model
is fastest for d = 3 and slowest for d = 1, and the later decay rate is slowest for d = 3 and
fastest for d = 1, both of which are consistent with the behaviour of P(t) [18].

2.4.5 Surrogate model 3: Weighted two-term exponential model

Finally, we consider a surrogate model for P(t) which generalizes the two-term model (2.45) to
an arbitrary weighting of the two exponential terms:

S3(t) = θe−λ1t + (1− θ)e−λ2t, (2.60)

where λ1 > 0, λ2 > 0 and θ ∈ (0, 1) are constants that depend on the dimension, diffusivity,
geometry and boundary conditions. In a similar manner to the two-term exponential model
(2.45), the weighted two-term exponential model (2.60) exhibits a time-dependent decay rate
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λ̃3(t) = −S ′
3(t)/S3(t), however, the decay rate now decreases monotonically from θλ1+(1−θ)λ2

at t = 0 to min(λ1, λ2) as t → ∞.
To obtain λ1, λ2 and θ, we match the zeroth, first and second moments of S3(t) and Pc(t),∫ ∞

0

S3(t) dt =

∫ ∞

0

Pc(t) dt, (2.61)∫ ∞

0

t S3(t) dt =

∫ ∞

0

tPc(t) dt, (2.62)∫ ∞

0

t2 S3(t) dt =

∫ ∞

0

t2 Pc(t) dt. (2.63)

Substituting S3(t) (2.60) and Pc(t) ((2.17) or (2.18)) into equations (2.61)–(2.63), integrating
exactly on the left hand side and reversing the order of integration on the right hand side yields

θ

λ1

+
1− θ

λ2

= ⟨M0(r)⟩, (2.64)

θ

λ2
1

+
1− θ

λ2
2

= ⟨M1(r)⟩, (2.65)

2

[
θ

λ3
1

+
1− θ

λ3
2

]
= ⟨M2(r)⟩, (2.66)

where ⟨M0(r)⟩, ⟨M1(r)⟩ and ⟨M2(r)⟩ are defined in section 2.4.2. The appropriate exact solution
of equations (2.64)–(2.66) is given by

λ1 =
1

⟨M0(r)⟩+
√

(1− θ)[⟨M1(r)⟩ − ⟨M0(r)⟩2]/θ
, (2.67)

λ2 =
1

⟨M0(r)⟩ −
√
θ[⟨M1(r)⟩ − ⟨M0(r)⟩2]/(1− θ)

, (2.68)

θ =
1

2
+

1

2

√
ω

ω + 4
, (2.69)

ω =

[
6⟨M0(r)⟩(⟨M1(r)⟩ − ⟨M0(r)⟩2) + 2⟨M0(r)⟩3 − ⟨M2(r)⟩

2(⟨M1(r)⟩ − ⟨M0(r)⟩2)3/2

]2
. (2.70)

Note that the expressions for λ1 and λ2 here are different from those given for the two-term
exponential model (2.50) expect for the special case when θ = 1/2 (ω = 0).

We now present weighted two-term exponential models of P(t) for Cases A–E outlined in
Table 2.1. Each model is presented by providing closed-form expressions for λ1, λ2 and ω, which
when combined with the expression for θ (2.69) fully defines the weighted two-term exponential
model (2.60). In each case, λ1, λ2 and ω are calculated by solving the boundary value problem
(2.22)–(2.24) for k = 0, 1, 2, calculating ⟨Mk(r)⟩ (2.25) for k = 0, 1, 2 and then processing
(2.67)–(2.70) (see section 3.2.3). Results for Cases C/D are again combined for succinctness
with the formulas given for Case D only and the formulas for Case C obtained by setting β1 = 0.

Case A: homogeneous slab, circular or spherical geometry (ℓ0 = 0, ℓ1 = L) with radial
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symmetry at the origin ([a0, b0] = [0, 1]) and an absorbing boundary ([a1, b1] = [1, 0])

λ1 =
d(d+ 2)D

L2(1 +
√

d(1− θ)/(θ(d+ 4)))
, (2.71)

λ2 =
d(d+ 2)D

L2(1−
√

dθ/((1− θ)(d+ 4)))
, (2.72)

ω =
d+ 4

d

[
6− d

d+ 6

]2
. (2.73)

Case B: homogeneous slab, circular or spherical geometry (ℓ0 = 0, ℓ1 = L) with radial sym-
metry at the origin ([a0, b0] = [0, 1]) and a semi-absorbing boundary ([a1, b1] = [1, β1])

λ1 =
d(d+ 2)D

L2(1 +
√

d(1− θ)/(θ(d+ 4))) + β1L(d+ 2)
, (2.74)

λ2 =
d(d+ 2)D

L2(1−
√

dθ/((1− θ)(d+ 4))) + β1L(d+ 2)
, (2.75)

ω =
d+ 4

dL4

[
(6− d)L2 + (d+ 2)(d+ 6)β1L

d+ 6

]2
. (2.76)

Case C/D: homogeneous slab, annular or spherical shell geometry (ℓ0 > 0) with a reflecting
inner boundary ([a0, b0] = [0, 1]) and a semi-absorbing outer boundary ([a1, b1] = [1, β1])

Slab (d = 1)

λ1 =
3D

(ℓ1 − ℓ0)2(1 +
√

(1− θ)/(5θ)) + 3β1(ℓ1 − ℓ0)
,

λ2 =
3D

(ℓ1 − ℓ0)2(1−
√

θ/(5(1− θ))) + 3β1(ℓ1 − ℓ0)
,

ω =
5(5(ℓ1 − ℓ0) + 21β1)

2

49(ℓ1 − ℓ0)2
.

Annular (d = 2)

λ1 =
8D(ℓ21 − ℓ20)

(ℓ21 − ℓ20)(ℓ
2
1 − 3ℓ20) + 4ℓ40 log(ℓ1/ℓ0) + 4β1(ℓ21 − ℓ20)

2/ℓ1 +
√

(1− θ)κ2,1/(3θ)
,

λ2 =
8D(ℓ21 − ℓ20)

(ℓ21 − ℓ20)(ℓ
2
1 − 3ℓ20) + 4ℓ40 log(ℓ1/ℓ0) + 4β1(ℓ21 − ℓ20)

2/ℓ1 −
√

θκ2,1/(3(1− θ))
,

ω =
(288κ2,2 log

2(ℓ1/ℓ0)− 1152ℓ80ℓ
3
1(ℓ

2
0 + ℓ21) log

3(ℓ1/ℓ0) + 24κ2,3 log(ℓ1/ℓ0) + κ2,4)

12ℓ21κ
3
2,1

,

κ2,1 = (ℓ21 − ℓ20)
3(ℓ21 − 7ℓ20)− 24ℓ40ℓ

2
1 log(ℓ1/ℓ0)(2ℓ

2
0 log(ℓ1/ℓ0) + ℓ20 − ℓ21),

κ2,2 = ℓ60ℓ
2
1(ℓ

2
1 − ℓ20)[ℓ1(5ℓ

2
0 + ℓ21)− 4β1(ℓ

2
1 − ℓ20)],

κ2,3 = ℓ40ℓ1(ℓ
2
1 − ℓ20)

2[7ℓ40 − 12ℓ20ℓ
2
1 + 24β1ℓ1(ℓ

2
1 − ℓ20)],

κ2,4 = (ℓ21 − ℓ20)
3[ℓ1(3ℓ

6
1 − 25ℓ20ℓ

4
1 + 83ℓ40ℓ

2
1 − 145ℓ60)− 24β1(7ℓ

2
0 − ℓ21)(ℓ

2
1 − ℓ20)

2].
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Spherical shell (d = 3)

λ1 =
15D(ℓ31 − ℓ30)

(ℓ1 − ℓ0)3(ℓ21 + 3ℓ0ℓ1 + 6ℓ20 + 5ℓ30/ℓ1 +
√
3κ3,1(1− θ)/(7θ)) + 5β1(ℓ31 − ℓ30)

2/ℓ21
,

λ2 =
15D(ℓ31 − ℓ30)

(ℓ1 − ℓ0)3(ℓ21 + 3ℓ0ℓ1 + 6ℓ20 + 5ℓ30/ℓ1 −
√
3κ3,1θ/(7(1− θ))) + 5β1(ℓ31 − ℓ30)

2/ℓ21
,

ω =
7(ℓ1κ3,2(ℓ1 − ℓ0)

3(ℓ21 + 4ℓ0ℓ1 + 10ℓ20) + 15κ3,1β1(ℓ
3
1 − ℓ30)

2)2

27κ3
3,1ℓ

4
1(ℓ1 − ℓ0)6

,

κ3,1 = ℓ41 + 6ℓ0ℓ
3
1 + 21ℓ20ℓ

2
1 + 41ℓ30ℓ1 + 36ℓ40,

κ3,2 = ℓ51 + 5ℓ0ℓ
4
1 + 15ℓ20ℓ

3
1 + 50ℓ30ℓ

2
1 + 100ℓ40ℓ1 + 54ℓ50.

Case E: homogeneous slab, annular or spherical shell geometry (ℓ0 > 0) with absorbing inner
([a0, b0] = [1, 0]) and outer ([a1, b1] = [1, 0]) boundaries

Slab (d = 1)

λ1 =
12D

(ℓ1 − ℓ0)2 +
√

(1− θ)/(5θ))
, (2.77)

λ2 =
12D

(ℓ1 − ℓ0)2 −
√

θ/(5(1− θ)))
, (2.78)

θ =
1

2
+

1

2

√
125/321. (2.79)

Annular (d = 2)

λ1 =
8D log(ℓ1/ℓ0)

(ℓ20 + ℓ21) log(ℓ1/ℓ0)− (ℓ21 − ℓ20) +
√

ξ2,1(1− θ)/(3θ)
, (2.80)

λ2 =
8D log(ℓ1/ℓ0)

(ℓ20 + ℓ21) log(ℓ1/ℓ0)− (ℓ21 − ℓ20)−
√

ξ2,1θ/(3(1− θ))
, (2.81)

ω =
log2(ℓ1/ℓ0)(18(ℓ

2
0 + ℓ21)(ℓ

2
1 − ℓ20)

2 + 6(ℓ20 + ℓ21)(ℓ
4
0 + ℓ41) log

2(ℓ1/ℓ0)− ξ2,2 log(ℓ1/ℓ0))
2

48ξ32,1
,

(2.82)

ξ2,1 = 3(ℓ21 − ℓ20)
2 − 3(ℓ41 − ℓ40) log(ℓ1/ℓ0) + (ℓ21 − ℓ20)

2 log2(ℓ1/ℓ0), (2.83)
ξ2,2 = (ℓ21 − ℓ20)(19ℓ

4
0 + 46ℓ20ℓ

2
1 + 19ℓ41). (2.84)
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Spherical shell (d = 3)

λ1 =
60D(ℓ31 − ℓ30)

(ℓ1 − ℓ0)3(4ℓ20 + 7ℓ0ℓ1 + 4ℓ21 +
√

3ξ3,1(1− θ)/(7θ))
, (2.85)

λ2 =
60D(ℓ31 − ℓ30)

(ℓ1 − ℓ0)3(4ℓ20 + 7ℓ0ℓ1 + 4ℓ21 −
√

3ξ3,1θ/(7(1− θ)))
, (2.86)

ω =
7(64ℓ60 + 471ℓ50ℓ1 + 780ℓ40ℓ

2
1 + 745ℓ30ℓ

3
1 + 780ℓ20ℓ

4
1 + 471ℓ0ℓ

5
1 + 64ℓ61)

2

27ξ33,1
, (2.87)

ξ3,1 = 16ℓ41 + 26ℓ0ℓ
3
1 + 21ℓ20ℓ

2
1 + 26ℓ30ℓ1 + 16ℓ40. (2.88)

The above results yield easy-to-evaluate surrogate models that provide analytical insight into
the role of dimension, diffusivity, geometry and boundary conditions on the proportion of
particles remaining over time, P(t). For Case A, the expressions for λ1 (2.71) and λ2 (2.72)
in the weighted two-term exponential model take a similar form to the expression for λ1 and
λ2 in the two-term exponential model (2.51), with the exception of correction terms in the
denominator depending on the weighting θ. Using these expressions for λ1 and λ2, we see
that the weighted two-term exponential model exhibits initial decay rates of θλ1 + (1− θ)λ2 =

10D/L2, 24D/L2, 42D/L2 for d = 1, 2, 3, each of which exceed the initial decay rate of the
two-term exponential model.

2.5 Results
We now investigate the accuracy of the three surrogate models (2.35), (2.45) and (2.60). Here,
we consider the seven test cases outlined previously in Table 2.1 but with specific choices for
the parameters as detailed in Table 2.2. For the homogeneous geometries (Cases A–E), we
choose P = δ = τ = 1 giving D = Pδ2/(2dτ) = 1/(2d) while for the heterogeneous geometries
(Cases F–G) we choose P1 = 0.3 and P2 = δ = τ = 1 giving D1 = P1δ

2/(2dτ) = 0.3/(2d) and
D2 = P2δ

2/(2dτ) = 1/(2d). The surrogate models for Cases A–E are given in sections 2.4.3–
2.4.5 while the surrogate models for Cases F–G are given in sections 2.4.3–2.4.4. Surrogate
model parameter values for Cases A–G in either one (d = 1), two (d = 2) or three (d = 3)
dimensions can be found in Appendix A. All simulations are performed over a specified time
interval 0 < t < T = 2 log(10)/λ, where λ is the decay rate in the one-term exponential model
(section 2.4.3). This choice of T corresponds to the value of time satisfying S1(t) = 10−2 and
captures the main region of decay of P(t) to easily detect differences between the surrogate
models.
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Case Geometry ℓ0 ℓ1 ℓ2 Inner Boundary Outer Boundary a0 b0 a1 b1

A homogeneous 0 100 – – absorbing 0 1 1 0
B homogeneous 0 100 – – semi-absorbing (PO = 0.5) 0 1 1 2
C homogeneous 50 100 – reflecting absorbing 0 1 1 0
D homogeneous 50 100 – reflecting semi-absorbing (PO = 0.5) 0 1 1 2
E homogeneous 50 100 – absorbing absorbing 1 0 1 0
F heterogeneous 0 50 100 – absorbing 0 1 1 0
G heterogeneous 0 50 100 – semi-absorbing (PO = 0.5) 0 1 1 2

Table 2.2: Geometry and boundary parameters for Cases A–G.

Each surrogate model is benchmarked against the stochastic and continuum model. To
account for the variability of Ps(t) (2.3) from the stochastic model, we perform Ns = 100 sim-
ulations using Np = 50 and Np = 500 particles. For each value of Np, we store the minimum
and maximum values of Ps(t) at each time step across all Ns = 100 simulations with the re-
sulting area enclosed encompassing all realizations of Ps(t). For the heterogeneous geometries
(Cases F–G), we choose n = 36 and n1 = n2 = 12 [57] when processing the movement proba-
bilities at the interface (see section 2.2.2). To calculate Pc(t) from the continuum model, we
first compute a numerical solution to the homogeneous continuum model (2.4)–(2.7) (Cases
A–E) or the heterogeneous continuum model (2.8)–(2.14) (Cases F–G) by discretising in space
using a finite volume method and discretising in time using the Crank-Nicolson method (see
section 3.3). We use Nt = 105 fixed time steps and Nr = 501 (Cases A–E) or Nr = 1001

(Cases F–G) uniformly-spaced nodes. For both the homogeneous continuum model (2.4)–(2.7)
and the heterogeneous continuum model (2.8)–(2.14), this yields approximations c(ri, tj) where
ri = ℓ0 + (i − 1)(ℓm − ℓ0)/(Nr − 1) (m = 1 for Cases A–E and m = 2 for Cases F–G) and
tj = jT/Nt for i = 1, . . . , Nr and j = 1, . . . , Nt. Using these discrete approximations, c(ri, tj),
and a trapezoidal rule approximation to the integrals (2.17) or (2.18) then allows Pc(tj) to be
computed for j = 1, . . . , Nt. In addition to visual comparisons, to quantify the accuracy of the
surrogate models, we also use the mean absolute error between each surrogate model and Pc(t),

εk =
1

Nt

Nt∑
j=1

|Ck(tj)− Pc(tj)|, (2.89)

where k = 1, . . . , 3. Full details of the above implementations are available in our MATLAB
code which can be accessed on GitHub: https://github.com/lukefilippini/Filippini_2023.

Figure 2.2 and Figure 2.3 compare the surrogate models to the benchmark values of Ps(t)

and Pc(t) obtained from the stochastic and continuum models. Figure 2.2 assesses the per-
formance of the one-term (2.35), two-term (2.45) and weighted two-term exponential models
(2.60) for the homogeneous test cases (Cases A–E) while Figure 2.3 assesses the performance
of the one-term (2.35) and two-term (2.45) exponential models for the heterogeneous test cases
(Cases F–G). All subfigures feature the final time T and the corresponding mean absolute errors
(2.89) for each surrogate model. Results are shown for d = 2 only with similar results observed
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Figure 2.2: One-term, two term, and weighted two-term exponential models for P(t) compared
with stochastic and continuum models for the homogeneous test cases (Cases A–E) with d = 2.
For the stochastic model, the bounds of the shaded regions represent the maximum and mini-
mum proportion of particles remaining at each point in time across the Ns = 100 simulations.
The mean absolute errors ε1, ε2 and ε3 and final time T are rounded to three significant digits.
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Figure 2.3: One-term and two-term exponential models for P(t) compared with stochastic and
continuum models for the heterogeneous test cases (Cases F–G) with d = 2. For the stochastic
model, the bounds of the shaded regions represent the maximum and minimum proportion of
particles remaining at each point in time across the Ns = 100 simulations. The mean absolute
errors ε1 and ε2 and final time T are rounded to three significant digits.

for d = 1, 3 (see section 3.4). From the results in Figure 2.2 and Figure 2.3, we can conclude
that:

• All surrogate models reliably capture the release profile over the seven test cases but with
varying levels of accuracy.

• The one-term exponential model (2.35) has the lowest accuracy of the three models across
all seven test cases, however, it is the most simplistic and may potentially be sufficient in
some cases.

• The weighted two-term exponential model (2.60) provides the highest accuracy, capturing
the early and late decay of P(t) more accurately than the one-term (2.35) and two-term
(2.45) models, however, this comes with the trade-off of increased model complexity.

• All three surrogate models yield higher accuracy for test cases with semi-absorbing bound-
ary conditions (Cases B, D and G) when compared to test cases with purely absorbing
boundary conditions (Cases A, C, E and F).

Finally, we compare the surrogate models developed in this paper to the Weibull model of Carr
[18], which was developed for homogeneous geometries only (i.e. Cases A–E). Table 3 displays
the mean absolute errors for the Weibull model, denoted as εw, for Cases A–E. In comparison
to the mean absolute errors presented in Figure 2.2, we find that the Weibull model is more
accurate than the one-term (2.35) and two-term (2.45) exponential models but less accurate
than the weighted two-term exponential model (2.60).
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Case A B C D E
εw 1.05× 10−2 9.21× 10−3 1.03× 10−2 8.42× 10−3 9.22× 10−3

Table 2.3: Mean absolute errors for the Weibull model of Carr [18] (Cases A–E).

2.6 Conclusion
We have considered the problem of particle diffusion in d-dimensional radially-symmetric ge-
ometries with reflecting, absorbing and/or semi-absorbing boundaries. By matching moments
with the continuum analogue of the stochastic diffusion model, we have presented several new
one-term and two-term exponential models for P(t), the proportion of particles remaining
within the geometry over time. New surrogate models have been developed for three main
problems: (i) homogeneous slab, circular and spherical geometries with an absorbing or semi-
absorbing outer boundary (ii) homogeneous slab, annular and spherical shell geometries with
absorbing, reflecting and/or semi-absorbing boundaries and (ii) heterogeneous slab, circular
and spherical geometries with an absorbing or semi-absorbing outer boundary. Each surrogate
model provides a simple approximation of P(t) that is easy to evaluate, avoids the limitations
and complexity of exact expressions obtained from the continuum model, reliably captures
the particle release profile over time and explicitly depends on the physical parameters of the
diffusive transport system: dimension, diffusivity, geometry and boundary conditions. Of the
three surrogate models developed, our findings demonstrated that the weighted two-term ex-
ponential model (2.60) captures both stochastic and continuum calculations of P(t) with the
highest degree of accuracy. It also offers improved simplicity and accuracy when compared to
the Weibull model previously presented by Carr [18].

The results reported in this paper indicate, as may have been expected, that the most
accurate surrogate model is the one with the greatest number of parameters (weighted two-term
exponential model) and the least accurate surrogate model is the one with the fewest number of
parameters (one-term exponential model). To account for this trade-off between model accuracy
and model complexity, a standard model selection criterion that rewards accuracy but penalises
the number of parameters [64] could be used to select a single preferred surrogate model. Other
avenues for future research (see section 3.5) could include accounting for a non-uniform initial
distribution of particles or drift and/or decay in the diffusive transport process. Additionally,
surrogate models using different functional forms could also be explored. Surrogate models
using different functional forms, such as a weighted two-term Weibull model, could also be
explored and may further improve accuracy but at the cost of increased model complexity.

30



Chapter 3

Supporting information for surrogate
model development

3.1 Analysis of analytical solutions for Pc(t)

In section 2.4.1, we presented an exact expression for Pc(t) for a homogeneous disc (d = 2)
with ℓ0 = 0, ℓ1 = L, radial symmetry at the origin ([a0, b0] = [0, 1]) and a semi-absorbing
boundary ([a1, b1], [1, β1]). The limitations of this model for P(t) were identified and used as
a motivation for the development of the one-term, two-term and weighted two-term surrogate
models in sections 2.4.3–2.4.5, respectively. In this section, we derive the analytical solution
for Pc(t) presented in section 2.4.1 and those for a homogeneous slab and sphere with the same
parameter configurations (Case B of Table 2.1). These exact solutions are then truncated and
compared against analogous numerical results for Pc(t) (see section 3.3). The drawbacks of
the exact solutions are then discussed in further detail. Finally, we show that an initial-value
problem can be derived for Pc(t), although dependence on c(r, t) can only be eliminated for a
trivial choice of boundary conditions.

3.1.1 Separation of variables and eigenfunction expansion

In this section, we present exact solutions for the continuum analogue (2.17) of P(t),

Pc(t) =
d

ℓd1 − ℓd0

∫ ℓ1

ℓ0

rd−1c(r, t) dt.

To illustrate the limitations associated with analytical solutions for Pc(t), we consider Case B
of Table 2.1: a homogeneous slab, circular or spherical geometry (ℓ0 = 0, ℓ1 = L) with radial
symmetry at the origin ([a0, b0] = [0, 1]) and a semi-absorbing boundary ([a1, b1] = [1, β1]). We
use separation of variables and eigenfunction expansion to obtain expressions for c(r, t), and
then apply (2.17) to give exact solutions for Pc(t). Firstly, we consider the continuum model
(2.4)–(2.7) and assume that c(r, t) can be expressed as the product c(r, t) = R(r)T (t), which
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can be substituted into the model (2.4) to give

T ′

DT
=

1

rd−1R

d

dr
(rd−1R) = −η2 (3.1)

where η > 0 is an arbitrary constant. Considering R(r), we rearrange (3.1) to obtain the
ordinary differential equations

R′′ + η2R = 0, for d = 1,

r2R′′ + rR′ + (ηr)2R = 0, for d = 2,

r2R′′ + 2rR′ + (ηr)2R = 0, for d = 3,

subject to the boundary conditions R′(0) = 0 and R(L) + β1R
′(L) = 0. Thus, we obtain, for

n = 1, 2, . . ., the unique solutions

Rn(r) =


cos(ηnr), for d = 1,

J0(ηnr), for d = 2,

sin(ηnr)/(ηnr), for d = 3,

where Jν(·) is the Bessel function of the first kind of order ν and ηn are the positive roots of
the transcendental equations

tan(ηnL) = 1/(β1ηn), for d = 1,

J1(ηnL)/J0(ηnL) = 1/(β1ηn), for d = 2,

tan(ηnL) = β1ηnL/(β1 − L), for d = 3.

(3.2)

Now, we consider T (t) by first rearranging (3.1). We obtain the ordinary differential equation
T ′
n + η2nDTn = 0, which has the general solution

Tn(t) = Ane
−η2nDt.

Thus, we obtain the following general solutions for c(r, t),

c(r, t) =


∑∞

n=1 An cos(ηnr)e
−η2nDt, for d = 1,∑∞

n=1 AnJ0(ηnr)e
−η2nDt, for d = 2,∑∞

n=1 An sin(ηnr)/(ηnr)e
−η2nDt, for d = 3.

(3.3)

Substituting (3.3) into the initial condition (2.5) and using orthogonality of eigenfunctions, we
can express the coefficients An as
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An =


4 sin(ηnL)/(2ηnL+ sin(2ηnL)), for d = 1,∫ L

0
rJ0(ηnr) dr/

∫ L

0
rJ0(ηnr)

2 dr, for d = 2,

4(sin(ηnL)− ηnL cos(ηnL))/(2ηnL− sin(2ηnL)), for d = 3.

Finally, by calculating the average using (2.17), we obtain exact solutions for the continuum
analogue of P(t),

Slab (d = 1):

Pc(t) =
4

L

∞∑
n=1

sin2(2ηnL)

2η2n + ηn sin(2ηnL)
e−η2nDt, (3.4)

Circular (d = 2):

Pc(t) =
2

L2

∞∑
n=1

[∫ L

0
rJ0(ηnr) dr

]2
∫ L

0
rJ0(ηnr)2 dr

e−η2nDt, (3.5)

Spherical (d = 3):

Pc(t) =
12

L3

∞∑
n=1

[sin(ηnL)− ηnL cos(ηnL)]
2

η3n[2ηnL− sin(2ηnL)]
e−η2nDt. (3.6)

3.1.2 Limitations of continuum models

Here, we discuss the limitations associated with the continuum analogues (3.4)–(3.6) of P(t).
These limitations arise from the complexity of the expressions, methods for determining roots
of the transcendental equations (3.2) and truncation requirements. Firstly, the roots of the
transcendental equations (3.2) do not have exact solutions and must be approximated using
numerical methods. We use MATLAB’s fzero [65] function to determine the roots of each
equation in (3.2), subject to appropriate initial guesses for each root. Example values are
presented in Table 3.1 for Case B of Table 2.2. The primary issue with these roots is that they
lack analytical insight. To elaborate, the numerical techniques used to approximate the roots
limit meaningful interpretation of the precise influence of the radius and boundary conditions
on the values of ηn. Furthermore, the initial guesses required must be very precise to avoid
incorrect approximation of the roots, particularly as the frequency of the functions on the left
hand side of (3.2) increases. This requires visual inspection or an approximation which must
be redefined for each new set of parameters. The roots must then be used within each term of
the infinite series solutions (3.4)–(3.6), which are complicated terms that, for a disc (d = 2),
require numerical integration. Additionally, given that the continuum analogues (3.4)–(3.6) are
not closed-form, truncation is required to give a suitable number of terms which sufficiently
approximate the true solution for Pc(t). Figure 3.1 displays a comparison between the series
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Root η1 η2 η3 η4 η5
Slab (d = 1) 0.0154 0.0462 0.0770 0.1078 0.1387
Disc (d = 2) 0.0236 0.0541 0.0848 0.1156 0.1464

Sphere (d = 3) 0.0308 0.0616 0.0924 0.1232 0.1540

Table 3.1: Numerical roots of the transcendental equations (3.2) determined using MATLAB’s
fzero [65] function for Case B of Table 2.2.

solutions, truncated at one and two terms, and numerical calculations (see sections 2.5 and 3.3)
for slab, circular and spherical geometries. These comparisons demonstrate that more than
two terms are required to accurately capture the early decay of P(t) for high probabilities of
particle absorption at the outer boundary, or small values of β1. On the other hand, the two-
term (2.45) and weighted two-term (2.60) surrogate models accurately capture this early decay
and are simpler in form than the series solutions. To summarise, the complexity of the terms of
each infinite series, the need for truncation and repeated numerical techniques all diminish the
potential for meaningful analytical insight into the precise influence of each physical parameter
on P(t).

Figure 3.1: One-term and two-term series solutions for Pc(t) compared with numerical results
for a homogenous (a) slab, (b) disc and (c) sphere with radial symmetry at the origin and a
semi-absorbing outer boundary (Case B of Table 2.1). Here, we choose L = 100, β1 = 1.053
(PO = 0.95) and D = 0.5, 0.25, 0.167 for d = 1, 2, 3, respectively. The final time T is rounded
to three significant digits.

34



3.1.3 Initial value problem for Pc(t)

Finally, it is important to note that we can obtain an initial value problem satisfied by Pc(t)

by averaging the continuum model (2.4)–(2.7) or (2.8)–(2.14) for the homogeneous and het-
erogeneous geometries, respectively. However, this is only valid for a trivial set of boundary
conditions. Considering the continuum model (2.4)–(2.7) for the homogeneous geometries,
applying the averaging operator (2.17) to the diffusion equation (2.4) yields

dPc

dt
=

dD

ℓd1 − ℓd0

[
ℓd−1
1

∂c

∂r
(ℓ1, t)− ℓd−1

0

∂c

∂r
(ℓ0, t)

]
. (3.7)

In the trivial case that both boundaries are reflecting, such that a0 = a1 = 0 and b0 = b1 = 1,
the ordinary differential equation (3.7) simplifies to dPc/dt = 0. Thus, Pc(t) = 1 for all time,
as no particles are able to exit the system. However, if at least one boundary is absorbing or
semi-absorbing, such that a0 ̸= 0 and/or a1 ̸= 0, we obtain

dP
dt

=
dD

ℓd1 − ℓd0

[
a0ℓ

d−1
0

b0
c(ℓ0, t)−

a1ℓ
d−1
1

b1
c(ℓ1, t)

]
,

which implies that it is not possible to eliminate the dependence of Pc(t) on the continuum
solution c(r, t).

3.2 Surrogate model development and analysis
In sections 2.4.3–2.4.5, we presented surrogate models for P(t) obtained by matching moments
with the continuum analogue of the stochastic diffusion model. In this section, we provide
detailed derivations of the one-term, two-term and weighted two-term models for P(t) for some
of the cases given in Table 2.1. Firstly, we derive the formula (2.37) for λ for the one-term
model (2.35) and consider unique solutions for Cases B, E and G of Table 2.1. Secondly, we
consider the two-term model (2.45) and derive the formula (2.50) for λ1,2. Using this formula,
we then construct unique expressions for (2.50) for the same three cases. Thirdly, we derive the
formulas (2.67)–(2.70) for λ1, λ2, θ and ω for the weighted model (2.60) and consider Cases B
and E for the homogeneous geometries. Finally, we illustrate the usefulness of surrogate models
for simplifying the fitting of experimental release data. This is shown by using the one-term
model (2.35) to estimate the diffusivity for Case B of Table 2.1.

3.2.1 One-term model

Considering the one-term model (2.35), we follow [18] and match the zeroth moments of S1(t)

and Pc(t). Substituting in the one-term model (2.35) and continuum analogue (2.17) or (2.18)
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into the condition (2.36), we obtain∫ ∞

0

e−λt dt =

∫ ∞

0

[
d

ℓd1 − ℓd0

∫ ℓ1

ℓ0

rd−1c(r, t) dr

]
dt,∫ ∞

0

e−λt dt =

∫ ∞

0

[
d

ℓd2 − ℓd0

[∫ ℓ1

ℓ0

rd−1c1(r, t) dr +

∫ ℓ2

ℓ1

rd−1c2(r, t) dr

]]
dt,

for the homogeneous and heterogeneous geometries, respectively. The order of integration on
the right hand side can be rearranged and the definitions (2.21) for M0(r) and (2.26) for M (1)

0 (r)

and M
(2)
0 (r), where k = 0, allow for simplification. Integrating and evaluating on the left hand

side, we then obtain

1

λ
=

d

ℓd1 − ℓd0

∫ ℓ1

ℓ0

rd−1M0(r) dr,

1

λ
=

d

ℓd2 − ℓd0

[∫ ℓ1

ℓ0

rd−1M
(1)
0 (r) dr +

∫ ℓ2

ℓ1

rd−1M
(2)
0 (r) dr

]
.

Lastly, we use the definition of ⟨M0(r)⟩, given by (2.25) for the homogeneous geometries or
(2.34) for the heterogeneous geometries, where k = 0. The expression 1/λ = ⟨M0(r)⟩ is
obtained, which can be inverted to recover (2.37),

λ =
1

⟨M0(r)⟩
.

Homogeneous geometries

Considering the homogeneous geometries, we determine closed-form analytical expressions for
the zeroth moment M0(r). The ordinary differential equation (2.22), where k = 0,

D

rd−1

d

dr

(
rd−1dM0

dr

)
= −1,

can be solved to give a general solution for M0(r), and we then obtain unique solutions for
Cases B and E of Table 2.1. Finally, analytical expressions for ⟨M0(r)⟩ are then obtained by
applying (2.25), where k = 0,

⟨M0(r)⟩ =
d

ℓd1 − ℓd0

∫ ℓ1

ℓ0

rd−1M0(r) dr, (3.8)

to the unique solutions for M0(r). The general solution for M0(r) is given by

M0(r) = k1I1(r)−
r2

2dD
+ k2, (3.9)

I1(r) =

∫ r

ℓ0

z1−d
1 dz1, (3.10)

where k1 and k2 are constants. The definite integral I1(r) allows M0(r) to be expressed in terms
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of a general dimension d, and closed-form expressions for d = 1, 2, 3 are given in Appendix B.
To determine k1 and k2, we first consider Case B. The boundary conditions (2.23) and (2.24),
where k = 0, simplify to

dM0

dr
(0) = 0, M0(L) + β1

dM0

dr
(L) = 0,

which, when applied to (3.9), yield k1 = 0 and k2 = (L2 + 2β1L)/(2dD). Thus, we have a
unique solution for M0(r), and the spatial average ⟨M0(r)⟩ can be obtained by applying (3.8),

M0(r) =
L2 − r2 + 2β1L

2dD
, (3.11)

⟨M0(r)⟩ =
L2 + (d+ 2) β1L

d (d+ 2)D
. (3.12)

Figure 3.2 presents a validation of the analytical solution (3.11) for M0(r) by comparison with
numerical values obtained using MATLAB’s bvp4c [66] function. The code that computes the
numerical solution and generates the figure is available on GitHub (https://github.com/lukefil
ippini/Filippini_2023.git).

Figure 3.2: Comparison between analytical and numerical solutions for the zeroth moment,
M0(r), for homogeneous slab, circular and spherical geometries with radial symmetry at the
origin and a semi-absorbing boundary (Case B of Table 2.1). Note that the solutions for M0(r)
do not vary with dimension.

The expression (2.38) for λ is recovered by substituting the spatial average (3.12) into the
general solution (2.37). We restate (2.38) for convenience,

λ =
d(d+ 2)D

L2 + β1L(d+ 2)
.

Next, we consider Case E. The boundary conditions (2.23) and (2.24), where k = 0, are
simplified to M0(ℓ0) = M0(ℓ1) = 0 and give simultaneous equations that can be presented as a
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linear system. The constants k1 and k2 are obtained by solving[
k1

k2

]
= A−1

d

[
ℓ20/(2dD)

ℓ21/(2dD)

]
, Ad =

[
0 1

I1(ℓ1) 1

]
,

which gives the unique solutions k1 = (ℓ21 − ℓ20)/(2dDI1(ℓ1)) and k2 = ℓ20/(2dD), where I1(r) is
defined in Appendix B. Hence, we have a unique solution for M0(r), and the spatial average
⟨M0(r)⟩ is obtained by applying (3.8),

M0(r) =
(ℓ21 − ℓ20)I1(r)− (r2 − ℓ20)I1(ℓ1)

2dDI1(ℓ1)
,

⟨M0(r)⟩ =
d(d+ 2)(ℓ21 − ℓ20)I2(ℓ1)− [d(ℓd+2

1 − ℓd+2
0 ) + (d+ 2)(ℓd1 − ℓd0)ℓ

2
0]I1(ℓ1)

2d(d+ 2)(ℓd1 − ℓd0)DI1(ℓ1)
, (3.13)

I2(r) =

∫ r

ℓ0

zd−1
2 I1(z2) dz2.

It can be shown that I2(r) = I1(r)r
d/d− (r2−ℓ20)/(2d), which implies that the expression (3.13)

can be simplified to give

⟨M0(r)⟩ =
4(ℓd+2

1 − ℓd+2
0 )− (d+ 2)(ℓ21 − ℓ20)

2 [I1(ℓ1)]
−1

4d(d+ 2)(ℓd1 − ℓd0)D
. (3.14)

The expression(2.42) for λ can then be recovered by inverting the spatial average (3.14),

λ =
4d(d+ 2)(ℓd1 − ℓd0)D

4(ℓd+2
1 − ℓd+2

0 )− (d+ 2)(ℓ21 − ℓ20)
2[
∫ ℓ1
ℓ0

r1−d dr]−1
.

Heterogeneous geometries

Considering the heterogeneous geometries, we determine closed-form analytical expressions for
the zeroth moments M

(1)
0 (r) and M

(2)
0 (r) for the inner (ℓ0 < r < ℓ1) and outer (ℓ1 < r < ℓ2)

layers, respectively. The ordinary differential equations (2.28) and (2.29), where k = 0,

D1

rd−1

d

dr

(
rd−1dM

(1)
0

dr

)
= −1,

D2

rd−1

d

dr

(
rd−1dM

(2)
0

dr

)
= −1,

can be solved to give a general solution for M (1)
0 (r) and M

(2)
0 (r), respectively. Unique solutions

for both quantities are then obtained by applying the boundary and interface conditions (2.30)–
(2.33), where k = 0. Here, we consider Case G of Table 2.1 and solve for M

(1)
0 (r) and M (2)(r)

subject to

dM
(1)
0

dr
(0) = 0, M

(2)
0 (L) + β1

dM
(2)
0

dr
(L) = 0, (3.15)

M
(1)
0 (ℓ1) = M

(2)
0 (ℓ1), D1

dM
(1)
0

dr
(ℓ1) = D2

dM
(2)
0

dr
(ℓ1). (3.16)
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Lastly, an analytical solution for ⟨M0(r)⟩ is then obtained by applying (2.34), where k = 0,

⟨M0(r)⟩ =
d

ℓd2 − ℓd0

[∫ ℓ1

ℓ0

rd−1M
(1)
0 (r) dr +

∫ ℓ2

ℓ1

rd−1M
(2)
0 (r) dr

]
, (3.17)

to the unique solutions for M (1)
0 (r) and M

(2)
0 (r). The general solutions for M (1)

0 (r) and M
(2)
0 (r)

are given by

M
(1)
0 (r) = k1I

(1)
1 (r)− r2

2dD1

+ k2, M
(2)
0 (r) = k3I

(2)
1 (r)− r2

2dD2

+ k4,

I
(1)
1 (r) =

∫ r

ℓ0

z1−d
1 dz1, I

(2)
1 (r) =

∫ r

ℓ1

z1−d
1 dz1,

where k1, k2, k3 and k4 are constants. Closed-form expressions for I
(1)
1 (r) and I

(2)
1 (r) are given

in Appendix B. The boundary and interface conditions (3.15)–(3.16) yield the unique solutions
k1 = k3 = 0, k2 = [(L2 + 2β1L)D1 + ℓ21(D2 −D1)]/(2dD1D2) and k4 = (L2 + 2β1L)/(2dD2) for
the constants. Thus, we obtain unique solutions for M

(1)
0 (r) and M

(2)
0 (r) and determine the

spatial average ⟨M0(r)⟩ by applying (3.17),

M
(1)
0 (r) =

(L2 − ℓ21 + 2β1L)D1 +D2(ℓ
2
1 − r2)

2dD1D2

, M
(2)
0 (r) =

L2 − r2 + 2β1L

2dD1

,

⟨M0(r)⟩ =
D1 [L

2 + β1L (d+ 2)] + ℓd+2
2 (D2 −D1) /L

d

d (d+ 2)D1D2

. (3.18)

The spatial average (3.18) can be inverted to recover the expression (2.44) for λ, which we
restate for convenience,

λ =
d(d+ 2)D1D2

(L2 + β1L(d+ 2))D1 + ℓd+2
1 (D2 −D1)/Ld

.

3.2.2 Two-term model

Considering the two-term model (2.45), we propose a matching of the zeroth and first moments
of S2(t) and Pc(t). Substituting in the two-term model (2.45) and continuum analogue (2.17)
or (2.18) into the conditions (2.46) and (2.47), we obtain

1

2

∫ ∞

0

e−λ1t + e−λ2t dt = ⟨M0(r)⟩, (3.19)

1

2

∫ ∞

0

t
[
e−λ1t + e−λ2t

]
dt = ⟨M1(r)⟩, (3.20)

where the spatial average ⟨M1(r)⟩ is obtained by following a process analogous to that discussed
in section 3.2.1. Note that we have already determined expressions for ⟨M0(r)⟩ for Cases B,
E and G of Table 2.1. Integrating and evaluating on the left hand side of (3.19), and using
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integration by parts for (3.20), we recover (2.48) and (2.49), respectively,

1

2

[
1

λ1

+
1

λ2

]
= ⟨M0(r)⟩,

1

2

[
1

λ2
1

+
1

λ2
2

]
= ⟨M1(r)⟩.

Using the expression (2.48), we rearrange for 1/λ1 and substitute into (2.49) to give a quadratic
expression in 1/λ2, (

1

λ2

)2

− 2⟨M0(r)⟩
(

1

λ2

)
+ 2⟨M0(r)⟩2 − ⟨M1(r)⟩ = 0. (3.21)

The roots of (3.21) are obtained by using the quadratic formula. We choose the root

1

λ2

= ⟨M0(r)⟩ −
√

⟨M1(r)⟩ − ⟨M0(r)⟩2. (3.22)

to give a single value for λ2, although the other root could alternatively be chosen with no
difference arising in the form of S2(t). Lastly, (3.22) can be substituted into (2.48) to give the
other root of the quadratic expression (3.21),

1

λ1

= ⟨M0(r)⟩+
√

⟨M1(r)⟩ − ⟨M0(r)⟩2. (3.23)

Thus, inverting (3.22) and (3.23) recovers the expression (2.50) for λ1,2,

λ1,2 =
1

⟨M0(r)⟩ ±
√

⟨M1(r)⟩ − ⟨M0(r)⟩2
.

Homogeneous geometries

Considering the homogeneous geometries, we determine closed-form analytical expressions for
the first moment M1(r). The ordinary differential equation (2.22), where k = 1,

D

rd−1

d

dr

(
rd−1dM1

dr

)
= −M0(r), (3.24)

can be solved to give a general solution for M1(r). We obtain unique solutions for Cases B and
E of Table 2.1, as in section 3.2.1. Lastly, analytical expressions for ⟨M1(r)⟩ can be obtained
by applying (2.25), where k = 1,

⟨M1(r)⟩ =
d

ℓd1 − ℓd0

∫ ℓ1

ℓ0

rd−1M1(r) dr, (3.25)

to the unique solutions for M1(r). The general solution for M1(r) is given by

M1(r) = γ1(r) + g1I1(r) + g2, (3.26)

γ1(r) =
r4

8d(d+ 2)D2
− k1

D
I3(r)−

k2
2dD

r2, (3.27)
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I3(r) =

∫ r

ℓ0

z1−d
3 I2(z3) dz3. (3.28)

where g1 and g2 are constants and k1 and k2 are given in section 3.2.1 for Cases B and E.
Note that the general solution (3.9)–(3.10) for M0(r) is substituted in to the right hand side of
(3.24). Expressions for I3(r) for d = 1, 2, 3 are given in Appendix B. Now, we first determine
unique expressions for g1 and g2 for Case B. The boundary conditions (2.23) and (2.24), where
k = 1, simplify to

dM1

dr
(0) = 0, M1(L) + β1

dM1

dr
(L) = 0,

which give g1 = 0 and g2 = [(d+ 4)(L2 + 2β1L)
2 + 4dβ2

1L
2] / [8d2(d+ 2)D2]. Thus, we obtain

a unique solution for M1(r) and determine the spatial average ⟨M1(r)⟩ by using (3.25),

M1(r) =
(L2 + 2β1L) [(d+ 4)(L2 + 2β1L)− 2(d+ 2)r2] + dr4 + 4dβ2

1L
2

8d2(d+ 2)D2
, (3.29)

⟨M1(r)⟩ =
2(L2 + 2β1L)

2 + 2dβ1L
3 + d(d+ 6)β2

1L
2

d2(d+ 2)2(d+ 4)D2
. (3.30)

Figure 3.3 shows that the analytical solution (3.29) is valid when compared to numerical values
for d = 1, 2, 3, obtained using MATLAB’s bvp4c [66] function. The code which computes the
numerical solutions and generates the figures is available on GitHub (https://github.com/luke
filippini/Filippini_2023.git). We now substitute the spatial averages (3.12) and (3.30) for M0(r)

and M1(r), respectively, into the general expression (2.50) for λ1,2 and simplify to recover (2.52),

λ1,2 =
d(d+ 2)D

L2(1±
√

d/(d+ 4)) + β1L(d+ 2)
.

Next, we consider Case E. The boundary conditions (2.23) and (2.24), where k = 1, are
simplified to M1(ℓ0) = M1(ℓ1) = 0. These conditions yield unique expressions for g1 and g2,
which are obtained by solving the linear system[

g1

g2

]
= A−1

d

[
−γ1(ℓ0)

−γ1(ℓ1)

]
, Ad =

[
0 1

I1(ℓ1) 1

]
.

We do not present expressions for M1(r) and ⟨M1(r)⟩ due to their length and complexity. Re-
gardless, analytical solutions for M1(r) and ⟨M1(r)⟩ can be determined using Wolfram Mathe-
matica [67] to minimise tedious by-hand solutions and human error. Mathematica and by-hand
simplification were used to determine the expressions (2.53)–(2.56), which we restate for con-
venience,

Slab (d = 1)

λ1,2 =
12D

(ℓ1 − ℓ0)2(1± 1/
√
5)
.
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Figure 3.3: Comparisons between analytical and numerical solutions for the first moment,
M1(r), for homogeneous (a) slab, (b) circular and (c) spherical geometries with radial symmetry
at the origin and a semi-absorbing boundary (Case B of Table 2.1).

Annular (d = 2)

λ1,2 =
8D log(ℓ1/ℓ0)

(ℓ20 + ℓ21) log(ℓ1/ℓ0)− (ℓ21 − ℓ20)±
√

ξ2,1/3
,

ξ2,1 = 3(ℓ21 − ℓ20)
2 − 3(ℓ41 − ℓ40) log(ℓ1/ℓ0) + (ℓ21 − ℓ20)

2 log2(ℓ1/ℓ0).

Spherical shell (d = 3)

λ1,2 =
60D(ℓ31 − ℓ30)

(ℓ1 − ℓ0)3(4ℓ20 + 7ℓ0ℓ1 + 4ℓ21 ±
√

3ξ3,1/7)
,

ξ3,1 = 16ℓ41 + 26ℓ0ℓ
3
1 + 21ℓ20ℓ

2
1 + 26ℓ30ℓ1 + 16ℓ40.

Heterogeneous geometries

Considering the heterogeneous geometries, we determine closed-form analytical expressions for
the first moments M (1)

1 (r) and M
(2)
1 (r) (2.26) for the inner (ℓ0 < r < ℓ1) and outer (ℓ1 < r < ℓ2)
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layers, respectively. The ordinary differential equations (2.28) and (2.29), where k = 1,

D1

rd−1

d

dr

(
rd−1dM

(1)
1

dr

)
= −M

(1)
0 (r),

D2

rd−1

d

dr

(
rd−1dM

(2)
1

dr

)
= −M

(2)
0 (r),

can be solved to give general solutions for M
(1)
1 (r) and M

(2)
1 (r), respectively. Unique solutions

for both quantities are then obtained by applying the boundary and interface conditions (2.30)–
(2.33), where k = 1. As in section 3.2.1, we consider Case G in Table 2.1 and, hence, apply the
conditions

dM
(1)
1

dr
(0) = 0, M

(2)
1 (L) + β1

dM
(2)
1

dr
(L) = 0, (3.31)

M
(1)
1 (ℓ1) = M

(2)
1 (ℓ1), D1

dM
(1)
1

dr
(ℓ1) = D2

dM
(2)
1

dr
(ℓ1), (3.32)

Finally, we obtain an analytical solution for ⟨M1(r)⟩ by applying (2.34), where k = 1,

⟨M1(r)⟩ =
d

ℓd2 − ℓd0

[∫ ℓ1

ℓ0

rd−1M
(1)
1 (r) dr +

∫ ℓ2

ℓ1

rd−1M
(2)
1 (r) dr

]
, (3.33)

to the unique solutions for M (1)
1 (r) and M

(2)
2 (r). The general solutions for M (1)

1 (r) and M
(2)
1 (r)

are given by

M
(1)
1 (r) =

2r2(d+ 2)[(L2 − ℓ21 + 2β1L)D1 + ℓ21D2]− dr4D2

8d2(d+ 2)D2
1D2

+ h1I
(1)
1 (r) + h2,

M
(2)
2 (r) =

2r2(d+ 2)(L2 + 2β1L)− dr4

8d2(d+ 2)D2
2

+ h3I
(2)
1 (r) + h4,

where h1, h2, h3 and h4 are constants. Unique solutions for these constants, which we do
not present for readability, are determined by applying the boundary and interface conditions
(3.31)–(3.32). The spatial average ⟨M1(r)⟩ can be calculated by applying (3.33),

⟨M1(r)⟩ =
[2(L2 + 2β1L)

2 + 2dβ1L
3 + d(d+ 6)β2

1L
2]D2

1 − ηd
d2(d+ 2)(d+ 4)D2

1D
2
2

, (3.34)

ηd = ℓd+2
1 (D2 −D1)[(d+ 4)(L2 − ℓ21 + 2β1L)D1 + 2ℓ21(D1 −D2)]. (3.35)

By substituting in the spatial averages (3.18) and (3.34)–(3.35) into the general expression
(2.50) for λ1,2, we recover (2.58)–(2.59),

λ1,2 =
d(d+ 2)D1D2

[L2 + β1L(d+ 2)]D1 + [ℓd+2
1 (D2 −D1)±

√
σd/(d+ 4)]/Ld

,

σd = d(d+ 4)(D2 −D1)D1L
d+2ℓd+2

1 − (d+ 4)(D1 −D2)
2ℓ2d+4

1 +

(d+ 2)((d+ 2)D2
1 − (d+ 4)D1D2 + 2D2

2)L
dℓd+4

1 + dD2
1L

2d+4.

43



3.2.3 Weighted two-term model

Considering the weighted two-term model (2.60), we propose a matching of the zeroth, first
and second moments of S3(t) and Pc(t). Substituting in the weighted two-term model (2.60)
and continuum analogue (2.17) or (2.18) into the conditions (2.61)–(2.63), we obtain∫ ∞

0

θe−λ1t + (1− θ)e−λ2t dt = ⟨M0(r)⟩, (3.36)∫ ∞

0

t
[
θe−λ1t + (1− θ)e−λ2t

]
dt = ⟨M1(r)⟩, (3.37)∫ ∞

0

t2
[
θe−λ1t + (1− θ)e−λ2t

]
dt = ⟨M2(r)⟩, (3.38)

where the spatial average ⟨M2(r)⟩ is obtained by following a process analogous to those de-
scribed in sections 3.2.1 and 3.2.2. Note that analytical expressions for ⟨M0(r)⟩ and ⟨M1(r)⟩
have been determined for Cases B, E and G of Table 2.1. Integrating and evaluating on the
left hand side of (3.36), and using integration by parts for (3.37) and (3.38), we recover (2.64)–
(2.66),

θ

λ1

+
1− θ

λ2

= ⟨M0(r)⟩,
θ

λ2
1

+
1− θ

λ2
2

= ⟨M1(r)⟩, 2

[
θ

λ3
1

+
1− θ

λ3
2

]
= ⟨M2(r)⟩.

Using the expression (2.64), we rearrange for 1/λ1 and substitute into (2.65) to give a quadratic
expression in 1/λ2, (

1

λ2

)
− 2⟨M0(r)⟩

(
1

λ2

)
+

⟨M0(r)⟩2

1− θ
− θ⟨M1(r)⟩

1− θ
= 0. (3.39)

The roots of (3.39) are obtained by using the quadratic formula. We choose the following root
for λ2:

1

λ2

= ⟨M0(r)⟩ −
√
θ [⟨M1(r)⟩ − ⟨M0(r)⟩2] /(1− θ), (3.40)

which can be substituted into (2.64) to give

1

λ1

= ⟨M0(r)⟩+
√

(1− θ) [⟨M1(r)⟩ − ⟨M0(r)⟩2] /θ. (3.41)

Thus, inverting (3.40) and (3.41) recovers the expressions (2.68) and (2.67) for λ1 and λ2,
respectively,

λ1 =
1

⟨M0(r)⟩+
√

(1− θ)[⟨M1(r)⟩ − ⟨M0(r)⟩2]/θ
,

λ2 =
1

⟨M0(r)⟩ −
√
θ[⟨M1(r)⟩ − ⟨M0(r)⟩2]/(1− θ)

.

Finally, substituting in (3.40) and (3.41) into (2.66) and performing laborious rearrangement
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yields a quadratic expression in terms of the weighting parameter θ,

(ω + 4)θ2 − (ω + 4)θ + 1 = 0, (3.42)

ω =

[
6⟨M0(r)⟩(⟨M1(r)⟩ − ⟨M0(r)⟩2) + 2⟨M0(r)⟩3 − ⟨M2(r)⟩

2(⟨M1(r)⟩ − ⟨M0(r)⟩2)3/2

]2
.

We choose the root (2.69) of (3.42),

θ =
1

2
+

1

2

√
ω

ω + 4
.

A trial and error approach shows that choosing the configuration immediately above for λ1, λ2

and θ satisfies the matching of the zeroth, first and second moments of S3(t) and Pc(t), while
enforcing λ1 > 0, λ2 > 0 and θ ∈ [0, 1]. Alternatively, one could also choose

λ1 =
1

⟨M0(r)⟩ −
√
(1− θ)[⟨M1(r)⟩ − ⟨M0(r)⟩2]/θ

,

λ2 =
1

⟨M0(r)⟩+
√

θ[⟨M1(r)⟩ − ⟨M0(r)⟩2]/(1− θ)
,

θ =
1

2
− 1

2

√
ω

ω + 4
,

and the weighted two-term model results (see section 2.5) would remain unchanged.

Homogeneous geometries

Considering the homogeneous geometries, we can determine closed-form analytical expressions
for the second moment M2(r). The ordinary differential equation (2.22), where k = 2,

D

rd−1

d

dr

(
rd−1dM2

dr

)
= −2M1(r),

can be solved to give a general solution for M2(r),

M2(r) = γ2(r) + h1I1(r) + h2, (3.43)

γ2(r) =
2k1
D2

I5(r) +
k2

4d(d+ 2)D2
r4 − r6

24d(d+ 2)(d+ 4)D3
− 2g1

D
I3(r)−

g2
dD

r2, (3.44)

I4(r) =

∫ r

ℓ0

zd−1
4 I3(r) dz4, I5(r) =

∫ r

ℓ0

z1−d
5 I4(r) dz5,

where h1 and h2 are constants and k1, k2, g1 and g2 are given in sections 3.2.1 and 3.2.2 for Cases
B and E of Table 2.1. Note that the general solution (3.26)–(3.28) for M1(r) is substituted
in as the right hand side of (2.22). Evaluations of I4(r) and I5(r) for d = 1, 2, 3 are available
in Appendix B. Analytical expressions for ⟨M2(r)⟩ can be obtained by applying (2.25), where
k = 2,

45



⟨M2(r)⟩ =
∫ ℓ1

ℓ0

rd−1M2(r) dr.

Here, we do not present analytical expressions for M2(r) or ⟨M2(r)⟩. Mathematica [67] calcula-
tions and by-hand simplification were used to determine the expressions λ1, λ2 and ω for Cases
B and E in section 2.4.5, respectively.

3.2.4 Parameter estimation using one-term model (2.35)

Surrogate models, such as the one-term (2.35), two-term (2.45) and weighted two-term (2.60)
models presented in this work, avoid the limitations of the continuum analogue of P(t) out-
lined in sections 2.4.1 and 3.1.2. To elaborate, these models are simple closed-form analytical
expressions that are easy to compute, require no numerical calculations and highlight the pre-
cise influence that each physical parameter has on the release profile. Moreover, an additional
advantage that surrogate models can have over Pc(t) is in simplifying the process of fitting
experimental data. For example, consider the one-term model (2.35) for Case B of Table 2.1,

S1(t) = exp

(
− d(d+ 2)D

L2 + β1L(d+ 2)
t

)
. (3.45)

If the diffusivity, D, of a material of interest is unknown, an estimate can be obtained by a
simple rearrangement of (3.45),

D ≈ −L2 + β1L(d+ 2)

d(d+ 2)t∗
log(P(t∗)), (3.46)

where t∗ ∈ [0, T ]. Thus, for experimental observations of P(t), an estimate of the diffusivity, D,
can be obtained by substituting in P(t∗), the observed proportion of particles remaining at time
t∗, into (3.46). A limitation of this approach is that the one-term model does not accurately
capture the early and late-time decay of P(t). Thus, the reliability of (3.46) depends on the
time t∗ and, hence, observation P(t∗) used in the estimation of the diffusivity.

3.3 Finite volume and time stepping schemes
In section 2.5, we briefly discussed the finite volume and time stepping schemes used to calculate
numerical solutions of c(r, t) for the homogeneous geometries and c1(r, t) and c2(r, t) for the
heterogeneous geometries. The continuum analogue of P(t), given by the spatial average (2.17)
or (2.18) for the homogeneous and heterogeneous geometries, respectively, was then calculated
by using a trapezoidal rule approximation. In this section, we discuss the finite volume and time
stepping schemes for discretising the continuum models (see section 2.3) in thorough detail.

46



Figure 3.4: Schematic of a vertex-centred finite volume discretisation for a homogeneous
radially-symmetric geometry. Here, ci denotes the numerical approximation to c(ri, t) for
i = 1, 2, . . . , Nr. The quantities Vi, wi and ei represent the ith control volume length, west
boundary and east boundary, respectively. Additionally, the quantity h represents the uniform
spacing between the nodes ri.

3.3.1 Homogeneous materials

Considering the continuum model (2.4)–(2.7), we use a vertex-centred finite volume scheme to
discretise in space for a homogeneous material, as shown in Figure 3.4. We define Nr nodes
r1, . . . , rNr on the radial domain [ℓ0, ℓ1] such that r1 = ℓ0 and rNr = ℓ1. The uniform spacing
between the nodes is given by h = (ℓ1−ℓ0)/(Nr−1), although a non-uniform spacing could also
be used. Next, we define ci as the numerical approximation of c(r, t) at node ri for i = 1, . . . , Nr.
Additionally, we let Vi = ei − wi denote the ith control volume, where

wi =

r1, i = 1,
ri + ri−1

2
, i = 2, . . . , Nr,

ei =


ri+1 + ri

2
, i = 1, . . . , Nr − 1,

rNr , i = Nr,
(3.47)

represent the west and east control volume boundaries, respectively. Next, rearranging the
partial differential equation (2.4) and integrating over each control volume yields∫ ei

wi

rd−1∂c

∂t
dr = D

∫ ei

wi

∂

∂r

(
rd−1 ∂c

∂r

)
dr.

We use the definition of the average concentration over the ith control volume,

c̄i =
1

Vi

∫ ei

wi

rd−1c(r, t) dr,

to obtain the following expression:

Vi
dc̄i
dt

= D

[
ed−1
i

∂c

∂r
(ei, t)− wd−1

i

∂c

∂r
(wi, t)

]
.

Next, we introduce the approximation c̄i ≈ rd−1
i ci to obtain the following system of ordinary

differential equations:

dci
dt

=
D

Vir
d−1
i

[
ed−1
i

∂c

∂r
(ei, t)− wd−1

i

∂c

∂r
(wi, t)

]
, i = 1, 2, . . . , Nr.
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Figure 3.5: Schematic of a vertex-centred finite volume discretisation for a heterogeneous
radially-symmetric geometry comprised of two concentric homogeneous layers. The inner layer
has diffusivity D1, and the outer layer has diffusivity D2. Here, c(j)1 and c

(k)
2 denote the numerical

approximations to c1(rj, t) and c2(rk, t), respectively, for j = 1, . . . , N1 and k = N1 +1, . . . , Nr.
The quantities Vi, wi and ei represent the ith control volume length, west boundary and east
boundary, respectively, for i = 1, 2, . . . , Nr. Additionally, the quantities h1 and h2 represent
the spacing between nodes rj and rk, respectively, for j = 1, . . . , N1 and k = N1 + 1, . . . , Nr.

Finally, by introducing central difference approximations for the spatial derivatives and incor-
porating the boundary conditions (2.6) and (2.7), we obtain

dc1
dt

=
D

V1ℓ
d−1
0

[
−
(
ed−1
1

h
+

ℓd−1
0 a0
b0

)
c1 +

ed−1
1

h
c2

]
, (3.48)

dci
dt

=
D

Vir
d−1
i h

[
wd−1

i ci−1 −
(
wd−1

i + ed−1
i

)
ci + ed−1

i ci+1

]
, i = 2, . . . , Nr − 1, (3.49)

dcNr

dt
=

D

VNrℓ
d−1
1

[
wd−1

Nr

h
cNr−1 −

(
wd−1

Nr

h
+

ℓd−1
1 a1
b1

)
cNr

]
. (3.50)

Note that, in the case where ℓ0 = 0 and d > 1, which implies a disc (d = 2) or sphere (d = 3)
with radial symmetry at the origin, we obtain c1 = c2 and only require (3.49)–(3.50).

3.3.2 Heterogeneous materials

Considering the continuum model (2.8)–(2.14), we use a vertex-centred finite volume scheme
to discretise in space for a heterogeneous material with two layers, as shown in Figure 3.5. We
define Nr = N1 +N2 − 1 nodes r1, r2, . . . , rN1 , rN1+1, . . . , rNr on the radial domain [ℓ0, ℓ2] such
that r1 = ℓ0, rN1 = ℓ1 and rNr = ℓ2. The node spacings are defined as h1 = (ℓ1−ℓ0)/(N1−1) for
r1, r2, . . . , rN1 and h2 = (ℓ2−ℓ1)/(N2−1) for rN1+1, rN1+2, . . . , rNr . Here, we let N1 = ⌈ℓ1Nr/ℓ2⌉
and N2 = ⌈(ℓ2 − ℓ1)Nr/ℓ2⌉, where ⌈·⌉ represents the ceiling function. Moreover, we define c

(j)
1

and c
(k)
2 as the numerical approximations of c1(r, t) and c2(r, t) at the nodes rj and rk for

j = 1, . . . , N1 and k = N1 + 1, . . . , Nr, respectively. Again, we let Vi = ei − wi represent the
ith control volume for i = 1, . . . , Nr, where the control volume boundaries are given by (3.47).
Next, rearranging the partial differential equations (2.8) and (2.9) and integrating over each
control volume, we obtain
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∫ ej

wj

rd−1∂c1
∂t

dr = D1

∫ ej

wj

∂

∂r

(
rd−1∂c1

∂r

)
dr, j = 1, . . . , N1 − 1,∫ ek

wk

rd−1∂c2
∂t

dr = D2

∫ ek

wk

∂

∂r

(
rd−1∂c2

∂r

)
dr, k = N1 + 1, . . . , Nr,∫ ℓ1

wN1

rd−1∂c1
∂t

dr +

∫ eN1

ℓ1

rd−1∂c2
∂t

dr

= D1

∫ ℓ1

wN1

∂

∂r

(
rd−1∂c1

∂r

)
dr +D2

∫ eN1

ℓ1

∂

∂r

(
rd−1∂c2

∂r

)
dr (3.51)

We use definitions of the average concentration over each control volume,

c̄
(j)
1 =

1

Vi

∫ ej

wj

rd−1c1(r, t) dr, j = 1, . . . , N1 − 1,

c̄
(k)
2 =

1

Vj

∫ ek

wk

rd−1c2(r, t) dr, k = N1 + 1, . . . , Nr,

c̄∗ =
1

VN1

[∫ ℓ1

wN1

rd−1c1(r, t) dr +

∫ eN1

ℓ1

rd−1c2(r, t) dr

]
,

to obtain the following expressions:

Vj
dc̄

(j)
1

dt
= D1

[
ed−1
j

∂c1
∂r

(ej, t)− wd−1
j

∂c1
∂r

(wj, t)

]
, j = 1, . . . , N1 − 1,

Vk
dc̄

(k)
2

dt
= D2

[
ed−1
k

∂c2
∂r

(ek, t)− wd−1
k

∂c2
∂r

(wk, t)

]
, k = N1 + 1, . . . , Nr,

VN1

dc̄∗

dt
= D2e

d−1
N1

∂c2
∂r

(eN1 , t)−D1w
d−1
N1

∂c1
∂r

(wN1 , t). (3.52)

The expression (3.52) is obtained from (3.51) by using the interface condition (2.14). Finally,
we introduce the approximations c̄

(j)
1 ≈ rd−1

j c
(j)
1 , c̄(k)2 ≈ rd−1

k c
(k)
2 and c̄∗ ≈ rd−1

N1
c
(N1)
1 . Thus, we

obtain the following set of ordinary differential equations:

dc
(j)
1

dt
=

D1

Vjr
d−1
j

[
ed−1
j

∂c1
∂r

(ej, t)− wd−1
j

∂c1
∂r

(wj, t)

]
, j = 1, . . . , N1 − 1,

dc
(k)
2

dt
=

D2

Vkr
d−1
k

[
ed−1
k

∂c2
∂r

(ek, t)− wd−1
k

∂c2
∂r

(wk, t)

]
, k = N1 + 1, . . . , Nr,

dc
(N1)
1

dt
=

1

VN1r
d−1
N1

[
D2e

d−1
N1

∂c2
∂r

(eN1 , t)−D1w
d−1
N1

∂c1
∂r

(wN1 , t)

]
.

By using central difference approximations for the spatial derivatives, and using the boundary
conditions (2.11) and (2.12), we obtain

dc
(1)
1

dt
=

D1

V1ℓ
d−1
0

[
−
(
ed−1
1

h1

+
ℓd−1
0 a0
b0

)
c
(1)
1 +

ed−1
1

h1

c
(2)
1

]
, (3.53)
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dc
(j)
1

dt
=

D1

Vjr
d−1
j h1

[
wd−1

j c
(j−1)
1 −

(
wd−1

j + ed−1
j

)
c
(j)
1 + ed−1

j c
(j+1)
1

]
, j = 2, . . . , N1 − 1, (3.54)

dc
(N1)
1

dt
=

1

VN1ℓ
d−1
1

[
D1w

d−1
N1

h1

(
c
(N1−1)
1 − c

(N1)
1

)
−

D2e
d−1
N1

h2

(
c
(N1)
2 − c

(N1+1)
2

)]
, (3.55)

dc
(k)
2

dt
=

D2

Vkr
d−1
k h2

[
wd−1

k c
(k−1)
2 −

(
wd−1

k + ed−1
k

)
c
(k)
2 + ed−1

k c
(k+1)
2

]
, k = N1 + 1, . . . , Nr,

(3.56)

dc
(Nr)
2

dt
=

D2

VNrℓ
d−1
2

[
wd−1

Nr

h2

c
(Nr−1)
2 −

(
wd−1

Nr

h2

+
ℓd−1
1 a1
b1

)
c
(Nr)
2

]
. (3.57)

In the case of a disc or sphere with radial symmetry at the origin (ℓ0 > 0 and d > 1), we obtain
c
(1)
1 = c

(2)
1 from (3.53) and only require (3.54)–(3.57).

3.3.3 Crank-Nicolson method

The system of ordinary differential equations (3.48)–(3.50) or (3.53)–(3.57) yield the initial
value problem,

dc

dt
= Ac, c(0) = c(0), (3.58)

where c = (c1, . . . , cNr)
T contains the numerical solution at each node, c(0) = (c0, . . . , c0)

T is the
initial solution and A ∈ RNr×Nr contains the coefficients from (3.48)–(3.50) or (3.53)–(3.57).
Next, we choose a sufficiently large time T over which to numerically solve for c(r, t). The
continuous time interval 0 ≤ t ≤ T is divided into M equally-spaced subintervals of width
δt = T/M such that tn = nδt for n = 0, . . . ,M . The initial value problem (3.58) can be
integrated over each subinterval [tn, tn+1] to obtain∫ tn+1

tn

dc

dt
dt =

∫ tn+1

tn

Ac dt.

We introduce an averaging approximation to obtain

c(n+1) − c(n) =
δt

2
[Ac(n) +Ac(n+1)],

which, when rearranged, yields the Crank-Nicolson time-stepping scheme(
I− δt

2
A

)
c(n+1) =

(
I+

δt

2
A

)
c(n). (3.59)

Here, c(n) = (cn1 , c
n
2 , . . . , c

n
Nr
)T contains the numerical approximation of c(r, t) at node ri and

time point tn, cni ≈ c(ri, tn), for i = 1, . . . , Nr and n = 0, . . . ,M . Given the initial solution
c(0) = (c0, . . . , c0)

T is known, the solution at time step t1 can be obtained by solving the linear
system (3.59) with n = 0. Thus, the solution at time step tn+1, c(n+1), can be obtained given
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prior calculation of c(1), c(2), . . . , c(n) by repetitious solving of (3.59). In the case of an absorbing
inner or outer boundary, or a reflecting inner boundary for circular or spherical geometries,
minor modifications are made to the linear system (3.59). The code that implements the finite
volume and time stepping schemes, and includes these minor modifications, is available on
GitHub (https://github.com/lukefilippini/Filippini_2023.git).

3.4 Results for one- and three-dimensional geometries
In section 2.5, we presented comparisons between the three surrogate models (2.35), (2.45) and
(2.60) and the stochastic and continuum analogues (2.3) and (2.17) or (2.18), respectively, for
the seven test cases of Table 2.2. These results were for two-dimensional radially-symmetric
geometries. Here, we present the model comparisons and results for one- and three-dimensional
radially-symmetric geometries, which are similar to those for the two-dimensional case. Figure
3.6 and Figure 3.7 are the results for Cases A–E for one (d = 1) and three (d = 3) dimensions,
respectively. For Cases F and G, the results for one (d = 1) and three (d = 3) dimensions are
presented in Figure 3.8 and Figure 3.9, respectively.
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Figure 3.6: One-term, two term, and weighted two-term exponential models for P(t) compared
with stochastic and continuum models for the homogeneous test cases (Cases A–E) with d = 1.
For the stochastic model, the bounds of the shaded regions represent the maximum and mini-
mum proportion of particles remaining at each point in time across the Ns = 100 simulations.
The mean absolute errors ε1, ε2 and ε3 and final time T are rounded to three significant digits.

52



Figure 3.7: One-term, two term, and weighted two-term exponential models for P(t) compared
with stochastic and continuum models for the homogeneous test cases (Cases A–E) with d = 3.
For the stochastic model, the bounds of the shaded regions represent the maximum and mini-
mum proportion of particles remaining at each point in time across the Ns = 100 simulations.
The mean absolute errors ε1, ε2 and ε3 and final time T are rounded to three significant digits.
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Figure 3.8: One-term and two-term exponential models for P(t) compared with stochastic and
continuum models for the heterogeneous test cases (Cases F–G) with d = 1. For the stochastic
model, the bounds of the shaded regions represent the maximum and minimum proportion of
particles remaining at each point in time across the Ns = 100 simulations. The mean absolute
errors ε1 and ε2 and final time T are rounded to three significant digits.

Figure 3.9: One-term and two-term exponential models for P(t) compared with stochastic and
continuum models for the heterogeneous test cases (Cases F–G) with d = 3. For the stochastic
model, the bounds of the shaded regions represent the maximum and minimum proportion of
particles remaining at each point in time across the Ns = 100 simulations. The mean absolute
errors ε1 and ε2 and final time T are rounded to three significant digits.
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3.5 Additional project considerations
Finally, in section 2.6, we briefly touched on some avenues for future research and potential
extensions of the work presented in this thesis. Here, we discuss potential avenues of future
research that were explored during candidature, in addition to the work presented in chapter
2. The ideas in this section were outside of the scope of this thesis, but are considered to
have enough potential significance to be included in this supporting chapter. In the three cases
explored below, we consider the one-term model (2.35) and derive an analytical expression
for the rate parameter λ. Firstly, we consider a system with a non-zero steady state c∞(r)

for the homogeneous geometries. Secondly, we discuss how the diffusivity for a heterogeneous
radially-symmetric geometry can be represented as a smooth function which depends on the
radial position, rather than a piecewise function. Lastly, we consider how the introduction of
a reaction component in the transport system affects the construction of the one-term model
(2.35) for the homogeneous geometries.

3.5.1 Non-zero steady-state

We account for the possibility of a non-zero steady-state c∞(r) = limt→∞ c(r, t) and reconsider
the one-term model (2.35). Considering the continuum model (2.4)–(2.7) for the homogeneous
geometries, we make a small change in the boundary conditions (2.6) and (2.7),

a0c(ℓ0, t)− b0
∂c

∂r
(ℓ0, t) = e0, t > 0, (3.60)

a1c(ℓ1, t) + b1
∂c

∂r
(ℓ1, t) = e1, t > 0, (3.61)

which implies that the dimensionless particle concentration c(r, t) will not decay to zero if e0 ̸= 0

and/or e1 ̸= 0. Note that e0 = ẽ0/c̃0 and e1 = ẽ1/c̃0 where ẽ0 and ẽ1 represent the number
of particles per unit length/area/volume outside the inner and outer boundaries, respectively.
Now, we alter the one-term model (2.35) in the following manner:

S1(t) = C∞ + (1− C∞)e−λt, (3.62)

C∞ =
d

ℓd1 − ℓd0

∫ ℓ1

ℓ0

rd−1c∞(r) dr. (3.63)

Here, C∞ = ⟨c∞(r)⟩, expressed as (3.63), represents the spatial average of the steady-state
concentration, c∞(r). The one-term model (3.62) is appropriate as it agrees with the continuum
analogue Pc(t) (2.17) at initial time (Pc(0) = 1) and has the correct limiting behaviour at large
times (i.e. limt→∞ Pc(t) = C∞). To determine an analytical expression for the parameter λ of
the one-term model (3.62), we propose the following condition:∫ ∞

0

[S1(t)− C∞] dt =

∫ ∞

0

[Pc(t)− C∞] dt. (3.64)
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The expression (3.64) enforces the condition that the area enclosed between C∞ and S1(t) must
be equal to that between C∞ and Pc(t). Substituting the one-term model (2.35), the continuum
analogue (2.17) and the steady-state average (3.63) into (3.64), and rearranging the right hand
side, we obtain

(1− C∞)

∫ ∞

0

e−λt dt =
d

ℓd1 − ℓd0

∫ ℓ1

ℓ0

rd−1

[∫ ∞

0

c(r, t)− c∞(r) dt

]
dr.

Integrating and evaluating on the left hand side, we arrive at

1− C∞

λ
= ⟨M0(r)⟩, (3.65)

M0(r) =

∫ ∞

0

c(r, t)− c∞(r) dt,

⟨M0(r)⟩ =
d

ℓd1 − ℓd0

∫ ℓ1

ℓ0

rd−1M0(r) dr.

Finally, the expression (3.65) is inverted to give an analytical form for λ,

λ =
1− C∞

⟨M0(r)⟩
. (3.66)

The result (3.66) provides insight into the role of the boundary conditions (3.60)–(3.61) on
the proportion of particles over time, P(t). Hence, this illustrates that the moment-matching
approach discussed in this thesis can be extended to account for a non-zero steady state.

3.5.2 Smooth diffusivity function

We now consider heterogeneous geometries defined by a smooth diffusivity D(r) and determine
a unique expression for the one-term model (2.35). The general form of the rate parameter
expression (2.37), given as λ = 1/⟨M0(r)⟩, does not change as we are no longer accounting
for a non-zero steady state. Rather, we define a new boundary value problem, involving the
diffusivity function D(r), which M0(r) satisfies and compute the spatial average ⟨M0(r)⟩ using
(3.8). Here, we consider Case B of Table 2.1. Firstly, the initial-boundary value problem for
this scenario is defined as

∂c

∂t
=

1

rd−1

∂

∂r

(
rd−1D(r)

∂c

∂r

)
, 0 < r < L, t > 0,

c(r, 0) = 1, 0 ≤ r ≤ L,

∂c

∂r
(0, t) = 0, c(L, t) + β1

∂c

∂r
(L, t) = 0, t > 0.
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By integrating the above initial-boundary value problem over time, we obtain a boundary value
problem which M0(r) satisfies,

1

rd−1

d

dr

(
rd−1D(r)

dM0

dr

)
= −1, 0 < r < L,

dM0

dr
(0) = 0, M0(L) + β1

dM0

dr
(L) = 0.

The solution M0(r) of this boundary value problem and the average ⟨M0(r)⟩ are given by

M0(r) =
1

d

[∫ L

0

r

D(r)
dr −

∫ r

0

z1
D(z1)

dz1 +
β1L

D(L)

]
,

⟨M0(r)⟩ =
1

d

[∫ L

0

r

D(r)
dr − d

Ld

∫ L

0

rd−1

∫ r

0

z1
D(z1)

dz1 +
β1L

D(L)

]
. (3.67)

Note that the expressions (3.11) and (3.12) for M0(r) and ⟨M0(r)⟩, respectively, for homoge-
neous geometries are recovered by setting D(r) = D. For particular choices of the diffusivity
function D(r), the integrals within the spatial average (3.67) could be evaluated, yielding
closed-form expressions for the rate parameter λ and, hence, the one-term model (2.35).

3.5.3 Addition of reaction term

Finally, we include a reaction term in the model (2.4)–(2.7) for the homogeneous geometries
and determine a unique expression for the one-term model (2.35). We define a new boundary
value problem, involving the reaction term, which M0(r) (2.21) satisfies and compute the spatial
average ⟨M0(r)⟩ using (3.8). We again consider Case B of Table 2.1. Firstly, we redefine the
initial-boundary value problem (2.4)–(2.7) to include a reaction term for decay,

∂c

∂t
=

D

rd−1

∂

∂r

(
rd−1 ∂c

∂r

)
− γc, 0 < r < L, t > 0,

c(r, 0) = 1, 0 ≤ r ≤ L,

∂c

∂r
(0, t) = 0, c(L, t) + β1

∂c

∂r
(L, t) = 0, t > 0.

By integrating the above initial-boundary value problem over time, we obtain a boundary value
problem which M0(r) satisfies,

D

rd−1

d

dr

(
rd−1dM0

dr

)
− γM0(r) = −1, 0 < r < L,

dM0

dr
(0) = 0, M0(L) + β1

dM0

dr
(L) = 0.

57



The solution M0(r), for d = 1, of this boundary value problem and the spatial average ⟨M0(r)⟩
are given by

M0(r) =
1

γ

1− cosh
(√

γr/D
)

cosh
(√

γL/D
)
+ β1

√
γ/D sinh

(√
γL/D

)
 ,

⟨M0(r)⟩ =
1

γL

L−

√
γ/D sinh

(√
γ/DL

)
cosh

(√
γL/D

)
+ β1

√
γ/D sinh

(√
γL/D

)
 .

This illustrates that it is possible to derive analytical formulas for the one-term model (2.35)
which highlight the influence of key physical parameters, including the reaction term γ, on
P(t).
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Chapter 4

Conclusion

4.1 Summary and discussion
In this thesis, we have considered the problem of diffusion-controlled particle release from d-
dimensional radially-symmetric geometries with absorbing, reflecting and/or semi-absorbing
boundaries. The purpose of this work, motivated by two research objectives, was to develop
novel surrogate models to describe P(t), the proportion of particles remaining with the geometry
over time. This work was motivated by drug delivery and thin-layer drying applications, where
surrogate models are frequently used to approximate quantities analogous to P(t). Previous
surrogate models included exponential, Weibull and other exponential-like functions to describe
P(t) and related quantities [48, 49] for homogeneous slab, circular and spherical geometries with
radial symmetry [19, 22, 23, 26, 27, 39, 58]. Motivated by Carr [18], we presented one-term, two-
term and weighted two-term exponential models for P(t) obtained by matching moments with
the continuum analogue of the stochastic diffusion model. This approach produced relatively
simple closed-form analytical approximations of P(t) that are computationally inexpensive to
evaluate and avoid the limitations associated with the stochastic and continuum descriptions
of P(t). The surrogate models are expressed explicitly in terms of physical parameters of the
diffusive transport system, and, thus, allow for meaningful analytical insight into the precise
influence of each physical parameter on the release profile.

In Chapter 2, we presented the manuscript submitted to Physica A (April 2023). In this
chapter, we developed novel exponential models to describe P(t). Firstly, we reproduced the
one-term model (2.35) presented by Carr [18] by matching the zeroth moments of S1(t) and
the continuum analogue of the stochastic diffusion model, Pc(t). Secondly, we developed the
two-term model (2.45) by matching the zeroth and first moments of S2(t) and Pc(t). Finally,
the weighted two-term model (2.60) was obtained by matching the zeroth, first and second
moments of S3(t) and Pc(t). In total, we considered three main problems: (i) homogeneous
slab, circular and spherical geometries with an absorbing or semi-absorbing boundary, (ii)
homogeneous slab, annular and spherical shell geometries with absorbing, reflecting and/or
semi-absorbing boundaries and (iii) heterogeneous slab, circular and spherical geometries with
an absorbing or semi-absorbing boundary. For each of the seven test cases considered (Cases A–
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G, Table 2.1), the weighted two-term and/or two-term model captured the early and late-time
decay of P(t) more accurately than the one-term model. In particular, the weighted two-term
model captured the stochastic and continuum descriptions of P(t) with the highest degree of
accuracy. The most significant finding was that this model is more simplistic and accurate than
the one-term Weibull model developed by Carr [18].

Chapter 3 contained supporting information for the manuscript presented in Chapter 2.
Firstly, we developed exact analytical expressions, by using separation of variables and eigen-
function expansion, for Pc(t). To elaborate, we considered Case B of Table 2.1, presenting exact
solutions for a homogeneous slab, disc and sphere with radial symmetry at the origin and a
semi-absorbing boundary. The limitations associated with these analytical solutions, including
root approximations and truncation requirements, were then discussed in detail. Moreover,
we provided a thorough derivation of the one-term, two-term and weighted models in section
3.2. Firstly, we determined a general solution for each model by matching moments with the
continuum analogue Pc(t). We then considered Cases B, E and G of Table 2.1 and constructed
boundary value problems for the zeroth and first moment of particle lifetime. For the second
moment, we considered Cases B and E for the homogeneous geometries. Several unique so-
lutions for the surrogate models were then reproduced. Also, we discussed how the one-term
model (2.35) could be used to simplify the process of fitting experimental data by obtaining
an estimate of the diffusivity for Case B. Moreover, we provided the finite volume and time-
stepping schemes used to compute P(t) for the continuum model. Additionally, we presented
the results for the seven test cases of Table 2.2 for one- and three-dimensional radially-symmetric
geometries. These results illustrated that the weighted two-term and/or two-term models cap-
ture the early and late-time decay of P(t) more accurately than the one-term model. Finally,
we discussed additional work conducted throughout candidature that could be considered as
avenues for potential future research.

4.2 Future work
There are several avenues that could be explored in future as an extension of the work presented
in this thesis. To begin, there are other functional forms of P(t) that can potentially be
investigated, in addition to the one-term, two-term and weighted two-term models presented
in this work. For example, many other exponential and exponential-like functions have been
used in thin-layer drying applications, as summarised by Akpinar et al. [41], Ertekin et al.
[42] and Onwude et al. [39]. The moment-matching approach outlined in this thesis and by
Carr [18] could be used directly or modified to develop new surrogate models for P(t) based
on these other functional forms. This could ideally yield a model simpler in construction than
the weighted two-term model (2.60) with a similar level of accuracy.

Moreover, we assume throughout this work that particles are always initially uniformly
distributed within the radially-symmetric geometry. Another extension of this research could
involve accounting for a non-uniform initial distribution of particles. This could be practically
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relevant in drug delivery research, as several modelling approaches have been investigated for
release from multi-layered core-shell capsules. The drug is initially distributed within a core
shell and must diffuse through multiple concentric layers, which do not initially contain the
drug, before it reaches the external environment [25, 28, 29]. Additionally, we have considered
heterogeneous geometries with two concentric layers, so there is the potential to extend this
work to consider radially-symmetric geometries with additional layers or a smooth diffusivity
(see section 3.5.2). Lastly, the heterogeneous geometries could also be approximated by ho-
mogeneous domains with an effective diffusivity, Deff . There are several approximations for
Deff that could be investigated [56], which implies that surrogate models for the homogeneous
geometries could be used instead.
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Appendix

A. Surrogate model parameter values
Here, we present the one-term (2.35), two-term (2.45) and weighted two-term (2.60) exponential
models corresponding to Cases A–G (see Table 2.2) by providing numerical values for the
parameters appearing in each surrogate model. All values are rounded to three significant
figures and presented in tables separated by dimension.

One-term Two-term Two-term (weighted)
Case λ λ1 λ2 λ1 λ2 θ

A 1.50× 10−4 1.04× 10−4 2.71× 10−4 1.23× 10−4 2.13× 10−4 8.12× 10−1

B 1.42× 10−4 9.95× 10−5 2.45× 10−4 1.19× 10−4 1.84× 10−3 8.27× 10−1

C 6.00× 10−4 4.15× 10−4 1.09× 10−3 4.94× 10−4 8.51× 10−3 8.12× 10−1

D 5.36× 10−4 3.83× 10−4 8.92× 10−4 4.56× 10−4 6.57× 10−3 8.41× 10−1

E 2.40× 10−3 1.66× 10−3 4.34× 10−3 1.96× 10−3 3.40× 10−2 8.12× 10−1

F 1.16× 10−4 7.34× 10−5 2.79× 10−4 – – –
G 1.11× 10−4 7.13× 10−5 2.51× 10−3 – – –

Table A1: Surrogate model parameters for Cases A–G appearing in the one-term (2.35), two-
term (2.45) and weighted two-term (2.60) exponential models (d = 1).

One-term Two-term Two-term (weighted)
Case λ λ1 λ2 λ1 λ2 θ

A 2.00× 10−4 1.27× 10−4 4.73× 10−4 1.45× 10−4 1.65× 10−3 6.99× 10−1

B 1.85× 10−4 1.21× 10−4 3.98× 10−4 1.39× 10−4 1.39× 10−3 7.24× 10−1

C 4.16× 10−4 2.75× 10−4 8.55× 10−4 3.22× 10−4 4.58× 10−3 7.58× 10−1

D 3.70× 10−4 2.54× 10−4 6.80× 10−4 3.00× 10−4 3.50× 10−3 7.93× 10−1

E 1.19× 10−3 8.20× 10−4 2.17× 10−3 9.76× 10−4 1.61× 10−2 8.08× 10−1

F 1.75× 10−4 1.02× 10−4 6.09× 10−4 – – –
G 1.63× 10−4 9.79× 10−5 4.90× 10−4 – – –

Table A2: Surrogate model parameters for Cases A–G appearing in the one-term (2.35), two-
term (2.45) and weighted two-term (2.60) exponential models (d = 2).
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One-term Two-term Two-term (weighted)
Case λ λ1 λ2 λ1 λ2 θ

A 2.50× 10−4 1.51× 10−4 7.24× 10−4 1.66× 10−4 1.58× 10−3 6.23× 10−1

B 2.27× 10−4 1.42× 10−4 5.61× 10−4 1.59× 10−4 1.29× 10−3 6.57× 10−1

C 3.78× 10−4 2.40× 10−4 8.95× 10−4 2.75× 10−4 3.34× 10−3 7.03× 10−1

D 3.34× 10−4 2.21× 10−4 6.81× 10−4 2.57× 10−4 2.52× 10−3 7.44× 10−1

E 8.24× 10−4 5.57× 10−4 1.58× 10−3 6.59× 10−4 9.58× 10−3 7.85× 10−1

F 2.33× 10−4 1.32× 10−4 9.86× 10−4 – – –
G 2.13× 10−4 1.26× 10−4 6.98× 10−4 – – –

Table A3: Surrogate model parameters for Cases A–G appearing in the one-term (2.35), two-
term (2.45) and weighted two-term (2.60) exponential models (d = 3).
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B. Integral evaluations
The one-term, two-term and weighted two-term models for Cases C, D, E and G in Table 2.1,
outlined in sections 2.4.3, 2.4.4 and 2.4.5, respectively, depend on various geometrical constants
I1, I2, I3, I4 and I5. These constants are expressed as definite integrals for succinctness. Closed-
form expressions for these integrals, evaluated for d = 1, 2, 3, are given below:

Homogeneous geometries

I1(r) =


r − ℓ0, for d = 1,

log (r/ℓ0) , for d = 2,

(r − ℓ0)/(rℓ0), for d = 3,

I2(r) =


1
2
(r − ℓ0)

2 , for d = 1,

1
4
[2r2 log(r/ℓ0)− (r2 − ℓ20)] , for d = 2,

(r − ℓ0)
2(ℓ0 + 2r)/(6ℓ0), for d = 3,

I3(r) =


1
3
(r − ℓ0)

3 , for d = 1,

1
4
[(r2 + ℓ20) log (r/ℓ0)− (r2 − ℓ20)] , for d = 2,

(r − ℓ0)
3/(6rℓ0), for d = 3,

I4(r) =


1
4
(r − ℓ0)

4 , for d = 1,

1
64
[4r2(r2 + 2ℓ20) log (r/ℓ0) + ℓ20 − 5r4 + 4r2ℓ20] , for d = 2,

(r − ℓ0)
4(ℓ0 + 4r)/(120ℓ0), for d = 3,

I5(r) =


1
5
(r − ℓ0)

5 , for d = 1,

1
128

[2(r4 + 4r2ℓ20 + ℓ40) log (r/ℓ0)− 3(r4 − ℓ40)] , for d = 2,

(r − ℓ0)
5/(120rℓ0), for d = 3.

Heterogeneous geometries

I
(1)
1 (r) =


r − ℓ0, for d = 1,

log (r/ℓ0) , for d = 2,

(r − ℓ0)/(rℓ0), for d = 3,

and I
(2)
1 (r) =


r − ℓ1, for d = 1,

log (r/ℓ1) , for d = 2,

(r − ℓ1)/(rℓ1), for d = 3.
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