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Abstract

Using mathematical models to study population dynamics is fundamental in ecology and
biology, for example, to predict long-term survival or extinction of species and to analyse
biological invasion processes. To investigate spatial effects, such as moving invasion fronts,
reaction-diffusion equations are widely considered for studying population dynamics. In
such models the evolution of populations is governed by the interplay between reaction
and diffusion, where reaction refers to population growth mechanisms such as logistic
growth or growth that includes Allee effects, and diffusion refers to population migration
mechanisms. While most reaction-diffusion models consider linear diffusion, nonlinear
diffusion mechanisms have increasingly received attention in population models, since they
capture some phenomena more realistically, such as sharp moving fronts.

In this thesis, we explore the influence of nonlinear diffusion on population dynamics
in reaction-diffusion models. The thesis comprises two main parts. First, we focus on the
role of nonlinear diffusion in determining the long-term survival or extinction of bistable
populations. We construct a discrete-continuum modelling framework, which connects the
behaviour of individuals described in discrete models to population dynamics in continuous
descriptions, so that we can explore the relationship between nonlinear diffusion and the
movement mechanism of individuals. Through this framework, we also illustrate that
the shape of initial spatial distributions plays an important role on the fate of bistable
populations.

The second part of this thesis is devoted to the mathematical analysis of travelling waves
in reaction-diffusion models with nonlinear diffusion. We consider a reaction-diffusion
equation derived from the continuum limit of a discrete model proposed in Johnston et al.
(2017), where the movement mechanism of individuals leads to a nonlinear diffusion term
with negative values in a sub-interval of population densities, and the growth mechanism
leads to a source term associated with either logistic growth or strong Allee effect. Based
on using geometric singular perturbation theory, we study the existence and stability
properties of both smooth travelling wave solutions, and shock-fronted travelling wave
solutions.
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Chapter 1

Introduction

1.1 Background

Mathematical models provide a framework for exploring mechanisms that influence the
evolution of populations (Murray 1989; Jin et al. 2016b; Johnston et al. 2017; Fadai et al.
2020; Chaplain et al. 2020). Both continuum and discrete models are widely used in
studying population dynamics. In this section we introduce mathematical models where the
evolution of populations is described by either continuum equations or discrete simulations.
We pay particular attention to two questions in mathematical biology: the question of
when a population will eventually survive or go extinct, and whether a population can
form a travelling wave to propagate through space.

1.1.1 Ordinary differential equations and well mixed populations

A classical continuum population model is the ordinary differential equation (ODE) model,

dC(t)
dt = C(t)f(C(t)), (1.1)

where C(t) > 0 is the population density, and f(C) is the per capita growth rate of the
population (Kot 2001; Edelstein-Keshet 2005; Courchamp et al. 2008). Equation (1.1)
models the temporal evolution of well-mixed populations. There are some popular models
based on the ODE (1.1) and choice of f(C), such as the exponential growth model, the
logistic growth model and the weak or strong Allee effect model (Murray 1989; Kot 2001;
Courchamp et al. 2008).

• The exponential growth model considers a positive constant per capita growth
rate, f(C) = λ > 0, see Figure 1.1(a)–(c). Although some low-density population
dynamics are captured by the exponential growth model, exponential growth drives
the population density to infinity (Murray 1989; Sarapata and de Pillis 2014).
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Figure 1.1: Different mechanisms and the corresponding population dynamics.
(a)–(c) f(C), Cf(C) and C(t) with exponential growth. (d)–(f) f(C), Cf(C) and C(t)
with logistic growth. (g)–(i) f(C), Cf(C) and C(t) with weak Allee effect. (j)–(l) f(C),
Cf(C) and C(t) with strong Allee effect.

• The logistic growth model is perhaps the most widely used model in population
biology. The classical logistic growth model incorporates a linearly decreasing per
capita growth rate, f(C) = λ(1 − C/K), where λ > 0 now denotes the intrinsic
growth rate, and K > 0 is the carrying capacity density, see Figure 1.1(d)–(f). In
such models population density increases to approach the carrying capacity density,
K, as t → ∞ (Courchamp et al. 1999; Kot 2001; Murray 1989; Sarapata and de Pillis
2014).

• In the weak Allee effect model, population density also approaches K as t → ∞,
see an example with f(C) = λ(1 − C/K)(C/A+ 1), where 0 < A < K is a positive
constant, as shown in Figure 1.1(g)–(i). However, unlike the logistic growth model
where f(C) is decreasing with respect to C, f(C) achieves its peak at a positive
density in the weak Allee effect model (Taylor and Hastings 2005; Courchamp et al.
2008).

• Different to these models where f(C) is always positive, the strong Allee effect
model has a negative per capita growth rate at low densities (Allee and Bowen 1932;
Stephens et al. 1999; Taylor and Hastings 2005; Courchamp et al. 2008). A simple
example of the strong Allee effect is given by f(C) = λ(1 − C/K)(C/A− 1), where
0 < A < K is now called the Allee threshold, see Figure 1.1(j)–(l).

In the classical logistic growth and weak Allee effect models, any population, no matter
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how small, will always grow to reach the carrying capacity density and survive. In contrast,
as population density may decrease in strong Allee effect models, populations governed
by strong Allee effects will either approach the carrying capacity density and survive,
or reduce to zero density and go extinct (Allee and Bowen 1932; Stephens et al. 1999;
Taylor and Hastings 2005; Courchamp et al. 2008). The only factor determining the fate
of populations in the strong Allee effect model is the initial density C(0). That is, the
population will survive if C(0) > A, and go extinct if C(0) < A, see Figure 1.1(l).

1.1.2 Reaction-diffusion equations and spatially-structured populations

To model populations with spatial structures, such as cells with moving fronts as shown in
Figure 1.2, some studies consider using reaction-diffusion equations (Hadeler and Rothe
1975; Lewis and Kareiva 1993; Holmes et al. 1994; Hastings et al. 2005; Maciel and Lutscher
2015; Johnston et al. 2017; Neufeld et al. 2017; El-Hachem et al. 2019). Here we present a
reaction-diffusion equation with one spatial dimension as an example,

∂C(x, t)
∂t

= D
∂2C(x, t)
∂x2 + C(x, t)f(C(x, t)), (1.2)

where D > 0 is the constant diffusivity coefficient specifying the diffusion mechanism, and
C(x, t)f(C(x, t)) is the source term specifying the reaction mechanism. Unlike Equation
(1.1) where the survival or extinction of populations solely depends upon initial density,
many factors influence the fate of populations in reaction-diffusion models, such as initial
spatial distributions, boundary conditions, the size of domain and the interplay between
diffusion and reaction mechanisms (Skellam 1951; Bradford and Philip 1970a,b; Lewis
and Kareiva 1993; Holmes et al. 1994; Lutscher 2019). For example, when the reaction
mechanism associates with strong Allee effects, populations can only survive if the initial
occupied area and the initial density are sufficiently large (Lewis and Kareiva 1993).
Furthermore, the spatial-temporal dynamics described by reaction-diffusion equations
allow populations to form spatial structures, which are suitable for studying a variety of
realistic phenomena in population biology, such as the invasion processes of cells (Mack
et al. 2000; Johnston et al. 2017).

In population biology, a travelling wave solution of Equation (1.2) represents that
a population travels through space with a constant speed and a constant wave shape
(Allee and Bowen 1932; Maini et al. 2004a; Johnston et al. 2017). We now consider
boundary conditions C(x, t) = 1 as x → −∞ and C(x, t) = 0 as x → ∞. Introducing
the travelling wave coordinate z = x − vt, where v is a constant wave speed, functions
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(a) (b) (c)

Figure 1.2: Moving fronts of cells. (a)–(c) Images of cells in an experiment of in
vitro cell migration assays at t = 0 h, t = 12 h and t = 24 h, respectively. The scale bar
corresponds to 300 µm. The dashed green lines in (a) show the approximate location of
the position of leading edge. This figure is adapted from Figure 1 in Jin et al. (2016b).

C(z, t) = C(x− vt, t) satisfying Equation (1.2) can be written as

∂C(z, t)
∂t

= ∂2C(z, t)
∂z2 + v

∂C(z, t)
∂z

+ C(z, t)f(C(z, t)). (1.3)

If C(z, t) = c(z) is a stationary solution to (1.3), that is, ∂C/∂t = 0, then it is a travelling
wave solution to (1.2) satisfying

d2c(z)
dz2 + v

dc(z)
dz + c(z)f(c(z)) = 0, (1.4)

A dynamical system approach can be used to analyse (1.4) (Fife 2013). By introducing
p = dc/dz, Equation (1.4) can be transformed into a system of first-order ODEs





dc
dz = p,

dp
dz = −vp− cf(c).

(1.5)

The heteroclinic orbits on the phase plane of system (1.5), which connect the equilibrium
point associated with state c = 1 to the equilibrium point associated with state c = 0,
indicate the existence of travelling wave solutions to (1.2).

If we consider a logistic growth source term, Equation (1.2) becomes the well-known
Fisher-KPP equation (Fisher 1937; Kolmogorov et al. 1937),

∂C(x, t)
∂t

= D
∂2C(x, t)
∂x2 + λC(x, t)(1 − C(x, t)), (1.6)

where we, without loss of generality, consider a carrying capacity K = 1. Phase plane
analysis of system (1.5) indicates that there exists travelling wave solutions with positive
speeds v ≥ v∗, where v∗ = 2

√
λD is called the minimum wave speed, and with a smooth

front where C(x, t) → 0 as x → ∞ (Fife 2013). We show the smooth travelling wave
solutions of the Fisher-KPP equation in Figure 1.3(a). When we change the logistic growth
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C(x, t)

x
0 50 100

1

0

C(x, t)

x
0 50 100

1

0

Figure 1.3: Smooth and sharp-fronted travelling wave solutions. We show the
numerical solutions of reaction-diffusion equations using an implicit finite difference method
with space step δx = 0.1 and time step δt = 0.01, considering the Heaviside initial condition
C = 1 for x ∈ [0, 20] and C = 0 elsewhere, and no-flux boundary conditions. (a) Smooth
travelling wave solutions of the Fisher-KPP equation (1.6) with D = 1 and f(C) = 1 − C,
at t = 10, t = 20 and t = 30. (b) Sharp-fronted travelling wave solutions of (1.7) with
D(C) = C and f(C) = 1 − C, at t = 20, t = 40 and t = 60. The black arrows show the
moving direction of waves.

source term to a weak or strong Allee effect source term, there still exists travelling wave
solutions in Equation (1.2). Similar to the logistic growth source term, the weak Allee effect
leads to travelling wave solutions with positive speeds greater than a threshold (Hadeler
and Rothe 1975). In contrast, the strong Allee effect leads to a unique wave speed which
is either positive or negative (Hadeler and Rothe 1975; Fife and McLeod 1977). However,
it is challenging to calculate the explicit solution of reaction-diffusion equations. For the
Fisher-KPP equation, there are two currently known explicit travelling wave solutions with
particular speeds Ablowitz and Zeppetella (1979); Malfliet (1992); McCue et al. (2021).
Instead of explicitly solving reaction-diffusion equations, numerical techniques such as the
finite difference method are used to approximate solutions in reaction-diffusion equations
and provide evidence of the existence of corresponding solutions (Ames 2014; Johnston
et al. 2017).

1.1.3 Nonlinear diffusion in population models

Most reaction-diffusion models in mathematical biology consider a constant diffusivity
(Hadeler and Rothe 1975; Murray 1989; Holmes et al. 1994; Kot 2001; Hastings et al. 2005;
Maciel and Lutscher 2015; Neufeld et al. 2017). However, reaction-diffusion equations
with linear diffusion cannot describe population dynamics in some well-documented
circumstances. For example, the smooth travelling wave solution in the Fisher-KPP
equation cannot provide sharp wave fronts to replicate observations in cell migration
assays (Maini et al. 2004a,b; Jin et al. 2016b). Therefore, reaction-diffusion equations with
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nonlinear diffusion are considered in many applications (Shigesada 1980; Sengers et al.
2007; Cai et al. 2007; Mart́ınez-Garćıa et al. 2015; Jin et al. 2016b; McCue et al. 2019;
Bubba et al. 2020). For example, D(C) = C is considered in cell migration assays so that
the travelling wave has a sharp front that reaches 0 within a finite distance (Sengers et al.
2007; Jin et al. 2016b). In one spatial dimension, the reaction-diffusion equation is

∂C(x, t)
∂t

= ∂

∂x

(
D(C(x, t))∂C(x, t)

∂x

)
+ C(x, t)f(C(x, t)), (1.7)

where we call D(C) the nonlinear diffusivity function. We show numerical results of the
sharp-fronted travelling wave solutions of Equation (1.7) with D(C) = C and a logistic
growth source term in Figure 1.3(b). Compared to the smooth travelling wave solutions in
Figure 1.3(a), the front position of population density profiles in sharp-fronted travelling
waves can be intuitively defined.

1.1.4 Discrete models and continuum limits

While continuum models capture population dynamics in many situations, they cannot
reflect the behaviour of individuals underlying the population dynamics. In contrast,
discrete models explicitly consider each individual as an agent that can undergo events in
a stochastic process. The lattice-based random walk model is a popular discrete model for
describing population dynamics (Codling et al. 2008; Baker and Simpson 2010; Simpson
et al. 2010a; Jin et al. 2016a; Johnston et al. 2017). In lattice-based models, individuals
such as cells are represented as agents on lattice sites, and evolve in time governed by
simple rules associated with agent-to-agent interactions. A basic rule is that two agents
are not able to occupy the same lattice site at the same time, which leads to an exclusion
process and reflects that it is impossible for cells to penetrate each other (Liggett and
Liggett 1985; Simpson et al. 2010a). One agent generally only occupies one lattice site,
while more lattice sites could be occupied by one agent (Turner et al. 2004; Alber et al.
2006; Lushnikov et al. 2008). The random sequential update method is used to simulate
the evolution of agents in lattice-based models (Chowdhury et al. 2005). If there are Q(t)
agents on the lattice at time t, then during the next time step of duration τ , the algorithm
selects Q(t) agents, one at a time with replacement, to advance the stochastic simulation
from time t to time t+ τ (Simpson et al. 2010a).

The averaged population dynamics in lattice-based discrete simulations can be related
to a continuous description in an appropriate continuum limit (Hughes 1995; Deroulers
et al. 2009; Simpson et al. 2010a; Fernando et al. 2010; Johnston et al. 2012; Liggett 2013;
Jin et al. 2016b; Johnston et al. 2017). For example, the undirected random motion of
individuals leads to the heat equation in continuum limit (Liggett 2013). If the discrete
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Figure 1.4: Schematic of the movement mechanism associated with a parameter
σ. Each lattice site can be occupied by, at most, one agent. Sites are indexed by i where
i = 1, 2, ..., 6, and have locations x = i∆. The red circle represents an isolated agent. The
blue circles represent three grouped agents. The isolated agent at site 2 would step to site
1 or site 3 with probability 1/2 per computational step. The movement probability of
the grouped agent at site 5 is influenced by contact effects. It would step to site 4 with
probability (1 − σ)/2, where σ ∈ [−1, 1] represents the contact effect, and would step to
site 6 with probability 0 since the target site is occupied.

model considers a more complicated agent-to-agent interactions, the resulting continuous
description may incorporate nonlinear diffusion mechanisms. For example, Johnston et al.
(2012) use a parameter σ to reflect the contact effect, which represents either adhesion or
repulsion between neighbouring cells in microscopic transport processes. We provide a
schematic illustration of the one-dimensional lattice with spacing ∆, and the movement
mechanism of agents associated with σ in Figure 1.4, where isolated and grouped agents
have different movement mechanisms. The corresponding continuum limit of the discrete
model described in Johnston et al. (2012) is

∂C(x, t)
∂t

= ∂

∂x

(
D(C(x, t))∂C(x, t)

∂x

)
, (1.8)

with nonlinear diffusivity function

D(C) = D0 [1 − σC(4 − 3C)] , (1.9)

where
D0 = lim

∆,τ→0

∆2

2τ . (1.10)

Here, D0 > 0 is a constant as ∆ → 0 and τ → 0 with the ratio ∆2/τ held constant
(Codling et al. 2008; Simpson et al. 2010a; Johnston et al. 2012).

Except for movement mechanisms, growth mechanisms such as the proliferation and
death of individuals can also be incorporated into discrete models (Etienne et al. 2002; Cai
et al. 2007; Yates et al. 2015; Johnston et al. 2017; Surendran et al. 2020; Fadai et al. 2020).
In particular, Johnston et al. (2017) consider a one-dimensional lattice-based discrete model
incorporating the movement, proliferation and death of isolated and grouped individuals.
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The continuum limit of this discrete model is a reaction-diffusion equation with nonlinear
diffusivity function

D(C) = Di(1 − 4C + 3C2) +Dg(4C − 3C2), (1.11)

and reaction term

Cf(C) = C
[
λg(1 − C) + (λi − λg −Ki +Kg)(1 − C)2 −KgC

]
, (1.12)

where Di > 0 and Dg > 0 correspond to the movement probability of isolated and grouped
agents, respectively; λi > 0 and λg > 0 correspond to the proliferation probability of
isolated and grouped agents, respectively; Ki > 0 and Kg > 0 correspond to the death
probability of isolated and grouped agents, respectively. When isolated and grouped agents
have equal proliferation rates λ = λi = λg, and no agent death, Ki = Kg = 0, the reaction
term represents a logistic kinetic

Cf(C) = λC(1 − C). (1.13)

If isolated and grouped agents have different proliferation rates and death rates, that is,
λi ̸= λg and Ki ̸= Kg, the reaction term represents a strong Allee kinetic,

Cf(C) = rC(1 − C)(C − A), (1.14)

where r = Ki − λi + λg and A = 1 − λg/r. The nonlinear diffusivity function, D(C),
depends on the choices of Di and Dg. In particular, when Di > 4Dg, D(C) is a convex
function and has a sign condition

D(C) > 0 for C ∈ [0, α) ∪ (β, 1], D(C) < 0 for C ∈ (α, β), (1.15)

where the interval of negative D(C) is centred around C = 2/3, with 1/3 < α < 2/3
and 2/3 < β < 1. Interestingly, numerical solutions of the reaction-diffusion equation
with such D(C) and logistic kinetics provide smooth travelling wave solutions, while
numerical solutions with such D(C) and strong Allee kinetics provide shock-fronted
travelling wave solutions, where solutions jump from one value to another (Johnston
et al. 2017). Furthermore, unlike smooth travelling wave solutions which always have
positive speeds, that is, solutions with wave speeds v > 0 in the moving frame z = x− vt,
shock-fronted travelling wave solutions may have either positive or negative speeds. We
provide a schematic illustration of smooth and shock-fronted travelling wave solutions in
Figure 1.5.

Modelling population dynamics based on a discrete model that leads to a well-defined
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Figure 1.5: Schematic of smooth and shock-fronted travelling wave solutions
obtained by a numerical method. We show the numerical solutions of (1.7) with
D(C) = 0.6C2 − 0.8C + 0.25 obtained from (1.11) with Di = 0.25 and Dg = 0.05, using
an implicit finite difference method with space step δx = 0.1 and time step δt = 0.01. We
consider the Heaviside initial condition C = 1 for x ∈ [0, 20] and C = 0 elsewhere, and
no-flux boundary conditions. (a) Smooth travelling wave solutions at t = 20, t = 40 and
t = 60, obtained with a logistic growth source term Cf(C) = C(1 −C). (b) Shock-fronted
travelling wave solutions at t = 1000, t = 2000 and t = 3000, obtained with a strong Allee
effect source term Cf(C) = C(1 − C)(C − 0.2), where the solution jumps from one value
to another. The black arrows show the moving direction of waves. We note that the speed
of shock-fronted travelling wave solutions, v, can be either positive or negative.

continuum limit provides a powerful discrete-continuum framework. The discrete model
performs realistic simulations incorporating fluctuations, and intuitively reflects the
behaviour of individuals which cannot be easily obtained from the continuum model.
On the other hand, the continuum model precisely describes population dynamics, and
does not have the additional computational overhead which may be intractable in discrete
simulations. However, although some discrete models derive appropriate continuum limits
associated with nonlinear diffusion mechanisms (Deroulers et al. 2009; Fernando et al. 2010;
Yates et al. 2015; Chappelle and Yates 2019), constructing a framework to connect general
nonlinear diffusion terms in reaction-diffusion equations to the intuitive mechanisms of
individual-level behaviours described by discrete models is challenging.

1.1.5 Existence of travelling wave solutions with nonlinear diffusion

Since nonlinear diffusion plays an important role in population biology, many studies focus
on the mathematical analysis of travelling wave solutions to reaction-diffusion equations
with nonlinear diffusion (Malaguti and Marcelli 2003; Maini et al. 2006, 2007; Ferracuti
et al. 2009; Kuzmin and Ruggerini 2011). In particular, Ferracuti et al. (2009) prove the
existence of travelling wave solutions for reaction-diffusion equations with general convex
D(C) that changes signs twice on C ∈ (0, 1) and logistic growth source terms, based on
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the comparison method (Aronson and Weinberger 1978). In this case travelling waves
exist if their speed is greater than a minimum wave speed (Aronson and Weinberger 1978).
However, their method cannot be extended for studying the shock-fronted travelling wave
solutions when the source term is associated with strong Allee effects (Johnston et al.
2017).

To study shock-fronted travelling wave solutions, perturbation theory is a good choice.
Shocks associated with nonlinear diffusion but no source terms have been studied in the
context of many physical phenomena, such as the movement of moisture in partially
saturated porous media (DiCarlo et al. 2008) and the motion of nanofluids (Landman
and White 2011). For example, we can find a shock-fronted travelling wave solution for a
convection-diffusion equation of the form

∂C(x, t)
∂t

+ C(x, t)∂C(x, t)
∂x

= ∂2

∂x2

(
g(C(x, t)) − ε2∂

2C(x, t)
∂x2

)
, (1.16)

where g(C) is a cubic function representing the chemical potential and 0 < ε ≪ 1 (Witelski
1995b). When the continuous description includes a reaction mechanism, properties of
shock-fronted travelling wave solutions can be studied through using the geometric singular
perturbation theory (GSPT) (Jones 1995; Fenichel 1979; Hek 2010; Sewalt et al. 2016)
and canard theory (Szmolyan and Wechselberger 2001; Wechselberger and Pettet 2010;
Wechselberger 2012). GSPT is a geometric approach dealing with problems with singular
perturbations. The standard GSPT method using Fenichel’s theory is based on the normal
hyperbolicity of subsets of the critical manifold. However, the requirement of normal
hyperbolicity in singularly perturbed systems cannot be satisfied in some contexts. In such
situations, canard theory can overcome the loss of normal hyperbolicity and can be used
to study the geometric structure of the perturbed systems (Fenichel 1979; Wechselberger
2012). Canards were first studied to analyse the van der Pol oscillator (Benoit 1981),
and further developed to the context of GSPT (Dumortier et al. 1996). The existence of
smooth or shock-fronted travelling wave solutions in coupled advection-reaction-diffusion
models has been proved by using GSPT with canard theory in Wechselberger and Pettet
(2010), and Wechselberger and Pettet (2010) also point the equivalent relationship between
the holes in the walls (Pettet et al. 2000) obtained with phase plane analysis and specific
types of canard points (Szmolyan and Wechselberger 2001).

1.1.6 Stability of travelling wave solutions

The problem of stability naturally arises after proving the existence of travelling wave
solutions (Harley et al. 2015; Davis et al. 2017, 2019). The stability of a travelling wave
solution predicts the long-term behaviour of the solution. If the addition of arbitrarily
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small perturbations into the travelling wave solution leads the solution to eventually leave
a small neighbourhood of the set of travelling wave solutions, the travelling wave solution is
unstable (Sandstede 2002). The stability of a travelling wave solution indicates observation
results in numerical simulations. That is, we believe numerical simulations only provide
stable solutions after a long time period.

There are various approaches to study the stability of travelling waves (Volpert et al.
1994; Sandstede 2002). One widely used approach is to linearise the PDE about the
travelling wave solution with small perturbations q(z, t), and to study the resulting linear
operator L. The spectrum of L provides useful information for the stability of travelling
wave solutions. If the spectrum of L is contained in the open left half plane, or the origin,
the travelling wave solution is spectrally stable. The spectrum of a linear operator naturally
breaks up into two sets: the point spectrum and the essential spectrum (Sandstede 2002;
Kapitula and Promislow 2013). The point spectrum is the set of isolated eigenvalues
with finite multiplicity. It deals with the stability of the actual wave front. The essential
spectrum is the complement of the point spectrum. It deals with instabilities at infinity
and it is related to the spectrum of the background linear operator L as z → ±∞.

1.2 Research questions

This thesis explores and answers the following questions:

1. What is the role of initial shape of spatial distributions on the fate of
bistable populations?

The strong Allee effect model reflecting bistable population dynamics, where a
population will end in either survival or extinction, is often considered to model
situations where the potential for population extinction is thought to be important
(Saltz and Rubenstein 1995; Taylor and Hastings 2005; Courchamp et al. 2008; Fadai
et al. 2020). Unlike the classical ordinary differential equation models, where the fate
of populations solely depends upon whether the initial density is above or below the
Allee threshold, many factors influence population extinction in reaction-diffusion
models such as initial spatial distributions and boundary conditions (Bradford and
Philip 1970a,b; Lewis and Kareiva 1993; Soboleva et al. 2003; Lewis et al. 2016).

Formal asymptotic analysis of the reaction-diffusion equation, which incorporates
linear diffusion and the strong Allee effects, reveals that the area of the initial
population distribution has to exceed a threshold, so that the population avoids
extinction (Lewis and Kareiva 1993). However, Lewis and Kareiva (1993) only
consider a radially symmetric initial distribution on a two-dimensional domain. An
interesting question is whether other shapes of spatial distributions lead to different
long-term outcomes. Both discrete and continuous models allow us to explore whether
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the population will survive or go extinct with different initial distributions, while
this requires us to construct the discrete model with a well-defined continuum limit,
and carefully consider the interactive effects of shapes and other initial conditions.

2. How does nonlinear diffusion affect the fate of bistable populations?

Predicting whether a population will survive or become extinct is a key question
in population biology (Berger 1990; Cantrell and Cosner 1998; Axelrod et al. 2006;
Ovaskainen and Meerson 2010; Kéfi et al. 2011). In reaction-diffusion models,
population dynamics are governed by the interplay between diffusion and reaction
mechanisms. It is known that nonlinear diffusion can impact the conditions of
the reaction-diffusion model leading to population extinction (Lee et al. 2006).
This brings the interest of exploring the relationship between nonlinear diffusion
and the fate of bistable populations. For a given nonlinear diffusivity function,
whether it encourages or suppresses population extinction relative to the classical
linear diffusion model is an interesting question. To physically interpret the role
of nonlinear diffusion on bistable population dynamics, we consider a discrete-
continuum modelling framework, which can connect the behaviour of individuals to
the population dynamics in reaction-diffusion equations. Through such a framework,
we are able to gain insight into how the complicated interplay between diffusion and
reaction mechanisms associated with individual-level behaviours affects the fate of
bistable populations.

3. What are the existence and stability properties of smooth travelling wave
solutions with nonlinear diffusion and logistic growth source terms?

Travelling wave solutions of reaction-diffusion equations are useful in studying
population dynamics in invasion processes, where individuals migrate to new areas in
which they persist, proliferate, and spread (Murray 1989; Mack et al. 2000; Taylor and
Hastings 2005). For example, the travelling wave solutions of the famous Fisher-KPP
equation describe that a population will spread through space with a fixed shape
and a constant speed depending on the initial population distribution (Fisher 1937;
Kolmogorov et al. 1937; Murray 1989). However, when the reaction-diffusion model
incorporates a nonlinear diffusion mechanism, such as a nonlinear diffusivity function
that changes signs, studying the existence and stability properties of travelling
wave solutions becomes challenging (Malaguti and Marcelli 2003; Maini et al. 2006;
Ferracuti et al. 2009).

Through deriving reaction-diffusion equations from the continuum limit of a dis-
crete model, Johnston et al. (2017) incorporate information about individual-level
behaviours including movement, proliferation and death into the continuum model.
When the migration rate of isolated individuals is much larger than the migration
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rate of grouped individuals, the nonlinear diffusivity function changes sign twice
in the domain of our interest. Considering reaction-diffusion equations with such
nonlinear diffusivity functions and logistic growth kinetics, we aim to prove the
existence of smooth travelling wave solutions by using a geometric approach, and
investigate the relationship between the wave speed and the spectral stability of the
travelling wave solutions.

4. Do shock-fronted travelling wave solutions exist with nonlinear diffusion
and strong Allee effect source terms?

With a nonlinear diffusivity function changing signs twice, the reaction-diffusion
equation incorporating logistic growth kinetics exits smooth travelling wave solutions
with positive speeds (Li et al. 2020). However, when we consider a strong Allee effect
source term, numerical observations suggest the existence of shock-fronted travelling
wave solutions (Johnston et al. 2017). Furthermore, the speed of shock-fronted
travelling wave solutions can be either positive or negative.

Geometric approaches, such as the geometric singular perturbation theory (GSPT),
have been used to study shock-fronted travelling wave solutions (Harley et al. 2014a;
Sewalt et al. 2016). To apply GSPT, the shock-fronted travelling waves are smoothed
out by regularising the reaction-diffusion equation with a smaller higher order
perturbation term. We aim to consider two typical forms of perturbation terms
(Pego and Penrose 1989; Padrón 2004), and apply GSPT to analyse the shock-fronted
travelling waves in reaction-diffusion equations with nonlinear diffusivity functions
changing signs twice and strong Allee effect source terms.

1.3 Structure of the thesis

This thesis comprises two main parts. Chapters 2 and 3 explore the factors that affect the
survival or extinction of bistable populations. Chapters 4 and 5 focus on the mathematical
analysis of travelling waves in population models. Since the thesis is presented as a thesis
by published papers, main chapters (Chapters 2, 3, 4 and 5) are comprised of publications.
This thesis consists of the four following publications:

1. Li, Y., Johnston, S. T., Buenzli, P. R., van Heijster, P., Simpson, M.J., 2022.
Extinction of bistable populations is affected by the shape of their initial spatial
distribution. Bulletin of Mathematical Biology, 84: 21. DOI:10.1007/s11538-021-
00974-5. arXiv Preprint.

2. Li, Y., Buenzli, P. R., Simpson, M. J., 2022. Interpreting how nonlinear diffusion
affects the fate of bistable populations using a discrete modelling framework (submit-
ted to Proceedings of the Royal Society A: Mathematical, Physical and Engineering

https://doi.org/10.1007/s11538-021-00974-5
https://doi.org/10.1007/s11538-021-00974-5
https://arxiv.org/abs/2101.01389
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Sciences). arXiv Preprint.

3. Li, Y., van Heijster, P., Marangell, R., Simpson, M. J., 2020. Travelling wave
solutions in a negative nonlinear diffusion–reaction model. Journal of Mathematical
Biology, 81: 1495-1522. DOI:10.1007/s00285-020-01547-1. arXiv Preprint.

4. Li, Y., van Heijster, P., Simpson, M.J., Wechselberger, M., 2021. Shock-fronted trav-
elling waves in a reaction–diffusion model with nonlinear forward-backward-forward
diffusion. Physica D: Nonlinear Phenomena. 423: 132916. DOI:10.1016/j.physd.2021.
132916. arXiv Preprint.

To make the style and layout consistent, minor changes have been made to each of the
papers, such as Table 2.1, while most of the content in these chapters are exactly the
same as the original papers that have been either published or submitted. Since all main
chapters are independent publications, some overlapped contents appear in the background
information of these different chapters. The Chapter 2.9, 3.9 and 5.7 correspond to the
supplementary materials associated with the respective publications. The PhD candidate
has contributed significantly and is the primary author of all the four papers. The work
presented in this thesis fulfils the requirements for the award of thesis by published papers
at Queensland University of Technology.

Chapter 1 constitutes the introduction for the thesis. This chapter introduces the
relevant background information of mathematical modelling in population biology and
ecology. The major research questions of the thesis are then stated. The details about the
contribution of the candidate and all co-authors to each of the publication are described
in Section 1.4.

Chapter 2 addresses the first question described in Section 1.2. Chapter 2 contains
publication 1, where we construct a new discrete-continuum modelling framework and
study the role of initial shape on the fate of bistable populations. This chapter also contains
additional information such as the simulation algorithm and more detailed derivations
associated with publication 1.

Chapter 3 addresses the second question described in Section 1.2. Chapter 3 contains
publication 2, where we interpret the role of nonlinear diffusion on the fate of bistable
populations. This chapter also contains additional results associated with publication 2.

Chapter 4 addresses the third question described in Section 1.2. Chapter 4 contains
publication 3, where we study the existence and stability properties of travelling wave
solutions of a reaction-diffusion equation with nonlinear diffusion and logistic growth
kinetics.

Chapter 5 addresses the fourth question described in Section 1.2. Chapter 5 contains
publication 4, where we study the properties of shock-fronted travelling wave solutions of

https://arxiv.org/abs/2112.10989
https://doi.org/10.1007/s00285-020-01547-1
https://arxiv.org/abs/1903.10090
https://doi.org/10.1016/j.physd.2021.132916
https://doi.org/10.1016/j.physd.2021.132916
https://arxiv.org/abs/2011.07857
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the reaction-diffusion equation with nonlinear diffusion and strong Allee kinetics. This
chapter also contains additional results associated with publication 4.

Chapter 6 outlines a summary of the research findings from this thesis, and discusses
possible future work based on the results achieved and the limitations of our work.

1.4 Statement of joint authorship

In this section we summarise the contributions of the PhD candidate and the co-authors
to each publication. All co-authors have agreed to the presentation of these publications
in this thesis.

1.4.1 Chapter 2: The role of initial shape of spatial distributions on the fate
of bistable populations

The associated publication for this chapter is:

Li, Y., Johnston, S. T., Buenzli, P. R., van Heijster, P., Simpson, M.J., 2022. Extinction
of bistable populations is affected by the shape of their initial spatial distribution. Bulletin
of Mathematical Biology, 84: 21. DOI:10.1007/s11538-021-00974-5. arXiv Preprint

The work was divided as follows:

• Li, Y. (Candidate) designed the study, derived the continuum limit equations,
developed the codes for numerical simulations, performed numerical simulations,
generated results, composed all figures and supplementary material, interpreted the
results, drafted the manuscript, and critically reviewed and revised the manuscript.

• Johnston, S. T. designed the study, provided technical assistance, helped interpret the
results, critically reviewed and revised the manuscript and supplementary material.

• Buenzli, P. R. designed the study, helped interpret the results, oversaw drafting and
redrafting of the manuscript, critically reviewed and revised the manuscript and
supplementary material.

• van Heijster, P. provided technical assistance, critically reviewed and revised the
manuscript and supplementary material.

• Simpson, M.J. initiated the concept for this paper, designed the study, supervised
the research, helped interpret the results, oversaw drafting and redrafting of the
manuscript, critically reviewed and revised the manuscript and supplementary
material, and acted as the corresponding author.

https://doi.org/10.1007/s11538-021-00974-5
https://arxiv.org/abs/2101.01389
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1.4.2 Chapter 3: The role of nonlinear diffusion on the fate of bistable
populations

The associated publication for this chapter is:

Li, Y., Buenzli, P. R., Simpson, M. J., 2022. Interpreting how nonlinear diffusion affects
the fate of bistable populations using a discrete modelling framework (submitted to
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences).
arXiv Preprint

The work was divided as follows:

• Li, Y. (Candidate) designed the study, derived the continuum limit equations,
developed the codes for numerical simulations, performed numerical simulations,
generated results, composed all figures and supplementary material, interpreted the
results, drafted the manuscript, and critically reviewed and revised the manuscript.

• Buenzli, P. R. designed the study, helped interpret the results, oversaw drafting and
redrafting of the manuscript, critically reviewed and revised the manuscript and
supplementary material.

• Simpson, M.J. initiated the concept for this paper, designed the study, supervised
the research, helped interpret the results, oversaw drafting and redrafting of the
manuscript, critically reviewed and revised the manuscript and supplementary
material, and acted as the corresponding author.

1.4.3 Chapter 4: Smooth travelling waves in reaction-diffusion equations with
nonlinear diffusion and logistic growth source terms

The associated publication for this chapter is:

Li, Y., van Heijster, P., Marangell, R., Simpson, M. J., 2020. Travelling wave solutions
in a negative nonlinear diffusion–reaction model. Journal of Mathematical Biology, 81:
1495-1522. DOI:10.1007/s00285-020-01547-1. arXiv Preprint

The work was divided as follows:

• Li, Y. (Candidate) designed the study, derived the continuum limit equations, devel-
oped the codes for calculating numerical solutions, performed numerical simulations,
generated results, composed all figures and supplementary material, interpreted the
results, drafted the manuscript, and critically reviewed and revised the manuscript.

https://arxiv.org/abs/2112.10989
https://doi.org/10.1007/s00285-020-01547-1
https://arxiv.org/abs/1903.10090
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• van Heijster, P. initiated the concept for this paper, designed the study, supervised the
research, helped interpret the results, contributed to the writing of the manuscript,
oversaw drafting and redrafting of the manuscript, critically reviewed and revised
the manuscript and supplementary material, and acted as the corresponding author.

• Marangell, R. provided technical assistance, contributed to the writing of the
manuscript, critically reviewed and revised the manuscript.

• Simpson, M. J. provided technical assistance, oversaw drafting and redrafting of
the manuscript, critically reviewed and revised the manuscript and supplementary
material.

1.4.4 Chapter 5: Shock-fronted travelling waves in reaction-diffusion equa-
tions with nonlinear diffusion and strong Allee effect source terms

The associated publication for this chapter is:

Li, Y., van Heijster, P., Simpson, M.J., Wechselberger, M., 2021. Shock-fronted travelling
waves in a reaction–diffusion model with nonlinear forward-backward-forward diffusion.
Physica D: Nonlinear Phenomena. 423: 132916. DOI:10.1016/j.physd.2021.132916. arXiv
Preprint

The work was divided as follows:

• Li, Y. (Candidate) designed the study, developed the codes for calculating
numerical solutions, performed numerical simulations, generated results, composed all
figures and supplementary material, interpreted the results, drafted the manuscript,
and critically reviewed and revised the manuscript.

• van Heijster, P. initiated the concept for this paper, supervised the research, provided
technical assistance, supervised the research, contributed to the writing of the
manuscript, oversaw drafting and redrafting of the manuscript, critically reviewed and
revised the manuscript and supplementary material, and acted as the corresponding
author.

• Simpson, M. J. provided technical assistance, oversaw drafting and redrafting of
the manuscript, critically reviewed and revised the manuscript and supplementary
material.

• Wechselberger, M. provided technical assistance, critically reviewed and revised the
manuscript.

https://doi.org/10.1016/j.physd.2021.132916
https://arxiv.org/abs/2011.07857
https://arxiv.org/abs/2011.07857


Chapter 2

The role of initial shape of spatial
distributions on the fate of bistable
populations

2.1 Preamble

This chapter is a paper published in the Bulletin of Mathematical Biology

Li, Y., Johnston, S. T., Buenzli, P. R., van Heijster, P., Simpson, M.J., 2022. Extinction
of bistable populations is affected by the shape of their initial spatial distribution. Bulletin
of Mathematical Biology, 84: 21. DOI:10.1007/s11538-021-00974-5. arXiv Preprint

In this chapter, we address the research question 1 of the thesis: What is the role
of initial shape of spatial distributions on the fate of bistable populations? We start by
considering a lattice-based discrete model incorporating crowding effects into the movement,
proliferation and death of individuals, where the continuum limit is a reaction-diffusion
equation. We explore whether solutions of the continuum model accurately capture the
appropriately averaged data from discrete simulations. Considering bistable population
dynamics influenced by the strong Allee effect and linear diffusion, we systematically
explore the fate of populations by varying the shape of spatial population distributions
and the ratio of movement and proliferation/death rates. Note that the framework
constructed here acts as a reference framework for further studies in the next chapter,
where extensions are made by incorporating more complicated movement mechanisms of
individuals associated with nonlinear diffusion.
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https://arxiv.org/abs/2101.01389
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2.2 Abstract

The question of whether biological populations survive or are eventually driven to extinction
has long been examined using mathematical models. In this work we study population
survival or extinction using a stochastic, discrete lattice-based random walk model where
individuals undergo movement, birth and death events. The discrete model is defined on
a two-dimensional hexagonal lattice with periodic boundary conditions. A key feature
of the discrete model is that crowding effects are introduced by specifying two different
crowding functions that govern how local agent density influences movement events and
birth/death events. The continuum limit description of the discrete model is a nonlinear
reaction-diffusion equation, and we focus on crowding functions that lead to linear diffusion
and a bistable source term that is often associated with the strong Allee effect. Using
both the discrete and continuum modelling tools we explore the complicated relationship
between the long-term survival or extinction of the population and the initial spatial
arrangement of the population. In particular, we study different spatial arrangements
of initial distributions: (i) a well-mixed initial distribution where the initial density is
independent of position in the domain; (ii) a vertical strip initial distribution where the
initial density is independent of vertical position in the domain; and, (iii) several forms of
two-dimensional initial distributions where the initial population is distributed in regions
with different shapes. Our results indicate that the shape of the initial spatial distribution
of the population affects extinction of bistable populations. All software required to solve
the discrete and continuum models used in this work are available on GitHub.

2.3 Introduction

The classical logistic growth model is widely adopted in mathematical biology and
mathematical ecology (Kot 2001; Murray 1989; Edelstein-Keshet 2005). In the logistic
model, small initial population densities increase over time to approach a maximum
carrying-capacity density (Maini et al. 2004a,b). An implicit assumption in using the
logistic growth model is that any population, no matter how small, will always grow and
survive. This limitation also applies to models based on the weak Allee effect, which
incorporates a reduced per-capita growth rate relative to the logistic model when the
density is small (Taylor and Hastings 2005). To address this limitation, more complicated
models have been developed, including models based on the strong Allee effect (Allee
and Bowen 1932; Lewis and Kareiva 1993; Stephens et al. 1999; Courchamp et al. 1999;
Taylor and Hastings 2005; Courchamp et al. 2008; Arroyo-Esquivel and Hastings 2020). In
the strong Allee effect model, initial densities greater than a threshold, called the Allee
threshold, grow to eventually reach the carrying capacity, whereas initial densities less than
the Allee threshold eventually go extinct (Allee and Bowen 1932; Courchamp et al. 1999;

https://github.com/oneflyli/Yifei2020Dimensionality
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Taylor and Hastings 2005; Courchamp et al. 2008; Fadai and Simpson 2020b). This kind
of population dynamics, also referred to as bistable population dynamics (Kot 2001), is
often adopted to model situations where the potential for population extinction is thought
to be important (Saltz and Rubenstein 1995; Courchamp et al. 1999; Drake 2004; Böttger
et al. 2015; Vortkamp et al. 2020). Bistable population dynamics are often studied using
mathematical models that take the form of an ordinary differential equation (ODE). In this
case, the eventual extinction or survival of the population is dictated solely by whether the
initial density is greater than, or less than, the Allee threshold density. Such ODE models
assume that the population is well-mixed, and hence neglect spatial effects. Spatial effects,
such as moving invasion fronts, can be incorporated by considering partial differential
equation (PDE) models where the density of individuals depends explicitly upon position
and time (Lewis and Kareiva 1993; Holmes et al. 1994; Hastings et al. 2005). A common
PDE framework is to consider a reaction-diffusion equation (RDE) with a cubic bistable
source term (Neufeld et al. 2017; Johnston et al. 2017).

When spatial effects are taken into consideration, even the logistic model with linear
diffusion may not always lead to the survival of populations. For example, for a population
on a finite domain with homogeneous Dirichlet boundary conditions, the population will
go extinct when reproduction cannot balance the loss through boundaries (Skellam 1951;
Grindrod 1991). The size of the domain must exceed a critical value, called the critical
patch size, so that a population persists (Holmes et al. 1994; Lutscher 2019). Similar
results also hold for diffusing bistable populations, where loss through the boundaries is not
the only mechanism of interest since the source term can become negative (Bradford and
Philip 1970a,b). For a population governed by the strong Allee effect, enough individuals
must aggregate together so that the population can reproduce and balance the loss due to
the death of individuals. This motivates the concept of the critical initial area (also known
as critical aggregation or critical initial radius) which indicates that the initial population
can only survive if the initial occupied area and the initial density are sufficiently large
(Lewis and Kareiva 1993; Soboleva et al. 2003; Lewis et al. 2016). See Table 2.1 for a brief
review of relevant models and known results.

Current RDE models of bistable populations on two-dimensional domains often consider
an infinite domain and a radially symmetric initial distribution (Lewis and Kareiva 1993;
Petrovskii and Shigesada 2001). In particular, Lewis and Kareiva (1993) use formal
asymptotics to derive expressions for the critical initial area for a radially distributed
bistable population with linear diffusion, and their results are valid in the limit that the
time scale of reproduction is much faster than the time scale of migration. In contrast,
here we develop a mathematical modelling framework for studying bistable population
dynamics on two-dimensional domains with periodic boundary conditions. Using this
framework we extend the previous results by showing that bistable populations with the
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References Model Coordinate Domain Boundary conditions Initial conditions Properties

Bradford
and Philip
(1970a)

∂C(x, t)
∂t

=
∂2C(x, t)
∂x2 + f(C(x, t)),

where f is a general bistable
form.

One-
dimensional
Cartesian

0 ≤ x < L
where L < ∞
or L → ∞

• Homogeneous
Neumann at x = 0

• Homogeneous
or inhomogeneous
Dirichlet at x = L

• No initial conditions
for the steady-state
solution C(x).

• Perturbed steady-
state solutions for
stability analysis.

• There exist stable steady-state
solutions, which represent
population survival, if L and
C(0) are greater than the
thresholds.

Bradford
and Philip
(1970b)

∂C(r, t)
∂t

=
1
r

∂

∂r

(
r
∂C(r, t)
∂r

)
+ f(C(r, t)),

where f is a general bistable
form.

Two-
dimensional,
radially sym-
metric

0 ≤ r < R
where R < ∞
or R → ∞

• Homogeneous
Neumann at r = 0

• Homogeneous
or inhomogeneous
Dirichlet at r = R

• No initial conditions
for the steady-state
solution C(r).

• Perturbed steady-
state solutions for
stability analysis.

• There exist stable steady-state
solutions, which represent
population survival, if L and
C(0) are greater than the
thresholds.

• The threshold of C(0) is
significantly greater than it in
Bradford and Philip (1970a).

Table 2.1: The comparison of models studying the critical initial area or critical patch size (Bradford and Philip 1970a,b) and our model.
All models include the strong Allee effect, while Etienne et al. (2002) further considers a competition mechanism.
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References Model Coordinate Domain Boundary conditions Initial conditions Properties

Lewis and
Kareiva (1993)

∂C(x, y, t)
∂t

=
D∇2C(x, y, t)+
kC(1 − C)(C − A)

Two-
dimensional
Cartesian

R2 • Homogeneous
Neumann

• C = 1 in a square
region and C = 0
elsewhere.

• Numerical simulations indicate
that the initial distribution
converges to a travelling wave
solution.

• Homogeneous
Dirichlet

• C = 1 in a circular
region with radius
r∗, and C = 0
elsewhere.

• There exists a threshold rmin
determined by D, k and A. If
r∗ > rmin, the initial distribution
forms a radially expanding wave
which leads to population
survival; if r∗ < rmin, the initial
distribution forms a radially
shrinking wave which leads to
population extinction.

Soboleva et al.
(2003)

∂C(x, y, t)
∂t

=
D∇2C(x, y, t)+
f(C(x, y, t)),
where f is cubic and
bistable with
f(0) = f(1) = 0.

Two-
dimensional
Cartesian

R2 • Homogeneous
Dirichlet

• Perturbed radially
symmetric unstable
steady-state
solutions.

• Perturbed radially
asymmetric unstable
steady-state
solutions.

• The unstable steady-state
solution provides threshold
initial distribution where
populations above the threshold
distribution will survive and
populations below the threshold
distribution will go extinct.

• The symmetric one-dimensional
threshold distribution has a
smaller maximum density
relative to the radially
symmetric two-dimensional
threshold distribution.

Table 2.1 Continued.
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References Model Coordinate Domain Boundary conditions Initial conditions Properties

Kot et al.
(1996)

Integrodifference equation
(discrete time n, continuous space x):

Cn+1(x) =
∫ ∞

−∞
k(x− x̂)f [Cn(x̂)]dx̂,

where f = 0 if 0 < Cn < CA and
f = K if CA < Cn < K.

One-
dimensional
Cartesian

−∞ < x <
∞

• Homogeneous
Dirichlet

• C = B
for −l∗ < x < l∗

and C = 0 elsewhere.

• The initial distribution will
form an expanding travelling
wave front, which leads to
population survival, if B > CA
and if l∗ is greater than a
threshold.

Etienne et al.
(2002)

Integrodifference equation
(discrete time n, continuous space
x, y):
Ln+1(x, y) =

g(R)
∫∫

Ω

k(x− x̂, y − ŷ)An(x̂, ŷ)dx̂dŷ,

where An = 0 if Ln < Lmin or
Ln > Lmax and An = Ln/2 elsewhere.
Here, Ln is the larval population in
generation n, An is the female adult
population in generation n and g(R)
represents the resource availability.

Two-
dimensional
Cartesian

[0, L] × [0, L] • Periodic • C = B in the whole
domain.

• C = B in
different-sized
central square
regions and C = 0
elsewhere.

• Numerical simulations
indicate that the initial
distribution and density of
individuals, resource
availability and heterogeneity
influence the fate of
populations.

• Homogeneous
Neumann

• Homogeneous
Dirichlet

Li et al.
(2021)
(this paper)

Discrete model with the continuum
limit:

∂C(x, y, t)
∂t

=
D∇2C(x, y, t) + kC(1 − C)(C − A)

Two-
dimensional
Cartesian

[0, L] × [0, L] • Periodic • C = B in the whole
domain.

• C = B in regions
with different shapes
and C = 0 elsewhere.

• Both discrete and numerical
simulations indicate that
initial shapes affect the fate of
populations. The key feature
of these shapes is their
dimensionality.

Table 2.1 Continued.
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same initial area can either lead to survival or extinction depending upon the initial shape
of the population distribution.

Our modelling framework is based on a two-dimensional stochastic discrete random
walk model on a hexagonal lattice (Jin et al. 2016a; Fadai et al. 2020). The discrete
model is an exclusion process, so that each lattice site can be occupied by no more than
one agent. Individuals in the model undergo a birth-death process that is modulated
by localised crowding effects (Jin et al. 2016a; Johnston et al. 2017). The continuum
limit of the discrete model leads to a two-dimensional RDE with a bistable source term.
This framework allows us to explore discrete simulations together with solutions of the
RDE. This approach is convenient because the discrete model is more realistic in the
sense that it incorporates fluctuations, but this benefit incurs additional computational
overhead (West et al. 2016; Macfarlane et al. 2018; Chaplain et al. 2020). Moreover,
the discrete framework provides additional information such as the age structure and
individual trajectories which cannot be easily obtained using a continuum approach. In
contrast, the continuum RDE model can be solved numerically very efficiently, but the
continuum approach is only accurate if the time scale of migration is small compared to
the time scale of proliferation (Simpson et al. 2010a). Moreover, the continuum RDE
model does not provide any information about the role of stochasticity (West et al. 2016;
Macfarlane et al. 2018; Chaplain et al. 2020). So, to take advantages of both approaches,
we use both a stochastic model and the continuum limit description.

In all cases we study population dynamics on a square domain of side length L, with
periodic boundary conditions along all boundaries. We explore the role of the initial
population distribution by considering different initial spatial arrangements of agents. We
first distribute agents uniformly across the entire domain as shown in Figure 2.1(a), which
leads to a well-mixed population. For the vertical strip initial distribution we distribute
agents uniformly within a column of width w1 as shown in Figure 2.1(b), which may
represent a population of individuals along a one-dimensional river environment (Lutscher
et al. 2010). For the initial distributions restricted in both spatial dimensions, we first
consider a simple shape and distribute agents uniformly within a square region of area
w1 × w1 as shown in Figure 2.1(c), which may represent a population of cells in a scratch
assay (Treloar et al. 2014). We further consider several other initial spatial arrangements
of agents, see Figures 2.6–2.8.

This work is organised as follows. In Section 2.4 we describe the discrete individual-
based model, paying particular attention to incorporating realistic movement and growth
mechanisms. For simplicity, we use the generic term growth to refer to the birth/death
process in the discrete model. The reason why we make a distinction between birth
and death will become clear when we describe the modelling framework. In Section
2.5 we explain how to analyse the discrete model using a mean-field assumption to
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0 L
0

L

(a) well-mixed

w1

0 L
0

L

(b) vertical strip

w1

w1

0 L
0

L

(c) square

Figure 2.1: Initial spatial distributions of the population with different shapes
on an L× L square domain. In (a), individuals are distributed uniformly across the
entire L× L domain. In (b), individuals are distributed uniformly in a vertical strip of
width w1 and height L. In (c), individuals are distributed uniformly in the central square
region of length and width w1.

arrive at an approximate continuum limit description in terms of a classical RDE. Our
discrete-continuous framework incorporates crowding functions into both movement and
birth/death mechanisms, which extends the previous work that only considers a crowding
function in birth/death mechanisms (Jin et al. 2016a). Moreover, our model is very flexible
since it describes a wide range of movement and birth/death mechanisms influenced by
crowding effects. Results in Section 2.6 show how both the discrete and continuum models
compare. In Section 2.7, we systematically explore how population survival or extinction
depends upon the shape of the initial distribution. All software required to solve the
discrete and continuum models used in this work are available on GitHub.

2.4 Discrete model

We consider a lattice-based discrete model describing movement, birth and death events
in a population of individuals on a hexagonal lattice, with lattice spacing ∆ > 0. Each
lattice site is indexed by (i, j), and has a unique Cartesian coordinate,

(x, y) =





(
i∆, j∆

√
3

2

)
, if j is even,

((
i+ 1

2

)
∆, j∆

√
3

2

)
, if j is odd.

(2.1)

In any single realisation of the stochastic model, a lattice site s is either occupied, Cs = 1,
or vacant, Cs = 0. If there are Q(t) agents on the lattice at time t, we advance the
stochastic simulation from time t to time t+ τ by randomly selecting Q(t) agents, one at a
time, with replacement, so that any particular agent may be selected more than once, and

https://github.com/oneflyli/Yifei2020Dimensionality
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allowing those agents to attempt to move. Once the Q(t) potential movement events have
been assessed, we then select Q(t) agents at random, one at a time, with replacement, to
attempt to undergo a growth event, which could be either a birth or death event depending
upon the local crowding conditions. Although altering the order of these events leads to
different outcomes in particular discrete simulations, these differences are not important
when we consider averaged data from many identically-prepared realisations of the model
(Simpson et al. 2009a,b).

We now explain some features of the discrete model in terms of the schematic in
Figure 2.2. In this initial description of the discrete model we consider nearest-neighbour
movement and growth events only, and we will relax this assumption later. Figure 2.2(a)
shows a potential movement event for an agent at site s, where all nearest-neighbour sites
are vacant. In this case, the probability of attempting to move during the next time step
of duration τ , is M ∈ [0, 1], and the attempted motility event will be successful with
probability M̂ ≤ M . Here we note that the two probabilities, M and M̂ are, in general,
different. This difference is a result of the local crowding effects. The special case in
Figure 2.2(a) where the agent at site s is uncrowded we have M̂ = M . If the attempted
motility event is successful, the agent at site s moves to a randomly-chosen vacant site
chosen among the set of vacant nearest-neighbour sites. In this case, as all six neighbour
sites are vacant, the probability of moving to the target site, highlighted with a green
circle, is M̂ /6.

In Figure 2.2(b) we show a potential growth event for an agent at site s, where again all
nearest-neighbour sites are vacant. Here, the probability of attempting to grow in the next
time step of duration τ is P ∈ [0, 1], and the attempted growth event is successful with
probability P̂ ≤ P . Again, the difference between P and P̂ is caused by local crowding
effects, and since this agent is uncrowded we have P̂ = P . If the attempted growth event
is successful, there are two possible outcomes. First, the growth event is a birth event. In
this case a daughter agent is placed at a randomly-chosen vacant site within the set of
nearest-neighbour sites with probability P̂ . As there are six vacant neighbour sites, the
probability of placing a daughter agent at the target site, highlighted in green, is P̂ /6.
Second, the growth event is a death event, and the agent is removed from the lattice, with
probability P̂ . The distinction between the birth and death events is governed by the sign
of the growth crowding function, F , which will be explained later.

To illustrate how crowding effects are incorporated into the movement component of
the model, we now consider the schematic in Figure 2.2(c), where the agent at site s
is surrounded by two agents, highlighted in purple. The probability of attempting to
move is M ∈ [0, 1], and the attempted movement event is successful with probability
M̂ = MG(K(m)

s ). Here, K(m)
s is a measure of the local density of site s, andG(K(m)

s ) ∈ [0, 1]
is the movement crowding function that specifies how the local density influences the
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Figure 2.2: Movement and birth/death mechanisms. In each lattice fragment
site s is occupied and shaded in grey, and occupied neighbouring sites are shaded in blue,
while vacant neighbouring sites are unshaded (white). In (a) the agent at site s moves
with probability M̂ and moves to the target site, highlighted with a green circle, with
probability M̂/6. In (b) the agent at site s undergoes a birth event with probability P̂
and places a new agent on the target site with probability P̂ /6 if the growth crowding
function F > 0. In contrast, it dies with probability P̂ if F < 0. In (c) the agent moves
with probability M̂ and moves to the target site with probability M̂/4. In (d) the agent
undergoes a birth event with probability P̂ and places a new agent on the target site with
probability P̂ /4 if F > 0. In contrast, it dies with probability P̂ if F < 0.

probability of this agent to undergo a movement event. If this attempt is successful,
as there are four vacant neighbour sites, the probability of moving to the target site,
highlighted in green, is M̂ /4.

Figure 2.2(d) illustrates how crowding effects are incorporated into the growth compo-
nent of the model, where the agent at site s is surrounded by two agents. The probability
of attempting to grow is P ∈ [0, 1], and the attempted growth is successful with probability
P̂ = P |F (K(g)

s )|. Here, K(g)
s is again a measure of the local density of site s and the

function F (K(g)
s ) ∈ [−1, 1] is called the growth crowding function that specifies how the

local density influences the probability of this agent to undergo a growth event. If this
attempt is successful, there are two possible outcomes reflected by the sign of F . If F > 0,
the growth event is a birth event, and a daughter agent is placed at a randomly-chosen
vacant site with probability P̂ . As there are four vacant neighbour sites, the probability of
placing a daughter agent at the vacant target site, highlighted in green, is P̂ /4. Second, if
F < 0, the growth event is a death event, and the agent is removed from the lattice with
probability P̂ . The special case where F = 0 leads to neither a birth or death event.

A key feature of our model is in the way that the local density about each site affects
movement and growth events through the movement and growth crowding functions.
To describe this we take Nr{s} to denote the set of neighbouring sites around site s,
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where r ≥ 1 is the integer number of concentric rings of sites surrounding site s, so that
|Nr| = 3r(r + 1) (Jin et al. 2016a; Fadai et al. 2020). The probability that any potential
movement or growth event is successful depends upon the crowdedness of the local region
surrounding site s. We count neighbouring agents in Nr, and consider

Ks(r) = 1
|Nr|

∑

s′∈Nr{s}
Cs′ ∈ [0, 1], (2.2)

as a simple measure of the crowdedness of the local region surrounding site s. While in
Figure 2.2 we explain the model with r = 1 and |N1| = 6, it is possible to use different-sized
templates, depending on the choice of r. Sometimes it is useful to use different-sized
templates for the movement and growth mechanisms. For example, Simpson et al. (2010a)
argues that cell movement can be modelled using a nearest-neighbour random walk with
r = 1, whereas cell proliferation often involves non nearest-neighbour interactions since
daughter cells are often deposited several cell diameters away from the location of the
mother cell. This argument is supported by experimental images of cell proliferation where
careful examination of timelapse movies show that daughter cells are often generated
some distance from the mother cell (Druckenbrod and Epstein 2005). To simulate such
dynamics, Simpson et al. (2010a) introduce proliferation mechanisms where daughter
agents are placed up to four lattice sites away from the mother agent to faithfully capture
this biological detail into their model. This would be similar to setting r = 1 for movement
and r = 4 for growth in our model. It is thus convenient for us to make a notational
distinction between the size of the templates for motility and growth. Therefore, we denote
the motility template as K(m)

s = Ks(r′) and the growth template as K(g)
s = Ks(r′′) where

r′ ≥ 1 and r′′ ≥ 1 are two, potentially different, positive integers.

We now describe the details of how crowding effects and different-sized spatial templates
are incorporated into the growth component of the model with reference to the schematic
illustration in Figure 2.3. Note that this figure only indicates the potential growth events
without the indication of any movement events. In Figures 2.3(a)–(c), crowding of the
agent at site s is measured using a nearest-neighbour template with r = 1 and the growth
crowding function F (K(g)

s ) = 1 − K(g)
s , as given in Figure 2.3(d). The probability of

undergoing a birth event is P̂ = P |F (K(g)
s )|. In Figure 2.3(a) where K(g)

s = 0, we have
F (0) = 1 and P̂ = P . As there are six vacant sites in N1, the probability of placing a
daughter agent at the target site, highlighted in green, is P̂ /6. In Figure 2.3(b), where the
agent at site s is surrounded by two neighbour agents, the probability of undergoing a
birth event is P̂ = 2P/3, since K(g)

s = 1/3 and F (1/3) = 2/3. As there are four vacant
sites in N1, the probability of placing a daughter agent at the target site is P̂ /4. Similarly,
in Figure 2.3(c), we have P̂ = P/3 as K(g)

s = 2/3 and F (2/3) = 1/3. As there are two
vacant sites in N1, the probability of placing a daughter agent at the target site is P̂ /2.
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Figure 2.3: Growth mechanisms with different-sized spatial templates and growth crowding functions. In each lattice
fragment site s is shaded grey, occupied sites within the template are shaded blue, and vacant sites within the template are unshaded
(white). Each subfigure shows a potential outcome for an agent at site s. The crowdedness of N1 is shown in (a)–(c) and (i)–(k). The
crowdedness of N2 is shown in (e)–(g) and (m)–(o). The agent at site s can undergo a birth event when F > 0 as in (a)–(c), (e)–(g), (k)
and (o). In contrast the agent at site s can undergo a death event when F < 0 as in (i), (j), (m) and (n). The solid green circles represent
the target site for the placement of a daughter agent during a successful proliferation event, and the dashed red circles indicate the location
of agents that can undergo a death event.
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In Figures 2.3(e)–(g) we introduce a non nearest-neighbour growth mechanism by
measuring the crowdedness of the agent at site s using a larger spatial template with
r = 2. Therefore, if the agent at s undergoes a successful birth event, the daughter agent
is able to be placed at any vacant site within N2. The probability of undergoing a birth
event is P̂ = P |F (K(g)

s )|, where F (K(g)
s ) = 1 −K(g)

s . For the agent in Figure 2.3(e) where
K(g)

s = 0 and F (0) = 1, we have P̂ = P . In this configuration there are 18 vacant sites in
N2 and the probability of placing a daughter agent at the target site, highlighted in green,
is P̂ /18. In Figure 2.3(f), where the agent at site s is surrounded by six neighbour agents,
the probability of undergoing a birth event is P̂ = 2P/3, as K(g)

s = 1/3 and F (1/3) = 2/3.
Since there are 12 vacant sites in N2, the probability of placing a daughter agent at
the target site is P̂ /12. Similarly, in Figure 2.3(g), we have P̂ = P/3, as K(g)

s = 2/3
and F (2/3) = 1/3. The probability of placing a daughter agent at the target site is
P̂ /6. All results in Figures 2.3(a)–(h) consider the simplest linear crowding function
F (K(g)

s ) = 1 −K(g)
s , which means that agents do not die in this case, since F (K(g)

s ) ≥ 0.

We now choose a nonlinear growth crowding function F (K(g)
s ) = 2(1−K(g)

s )(K(g)
s −1/2)

that can take on both positive and negative values, as shown in Figure 2.3(l). In this
case we make a distinction between a birth event when F (K(g)

s ) > 0, a death event when
F (K(g)

s ) < 0, and no event when F (K(g)
s ) = 0. We first consider a nearest-neighbour

template with r = 1 in Figures 2.3(i)–(k). In Figure 2.3(i), the agent at site s dies with
probability P̂ = P |F (K(g)

s )|. Here, K(g)
s = 0 and F (0) = −1, thus P̂ = P . In Figure 2.3(j)

the agent at site s dies with probability P̂ = 2P/9 as K(g)
s = 1/3 and F (1/3) = −2/9. In

Figure 2.3(k) the agent at site s undergoes a birth event with probability P̂ = P/9 as
K(g)

s = 2/3 and F (2/3) = 1/9. As there are two vacant sites in N1, the probability of
placing a daughter agent at the target site is P̂ /2.

Finally, we consider a larger template with N2 in Figures 2.3(m)–(o). In Figure 2.3(m),
the agent at site s dies with probability P̂ = P |F (K(g)

s )|, where F (K(g)
s ) = 2(1 −

K(g)
s )(K(g)

s − 1/2). Here K(g)
s = 0 and F (0) = −1, thus P̂ = P . In Figure 2.3(n), the

agent at site s dies with probability P̂ = 2P/9 as K(g)
s = 1/3 and F (1/3) = −2/9. In

Figure 2.3(o) the agent at site s undergoes a birth event with probability P̂ = P/9 as
K(g)

s = 2/3 and F (2/3) = 1/9. As there are six vacant sites in N2, the probability of
placing a daughter agent at the target site is P̂ /6.

The movement crowding function, G(K(m)
s ), is incorporated into the model in a similar

way as the growth crowding function except that it is always non-negative, G(K(m)
s ) ∈ [0, 1].

In this section we have sought to describe the discrete mechanism as clearly as possible
with the use of Figure 2.2 and Figure 2.3. For the remainder of this work we focus on
results where we set r = 1 for movement and r = 4 for growth. Other choices of r can be
implemented using the software available on GitHub.

https://github.com/oneflyli/Yifei2020Dimensionality
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2.5 Continuum limit

In this section we derive the mean-field continuum limit of the discrete model. The
averaged occupancy of site s, constructed from V identically-prepared realisations of the
discrete model, can be written as

C̄ s = 1
V

V∑

v=1
C(v)

s (t), (2.3)

where C(v)
s (t) ∈ {0, 1} is the binary occupancy of site s at time t in the vth identically-

prepared realisation of the discrete model. We note that C̄ s ∈ [0, 1], and is a function
of time, t, but we suppress this dependence for notational convenience. Similarly, the
averaged occupancy of Nr{s}, again constructed from V identically-prepared realisations,
is given by

K̄ s(r) = 1
|Nr|

∑

s′∈Nr{s}
C̄ s′ . (2.4)

As we use a nearest-neighbour template, r = 1, for movement, and a larger template,
r = 4, for growth, we denote the averaged occupancy of sites for potential movement
events as K̄ (m)

s , and the averaged occupancy of sites for potential growth events as K̄ (g)
s .

To arrive at an approximate continuum limit description, we start by writing down an
expression for the expected change in occupancy of site s during the time interval from t

to t+ τ ,

δ(C̄ s) =

movement events into s︷ ︸︸ ︷
M

|N1|
(1 − C̄ s)

∑

s′∈N1{s}
C̄ s′

G(K̄ (m)
s′ )

1 − K̄
(m)
s′

−

movement events out of s︷ ︸︸ ︷

MC̄ sG(K̄ (m)
s )

+ P

|N4|
(1 − C̄ s)

∑

s′∈N4{s}
H(F (K̄ (g)

s′ ))C̄ s′
F (K̄ (g)

s′ )
1 − K̄

(g)
s′

︸ ︷︷ ︸
birth events: place new agents onto s

− (1 −H(F (K̄ (g)
s ))PC̄ sF (K̄ (g)

s )
︸ ︷︷ ︸

death events: remove agent from s
,

(2.5)

where H is the Heaviside step function. Each term in Equation (2.5) has a relatively
simple physical interpretation. The first term on the right hand side of Equation (2.5)
represents the change in occupancy of site s owing to the expected movement of agents
in N1{s} into site s. The factor 1/(1 − K̄ (m)

s ) accounts for the choice of the target site
in N1 being randomly selected from the available vacant sites. The second term on the
right hand side of Equation (2.5) represents the change in occupancy of site s owing to
the expected movement of agents out of site s. The third term on the right hand side of
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Equation (2.5) represents the change in occupancy owing to the expected birth events
of agents in N4{s} that would place daughter agents onto site s, where F (K̄ (g)

s ) > 0.
Again, the factor 1/(1 − K̄ (g)

s ) accounts for the choice of the target site in N4 being
randomly selected from the available vacant sites. The last term on the right hand side
of Equation (2.5) represents the expected change in occupancy owing to agent death at
site s, when F (K̄ (g)

s ) < 0. Note that this approximate conservation statement (2.5) makes
use of the mean-field assumption, whereby the occupancy status of lattice sites are taken
to be independent (Baker and Simpson 2010).

To derive the continuum limit we replace C̄ s with a continuous function, C(x, y, t), and
expand each term in Equation (2.5) in a Taylor series about site s, and truncate terms of
O(∆3). Subsequently, we divide both sides of the resulting expression by τ and evaluate
the resulting expressions in the limit ∆ → 0 and τ → 0 jointly, with the ratio of ∆2/τ

held constant (Hughes 1995). This leads to the following nonlinear RDE,

∂C(x, y, t)
∂t

= D0∇ · (D(C)∇C(x, y, t)) + λC(x, y, t)F (C), (2.6)

where
D(C) = C

dG(C)
dC + 1 + C

1 − C
G(C), (2.7)

and
D0 = M

4 lim
∆,τ→0

∆2

τ
, λ = lim

τ→0

P

τ
. (2.8)

Here, D0 is the free-agent diffusivity, D(C) is a nonlinear diffusivity function that relates
to the movement crowding function G(C), and λ is the rate coefficient associated with the
source term that is related to the growth crowding function F (C). To obtain a well-defined
continuum limit we require that P = O(τ) (Simpson et al. 2010a). The algebraic details
required to arrive at the continuum limit are outlined in the Supplementary Material.

For all simulations in this work we use ∆ = τ = 1, giving D0 = M/4 and λ = P . This
is equivalent to working in a non-dimensional framework (Simpson et al. 2010a). If the
model is to be applied to a particular dimensional problem, then ∆ and τ can be re-scaled
using appropriate length and time scales. In this non-dimensional framework with τ = 1,
we satisfy the requirement that P = O(τ) by ensuring P/M ≪ 1. The main focus of this
work is on the role of the growth mechanism, and the question of whether the population
survives or goes extinct. We therefore set G(C) = 1 −C leading to D(C) = 1. This means
that the nonlinear diffusion term in Equation (2.6) simplifies to a linear diffusion term,
giving

∂C(x, y, t)
∂t

= D0∇2C(x, y, t) + λC(x, y, t)F (C). (2.9)

We note that Equation (2.9) has been studied extensively in applications involving the
spatial spread of invasive species, such as the works of Fisher (1937); Skellam (1951); Fife
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(1979); Lewis and Kareiva (1993) and Hastings et al. (2005). Some previous models consider
a logistic-type source term (Fisher 1937), while others consider Allee-type bistable source
term (Sewalt et al. 2016). Under these conditions many results have been established.
For example, if we consider Equation (2.9) on a one-dimensional infinite domain, it is
well known that this model supports travelling wave solutions for both logistic (Fisher
1937) and bistable (Fife 1979) source terms. In this work, however, we take a different
perspective by studying Equation (2.9) on a finite domain and so the question of analysing
travelling wave solutions is not our focus. Moreover, although Lewis and Kareiva (1993)
give a critical radius of a radially symmetric distribution so that the initial distribution
converges to an expanding wave in an infinite domain, their analysis is valid under the
assumption that the time scale of growth is much faster than the time scale of migration,
which corresponds to P/M ≫ 1 in our framework. Our discrete model does not have any
such restriction and can be implemented for any M ∈ [0, 1] and any P ∈ [0, 1]. In contrast,
our continuum model requires P/M ≪ 1 to correspond to the discrete model, and we will
explore the consequences of these differences in our results.

In the rest of this work we choose

F (C) = a(1 − C)(C − A), with a = 5
2 , A = 2

5 , (2.10)

since this leads to the canonical cubic source term λCF (C) associated with Allee kinetics.
In particular, we set A = 2/5 so that this choice of F (C) can be used to represent birth
events where C > 2/5 and death events where C < 2/5, see Figure 2.4(d). We further
set a = 5/2 leading to F (0) = −1, so that attempted death events for an isolated agent,
where C = 0, are always successful.

In summary, our discrete model requires the specification of two crowding functions:
G(C) and F (C). These crowding functions are related to macroscopic quantities in the
associated RDE model. In particular, G(C) is related to a nonlinear diffusivity function,
D(C), and F (C) is related to a nonlinear source term λCF (C). Figure 2.4 shows the
relationship between these functions for our choice of G(C) and F (C).

2.6 Initial distributions and simulation data

In this section we consider the three initial distributions shown in Figure 2.1 with L = 100,
and we introduce the corresponding continuous descriptions. In general, each of the initial
distribution shown in Figure 2.1 can be written as

C(x, y, 0) =



B, (x, y) ∈ H,
0, elsewhere,

(2.11)
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Figure 2.4: Specific crowding functions used in this work. (a)–(b) Setting
G(C) = 1 − C for the movement crowding function leads to linear diffusion, D(C) = 1.
(c)–(d) Setting F (C) = 5(1 − C)(C − 2/5)/2 for the growth crowding function with
λ = P = 1 leads to λCF (C) = 5C(1 − C)(C − 2/5)/2. The dashed lines in (c)–(d) relate
to the Allee threshold, A = 2/5.

where H is the region in which individuals are distributed at density B ∈ (0, 1]. For the
discrete model, we randomly distribute a fixed number of agents on H so that the averaged
density across H is B. For example, all agents in the discrete model are closely packed
together if B = 1. In contrast, for the continuum model, the density is B at each position
in H.

For the three initial distributions in Figure 2.1 we will report data from the stochastic
model in the following way. We denote the averaged occupancy of site s in V identically-
prepared simulations as

⟨C(x, y, t)⟩ = 1
V

V∑

v=1
C(v)(i, j, n), (2.12)

where we note that the average denoted by the angular parenthesis is taken in the same
way as the average in Equation (2.3). Here, site s, indexed by i and j, are related to
position, (x, y) via Equation (2.1). The averaged occupancy ⟨C(x, y, t)⟩ is a measure of the
local density at location (x, y), and time t = nτ after the nth time step in the stochastic
discrete model. Although (2.12) describes the averaged occupancy of any distribution,
there are more concise forms for the vertical strip distributions in Figure 2.1(b). As the
initial occupancy is independent of the vertical position, we denote the averaged occupancy
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of any site as

⟨C(x, t)⟩ = 1
V J

V∑

v=1

J∑

j=1
C(v)(i, j, n), (2.13)

which is a measure of the density at location x and at time t = nτ . Note that, as we will
show through simulation, the density of agents remains independent of the vertical position
for all t > 0 because we use periodic boundary conditions. Similarly, for simulations
relating to the well-mixed initial distribution as in Figure 2.1(a), where the initial density
is independent of position, we denote the averaged occupancy of any site as

⟨C(t)⟩ = 1
V IJ

V∑

v=1

J∑

j=1

I∑

i=1
C(v)(i, j, n), (2.14)

which is a measure of the total population density at time t = nτ . As we will show through
simulation, in this case the density of agents remains independent of position for all t > 0.
The total population density ⟨C(t)⟩ is also useful to describe simulations starting from the
square and vertical strip initial distributions. In summary, data from the discrete models
can be summarised by calculating ⟨C(x, y, t)⟩, ⟨C(x, t)⟩, and ⟨C(t)⟩.

For the well-mixed initial distribution, as shown in Figure 2.1(a), Equation (2.9)
simplifies to

dC(t)
dt = λC(t)F (C), (2.15)

where C(t) represents the total density of the population (Simpson et al. 2010a). This
separable ODE can be solved to give an implicit solution for our choice of F (C).

For the vertical strip initial distribution, as shown in Figure 2.1(b), Equation (2.9)
simplifies to

∂C(x, t)
∂t

= D0
∂2C(x, t)
∂x2 + λC(x, t)F (C), (2.16)

where C(x, t) represents the column-averaged density of agents (Simpson et al. 2010a). An
extensive discussion and exploration of the implications of simplifying the two-dimensional
nonlinear RDE into this simpler one-dimensional RDE is given in Simpson (2009). Given
a numerical solution of Equation (2.16), as outlined in the Supplementary Material, we
compute

C(t) = 1
L

∫ L

0
C(x, t) dx, (2.17)

which is the total density of the population in the whole domain, and corresponds to
⟨C(t)⟩ in the discrete model.

For the square initial distribution, to compare averaged data from the discrete model
with the solution of the continuum model we solve Equation (2.9) numerically to give
C(x, y, t). Full details of the numerical methods are presented in the Supplementary
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Material. Using the numerical solution for C(x, y, t) we calculate

C(t) = 1
L2

∫ L

0

∫ L

0
C(x, y, t) dx dy, (2.18)

which, again, is the total density of the population in the whole domain.

We now show the evolution of the total population density in both the discrete and
continuum models with these three initial distributions. Setting all three initial distributions
with C(0) = 0.25 and considering P/M = 1/1000 or P/M = 8/1000, representing two
kinds of populations with different ratios of time scale of migration and growth, we show
C(t) and ⟨C(t)⟩ in Figure 2.5, where we calculate ⟨C(t)⟩ with 40 identically-prepared
realisations. In all cases the continuum model accurately captures the averaged data
from the discrete model. The well-mixed initial distribution leads to population survival
with both P/M = 1/1000 and P = 8/1000, whereas the vertical strip and square initial
distributions lead to population extinction when P/M = 1/1000, but population survival
when P/M = 8/1000, as shown in Figures 2.5(e)–(f) and Figures 2.5(h)–(i). This is
interesting as the global density averaged across the whole domain is smaller than the Allee
threshold. This comparison indicates that the vertical strip and square initial distributions
may sometimes lead to the survival of the population whereas the same initial number of
individuals in a well-mixed environment would lead to extinction. These differences are
due to the interplay between the role of the initial spatial distribution and the ratio of
time scale of migration to the time scale of proliferation and death. Additional results
in the Supplementary Material provide more detailed comparisons of the solutions of the
continuum model and appropriately averaged data from the discrete model. Additional
results relating to the robustness of the averaged data is also explored in the Supplementary
Material. Overall, the numerical solution of the continuum model provides a useful way of
accurately studying the expected behaviour of the discrete model. Of interest is that the
long-term fate of populations varies with the spatial arrangement of the initial distributions.
Our aim now is to study these differences more carefully.

2.7 Role of the shape of the initial distribution

In this section we explore the influence of more complicated two-dimensional shapes of
the initial distribution on the fate of populations. Our results in Section 2.6 indicate that
several factors are at play when we consider the long-term fate of bistable populations.
First, the spatial arrangement of the initial population plays an important role. Second,
the ratio P/M also influences the fate of populations. Since the initial distribution of the
population is given by Equation (2.11), the initial distribution varies with both B and
the size of the initially occupied region H except that the well-mixed initial distribution
only varies with B. In the remainder of the main document we fix B = 1 and alter the
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Figure 2.5: The ratio P/M and the shape of the initial spatial distribution
influence the fate of populations. (a) Well-mixed initial distribution with B = 0.25
leading to C(0) = 0.25. (b) ⟨C(t)⟩ (solid orange) and C(t) (dashed green) for the well-mixed
initial distribution with P/M = 1/1000. (c) ⟨C(t)⟩ (solid orange) and C(t) (dashed green)
for the well-mixed initial distribution with P/M = 8/1000. (d) Vertical strip initial
distribution with width w1 = 25 leading to C(0) = 0.25. (e) ⟨C(t)⟩ (solid orange) and
C(t) (dashed green) for the vertical strip initial distribution with P/M = 1/1000. (f)
⟨C(t)⟩ (solid orange) and C(t) (dashed green) for the vertical strip initial distribution with
P/M = 8/1000. (g) Square initial distribution with width w1 = 50 leading to C(0) = 0.25.
(h) ⟨C(t)⟩ (solid orange) and C(t) (dashed green) for the square initial distribution with
P/M = 1/1000. (i) ⟨C(t)⟩ (solid orange) and C(t) (dashed green) for the square initial
distribution with P/M = 8/1000. The dashed black horizontal lines in (b)–(c), (e)–(f) and
(h)–(i) indicate the Allee threshold, A = 0.4.
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initial population size by adjusting the size of H for the initial distributions that are not
well-mixed. Additional results in the Supplementary Material indicate that varying B
does not change our overall observations and conclusions.

To systematically study the transition between population extinction to population
survival, we take the (C(0), P/M) phase space and discretise it uniformly into a rectangular
mesh, with 51 × 40 nodes in Figure 2.6(n). We vary C(0) by changing B in the well-mixed
initial distribution, whereas we vary C(0) by changing the size of H in the vertical strip and
square initial distributions as shown in Figures 2.6(a)–(c) and Figure 2.6(d)–(f), respectively.
We also vary the ratio P/M by holding M = 1 and choosing P ∈ [1/1000, 4/100] in the
discrete model. As P/M = λ/(4D0), we hold D0 = 1/4 and vary λ in the continuum model.
With each pair of parameters, we run the numerical simulation of the continuum model after
a sufficiently long period of time so that the population either leads to survival or extinction.
In Figure 2.6(n), we draw the survival/extinction thresholds from the continuum model
with the well-mixed, vertical strip and square initial distributions. In the vertical strip and
square cases we see that the long-term survival is strongly dependent upon P/M whereas
in the well-mixed initial distribution this dependence is less pronounced. Additional results
in the Supplementary Material show the good agreement in the prediction of survival
or extinction between the continuum and discrete models, and further show the role of
stochasticity in discrete simulations.

A key feature of the initial shape is the dimension of the shape. The well-mixed,
vertical strip and square initial distributions can be thought of as zero-, one- and two-
dimensional shapes, respectively. To highlight the influence of the dimensionality on the
fate of the population, we consider a rectangular distribution of varying initial heights, see
Figures 2.6(g)–(i). The initially occupied region H is a rectangle with width w1 = 40 and
height w2 ∈ [25, 100], which leads to C(0) ∈ [0.1, 0.4]. When C(0) = 0.16 with w2 = 40, the
rectangular initial distribution is the same as the square initial distribution, as shown in
Figures 2.6(e) and (h). When C(0) = 0.4 with w2 = 100, the rectangular initial distribution
is the same as the vertical strip initial distribution, as shown in Figures 2.6(c) and (i).
Note that we use C(0) as the horizontal axis in the phase diagram so that we can compare
the results with different shapes of initial distributions. We show the evolution of the
total population density in the continuum model with M = 1 and P = 0.0028, leading
to D0 = 1/4 and λ = 0.0028, and different C(0) in Figures 2.6(j)–(m). When C(0) = 0.2
and C(0) = 0.3, the rectangular initial distribution leads to extinction, which is the
same as the results obtained from the square initial distribution. While the vertical strip
initial distribution leads to survival with C(0) = 0.3. In contrast, when C(0) = 0.33 and
C(0) = 0.36, the rectangular initial distribution leads to survival, which is the same as
the results obtained from the vertical strip initial distribution. While the square initial
distribution leads to extinction with C(0) = 0.33. This indicates a switch of the influence of
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Figure 2.6: Influence of dimensionality in rectangular initial distributions. (a)–
(c) Vertical strip (one-dimensional) initial distributions varied with the width w1 ∈ [10, 40].
(d)–(f) Square (two-dimensional) initial distributions varied with the width w1 ∈ [32, 64].
(g)–(i) The rectangular initial distributions varied with the height w2 ∈ [25, 100] with a
fixed width w1 = 40. (j)–(m) The evolution of the total population density C(T ) where
T = 103t with P/M = 0.0028, C(0) = 0.2 in (j), 0.3 in (k), 0.33 in (l) and 0.36 in (m), and
with the vertical strip (black), square (green) and rectangular (orange) initial distributions.
(n) Phase diagram showing the survival/extinction boundaries constructed from a 151×120
array of C(0) ∈ [1/10, 1/40] and P/M ∈ [1/10000, 21/1000]. Three curves indicate the
survival/extinction thresholds from the continuum model of the vertical strip (black),
square (green) and rectangular (orange) initial distributions. Three dashed lines represent
C(0) = 0.1, 0.16 and 0.4, where C(0) = 0.4 (cyan) is also the survival/extinction threshold
of the well-mixed initial distributions. Note that we use a logarithmic scale for the P/M
axis.
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the rectangular initial distribution on the fate of populations from a manner similar to the
square initial distribution to a manner similar to the vertical strip initial distribution. In
Figure 2.6(n), we draw the survival/extinction boundary from the continuum model with
the rectangular initial distribution in the (C(0), P/M) phase space for C(0) ∈ [0.1, 0.4] and
P/M = [1/10000, 21/1000], and compare them to the results obtained from the vertical
strip initial distribution and from the square initial distribution. Although the results are
from the continuum model, we still use P/M as the vertical axis to reflect the connection
between the discrete and continuum models in our framework. We observe that there is a
clear transition of the survival/extinction boundary for the rectangular initial distribution.
The survival/extinction boundary of the rectangular initial distribution is close to the
survival/extinction boundary obtained from the square initial distribution when C(0) is
small, and is close to the survival/extinction boundary obtained from the vertical strip
initial distribution when C(0) is large. This transition indicates that the dimensionality
of the initial shape of a population plays a role in determining the ultimate fate of the
population.

Many more spatial arrangements of the population can be considered. We first consider
a circle with radius r as the initially occupied region H, as shown in Figure 2.7(a). We draw
the phase diagram on the (S, P/M) space, where S denotes the area of the initially occupied
region H, from the continuum model with L = 100 by varying P/M ∈ [1/1000, 21/1000]
where M = 1 and S = πr2 ∈ [1000, 5000] with r ∈ [17.8, 39.9] in Figure 2.7(b). We then
consider the critical initial radius

rcrit =
√

2D0

λa

1
1 − 2A, (2.19)

derived by Lewis and Kareiva (1993), which leads to the critical initial area Scrit = πr2
crit.

As λ and D0 depend on P and M in our framework, we derive the survival/extinction
threshold of the initial area

Scrit = πM

2aP
1

(1 − 2A)2 , (2.20)

and draw the extinction/survival boundary in the (S, P/M) phase space based on (2.20)
in Figure 2.7(b). Although the critical initial radius is formally derived in the limit
P/M ≫ 1, this result also appears to work well here where P/M is not that large. We now
consider a larger domain with L = 200 in Figure 2.7(c), in this case the match between the
survival/extinction boundary of the circular initial distribution and the critical initial area
is better because the role of boundaries becomes less important. Furthermore, we compare
the survival/extinction boundary to the result obtained from the square initial distribution
with L = 100 and L = 200 in Figure 2.7(b) and Figure 2.7(c), respectively. Note that in
the square initial distribution the area of H is given by S = w2

1. The survival/extinction
boundaries obtained with the circular and square initial distributions are very close, which
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Figure 2.7: Phase diagram for survival/extinction with the circular initial
distributions. (a) A circular initial distribution with radius r. (b)–(c) Phase diagrams
on a rectangular mesh with 81 × 41 nodes for S ∈ [0.1, 0.5] and P/M ∈ [1/1000, 21/1000]
where M = 1. We consider L = 100 in (b) and L = 200 in (c). Pink curves indicate the
survival/extinction thresholds in the continuum model with the circular initial distributions.
Green curves indicate the survival/extinction thresholds in the continuum model with the
square initial distributions. Black dotted curves indicate the survival/extinction thresholds
obtained from (2.20).

indicates that these two initial distributions give rise to similar outcomes. This could
be attributed to the fact that they are both compact initial distributions with a small
perimeter to area ratio.

A natural question is whether populations with other two-dimensional initial distribu-
tions have the similar critical initial area determined by (2.19). To explore this, we now
consider a square annulus in the middle of the domain as the initially occupied region, as
shown in Figure 2.8(a). The area of the region is determined by a fixed outer width w1 = 64
and a variable inner width w2. We also consider a circle as the initially occupied region, as
shown in Figure 2.8(b). The area of the region varies with radius r. We show the evolution
of the total population density in the continuum model with these two initial shapes at
P/M = 0.01, where M = 1 and P = 0.01 leading to D0 = 1/4 and λ = 0.01, and different
C(0). We further show the results obtained from the vertical strip initial distributions
and the square initial distributions in Figure 2.8(c). All four initial distributions lead
to population extinction when C(0) = 0.1. When C(0) = 0.15, only the vertical strip
initial distribution leads to population survival. When C(0) = 0.2, the square and circular
initial distributions also lead to population survival. In contrast, the square annular
initial distribution still leads to population extinction. Note that P/M = 0.01 leads to
Acrit ≈ 1570 and C(0)crit = 0.157 < 0.2. This suggests that, although the area of the square
annulus exceeds the critical initial area given in Lewis and Kareiva (1993), it still leads to
population extinction. When C(0) = 0.3, all four initial distributions lead to population
survival. These results indicate that, although some initial distributions have the same
area of the initially occupied region, they may lead to different fates of the population. It
is the shape of the initially occupied region that dictates whether a bistable population
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Figure 2.8: Population dynamics with more complicated initial spatial
distributions. (a) Square annular initial distributions with a fixed outer width w1 = 64
and different values of inner width w2. (b) Circular initial distributions with different
values of radius r. (c) The evolution of the total population density C(T ) which considers
T = λt, P/M = 0.01 with P = 0.01 and M = 1 leading to λ = 0.01 and D0 = 1/4, and
C(0) = 0.1, 0.15, 0.2, 0.3 with different initial distributions. Black curves are generated by
the vertical strip initial distributions. Green curves are generated by the square initial
distributions. Cyan curves are generated by the square annular initial distributions. Pink
curves are generated by the circular initial distributions.
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survives or goes extinct. This suggests the importance of considering the influence of the
spatial arrangements of individuals on the long-term survival of populations.

2.8 Conclusions and Outlook

In this work we design, analyse and implement a new two-dimensional stochastic discrete
model incorporating movement, birth and death events with crowding effects to study
population extinction. The continuum limit of the discrete model is a nonlinear RDE
which can be used to study a wide range of macroscopic phenomena including linear
diffusion, nonlinear diffusion, as well as logistic and bistable growth kinetics. Since the
aim of this work is to focus on long term survival or extinction, we choose the movement
crowding function to be G(C) = 1 − C which corresponds to macroscopic linear diffusion.
In addition, we choose the growth crowding function to be F (C) = a(1 −C)(C −A) which
leads to a classical cubic bistable source term with Allee threshold A.

The focus of our work is to use the discrete and continuum models to explore the
factors that influence the long-term fate of the bistable population. In particular, we
explore different spatial arrangements of the population on a finite L × L domain with
periodic boundary conditions. The well-mixed initial distribution involves distributing
agents evenly across the entire L×L domain, the vertical strip initial distribution involves
distributing agents along a vertical strip within the L × L domain so that the initial
density is independent of vertical position in the domain, and the two-dimensional initial
distributions involve distributing agents in a square, circular, rectangular or square annular
region within the L×L domain. Our results show that the shape of initial distributions plays
an important role in determining the fate of populations. This suggests the importance of
considering the influence of spatial arrangements of individuals in studies of population
dynamics.

There are many avenues for extending the work presented in this study. The stochastic
model provides very detailed information including the age structure of the population
and individual trajectories, see the results in the Supplementary Material. Furthermore,
Other shapes of initial distributions than those investigated here can be considered and
similar numerical explorations of the long-term survival or extinction of the populations
can be conducted using the software provided on GitHub for both the continuum and
discrete models. Another feature of this work that could be explored is the choice of
crowding functions. As we pointed out, all simulations here focus on G(C) = 1 − C,
which gives rise to linear diffusion, and F (C) = a(1 − C)(C − A) which gives rise to the
classical cubic bistable term. Other choices of G(C) and F (C) can be incorporated into
the discrete model to explore how the results presented here depend upon the precise
details of these choices of crowding functions. We note that other choices of G(C) lead to

https://github.com/oneflyli/Yifei2020Dimensionality
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different motility mechanisms that are associated with nonlinear diffusion mechanisms,
and that these can be important for applications where adhesion (Deroulers et al. 2009)
and inertial effects (Zhang et al. 2019) are relevant. While we have not explicitly explored
these effects in this work, our framework is sufficiently general that these mechanisms can
be incorporated and explored, if required. Moreover, other boundary conditions could be
incorporated in our model. In the Supplementary Material, we show that no-flux boundary
conditions lead to the same result as when we consider periodic boundary conditions
with symmetric rectangular initial distributions, while homogeneous Dirichlet boundary
conditions only lead to the same result when the initial area is small. Furthermore, if
we consider an asymmetric initial distribution, these three boundary conditions lead
to different outcomes. Another interesting extension would be to consider Allee-type
dynamics with populations of interacting species (Simpson et al. 2009a). Under these
conditions interactions can also contribute to the eventual survival or extinction of any of
the subpopulations (Taylor et al. 2020; Krause and Van Gorder 2020).

2.9 Additional results

2.9.1 Derivation of the continuum limit

We recall Equation (5), that is, the expected change in occupancy of site s during the time
interval from t to t+ τ ,

δ(C̄ s) = M

|N1|
(1 − C̄ s)

∑

s′∈N1{s}
C̄ s′

G(K̄ (m)
s′ )

1 − K̄
(m)
s′

−MC̄ sG(K̄ (m)
s )

+ P

|N4|
(1 − C̄ s)

∑

s′∈N4{s}
H(F (K̄ (g)

s′ ))C̄ s′
F (K̄ (g)

s′ )
1 − K̄

(g)
s′

− (1 −H(F (K̄ (g)
s ))PC̄ sF (K̄ (g)

s ).

(2.21)

As we know that the continuum limit of the last two terms in Equation (2.21) leads to a
source term λCF (C) (Jin et al. 2016a), we focus on the movement mechanism, that is,
the first two terms on the right hand side of Equation (2.21). For convenience, we will
omit the overlines on notations in the following content.

It is useful to first write the general form of the Taylor series relating the occupancy of
sites (x+ a, y + b),

Cx+a,y+b =Cx,y + (a∆)1

1!
∂Cx,y

∂x
+ (b∆)1

1!
∂Cx,y

∂y

+ (a∆)2

2!
∂C2

x,y

∂x2 + 2ab∆2

2!
∂C2

x,y

∂x∂y
+ (b∆)2

2!
∂C2

x,y

∂y2 + O(∆3).
(2.22)
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We represent the six nearest neighbouring sites of site s located at (x, y) as site s1 with
(x − ∆, y); site s2 with (x + ∆, y); site s3 with (x − ∆/2, y + ∆

√
3/2); site s4 with (x +

∆/2, y+∆
√

3/2); site s5 with (x−∆/2, y−∆
√

3/2) and site s6 with (x+∆/2, y−∆
√

3/2).
That is, N1 = {s1, s2, s3, s4, s5, s6}. The truncated Taylor series of these sites are

Cs1 = Cs − ∂Cs

∂x
∆ + ∂2Cs

∂x2
∆2

2 + O(∆3), (2.23)

Cs2 = Cs + ∂Cs

∂x
∆ + ∂2Cs

∂x2
∆2

2 + O(∆3), (2.24)

Cs3 = Cs − ∂Cs

∂x

∆
2 + ∂Cs

∂y

√
3∆
2 +

[
1
4
∂2Cs

∂x2 + 3
4
∂2Cs

∂y2 −
√

3
2
∂2Cs

∂x∂y

]
∆2

2 + O(∆3), (2.25)

Cs4 = Cs + ∂Cs

∂x

∆
2 + ∂Cs

∂y

√
3∆
2 +

[
1
4
∂2Cs

∂x2 + 3
4
∂2Cs

∂y2 +
√

3
2
∂2Cs

∂x∂y

]
∆2

2 + O(∆3), (2.26)

Cs5 = Cs − ∂Cs

∂x

∆
2 − ∂Cs

∂y

√
3∆
2 +

[
1
4
∂2Cs

∂x2 + 3
4
∂2Cs

∂y2 +
√

3
2
∂2Cs

∂x∂y

]
∆2

2 + O(∆3), (2.27)

Cs6 = Cs + ∂Cs

∂x

∆
2 − ∂Cs

∂y

√
3∆
2 +

[
1
4
∂2Cs

∂x2 + 3
4
∂2Cs

∂y2 −
√

3
2
∂2Cs

∂x∂y

]
∆2

2 + O(∆3). (2.28)

The local density of s is obtained by summing the Taylor series of sites in N1{s}, that is,

K(m)
s = 1

6
∑

s′′∈N1{s}
Cs′′

= Cs +
(
∂2Cs

∂x2 + ∂2Cs

∂y2

)
∆2

4 + O(∆3).
(2.29)

Similarly, the local density of s1 is obtained by summing the Taylor series of sites in
N1{s1}, that is,

K(m)
s1 = 1

6
∑

s′′∈N1{s1}
Cs′′

= Cs1 +
(
∂2Cs1

∂x2 + ∂2Cs1

∂y2

)
∆2

4 + O(∆3),

= Cs − ∂Cs

∂x
∆ + ∂2Cs

∂x2
∆2

2 +
(
∂2Cs

∂x2 + ∂2Cs

∂y2

)
∆2

4 + O(∆3).

(2.30)

For simplification we rewrite Equation (2.30) as K(m)
s1 = Cs + C̃s1 , where C̃s1 ∼ O(∆).

Subsequently, the movement crowding function at s1 can be expanded as

G
(
K(m)

s1

)
= G

(
Cs + C̃s1

)
,

= G (Cs) + dG (Cs)
dC C̃s1 + d2G (Cs)

dC2
C̃2

s1

2 .
(2.31)

The expansions of G(K(m)
s2 ), G(K(m)

s3 ),...,G(K(m)
s6 ) have similar forms to (2.31). We then
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go back to the first term on the right hand side of (2.21), which gives

M

6 (1 − Cs)
∑

s′∈N1{s}
Cs′

G(K(m)
s′ )

1 −K
(m)
s′

. (2.32)

For convenience we further drop the s notation so that Cs becomes C and Cs1 becomes
C1. Subsequently, (2.32) becomes

M

6 (1 − C)
6∑

i=1
Ci

G(K(m)
si

)
1 −K

(m)
si

. (2.33)

Moreover, we will use two notations

A =
(
∂2Cs

∂x2 + ∂2Cs

∂y2

)
∆2

4 , B =


(
∂Cs

∂x

)2

+
(
∂Cs

∂y

)2

 ∆2

4 , (2.34)

in the following content. Expanding the term related to site s1 in (2.33) gives

M

6 (1 − C)
(
C + C̃1 − A

)

(
G(C) +G′(C)C̃1 +G′′(C)C̃

2
1

2

)

1 −
(
C + C̃1

)

=M6

[
CG(C) +

(
CG′(C) + G(C)

1 − C

)
C̃1

]

+ M

6

[(
G(C)

(1 − C)2 + G′(C)
1 − C

+ CG′′(C)
2

)
C̃2

1 −G(C)A
]

+ O(∆3).

The terms related to other sites can be obtained in a similar way. Therefore, expanding
all terms in (2.33) and neglecting terms of order O(∆3) gives

M

6

[
6CG(C) +

(
CG′(C) + G(C)

1 − C

) 6∑

k=1
C̃k

]

+ M

6

[(
G(C)

(1 − C)2
G′(C)
1 − C

+ CG′′(C)
2

) 6∑

k=1
C̃2

k − 6G(C)A
]
.

(2.35)

Furthermore, since we have

6∑

k=1
C̃k = 12

(
∂2C

∂x2 + ∂2C

∂y2

)
∆2

4 + O(∆3),

= 12A + O(∆3),
(2.36)
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and
6∑

k=1
C̃2

k = 12


(
∂C

∂x

)2

+
(
∂C

∂y

)2

 ∆2

4 + O(∆3),

= 12B + O(∆3),
(2.37)

Equation (2.35) becomes

MCG(C) +M

(
2CG′(C) −G(C) + 2G(C)

1 − C

)
A

+M

(
CG′′(C) + 2G(C)

(1 − C)2 + 2G′(C)
1 − C

)
B + O(∆3).

(2.38)

Remind that the second term in (2.21) is

MCG(K̄ (m)
s ) = MCG(C) +MCG′(C)C̃,

= MCG(C) +MCG′(C)A + O(∆3).
(2.39)

Then combining (2.38) and (2.39) gives

δ(Cs) =
(
CG′(C) + 1 + C

1 − C
G(C)

)
MA

+
(
CG′′(C) + 2G(C)

(1 − C)2 + 2G′(C)
1 − C

)
MB + O(∆3).

(2.40)

Dividing both sides of the resulting expression by τ , and letting ∆ → 0 and τ → 0 jointly,
with the ratio ∆2/τ held constant, leads to the following nonlinear reaction-diffusion
equation,

∂C

∂t
= D0∇ ·

[(
CG′(C) + 1 + C

1 − C
G(C)

)
∇C

]
+ λCF (C), (2.41)

where
D0 = M

4 lim
∆,τ→0

∆2

τ
, λ = lim

τ→0

P

τ
. (2.42)

If we define
D(C) = CG′(C) + 1 + C

1 − C
G(C), (2.43)

then the continuum limit is written as

∂C

∂t
= D0∇ · [D(C)∇C] + λCF (C). (2.44)
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2.9.2 Algorithm for discrete simulations

Algorithm 1: Pseudo-code for a single realisation of the stochastic model
1 Create a two-dimensional I × J hexagonal lattice; Distribute agents with

specific initial conditions; The total number of lattice site is IJ ;
2 Set t = 0; Calculate total agents Q(t);
3 while t < tend and Q(t) > 0 and Q(t) ≤ IJ do
4 t = t+ τ ;
5 Q(t) = Q(t− τ);
6 B1 = 0; B2 = 0;
7 Draw two random variables: β1 ∼ U[0, 1], β2 ∼ U[0, 1];
8 while B1 < Q(t) do
9 B1 = B1 + 1;

10 Randomly choose an agent s;
11 if β1 < M then
12 Calculate K̄ (m)

s and G(K̄ (m)
s );

13 Draw a random variable: γ1 ∼ U[0, 1];
14 if γ1 < G(K̄ (m)

s ) then
15 Randomly choose a vacant site in N1(s) and move agent to

chosen site
16 else
17 Nothing happens;
18 end
19 else
20 Nothing happens;
21 end
22 end
23 while B2 < Q(t) do
24 B2 = B2 + 1;
25 Randomly choose an agent s;
26 if β2 < P then
27 Calculate K(g)

s and F (K̄ (g)
s );

28 Calculate a random variable: γ2 ∼ U[0, 1];
29 if F (K̄ (g)

s ) > 0 then
30 if γ2 < F (K̄ (g)

s ) then
31 Randomly choose a vacant site in N4(s) and place a new

agent on chosen site;
32 Q(t) = Q(t) + 1
33 else if F (K̄ (g)

s ) < 0 then
34 if γ2 < −F (K̄ (g)

s ) then
35 Remove agent;
36 Q(t) = Q(t) − 1;
37 else
38 Nothing happens;
39 end
40 else
41 Nothing happens;
42 end
43 end
44 end
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2.9.3 Numerical methods

Here, we introduce the method of lines to numerically calculate solutions of the PDE

∂C

∂t
= D0∇2C + λCF (C), (2.45)

on a square domain Ω = {(x, y), 0 < x < L, 0 < y < L}. We first discretise the spatial
derivative in Equation (2.45) with an (I + 1) × (I + 1) mesh. Nodes on the mesh are
uniformly distributed with spacing δx > 0 and indexed by xi and yj with i = 0, 1, 2, ..., I
and j = 0, 1, 2, ..., I satisfying I = L/δx. We leave the time derivative continuous and
obtain

dCi,j

dt =D0

δx2 (Ci+1,j + Ci−1,j + Ci,j+1 + Ci,j−1 − 4Ci,j) + λCi,jF (Ci,j). (2.46)

This equation is valid for interior nodes, and is modified on the boundary nodes to
simulate periodic boundary conditions. This system of I × I coupled ordinary differential
equations is then integrated through time using MATLABs function ode45 (MATLAB
2020). Following similar steps, we can also calculate the numerical solution of the PDE

∂C

∂t
= D0

∂2C

∂x2 + λCF (C). (2.47)

2.9.4 Comparisons of discrete and continuum results

In this section we compare the averaged data from the discrete simulations to the continuum
solutions with the well-mixed, vertical strip and square initial distributions. Results
in Figure 2.9 compare the discrete and continuum solutions for the well-mixed initial
distribution. In Figure 2.9(a), a fixed number of agents are randomly distributed in
the entire domain at T = λt = 0, leading to ⟨C(0)⟩ = 0.25. Figures 2.9(b)–(c) show
discrete snapshots as the population evolves with M = 1 and P = 1/1000, leading to
λ = 1/1000. We superimpose the solution of Equation (15) in the main document with
averaged data from the discrete model in Figure 2.9(d). The continuum model gives a good
approximation to the averaged discrete data, and in this case we see that the population
becomes extinct. Note that we generate V = 40 identically-prepared realisations to obtain
⟨C(T )⟩ in Figure 2.9(d) and (h).

We now consider the exact same discrete mechanism with a larger initial number
of agents giving ⟨C(0)⟩ = 0.64 in Figure 2.9(e). Figures 2.9(f)–(g) again show discrete
snapshots as the population evolves, and we observe that C(T ) approximates ⟨C(T )⟩ well
in Figure 2.9(h). In this case the population survives and grows to reach the maximum
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Figure 2.9: Comparison of data from the discrete model with the solution of
the continuum model for the well-mixed initial distribution. (a)–(c) Snapshots
of discrete simulations at time T = λt = 0, 1, 2. At T = 0 a fixed number of agents are
randomly distributed on the lattice so that ⟨C(0)⟩ = 0.25. (d) ⟨C(T )⟩ (solid orange) and
C(T ) (dashed green). (e)–(g) Snapshots of discrete simulations at time T = 0, 1, 2 with
⟨C(0)⟩ = 0.64. (h) ⟨C(T )⟩ (solid orange) and C(T ) (dashed green). The dashed black
horizontal lines in (d) and (h) are the Allee threshold, A = 0.4.

density.

Results in Figure 2.10 give a comparison between the discrete and continuum solutions
for the vertical strip initial distribution. Simulations are performed with M = 1 and
P = 1/1000, leading to D0 = 1/4 and λ = 1/1000. The initial distribution in Figure 2.10(a)
shows that the central strip of width 25 is occupied with density B = 1. Figures 2.10(b)–
(c) show snapshots from the discrete model as the population spreads into the domain.
Figure 2.10(d) compares the numerical solution of Equation (2.47), C(x, T ), with averaged
data from the discrete model, ⟨C(x, T )⟩. The evolution of the total population density in the
discrete model, ⟨C(T )⟩, and in the continuum model, C(T ), is compared in Figure 2.10(e).
In all cases the continuum model accurately captures the averaged data from the discrete
model, and in this case the population eventually becomes extinct. This is an interesting
result given that the initial density in the central strip is greater than the Allee threshold,
yet the total population eventually becomes extinct as the migration of individuals reduces
the population density locally to below the Allee threshold.

We then consider a second set of discrete-continuum comparisons for precisely the same
mechanisms except that the spatial arrangement of the vertical strip initial distribution,
shown in Figure 2.10(f), is wider and occupies the central vertical strip of width 64 with
density B = 1. Figures 2.10(g)–(h) show discrete snapshots as the population spreads.
The comparisons between C(x, T ) and ⟨C(x, T )⟩ in Figure 2.10(i), and between C(T ) and
⟨C(T )⟩ in Figure 2.10(j) are excellent. In this case we see that the population eventually
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Figure 2.10: Comparison of data from the discrete model with the solution of
the continuum model for the vertical strip initial distribution. (a) Agents are
initially placed within a vertical strip where x ∈ [37.5, 62.5], with B = 1. (b)–(c) Snapshots
from the discrete model at T = 0.1 and T = 0.2, respectively. (d) ⟨C(x, T )⟩ (red) and
C(x, T ) (blue) at time T = 0.6, 1, 2, 1.8. (e) ⟨C(t)⟩ (solid orange) and C(t) (dashed green).
(f) Agents are initially placed within a vertical strip where x ∈ [18, 82], with B = 1.
(g)–(h) Snapshots from the discrete model at T = 0.1 and T = 0.2, respectively. (i)
⟨C(x, T )⟩ (red) and C(x, T ) (blue) at time T = 0.6, 1.2, 1.8. (j) ⟨C(t)⟩ (solid orange) and
C(t) (dashed green). The dashed black horizontal lines in (d), (e), (i) and (j) indicate the
Allee threshold, A = 0.4. Arrows in (d) and (i) show the direction of increasing time. Note
that we generate 40 identically-prepared realisations to obtain ⟨C(x, T )⟩ in (d) and (i),
and ⟨C(T )⟩ in (e) and (j).
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grows to reach the maximum density. For the vertical strip initial distribution the same
discrete mechanism again leads to different long-term outcomes in Figures 2.10(a)–(e)
and Figures 2.10(f)–(j), where the population eventually becomes extinct in the former
case, while surviving in the latter case. The only difference is in the width of the initial
population.

In Figure 2.11, we compare data from the discrete model with numerical solutions of
the continuum model for the square initial distribution. Again, simulations are performed
with M = 1 and P = 1/1000, leading to D0 = 1/4 and λ = 1/1000. The initial distribution
in Figure 2.11(a) shows a square region of size 50 × 50 that is occupied with density
B = 1. Figure 2.11(b) shows a snapshot from the discrete model at T = λt = 0.5 where
we see the agents spreading into the domain. The numerical solution of Equation (2.45)
in Figure 2.11(c) shows the solution of the continuum model at T = 0.5. The visual
comparison between the spatial arrangement of agents in the discrete model and the
density of the profiles in Figure 2.11(b) and Figure 2.11(c) matches well. To make a more
quantitative comparison we examine the density along the horizontal dashed lines shown
in Figures 2.11(b)–(c) at y = 50. Figure 2.11(d) compares the evolution of C(x, 50, T ) and
⟨C(x, 50, T )⟩, and we see that the match between the solution of the continuum model and
appropriately averaged data from the discrete model is excellent. Finally, in Figure 2.11(e)
we compare the averaged total occupancy from the discrete model, ⟨C(T )⟩, with C(T )
from the solution of the continuum model. Again, we see that the discrete-continuum
comparison is excellent, and that the continuum model predicts the eventual extinction of
this population. Similar to the outcomes from the one-dimensional initial distributions,
although the initial density of agents in the central of the domain exceeds the Allee
threshold, the migration of individuals reduces the density locally to below the Allee
threshold, resulting in extinction.

We now consider a second set of discrete-continuum comparisons for precisely the same
mechanisms except that the spatial arrangement of the square initial distribution, shown
in Figure 2.11(f), is larger and occupies the central 80×80 region of the domain. As before,
the match between the discrete averaged data and numerical solutions of Equation (2.45)
is excellent in Figures 2.11(g)–(j). In this case the population eventually grows to reach
the maximum density.
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Figure 2.11: Comparison of data from the discrete model with the solution
of the continuum model for the square initial distribution. (a) Agents are
initially located in a square region of size 40 × 40 with B = 1. (b) ⟨C(x, y, T )⟩ at
T = λt = 0.5. (c) C(x, y, T ) at T = λt = 0.5. (d) ⟨C(x, 50, T )⟩ (red) and C(x, 50, T )
(blue) at T = 0.6, 1.2, 1.8. (e) ⟨C(T )⟩ (solid grey) and C(T ) (dashed green). (f) Agents
are initially located at a square region of size 80 × 80 with B = 1. (g) ⟨C(x, y, T )⟩ at
T = λt = 0.5. (h) C(x, y, T ) at time T = λt = 0.5. (i) ⟨C(x, 50, T )⟩ (red) and C(x, 50, T )
(blue) at T = 0.6, 1.2, 1.8. (j) ⟨C(T )⟩ (solid grey) and C(T ) (dashed green). The dashed
red lines in (b), (e), (g), (h) indicate the line y = 50, where we obtain the density along
the horizontal direction. The dashed black horizontal lines in (d), (e), (i) and (j) indicate
the Allee threshold, A = 0.4. Arrows in (d) and (i) show the direction of increasing time.
Note that we generate 40 identically-prepared realisations to obtain ⟨C(x, y, T )⟩ in (b)
and (g), and ⟨C(T )⟩ in (e) and (j). While we use 4000 identically-prepared realisations to
obtain ⟨C(x, 50, T )⟩ in (d) and (i).
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Figure 2.12: Phase diagram for survival/extinction with the well-mixed initial
distribution. (a)–(c) show how we vary the initial density with C(0) = B for this
initial distribution. (d) Phase diagram of a rectangular mesh with 51 × 40 nodes for
C(0) = B ∈ [1/10, 6/10], and P/M ∈ [1/1000, 4/100]. The vertical red line indicates the
survival/extinction threshold from the continuum model and the blue shading shows the
survival probability S measured by 40 identically-prepared realisations. The blue dot
indicates the parameters in Figure 5(b) in the main document. The yellow dot indicates
the parameters in Figure 5(c) in the main document.

2.9.5 Phase diagrams with B = 1

In this section we summarise the long-term outcomes of a range of scenarios with the well-
mixed, vertical strip and square initial distributions with B = 1. Results in Figure 2.12 show
the results obtained with the well-mixed initial distribution. In this case H corresponds to
the entire L× L domain and C(0) = B. We vary the initial distribution by varying B, as
indicated in Figures 2.12(a)–(c), and vary the ratio P/M by holding M = 1 and varying
P ∈ [1/1000, 4/100] in the discrete model. As P/M = λ/(4D0), we hold D0 = 1/4 and
vary λ in the continuum model. To systematically study the transition between population
extinction to population survival, we take the (B,P/M) phase space and discretise it
uniformly into a rectangular mesh, with 51×40 nodes. We note that, unlike the continuum
approach that always leads to the same outcome when using the same choice of parameters,
different identically-prepared realisations of the stochastic model can lead to different
outcomes (Surendran et al. 2020; Johnston et al. 2020). Therefore, for each value of B and
P/M considered, we generate 40 identically-prepared realisations of the discrete model
and we compute the survival probability, S ∈ [0, 1], as the fraction of realisations in which
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Figure 2.13: Phase diagram for survival/extinction with the vertical strip
initial distribution. (a)–(c) Three different initial distributions where C(0) = w1/L,
and we vary w1. (d) Phase diagram of a rectangular mesh with 51 × 40 nodes for
w1 ∈ [10, 60], C(0) ∈ [1/10, 6/10] and P/M ∈ [1/1000, 4/100]. The black curve indicates
the survival/extinction threshold from the continuum model and the blue shading shows the
survival probability S measured by 40 identically-prepared realisations. The vertical red
line is C(0) = 0.4 which relates to the Allee threshold, A = 0.4. The blue dot indicates the
parameters in Figure 5(e) in the main document. The yellow dot indicates the parameters
in Figure 5(f) in the main document.

the population survives after a sufficiently long period of time T , which we take to be
T = max(30/P, 104). Figure 2.12(d) summarises the outcomes of the simulations in terms
of a phase diagram. In this case the survival outcome for the continuum model is a simple
vertical line at C(0) = A. In general we see good agreement between the prediction of
survival or extinction between the continuum and discrete models.

There are some small discrepancies as P/M increases. In discrete simulations, the local
clustering caused by larger P/M leads to higher local densities and thus contributes to
the survival of populations, which reflects the influence of stochasticity in the discrete
model. This difference is consistent with the fact that for the continuum model P/M
has to be sufficiently small, otherwise the mean-field approximation is invalid and the
solution of the continuum model does not necessarily provide an accurate description of
the discrete mechanism (Baker and Simpson 2010; Simpson et al. 2010a). In summary, for
the well-mixed initial distribution the long-term population survival depends simply upon
whether the initial density is above or below the Allee threshold, as expected.
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We now explore how the simple outcome for the well-mixed initial distribution becomes
more complicated when we consider different initial spatial arrangements of the population.
For the vertical strip initial distribution we vary the size of H by changing the width of
the vertical strip, w1. Varying the width of the strip leads to a change in the initial density
across the entire domain, C(0) = w1/L. For example, Figures 2.13(a)–(c) shows three
vertical strip initial distributions with different widths. For these initial distributions we
vary the ratio P/M = λ/(4D0) by holding M = 1 and varying P in the discrete model, and
by holding D0 = 1/4 and varying λ in the continuum model. This allows us to consider the
(w1, P/M) phase space, which we discretise into a rectangular mesh with 51 × 40 nodes.
Figure 2.13(b) shows a phase diagram illustrating how the survival probability, S, depends
upon w1 and P/M . The boundary that separates the eventual survival and extinction
in the continuum model is shown in solid black, and the survival probability from the
discrete simulations is shown in blue shading. Overall, the long-term predictions in terms
of survival or extinction are consistent between the continuum and discrete models. For
completeness we also show the red vertical line indicating the Allee threshold in the sense
of global population density averaged across the whole L× L domain. It is interesting to
compare the results in Figure 2.12(d) and Figure 2.13(d). In the vertical strip case we see
that the long-term survival is strongly dependent upon P/M whereas in the well-mixed
initial distribution this dependence is less pronounced.

For the square initial distribution, we vary the size of H by changing w1 as shown in
Figures 2.14(a)–(c). Varying w1 allows us to vary the initial density across the entire domain,
C(0) = w2

1/L
2. Similar to Figure 2.13, we construct a phase diagram in Figure 2.14(d) that

summarises the long-term survival outcome as a function of w2
1 and P/M , by discretising

the (w2
1, P/M) phase space using a rectangular mesh with 51 × 40 nodes. The phase

diagram in Figure 2.14(d) is very similar to the phase diagram in Figure 2.13(d). We
see that the long-term survival strongly depends upon P/M , and the distinction between
survival and extinction predicted by the continuum limit model is a good approximation
of the discrete simulation data.

Results in Figures 2.12–2.14 show that the long-term survival of a population depends
upon P/M and the initial arrangement of the population in a complicated manner.
Stochasticity only plays a role on the fate of populations in the discrete model when
parameters are close to the boundary that separates the eventual survival and extinction
in the continuum model.
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Figure 2.14: Phase diagram for survival/extinction with the square initial
distribution. (a)–(c) Three different initial distributions where C(0) = w2

1/L
2, and we

vary w1. (d) Phase diagram of a rectangular mesh with 51×40 nodes for w2
1 ∈ [1000, 6000],

C(0) ∈ [1/10, 6/10] and P/M ∈ [1/1000, 4/100] where M = 1. The black curve indicates
the survival/extinction threshold from the continuum model and the blue shading shows the
survival probability S measured by 40 identically-prepared realisations. The vertical red
line is C(0) = 0.4 which relates to the Allee threshold, A = 0.4. The blue dot indicates the
parameters in Figure 5(h) in the main document. The yellow dot indicates the parameters
in Figure 5(i) in the main document.
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Figure 2.15: Phase diagram for survival/extinction with the vertical strip initial
distribution. (a)–(c) Three different initial distributions where C(0) = Bw1/L, and we
fix w1 = 64 and vary B. (d) Phase diagram on a rectangular mesh with 36 × 40 nodes for
B ∈ [0.3, 1], C(0) ∈ [0.192, 0.64] and P/M ∈ [1/1000, 4/100]. The black curve indicates the
survival/extinction threshold from the continuum model and the blue shading shows the
survival probability S from the discrete simulations measured by 40 identically-prepared
realisations. The vertical solid red line is C(0) = 0.4. The vertical dashed line is B = 0.4.
They both relate to the Allee threshold, A = 0.4.

2.9.6 Phase diagrams with B ̸= 1

Instead of varying the size of H, we now vary C(0) by varying B. We constrain the region
H as a vertical strip with width w1 = 64, as shown in Figure 2.15(a). As C(0) = Bw1/L,
where we fix w1/L = 0.64, the initial density C(0) varies from 0.192 to 0.64 when B varies
from 0.3 to 1 as illustrated in Figures 2.15(a)–(c). We vary P/M = λ/(4D0) by holding
M = 1 and varying P ∈ [1/1000, 4/100] and we discretise the (B,P/M) space into a
rectangular mesh with 36 × 40 nodes. Figure 2.15(d) shows a phase diagram illustrating
how the survival probability, S, depends upon B and P/M . The boundary that separates
the eventual survival and extinction in the continuum model is shown in solid black, and the
survival probability from the discrete simulations is shown in blue shading. The long–term
predictions in terms of survival or extinction are consistent between the continuum and
discrete models. Furthermore, we observe a different phenomenon compared to the results
in Figure 10: There is a lower bound on C(0) for survival in Figure 2.15(d). This lower
bound relates to B = 0.4, and indicates the Allee threshold A = 0.4. Unlike the solid
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Figure 2.16: Phase diagram for survival/extinction with the square initial
distribution. (a)–(c) Three different initial distributions where C(0) = Bw2/L2, and we
fix w = 80 and vary B. (d) Phase diagram on a rectangular mesh with 36 × 40 nodes for
B ∈ [0.3, 1], C(0) ∈ [0.192, 0.64] and P/M ∈ [1/1000, 4/100]. The black curve indicates the
survival/extinction threshold from the continuum model and the blue shading shows the
survival probability S from the discrete simulations measured by 40 identically-prepared
realisations. The vertical solid red line is C(0) = 0.4. The vertical dashed line is B = 0.4.
They both relate to the Allee threshold, A = 0.4.

line, C(0) = 0.4, which indicates a threshold of survival in the sense of global density, the
dashed line, B = 0.4, indicates a threshold of survival in the sense of local density.

Next, we consider the square initial distribution and constrain the region with width
w1 = 80 in Figures 2.16(a)–(c). As C(0) = Bw2

1/L
2, where we fix w2

1/L
2 = 0.64, the initial

density C(0) varies from 0.192 to 0.64 when B varies from 0.3 to 1. We again change
P/M = λ/(4D0) by holding M = 1 and varying P ∈ [1/1000, 4/100] and we discretise the
(B,P/M) space into a rectangular mesh with 36 × 40 nodes. With this initial condition we
construct a phase diagram summarising the long–term survival outcomes as a function of
B and P/M in Figure 2.16(d), which is very similar to the phase diagram in Figure 2.15(d)
where we see that the long-term survival depends on P/M and the two red lines indicating
the Allee threshold.

To highlight the different fates of various populations, we compare the outcomes from
the continuum model in Figure 2.17(a), where we superimpose the boundaries that separate
regions of survival and extinction for the well-mixed initial distribution (red), the vertical
strip initial distribution (black) and the square initial distribution (green) described by



Chapter 1. Introduction 60

Figure 1. Superimposing these curves divides the (C(0), P/M) plane into four regions
with different long-term outcomes depending on the shape of the initial distributions. To
emphasise these differences we compare solutions of the continuum model with different
values of C(0) and P/M in Figures 2.17(b)–(g). The solutions in Figures 2.17(b)–(g)
correspond to various illustrative choices of C(0) and P/M . For example, the profiles in
Figure 2.17(b) related to region R0 all lead to extinction regardless of the shape of the
initial distributions, whereas the profiles in Figure 2.17(c) related to region R1 lead to
extinction for the well-mixed and square distributions, whereas the vertical distribution
leads to survival.
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Figure 2.17: Role of dimensionality in long-term survival and extinction. (a)
The combined phase diagrams from the continuum model where the red, black and green
curves highlight the boundaries separating extinction and survival for the well-mixed,
vertical strip and square initial distributions, respectively. (b)–(g) Profiles of C(T ) with
T = 103t for six different choices of P/M and C(0). Parameters in (b)–(g) relate to the
coloured discs superimposed in (a): (b) relates to the blue disc; (c) relates to the orange
disc; (d) relates to the black disc; (e) relates to the red disc; (f) relates to the cyan disk
and (g) relates to the green disc.
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2.9.7 Phase diagrams with other boundary conditions

We consider two kinds of rectangular initial distributions on the L × L domain with
L = 100. One is centred on the domain, as shown in Figure 2.18(a). Another one is
not centred on the domain, as shown in Figure 2.18(b). Through varying w2 and P/M ,
we generate the survival/extinction thresholds of the rectangular initial distributions
with no-flux boundary conditions and homogeneous Dirichlet boundary conditions along
all boundaries, and compare them to the result obtained from the periodic boundary
conditions in Figures 2.18(c)–(d). When the initial distribution is centred on the domain,
the survival/extinction threshold from the continuum model with the no-flux boundary
conditions is the same as the result obtained from the periodic boundary conditions.
Interestingly, the homogeneous Dirichlet boundary conditions also provide the same results
when the initial area is small. Furthermore, when we consider the initial distribution
which is not centred on the domain, these three boundary conditions provide different
survival/extinction thresholds. Note that, when we apply the homogeneous Dirichlet
boundary condition, we judge that the population survives if there exists any location
leading to C(x, y, T ) > A, where we consider T = max (30/P, 104) in practice.
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Figure 2.18: Phase diagrams for survival/extinction with the rectangular
initial distributions and different boundary conditions. (a) The rectangular initial
distribution centred on the domain with w1 = 40. We vary C(0) = w1w2/L

2 ∈ [1/10, 4/10]
by varying w2 ∈ [25, 100]. (b) The rectangular initial distribution which is not centred on
the domain with w1 = 50. We vary C(0) = w1w2/L

2 ∈ [1/10, 4/10] by varying w2 ∈ [20, 80].
(c)–(d) Phase diagrams of a rectangular mesh with 31 × 20 nodes for C(0) ∈ [1/10, 4/10]
and P/M ∈ [1/1000, 2/100] where M = 1. The survival/extinction thresholds in (c) are
obtained with the rectangular initial distributions described in (a). The survival/extinction
thresholds in (d) are obtained with the rectangular initial distributions described in (b).
The black solid, green dashed and red dashed curves are the survival/extinction thresholds
from the continuum model with the periodic, no-flux and homogeneous Dirichlet boundary
conditions, respectively.
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2.9.8 Robustness of the stochastic simulations

In this section we investigate the robustness of the stochastic simulations which generate
discrete data from V identically-prepared realisations. The variance of the total population
density is

σ2 = 1
V

V∑

i=1

∥∥∥
〈
Ci(t)

〉
− ⟨C(t)⟩

∥∥∥ , (2.48)

where ⟨Ci(t)⟩ denotes the total population density estimated from the discrete simulation
in the ith realisation and ⟨C(t)⟩ denotes the averaged total population density. In practice,
we consider t ∈ [0, 104]. As we calculate the total population density via averaging 40
times identically-prepared realisations in the main document, we also consider V = 40
in this section. We calculate the variance with the well-mixed, vertical strip and square
initial distributions in Figure 2.19. For the well-mixed initial distribution, C(0) varies with
B ∈ [0.1, 0.6]. Note that we use C(0) as the x-axis in Figure 2.19 as it is only equivalent
to C(0) for the well-mixed initial distribution. For the vertical strip initial distribution,
we hold B = 1 and change C(0) by varying the width of the strip. For the square initial
distribution, we hold B = 1 and change C(0) by varying the width of the square. The
variance is small when P/M = 0.001 for all three initial distributions in Figure 2.19(a),
which indicates that averaging the data from our discrete simulations leads to a robust
estimate of the average occupancy. When we consider P/M = 0.02, the variance is also
low for vertical strip and square initial distributions. However, the variance becomes much
larger when C(0) approaches 0.4, which is the Allee threshold, in the well-mixed initial
distribution. This is not surprising as the discrete simulations either lead to survival or
extinction depending on fluctuations in the density.
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Figure 2.19: The robustness of the stochastic simulations. (a) Variance of the
difference between the averaged total population density, ⟨C(t)⟩ and the total population
density of the ith realisation, ⟨Ci(t)⟩, where i = 1, 2, ..., 40, with P/M = 0.001. (b)
Variance of the difference between the averaged total population density, ⟨C(t)⟩ and
the total population density of the ith realisation, ⟨Ci(t)⟩, where i = 1, 2, ..., 40, with
P/M = 0.02. Pink curves are generated with the well-mixed initial distribution. Blue
curves are generated with the vertical strip initial distribution. Green curves are generated
with the square initial distribution.

2.9.9 Value of the combined discrete-continuum framework

Although the discrete simulations and continuous solutions match well in our framework,
there is additional information in the discrete model that cannot be easily extracted from
the continuum modelling approach. For example, it is unclear from the continuum model
whether a population survives mostly because of a high number of births, or because of a
low number of deaths. Tracking the age of agents in the discrete model gives indications
as to where agents of different ages are located in space. In Figures 2.20(a)–(d), we show
the age group of a population in one realisation with vertical strip and square initial
distributions. Both initial distributions lead to the survival of populations, but the age
structure of the two populations is different, see Figure 2.20(e) for the number of agents
in different generations when the population occupies the whole domain.

Another advantage of the discrete model is the ability to track the individual behaviours
of the agents. For example, in the discrete model one can trace the trajectory of individuals,
which provides insights into the motility mechanisms (Cai et al. 2006; Simpson et al. 2009b).
In Figure 2.21, we initially select five agents and trace them until the population occupies
the whole domain or until the agent dies. We observe that those agents closer to free
space are more motile. Furthermore, once they move into a less crowded region, they have
higher probability of dying. This phenomenon is consistent with the growth mechanism
governed by the strong Allee kinetics.
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Figure 2.20: The age group of the population with vertical strip and square
initial distributions where C(0) = 0.4 and P/M = 0.01, where P = 0.01 and
M = 1. (a) Snapshot of the discrete simulation with the vertical strip initial distribution
at t = 1000. The agents initially placed on the domain are the first generation (blue).
(b) Snapshot of the discrete simulation with the square initial distribution at t = 1000.
(c) Snapshot of the discrete simulation with the vertical strip initial distribution when
the population occupies the whole domain. (d) Snapshot of the discrete simulation with
the square initial distribution when the population occupies the whole domain. (e) The
number of agents in different generations.
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Figure 2.21: Trajectories of agents in discrete simulations with the vertical strip
and square initial distributions where C(0) = 0.4 and P/M = 0.01, where P = 0.01
and M = 1. (a) Trajectories of five agents with the vertical strip initial distribution. (b)
Trajectories of five agents with the square initial distribution. The pink area indicates the
initially occupied region with B = 1. The black points indicate the initial positions of the
five individuals. The green points indicate the final positions of the five individuals when
the population occupies the whole domain. Note that both agents whose trajectories are
highlighted in blue in (a) and (b) died before the population occupies the whole domain .



Chapter 3

The role of nonlinear diffusion on the fate of
bistable populations

3.1 Preamble

This chapter is a paper submitted to Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences

Li, Y., Buenzli, P. R., Simpson, M. J., 2021. Interpreting how nonlinear diffusion affects
the fate of bistable populations using a discrete modelling framework. arXiv Preprint.

In this chapter, we address the research question 2 of the thesis: How does nonlinear
diffusion affect the fate of bistable populations? We extend the work in Chapter 2 by
considering more complicated movement mechanisms associated with nonlinear diffusion
in the continuum limit reaction-diffusion equation. We build a connection between the
crowding function, which quantifies the movement mechanism of individuals in the discrete
model, and the nonlinear diffusivity function in the continuum model. We compare
solutions of the continuum model with nonlinear diffusion to the averaged data of discrete
simulations. To physically interpret the influence of nonlinear diffusion on population
dynamics, we derive the density-depend flux of populations based on the discrete model.
Through exploring the relationship between the density-dependent flux and the fate of
bistable populations, we identify features of the nonlinear diffusivity functions that either
encourage or suppress the extinction of bistable populations
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3.2 Abstract

Understanding whether a population will survive and flourish or become extinct is a central
question in population biology. One way of exploring this question is to study population
dynamics using reaction-diffusion equations, where migration is usually represented as a
linear diffusion term, and birth-death is represented with a bistable source term. While
linear diffusion is most commonly employed to study migration, there are several limitations
of this approach, such as the inability of linear diffusion-based models to predict a well-
defined population front. One way to overcome this is to generalise the constant diffusivity,
D, to a nonlinear diffusivity function D(C), where C > 0 is the density. While it has been
formally established that the choice of D(C) affects long-term survival or extinction of a
bistable population, working solely in a classical continuum framework makes it difficult
to understand precisely how the choice of D(C) affects survival or extinction. Here, we
address this question by working with a simple discrete simulation model that is easy
to interpret. The continuum limit of the discrete model is a nonlinear reaction-diffusion
equation, where the flux involves a nonlinear diffusion term and the source term is given by
the strong Allee effect bistable model. We study population extinction/survival using this
very intuitive discrete framework together with numerical solutions of the reaction-diffusion
continuum limit equation. This approach provides clear insight into how the choice of
D(C) either encourages or suppresses population extinction relative to the classical linear
diffusion model.

3.3 Introduction

Predicting whether a population will survive or go extinct is a key question in population
biology (Berger 1990; Cantrell and Cosner 1998; Axelrod et al. 2006; Ovaskainen and
Meerson 2010; Kéfi et al. 2011). For example, predicting whether a species released into a
wild area will survive is crucial in protecting endangered animals (Saltz and Rubenstein
1995). Similarly, whether cancer spreads to a different body part from a primary tumour
site depends on the survival of small numbers of tumour cells growing successfully in
new locations (Korolev et al. 2014; Gerlee et al. 2021). A classical continuum model for
studying the survival of biological populations is the strong Allee effect model, based on
an ordinary differential equation (ODE),

dC(t)
dt = λC(t)

(
1 − C(t)

K

)(
C(t)
A

− 1
)
, (3.1)

where C(t) ≥ 0 is the population density at time t ≥ 0, λ > 0 is the intrinsic growth rate,
K > 0 is the carrying capacity density, and 0 < A < K is the Allee threshold density (Allee
and Bowen 1932; Kot 2001; Edelstein-Keshet 2005; Courchamp et al. 2008; Taylor and
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Hastings 2005; Surendran et al. 2020; Fadai and Simpson 2020b). The fate of a population
described by (3.1) depends solely upon the initial density, C(0). Extinction occurs if
C(0) < A, leading to C(t) → 0 as t → ∞. In contrast, the population survives if C(0) > A,
leading to C(t) → K as t → ∞. Such dynamics, leading to either eventual survival or
extinction, are sometimes called bistable population dynamics. The strong Allee effect
model belongs to a broader class of population models, called bistable population dynamics
models, and the key feature of these models is that they involve three equilibrium points:
C = 0 and C = K > 0 are stable equilibrium points, and C = A, where 0 < A < K is
unstable. There are many ODE models of this kind, not just the classical cubic form in
(3.1) (Johnston et al. 2020; Fadai and Simpson 2020b; Alkhayuon et al. 2021; Gerlee et al.
2021).

To investigate spatial effects, such as moving invasion fronts, some studies consider
incorporating Equation (3.1) into a reaction-diffusion equation, where the population
density depends upon both position and time (Hadeler and Rothe 1975; Lewis and Kareiva
1993; Holmes et al. 1994; Hastings et al. 2005; Maciel and Lutscher 2015; Johnston et al.
2017; Neufeld et al. 2017; El-Hachem et al. 2019; Li et al. 2020, 2021). In reaction-diffusion
models, the dynamics of bistable populations involve a more complicated interaction
between the bistable source term and the diffusion term. Unlike ODE models where the
fate of a bistable population is solely determined by the initial density, many factors
influence whether the population will survive or go extinct in reaction-diffusion models
(Lewis and Kareiva 1993; Bradford and Philip 1970a,b; Johnston et al. 2020; Li et al.
2022). For example, the initial area of a bistable population on an infinite domain needs to
be greater than a threshold, called the critical initial area, so that the population avoids
extinction (Lewis and Kareiva 1993).

Most reaction-diffusion models in population biology consider a constant diffusivity
associated with Fick’s first law of diffusion, which states that the diffusive flux is
proportional to the spatial gradient of density (Hadeler and Rothe 1975; Holmes et al. 1994;
Kot 2001; Hastings et al. 2005; Jin et al. 2016a; Murray 1989; Maciel and Lutscher 2015;
Neufeld et al. 2017). In one spatial dimension the diffusive flux is J = −D∂C(x, t)/∂x,
where D > 0 is the constant diffusivity. Linear diffusion is popular in modelling biological
populations, since this model is very simple, and has a straightforward connection with a
range of underlying stochastic models, such as conceptualising the motion of individuals
in the population as a simple unbiased random walk in the dilute limit, where interactions
between individuals are weak (Hughes 1995; Kot 2001; Murray 1989; Liggett 2013).
However, despite the immense popularity of linear diffusion, there are well-documented
circumstances where population dynamics cannot be described by this simple model. For
example, sharp moving fronts in cell migration assays cannot be represented by linear
diffusion, and so there has been great interest in modelling the motion of well-defined fronts
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using degenerate nonlinear diffusion terms (Maini et al. 2004a,b; Sengers et al. 2007; Jin et al.
2016b; McCue et al. 2019). Similar to cell biology applications, mathematical models of
insect dispersal with linear diffusion are unable to replicate observations where well-defined
sharp fronts play an important role (Shigesada 1980; Murray 1989). Therefore, reaction-
diffusion equations with nonlinear diffusion are considered in a variety of applications
where, in one spatial dimension, the flux is J = −D(C(x, t))∂C(x, t)/∂x, with the key
difference that the constant linear diffusivity D is now generalised to a nonlinear function
D(C) > 0 (Shigesada 1980; Murray 1989; Painter and Sherratt 2003; Maini et al. 2004a;
Sengers et al. 2007; Cai et al. 2007; Deroulers et al. 2009; Fernando et al. 2010; Johnston
et al. 2012; Mart́ınez-Garćıa et al. 2015; Yates et al. 2015; Jin et al. 2016b; McCue et al.
2019; Bubba et al. 2020). Unlike the constant diffusivity that can be interpreted as
undirected random motion of individuals without interaction (Hughes 1995; Liggett 2013),
identifying the behaviour of individuals corresponding to a given nonlinear diffusion term is
less clear. Therefore, it is not always obvious which nonlinear diffusion term is appropriate
to model a particular situation (Sherratt and Murray 1990; Murray 1989; Cai et al. 2007;
Jin et al. 2016b). Since it is known that nonlinear diffusion can impact the conditions
required for survival of a bistable population (Cantrell and Cosner 2004; Lee et al. 2006),
exploring the behaviour of individuals is helpful to provide a simple interpretation of how
D(C) affects the fate of bistable populations subject to a nonlinear diffusion migration
mechanism. Therefore, it is valuable to study the connection between the behaviour of
individuals and the nonlinear diffusion term in reaction-diffusion equations.

To connect continuum models with the behaviour of individuals, we work with a
physically intuitive discrete framework. The discrete model incorporates straightforward
crowding effects into birth, death and movement of individuals on a two-dimensional
hexagonal lattice (Li et al. 2022). In particular, we quantify the influence of crowdedness
on the motility of individuals by using a crowding function G(C) > 0, which explicitly
describes how the local crowding affects the ability of individuals to move. The continuum
limit of the discrete model is a reaction-diffusion equation with a strong Allee effect
source term, and a general nonlinear diffusivity function D(C). This framework allows
us to investigate population dynamics through repeated simulation of the discrete model,
as well as solving the associated reaction-diffusion continuum limit model numerically.
Through the mathematical relationship between the nonlinear diffusivity function D(C)
and the underlying crowding function G(C), we develop an intuitive understanding of how
different choices of D(C) affect the extinction or survival of the population. To improve
our understanding, we derive expressions for the density-dependent flux of populations
associated with the discrete model. The expression for the flux can be re-written as the
flux associated with a linear diffusion mechanism plus a term, which we interpret as a
correction that is associated with the effects of nonlinear diffusion. Writing the flux in
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this way allows us to directly relate how different choices of D(C) either encourage or
suppress extinction. All interpretations of our modelling framework are supported by a
suite of stochastic simulations and numerical solutions of the associated continuum limit
reaction-diffusion equation. All numerical algorithms required to replicate our work are
available on Github.

3.4 The discrete model and the continuum limit

In this section we introduce a lattice-based discrete model and the corresponding continuum
limit model description that is closely related to our previous work (Li et al. 2022). Unlike
the work in Li et al. (2022), which only considers examples where the motility of individuals
is given by a linear diffusion mechanism, here we focus on a more broad range of motility
mechanisms that include a range of choices of nonlinear diffusivity functions.

In the discrete model individuals are represented as agents on a two-dimensional
hexagonal lattice with spacing ∆ > 0. A lattice site s, indexed by (i, j) with a unique
Cartesian coordinate (x, y), is either occupied Cs = 1, or vacant Cs = 0. Stochastic
simulations include birth, death and movement events, and we will now explain the details
of these mechanisms.

If there are Q(t) agents on the lattice, we use a random sequential updating method
to evolve the discrete model from time t to time t + τ . To achieve this we select Q(t)
agents at random, with replacement, and give those agents an opportunity to undergo a
movement event. We then select another Q(t) agents, at random, with replacement, and
give those agents an opportunity to undergo a birth/death event. Once these two sets of
events have been assessed, we advance time from t to t+ τ and repeat until the desired
output time is reached (Simpson et al. 2010a).

For a potential motility event, if the agent in question is at site s, that agent will move
with probability M̂ = MG(Ks), where M is the probability that an isolated agent will
attempt to move during a time interval of duration τ , and G(Ks) ∈ [0, 1] is a movement
crowding function which quantities how crowding in a small neighbourhood of s influences
motility. We interpret G(Ks) to be a measure of the influence of the local density upon
movement since Ks is a simple measure of density around site s, given by

Ks = 1
|Nr|

∑

s′∈Nr{s}
Cs′ ∈ [0, 1], (3.2)

where Nr{s} denotes the set of neighbouring sites surrounding site s. Since the local
density can be measured with different-sized spatial templates, we use r to represent the
diameter of concentric rings surrounding site s, so that the number of neighbouring sites
of any site is |Nr|= 3r(r + 1), as shown in Figure 3.1(a).

https://github.com/oneflyli/YifeiNonliearDiffusion2021
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Figure 3.1: Movement and growth mechanisms. (a) Different-sized spatial templates
Nr, where r is the diameter of the concentric rings surrounding site s. (b) Movement
mechanism with r = 1. (c) Growth mechanism with r = 1. In (b) and (c), there are two
neighbouring agents (blue) surrounding the agent at site s (grey) at time t. The agent at
site s undergoes a movement event with probability M̂ = MG(Ks), where Ks = 1/3, as
shown in (b). As there are four vacant neighbouring sites, the probability of moving to one
of the vacant sites is M̂/4. Similarly, the agent undergoes a growth event with probability
P̂ = P |F (Ks)|, where Ks = 1/3, as shown in (c). If F (Ks) > 0, the potential growth event
is a birth event. As there are four vacant neighbouring sites, the probability of placing a
new agent in one of the vacant sites is P̂ /4. If F (Ks) < 0, the potential growth event is a
death event. That is, the agent will be removed out of the lattice with probability P̂ .
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If a movement event occurs, the agent at site s will move into a randomly chosen
vacant site in Nr{s}. Therefore, the probability for the agent at site s moving to one
of the vacant sites is M̂/(|Nr|(1 −Ks)). We show the movement mechanism with r = 1
leading to |Nr|= 6 in Figure 3.1(b). In this particular configuration the agent at site s has
two neighbouring agents, giving Ks = 1/3. The probability of undergoing a movement
event is M̂ = MG(1/3). As there are four vacant sites in N1{s}, the probability of moving
to one of the vacant sites is M̂/4. Note that we require G(1) = 0 as individuals have no
space to move if their neighbouring sites are all occupied.

For a potential growth event, if the agent in question is at site s, that agent will
undergo a growth event with probability P̂ = PF (Ks), where P is the probability that an
isolated agent will attempt to undergo a growth event during a time interval of duration
τ , and F (Ks) ∈ [−1, 1] is the growth crowding function which quantities how crowding in
a small neighbourhood of s influences the propensity of agents to proliferate or die. Since
the growth mechanism includes both proliferation and death as potential outcomes, we
define F (Ks) ∈ [−1, 1] such that a proliferation event takes place when F (Ks) > 0 and
a death event takes place when F (Ks) < 0. In the case of a proliferation event, a new
daughter agent will be placed on a randomly chosen vacant site in Nr(s), whereas if a
death event takes place the agent at site s will be removed from the simulation. After
Q(t) potential growth events have been assessed, the value of Q(t) is updated accordingly.

We show the growth mechanism with r = 1 in Figure 3.1(c). As the agent at site s has
two neighbouring agents, we have Ks = 1/3. Therefore, the probability of undergoing a
growth event is P̂ = P |F (1/3)|. If F (1/3) > 0, as there are four vacant sites in N1{s}, the
agent will place a new agent on one of the vacant sites with probability P̂ /4. If F (1/3) < 0,
the agent will be removed from the lattice with probability P̂ .

A key feature of the discrete model is that we use G(Ks) to explicitly describe the
influence of crowding effects on the movement of individuals. We provide several examples
of G(Ks) and show how they influence the movement of agents on the spatial template
with r = 1 in Figure 3.2. We first consider G(Ks) = 1 −Ks which has a constant slope, as
shown in Figure 3.2(a). The probability of a movement event with Ks = 0, Ks = 1/3, and
Ks = 2/3 is given in Figures 3.2(b)–(d), respectively. With this simple movement crowding
function, the probability of the agent at site s moving to one of its neighbouring vacant
sites is always M/6, which is independent of the local density, Ks. We then consider a
concave down function, G(Ks) = (1 −Ks)(1 +Ks/2) in Figure 3.2(e). The probability of
a movement event with Ks = 0, Ks = 1/3, and Ks = 2/3 is given in Figures 3.2(f)–(h),
respectively. Compared to the simplest crowding function G(Ks) = 1 − Ks, the agent
has a larger net movement probability for Ks ∈ (0, 1). Finally, we consider a concave up
function, G(Ks) = (1 −Ks)(1 −Ks/2) in Figure 3.2(i). The probability of a movement
event with Ks = 0, Ks = 1/3, and Ks = 2/3 is shown in Figures 3.2(j)–(l), respectively.



C
hapter

3.
T

he
role

ofnonlinear
diffusion

75

Ks

G(Ks)

0 0.5 10

0.5

1
(a) G(Ks) = 1 − Ks (b)

s

G(0) = 1, M̂ = M

(c)

s

G(1/3) = 2/3, M̂ = 2M/3

(d)

s

G(2/3) = 1/3, M̂ = M/3

Ks

G(Ks)

0 0.5 10

0.5

1
(e) G(Ks) = (1 − Ks)(1 + Ks/2) (f)

s

G(0) = 1, M̂ = M

(g)

s

G(1/3) = 7/9, M̂ = 7M/9

(h)

s

G(2/3) = 4/9, M̂ = 4M/9

Ks

G(Ks)

0 0.5 10

0.5

1
(i) G(Ks) = (1 − Ks)(1 − Ks/2) (j)

s

G(0) = 1, M̂ = M

(k)

s

G(1/3) = 5/9, M̂ = 5M/9

(l)

s

G(2/3) = 2/9, M̂ = 2M/9

Figure 3.2: Movement mechanism with different movement crowding functions on a spatial template with r = 1. In each
subfigure we represent the agent at site s with grey, the neighbouring agents with blue, and the vacant neighbouring sites with white.
(a) G(Ks) = 1 − Ks. The red dots represent the values of G(Ks) that can be measured from the discrete model. (b)–(d) Probabilities
of undergoing a movement event for the agent at site s associated with the G(Ks) in (a). (e) G(Ks) = (1 − Ks)(1 + Ks/2). (f)–(h)
Probabilities of undergoing a movement event for the agent at site s associated with the G(Ks) in (e). (i) G(Ks) = (1 −Ks)(1 −Ks/2).
(j)–(l) Probabilities of undergoing a movement event for the agent at site s associated with the G(Ks) in (i).
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In this case, the agent has a reduced probability of movement for Ks ∈ (0, 1), relative to
the simplest case G(Ks) = 1 −Ks. The growth mechanism of agents applies a similar way
of incorporating the influence of crowding effects into the discrete model (Li et al. 2022).
We present the pseudo-code for implementing a single realisation of the discrete model in
the Supplementary Material document.

If we consider the spatial template with r = 1 for the movement mechanism and r ≥ 1
for the growth mechanism of agents, the continuum limit of the discrete model is

∂C(x, y, t)
∂t

= ∇ · (D(C(x, y, t))∇C(x, y, t)) +R(C), (3.3)

with nonlinear diffusivity function

D(C) = D0

[
C

dG(C)
dC + 1 + C

1 − C
G(C)

]
, (3.4)

and a source term R(C) = λCF (C), where

D0 = lim
∆,τ→0

M∆2

4τ , λ = lim
τ→0

P

τ
. (3.5)

Here, D0 > 0 is a constant in the limit that ∆ → 0 and τ → 0 with the ratio ∆2/τ held
constant, and λ > 0 is constant when P = O(τ), which implies that the continuum limit
is valid when P ≪ M . Note that in the discrete model we have K as the argument of
the crowding function, and that in the continuum limit the argument of the crowding
function is C. This difference can be reconciled through carrying out the full details of the
discrete-to-continuum averaging arguments. Full algebraic details of the intermediate steps
required to derive the continuum limit is given in the Supplementary Material. Throughout
this study we work with dimensionless simulations by setting ∆ = τ = 1 in the discrete
model, which leads to D0 = M/4 and λ = P in the continuum limit. In cell biology,
experimental observations imply that cell motility is reasonably well approximated by
a nearest neighbour random walk whereas cell proliferation involves the disposition of
daughter agents at some distance from the mother agent (Simpson et al. 2010a). Therefore,
throughout this work we set r = 1 for the motility mechanism and r = 4 for the proliferation
mechanism, which is consistent with previous modelling (Simpson et al. 2010a; Li et al.
2022). Moreover, as we are interested in the survival and extinction of populations, we
choose a growth crowding function F (C) = 2.5(1 − C)(C − A) with A = 0.4, which leads
to a cubic source term, R(C), associated with the strong Allee effect. With this choice of
growth crowding function, we have F (0) = −1 indicating that isolated agents have the
largest probability of dying.
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3.5 Relationship between D(C) and G(C)

Based on Equation (3.4), we are now in a unique position where we can specify an
intuitive crowding function for the discrete model, G(C), and use the discrete-to-continuum
framework to understand how this translates into a population-level nonlinear diffusivity
function, D(C). This approach is very different to the more usual approach of simply
specifying some phenomenological D(C) function, without any detailed understanding of
how a particular choice of nonlinear diffusivity impacts the underlying discrete mechanism
(Sherratt and Murray 1990; Maini et al. 2004a,b; Sengers et al. 2007; McCue et al. 2019).

There are two ways of taking advantage of (3.4) to study population dynamics. First, for
a given movement mechanism of individuals described by G(C), we can simply substitute
into this expression to give the corresponding D(C). To demonstrate this first approach,
we present three examples of G(C), which were examined in Figure 3.2, and study the
corresponding D(C),

G(C) = 1 − C, D(C) = D0, (3.6)

G(C) = (1 − C)
(

1 + C

2

)
, D(C) = D0

[
1 + C

(
1 − C

2

)]
, (3.7)

G(C) = (1 − C)
(

1 − C

2

)
, D(C) = D0

[
1 − C

(
1 − C

2

)]
, (3.8)

see Figures 3.3(a)–(b). In each of these three crowding functions we always have G(0) = 1,
which is reasonable since this condition implies that isolated agents are unaffected by
crowding (Jin et al. 2016a). We first consider G(C) = 1 − C, which has a constant slope
and leads to a constant diffusivity D(C) = D0. As we mentioned in Section 3.4, the
probability of an agent moving to one of its neighbouring vacant sites is always M/6,
which is independent of density. This is consistent with the continuum model where
the standard linear diffusion mechanism means that the diffusivity is independent of
density. Next we consider the concave down crowding function G(C) = (1 − C)(1 + C/2),
which has the property that G(C) > 1 − C for all C ∈ (0, 1). For this crowding function
we obtain an increasing nonlinear diffusivity function D(C) > D0, which is reasonable
since the motility of individuals is reduced less by crowding than in the case where
G(C) = 1 − C, corresponding to linear diffusion. Similarly, the concave up crowding
function G(C) = (1 − C)(1 − C/2), which has the property that G(C) < 1 − C for all
C ∈ (0, 1). For this crowding function we obtain a decreasing nonlinear diffusivity function
D(C) < D0, which again is reasonable since the motility of individuals is reduced more by
crowding than in the case where G(C) = 1 − C, corresponding to linear diffusion.

The first approach to use (3.4) involves specifying a physically reasonable crowding
function, G(C), and using the discrete-to-continuum conservation argument to understand
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Figure 3.3: Two approaches of connecting the movement crowding function
and the diffusivity function. (a) Movement crowding functions G(C) = 1 − C (green),
G(C) = (1 − C)(1 + C/2) (red) and G(C) = (1 − C)(1 − C/2) (black). (b) Diffusivity
functions associated with the movement crowding functions in (a) with D0 = 1. (c)
Diffusivity functions D(C) = D0C (green), D(C) = D0C

2 (red) and D(C) = D0C
3 (black)

with D0 = 1. (d) Movement crowding functions associated with the nonlinear diffusivity
functions in (c).

the corresponding population-level nonlinear diffusivity function, D(C). Of course, we can
also view (3.4) as allowing us to specify a particular nonlinear diffusivity function D(C),
and to understand which particular crowding function is associated with that choice of
D(C). One of the challenges associated with this second approach is that a given D(C)
may not lead to a physically realistic crowding function, as we will now explore. One of the
most standard choices of nonlinear diffusivity is a power law diffusivity, D(C) = D0C

m,
where m is some constant exponent. This model has played a very important role in
population biology models (Simpson et al. 2011; McCue et al. 2019), since combining
this nonlinear diffusivity term with a logistic source term gives rise to the well-studied
Porous-Fisher model (Sherratt and Murray 1990; Witelski 1995a; Murray 1989; Jin et al.
2016b; Buenzli et al. 2020). If we consider m ≥ 0 and G(C) ∈ [0, 1] we can solve (3.4) to
give

G(C) =
(
Cm+2 − 2Cm+1 + Cm

) 2F1(2,m+ 1;m+ 2;C)
m+ 1 , (3.9)

where 2F1(2,m+ 1;m+ 2;C) is the hypergeometric function (Abramowitz and Stegun
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1964). We present three examples with m = 1, 2 and 3, given by

D(C) = D0C, G(C) = (1 − C)
(

1 + 1 − C

C
ln (1 − C)

)
, (3.10)

D(C) = D0C
2, G(C) = (1 − C)

(
2 − C + 2(1 − C)

C
ln (1 − C)

)
, (3.11)

D(C) = D0C
3, G(C) = (1 − C)

(
−C2 − 3C + 6

2 + 3(1 − C)
C

ln (1 − C)
)
. (3.12)

Figures 3.3(c)–(d) compare the specified D(C) with the associated G(C). Here we see that
each D(C) is associated with some particular crowding function, but some of the properties
of these crowding functions are not as physically reasonable as those in Figures 3.3(a)–(b).
One attractive property of the crowding function in Figure 3.3(d) is that G(1) = 0 for each
case, and this is reasonable since we expect motility to cease when the lattice is packed to
maximum density. One less appealing feature of the crowding function in Figure 3.3(d) is
that each case has G(0) = 0, which means that isolated agents do not move, and clearly
this is at odds with our intuition, and experimental evidence, that crowding reduces
motility (Lee et al. 1994; Tremel et al. 2009). Despite this limitation, it is still insightful
and interesting that we are able to take canonical choices of nonlinear diffusivity function
D(C), and to explore what choice of crowding function G(C) leads to those nonlinear
diffusivities.

3.6 Nonlinear diffusion influences population dynamics

In this section we quantify various population dynamics using both the discrete and
associated continuum models. In all simulations, we consider an L × L domain where
L = 100, and we impose periodic boundary conditions along all boundaries. Agents are
initially located in a central vertical strip of width w, which may represent a species along
a river (Lutscher et al. 2010) or a population of cells in a scratch assay (Jin et al. 2016b).
For the continuum model, since the initial distribution is independent of the vertical
location and evolves with periodic boundary conditions, the population density remains
independent of the vertical position for all t > 0 (Simpson 2009). Therefore, Equation (3.3)
simplifies to

∂C(x, t)
∂t

= ∂

∂x

(
D(C(x, t))∂C(x, t)

∂x

)
+R(C(x, t)), (3.13)

where C(x, t) represents the average column density of population (Simpson et al. 2010a;
Simpson 2009). We numerically solve Equation (3.13) and compute

C(t) = 1
L

∫ L

0
C(x, t) dx, (3.14)
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which is the total population density across the whole domain. We apply the method of
lines to solve (3.13) numerically and full details of the numerical method is given in the
Supplementary Material.

To quantify results from the discrete model we always consider performing V identically
prepared realisations, and use this data to calculate the average occupancy of site s,

C̄s = 1
V

V∑

v=1
C(v)

s (t), (3.15)

where C(v)
s (t) ∈ {0, 1} is the occupancy of site s at time t in the vth identically-prepared

realisation. As the initial occupancy is independent of the vertical position, we can denote
the average column density at time t = nτ as

⟨C(x, t)⟩ = 1
V J

V∑

v=1

J∑

j=1
C(v)(i, j, n), (3.16)

which corresponds to C(x, t) in the continuum model, where indexes i and j, indicating
the position of site s, relate to position (x, y). We also compute the total population
density across the whole domain at time t = nτ as

⟨C(t)⟩ = 1
V IJ

V∑

v=1

J∑

j=1

I∑

i=1
C(v)(i, j, n), (3.17)

which corresponds to C(t) in the continuum model.

Figures 3.4(a)-(b) show results from both the discrete and continuum models with
G(C) = 1 − C and D(C) = D0, corresponding to linear diffusion. Discrete simulations
are performed with M = 1 and P = 6/1000, leading to D0 = 1/4 and λ = 6/1000 in
the continuum model. For the discrete model, we initially locate agents in the central
vertical strip with width w = 10, which means that the initial condition for (3.13) is
C(x, 0) = 1 for x ∈ [45, 55] and C(x, 0) = 0 elsewhere. Comparing C(x, t) and ⟨C(x, t)⟩
shows that the match between the discrete and continuum results is excellent. Moreover,
the density eventually reaches zero everywhere, which suggests that the population goes
extinct. We then consider a larger width w = 30, and compare ⟨C(x, t)⟩ with C(x, t)
at t = 800, 1600, 2400 in Figure 3.4(b). The solutions of (3.14) also match well with
the averaged data from discrete simulations. In this case, the column density eventually
reaches the carrying capacity everywhere, which suggests that the population survives.

Next, we consider the same initial conditions except that we use G(C) = (1−C)(1+C/2)
in the discrete model and the increasing D(C), given by (3.7), in the continuum model.
Results in Figure 3.4(c)-(d) correspond to w = 10 and w = 30, respectively. Again, the
continuum and discrete results match well. The population goes extinct with w = 10, but
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Figure 3.4: Comparisons of discrete and continuum results. (a)–(f) ⟨C(x, t)⟩ (red)
and C(x, t) (blue). We use the linear diffusion given by (3.6) in (a)–(b), the increasing
D(C) given by (3.7) in (c)–(d), and the decreasing D(C) given by (3.8) in (e)–(f). The
solid black lines in (a), (c), (e) indicate that we consider an initial vertical strip with
w = 10. Similarly, the solid black lines in (b), (d), (f) indicate that we consider an initial
vertical strip with w = 30. We show the column density at t = 200, 400, 600 in (a), (c)
and (e), at t = 800, 1600, 2400 in (b) and (d), and at t = 1600, 3200, 4800 in (f). The
arrows in (a)–(f) show the direction of increasing time. (g) The total population density
obtained from the continuum model, C(t), at t = 104 with the linear diffusion (green), the
increasing D(C) (red) and the decreasing D(C) (black).
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survives with w = 30. Comparing results in Figure 3.4(a)-(b) with those in Figure 3.4(c)-
(d) shows that the evolution of C(x, t) is different, and this difference is due to the role of
nonlinear diffusion. Traditionally, if we were working with the continuum model alone,
it would be difficult to provide a physical interpretation of these differences, but in our
framework we can explain these differences through our simple crowding function, G(C).
We then use G(C) = (1 − C)(1 − C/2) in the discrete model and the decreasing D(C)
given by (3.8) in the continuum model in Figures 3.4(e)–(f). In this case the continuum
and discrete results reasonably match. Again, the population goes extinct with w = 10,
but survives with w = 30.

Results in Figure 3.4(a)–(f) indicate the continuum limit of our discrete model provides
an accurate approximation of the stochastic population dynamics for these three choices
of crowding functions. In the Supplementary Material, we show that the discrete and
continuum results also match well when we consider the power law diffusivity. A natural
question that arises when confronted with these results is the following: introducing a
nonlinear diffusivity function changes the rate at which the population spreads across the
domain, and we wish to understand how these differences affect the long-term survival or
extinction of the bistable population. To begin to explore this question we now vary the
initial width of the vertical strip w ∈ [10, 30], and show the total population density of
the continuum model after a long period of time t = 104, with the three D(C) functions,
given by (3.6)–(3.8) in Figure 3.4(g). Results in Figure 3.4(g) show that solutions of the
continuum model with these three D(C) functions lead to different critical values of w
that separate long-term survival from long-term extinction. This numerical exploration
shows that the fate of bistable populations depends upon the choice of D(C). We will now
take advantage of our discrete-to-continuum framework to interpret how different choices
of D(C) either enhance or suppress population extinction.

3.7 Interpretation of how D(C) affects extinction

To understand how different choices of D(C) affect long-term survival or extinction,
we now derive mathematical expressions for the average flux of agents in the discrete
model in a general setting. We consider an agent at site s, at location (x, y), where the
occupancy is C(x, y, t). Assuming that the density is sufficiently smooth, the densities
at the neighbouring sites can be obtained by expanding C(x, y, t) in a truncated Taylor
series,

C1,2 = C ∓ ∆∂C

∂x
+ O(∆2),

C3,5 = C − ∆
2
∂C

∂x
+ O(∆2),

C4,6 = C + ∆
2
∂C

∂x
+ O(∆2),
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Figure 3.5: Schematic diagram showing the six neighbouring sites surrounding
site s. The blue arrows indicate potential movement events that could change the
occupancy of site s. The spacing between site s and its neighbouring sites is ∆.

where, for convenience, we denote C(x, y, t) as C and index the densities at neighbouring
sites with subscripts as shown in Figure 3.5. The transition probability of an agent moving
out of site s to one of its neighbouring sites si, for i = 1, 2, 3, . . . , 6, is

P−
i = MCG(K)

6(1 −K) (1 − Ci).

Similarly, the transition probability of an agent moving from site si into site s is

P+
i = MCiG(Ki)

6(1 −Ki)
(1 − C).

Therefore, combining these expressions for the transition probabilities with the geometry
of the lattice in Figure 3.5, allows us to write down an expression for the horizontal
component of the net flux of agents at site s,

Jx = ∆
2τ
[(

2P−
2 + P−

4 + P−
6

)
+
(
2P+

1 + P+
3 + P+

5

)]

− ∆
2τ
[(

2P+
2 + P+

4 + P+
6

)
+
(
2P−

1 + P−
3 + P−

5

)]
.

(3.18)

Substituting the expressions for the transition probabilities into (3.18) and then expanding
the resulting terms in truncated Taylor series about site s gives

Jx = −M∆2

4τ

[
C

dG(C)
dC + 1 + C

1 − C
G(C)

]
∂C

∂x
+ O(∆3), (3.19)

We note that (3.19) can be written as

Jx = −D(C)∂C
∂x

, (3.20)
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where D(C) is the same as (3.4). Following a similar conservation argument, the flux of
agents in the vertical direction can be written as

Jy = −D(C)∂C
∂y

. (3.21)

For all simulations in this work our initial condition is independent of vertical position so
we have Jy = 0 throughout. It is useful to compare the nonlinear diffusive flux term with
the classical linear diffusion flux. Thus, we re-write (3.20) as

Jx = −D0 (1 +H(C)) ∂C
∂x

, (3.22)

where H(C) can be regarded as a correction that is associated with the effects of nonlinear
diffusion. For example, setting H(C) = 0 means that out nonlinear diffusion term simplifies
to the classical linear diffusion term, whereas setting H(C) > 0 means that the nonlinear
diffusion term is larger than the associated linear diffusion term.

To explore how different choices ofD(C) affect the long-term fate of bistable populations,
we repeat the kinds of simulations we considered in Figure 3.4, and summarise the results
in Figure 3.6 where we consider the linear diffusion, increasing D(C) and decreasing D(C)
functions given by (3.6)–(3.8), respectively. For each diffusivity function we plot H(C)
in Figure 3.6(a). The increasing D(C) leads to H(C) ≥ 0 showing that the nonlinear
flux is greater than the flux associated with the linear diffusion model for C ∈ (0, 1].
In contrast, the decreasing D(C) leads to H(C) ≤ 0 showing that the nonlinear flux is
less than the flux associated with the linear diffusion model for C ∈ (0, 1]. We consider
an initial condition with width w = 20 together with M = 1 and P = 6/1000, which
corresponds to D0 = 1/4 and λ = 6/1000 in the continuum model. Profiles in Figure 3.6(b)
show the solution of the continuum model at t = 200, where we see that the density
profile associated with the increasing D(C) spreads further than the linear diffusion model.
Similarly, the profile associated with the decreasing D(C) spreads less than the linear
diffusion model. These differences in spatial spreading mean that the maximum density
for the increasing D(C) model is less than the maximum density for the linear diffusion
model, which encourages extinction since the bistable source term becomes negative across
a larger area of the domain. This is consistent with the results in Figure 3.6(c) showing
the long-term evolution of C(t), where we see that the population with increasing D(C)
goes extinct whereas the populations with linear diffusion and decreasing D(C) lead to
long-term survival.

Next, we investigate the population dynamics with the nonlinear diffusivity functions
D(C) = D0C

m for m = 1, 2 and 3, with the associated H(C) functions in Figure 3.6(d).
With the same initial conditions and discrete parameters in Figure 6, we show various
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Figure 3.6: Population dynamics with different D(C). (a) H(C) associated with the linear diffusion given by (3.6) (green), increasing
D(C) given by (3.7) (red), and decreasing D(C) given by (3.8) (black). (b) Solutions of Equation (3.13) at t = 200 with these three D(C)
functions. The dashed line is the initial distribution where C(x, 0) = 1 for x ∈ [40, 60] and C(x, 0) = 0 elsewhere. (c) The evolution of C(t)
with these three D(C) functions. We set M = 1 and P = 6/1000 leading to D0 = 1/4 and λ = 6/1000 in (b)–(c). (d) H(C) associated
with D(C) = D0C (green), D(C) = D0C

2 (red) and D(C) = D0C
3 (black). (e) Solutions of Equation (3.13) at t = 2000 with these three

D(C) functions. The dashed line is the initial distribution where C(x, 0) = 1 for x ∈ [40, 60] and C(x, 0) = 0 elsewhere. (f) The evolution
of C(t) with these three D(C) functions. We set M = 1 and P = 1/1000 leading to D0 = 1/4 and λ = 1/1000 in (e)–(f).
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solutions of (3.13) at time t = 2000 in Figure 3.6(e), and C(t) in Figure 3.6(f). The results
in Figure 3.6(d)–(f) for this class of power law D(C) are consistent with the results in
Figure 3.6(a)–(c). Results for m = 1, 2 and 3 lead to a reduction in flux relative to linear
diffusion, but setting m = 1 still leads to sufficient spreading that a larger proportion of
the domain has C < A leading to extinction, whereas setting m > 1 reduces the spreading
so that a smaller proportion of the domain has C < A leading to survival.

Results in Figure 3.6 show that the change of flux influences the speed at which the
population spreads in space. Due to the change of spreading speed, the initial width of the
vertical strip needed for a population to survive changes as well. This suggests that the
nonlinear diffusivity function affects the fate of bistable populations through influencing
the flux of populations. However, in Figure 3.6, we fix the ratio of growth and movement,
P/M , while P/M also influences the fate of bistable populations. Next, we are going to
vary P/M and study the influence of nonlinear diffusion on the fate of a broader range of
populations.

Our results so far show that the long-term survival of the population involves a
complicated relationship between the width of the initial condition w, the time scale of
migration M , the time scale of growth P , as well as the particular nonlinear diffusivity
function D(C). We now systematically explore this relationship by taking the (w,P/M)
phase space and discretising it uniformly for w ∈ [0, 40] and P/M ∈ [1/1000, 40, 1000], as
shown in Figure 3.7. We vary P and fix M = 1 leading to λ = P and D0 = 1/4 in the
continuum model. As we are interested in the long-term outcomes of bistable populations,
we solve (3.13) and calculate C(T ) for a sufficiently long period of time T , so that the
outcome is either C(T ) = 1 or C(T ) = 0. With these simulation outcomes we identify the
boundaries that separate survival and extinction on the phase diagram. Overall, results in
Figure 3.7 show that large w encourages survival, and that for each value of w there is a
threshold value of P/M that determines the eventual survival or extinction of the survival.
In the Supplementary, we show that the boundaries generated from the discrete model are
consistent with the boundaries identified using the continuum model. The main result in
Figure 3.7 is that the curves that delineate the survival/extinction boundary depend upon
the choice of D(C), and we plot three curves for the linear diffusion model, the increasing
D(C) given by (3.7) and the decreasing D(C) given by (3.8). The horizontal dashed line
at P/M = 0.006 highlights results shown previously in Figure 3.4 and Figure 3.6, but this
phase diagram summarises the long-term survival/extinction patterns for a much wider
choice of parameters than we explored in these previous cases.
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Figure 3.7: Phase diagram for the survival and extinction of populations. The
phase space (w,P/M) is uniformly discretised into a rectangular mesh with 41 × 40 nodes,
where w ∈ [0, 40] and P/M ∈ [1/1000, 4/100]. Three curves are the thresholds for the
survival and extinction of populations in the continuum model with the linear diffusion
given by (3.6) (green), increasing D(C) given by (3.7) (red), and decreasing D(C) given
by (3.8) (black). Two cyan dots indicate the parameters P/M = 6/1000 and w = 10 or
w = 30 considered in Figures 3.4. The brown dot indicates the parameters P/M = 6/1000
and w = 20 considered in Figure 3.6.
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3.8 Conclusion and outlook

In this work we consider the question of population survival or extinction, with a focus on
understanding how various migration mechanisms either encourage or suppress extinction.
In the population biology modelling literature, the most common way to study population
dynamics with spatial effects is to use a reaction-diffusion model with a linear diffusion
term to represent migration and a bistable source term to represent birth-death processes.
While most studies employ a linear diffusion mechanism for simplicity, there are many
cases where linear diffusion is inadequate. For example, mathematical models based on
a linear diffusion mechanism do not predict a well-defined front that is often observed
experimentally or in the field. This limitation of linear diffusion is typically overcome by
generalising the constant diffusivity, D, to a nonlinear diffusivity function D(C). One
of the main challenges of working with a nonlinear diffusion framework is the important
question of how to choose the functional form of D(C), and there are conflicting results in
the literature. For example, in the cell migration modelling literature some studies have
found that using a power law diffusivity function D(C) = D0C

m, with m ≥ 1 can lead
to a good match to experimental data (Sherratt and Murray 1990; Sengers et al. 2007;
Jin et al. 2016b). One of the features of these models it that this nonlinear diffusivity is
an increasing function of density. Curiously, other researchers working in precisely the
same field have suggested that a decreasing nonlinear diffusivity function is appropriate,
D(C) = 1/(α+ C), with α > 0 (Cai et al. 2007). This highlights the fact that choosing
an appropriate nonlinear diffusivity function is not always straightforward.

In addition to understanding how to choose an appropriate nonlinear diffusivity function,
a related challenge is to understand how different forms of D(C) affect the long-term
survival or extinction of bistable populations. While it has been established that different
choices of D(C) impacts the long-term survival of populations (Lee et al. 2006), an
intuitive understanding of why different choices of D(C) encourage or suppress extinction
has been lacking. In this work we address this question by working with a very simple
discrete modelling framework on a two-dimensional hexagonal lattice, where migration
and birth/death events are controlled through relatively simple, easy-to-interpret crowding
functions. In particular we work with a migration crowding function G(C), which provides
a very simple measure of how the ability of an individual agent to move is reduced as
a function of density, C. Our discrete-to-continuum averaging arguments provides a
mathematical relationship which allows us to either: (i) specify G(C) and determine the
associated nonlinear diffusivity function D(C); or, (ii) specify D(C) and determine the
associated crowding function G(C). This new relationship allows us to explore how the
averaged population-level flux of agents varies relative to the classical linear diffusion
model for a particular crowding function, G(C). We find that choices of G(C) that increase



Chapter 3. The role of nonlinear diffusion 89

0

1

A

x

C(x, t)

Jx R(C)

Figure 3.8: Schematic profile of the spreading population (blue) superimposed
on the Allee threshold C = A (dashed cyan) and the initial density distribution
C(x, 0) (dashed black). Spatial spreading of the population is controlled by the diffusive
flux, Jx, that is proportional to the nonlinear diffusivity function, D(C), and the direction
of the flux is indicated (green arrows). This flux affects: (i) the proportion of the domain
where C < A giving rise to a negative source term (downward red arrows), and (ii) the
proportion of the domain where C > A, giving rise to a positive source term (upward red
arrows).

the flux encourage population extinction relative to the classical linear diffusion model,
whereas choices of G(C) that decrease the flux suppresses population extinction. These
results are summarised in the conceptual diagram in Figure 3.8 showing that, for the initial
conditions considered, increasing the flux of agents tends to reduce the density across
the domain as the population spreads, meaning that a greater proportion of the domain
has C < A, where the bistable source term acts to reduce the population and encourage
extinction.

There are many ways that our work can be extended. For example, all simulation
results presented here consider a very simple one-dimensional vertical strip initial condition.
These results can be generalised to other initial shapes, such as circular, square or more
complicated initial populations, and the mathematical and computational tools presented
in this work can be applied directly to this generalisation. We show that nonlinear diffusion
plays the same role as linear diffusion on the fate of populations when we consider the
simple well-mixed initial distribution in the Supplementary Material. There are also many
ways that the current modelling framework can be extended. For example, the discrete
model can be extended to consider multiple interacting subpopulations, and the same
discrete-to-continuum averaging approach could be used to construct a continuum limit
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model, which would take the form of a system of coupled partial differential equation models
(Shigesada et al. 1979; Painter and Sherratt 2003; Hughes et al. 2010; Mart́ınez-Garćıa
et al. 2020). We leave this extension for future consideration.

3.9 Additional results

3.9.1 Algorithm for discrete simulations

We consider an L× L domain with L = 100. Each lattice site is indexed by (i, j), and has
a unique Cartesian coordinate,

(x, y) =





(
i∆, j∆

√
3

2

)
, if j is even,

((
i+ 1

2

)
∆, j∆

√
3

2

)
, if j is odd.

(3.23)

To approximate the size of the domain in discrete simulations, we create a two-dimensional
hexagonal lattice with 100 × 116 uniformly distributed nodes. The pseudo-code for a single
realisation of the stochastic model is given in Algorithm 2.
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Algorithm 2: Pseudo-code for a single realisation of the stochastic model
1 Create a two-dimensional I × J hexagonal lattice; Distribute agents with

vertical strip initial conditions; The total number of lattice site is IJ ;
2 Set t = 0; Calculate total agents Q(t);
3 while t < tend and Q(t) > 0 and Q(t) ≤ IJ do
4 t = t+ τ ;
5 Q(t) = Q(t− τ);
6 B1 = 0; B2 = 0;
7 Draw two random variables: β1 ∼ U[0, 1], β2 ∼ U[0, 1];
8 while B1 < Q(t) do
9 B1 = B1 + 1;

10 Randomly choose an agent s;
11 if β1 < M then
12 Calculate K̄ (m)

s and G(K̄ (m)
s );

13 Draw a random variable: γ1 ∼ U[0, 1];
14 if γ1 < G(K̄ (m)

s ) then
15 Randomly choose a vacant site in N1(s) and move agent to

chosen site
16 else
17 Nothing happens;
18 end
19 else
20 Nothing happens;
21 end
22 end
23 while B2 < Q(t) do
24 B2 = B2 + 1;
25 Randomly choose an agent s;
26 if β2 < P then
27 Calculate K(g)

s and F (K̄ (g)
s );

28 Draw a random variable: γ2 ∼ U[0, 1];
29 if F (K̄ (g)

s ) > 0 then
30 if γ2 < F (K̄ (g)

s ) then
31 Randomly choose a vacant site in N4(s) and place a new

agent on chosen site;
32 Q(t) = Q(t) + 1
33 else if F (K̄ (g)

s ) < 0 then
34 if γ2 < −F (K̄ (g)

s ) then
35 Remove agent;
36 Q(t) = Q(t) − 1;
37 else
38 Nothing happens;
39 end
40 else
41 Nothing happens;
42 end
43 end
44 end
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3.9.2 Derivation of the continuum limit

Considering the spatial template with r = 1 for the movement mechanism and r ≥ 1 for
the growth mechanism of agents, the expected change in occupancy of site s during the
time interval from t to t+ τ is given as

δ(C̄ s) = M

|N1|
(1 − C̄ s)

∑

s′∈N1{s}
C̄ s′

G(K̄ (m)
s′ )

1 − K̄
(m)
s′

−MC̄ sG(K̄ (m)
s )

+ P

|Nr|
(1 − C̄ s)

∑

s′∈Nr{s}
H(F (K̄ (g)

s′ ))C̄ s′
F (K̄ (g)

s′ )
1 − K̄

(g)
s′

− (1 −H(F (K̄ (g)
s ))PC̄ sF (K̄ (g)

s ).

(3.24)

As we know that the continuum limit of the last two terms in Equation (3.24) leads to a
source term λCF (C) with r ≥ 1 (Jin et al. 2016a), we focus on the movement mechanism,
that is, the first two terms on the right hand side of Equation (3.24). For convenience, we
will omit the overlines on notations in the following content.

It is useful to first write the general form of the Taylor series relating the occupancy of
sites (x+ a, y + b),

Cx+a,y+b =Cx,y + (a∆)1

1!
∂Cx,y

∂x
+ (b∆)1

1!
∂Cx,y

∂y

+ (a∆)2

2!
∂C2

x,y

∂x2 + 2ab∆2

2!
∂C2

x,y

∂x∂y
+ (b∆)2

2!
∂C2

x,y

∂y2 + O(∆3).
(3.25)

We represent the six nearest neighbouring sites of site s located at (x, y) as site s1 with
(x − ∆, y); site s2 with (x + ∆, y); site s3 with (x − ∆/2, y + ∆

√
3/2); site s4 with (x +

∆/2, y+∆
√

3/2); site s5 with (x−∆/2, y−∆
√

3/2) and site s6 with (x+∆/2, y−∆
√

3/2).
That is, N1 = {s1, s2, s3, s4, s5, s6}. The local density of s is obtained by summing the
Taylor series of sites in N1{s}, that is,

K(m)
s = 1

6
∑

s′′∈N1{s}
Cs′′ = Cs +

(
∂2Cs

∂x2 + ∂2Cs

∂y2

)
∆2

4 + O(∆3). (3.26)

Similarly, the local density of s1 is obtained by summing the Taylor series of sites in
N1{s1}, that is,

K(m)
s1 = 1

6
∑

s′′∈N1{s1}
Cs′′

= Cs − ∂Cs

∂x
∆ + ∂2Cs

∂x2
∆2

2 +
(
∂2Cs

∂x2 + ∂2Cs

∂y2

)
∆2

4 + O(∆3).
(3.27)
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For simplification we rewrite Equation (3.27) as K(m)
s1 = Cs + C̃s1 , where C̃s1 ∼ O(∆).

Subsequently, the movement crowding function at s1 can be expanded as

G
(
K(m)

s1

)
= G

(
Cs + C̃s1

)
,

= G (Cs) + dG (Cs)
dC C̃s1 + d2G (Cs)

dC2
C̃2

s1

2 .
(3.28)

The expansions of G(K(m)
s2 ), G(K(m)

s3 ),...,G(K(m)
s6 ) have similar forms to (3.28). We then

go back to the first term on the right hand side of (3.24), which gives

M

6 (1 − Cs)
∑

s′∈N1{s}
Cs′

G(K(m)
s′ )

1 −K
(m)
s′

. (3.29)

For convenience we further drop the s notation so that Cs becomes C and Cs1 becomes
C1. Subsequently, (3.29) becomes

M

6 (1 − C)
6∑

i=1
Ci

G(K(m)
si

)
1 −K

(m)
si

. (3.30)

Moreover, we will use two notations

A =
(
∂2Cs

∂x2 + ∂2Cs

∂y2

)
∆2

4 , B =


(
∂Cs

∂x

)2

+
(
∂Cs

∂y

)2

 ∆2

4 , (3.31)

in the following content. Expanding the term related to site s1 in (3.30) gives

M

6 (1 − C)
(
C + C̃1 − A

)

(
G(C) +G′(C)C̃1 +G′′(C)C̃

2
1

2

)

1 −
(
C + C̃1

)

=M6

[
CG(C) +

(
CG′(C) + G(C)

1 − C

)
C̃1

]

+ M

6

[(
G(C)

(1 − C)2 + G′(C)
1 − C

+ CG′′(C)
2

)
C̃2

1 −G(C)A
]
,

to order of ∆3. Here, the prime denotes the ordinary differentiation with respect to C.
The terms related to other sites can be obtained in a similar way. Therefore, expanding
all terms in (3.30) and neglecting terms of order O(∆3) gives

M

6

[
6CG(C) +

(
CG′(C) + G(C)

1 − C

) 6∑

k=1
C̃k

]

+ M

6

[(
G(C)

(1 − C)2 + G′(C)
1 − C

+ CG′′(C)
2

) 6∑

k=1
C̃2

k − 6G(C)A
]
.

(3.32)
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Furthermore, since we have

6∑

k=1
C̃k = 12

(
∂2C

∂x2 + ∂2C

∂y2

)
∆2

4 + O(∆3),

= 12A + O(∆3),
(3.33)

and
6∑

k=1
C̃2

k = 12


(
∂C

∂x

)2

+
(
∂C

∂y

)2

 ∆2

4 + O(∆3),

= 12B + O(∆3),
(3.34)

Equation (3.32) becomes

MCG(C) +M

(
2CG′(C) −G(C) + 2G(C)

1 − C

)
A

+M

(
CG′′(C) + 2G(C)

(1 − C)2 + 2G′(C)
1 − C

)
B + O(∆3).

(3.35)

Remind that the second term in (3.24) is

MCG(K̄ (m)
s ) = MCG(C) +MCG′(C)C̃,

= MCG(C) +MCG′(C)A + O(∆3).
(3.36)

Then combining (3.35) and (3.36) gives

δ(Cs) =
(
CG′(C) + 1 + C

1 − C
G(C)

)
MA

+
(
CG′′(C) + 2G(C)

(1 − C)2 + 2G′(C)
1 − C

)
MB,

(3.37)

to order of ∆3. Dividing both sides of the resulting expression by τ , and letting ∆ → 0
and τ → 0 jointly, with the ratio ∆2/τ held constant, leads to the following nonlinear
reaction-diffusion equation,

∂C

∂t
= ∇ ·

[
D0

(
CG′(C) + 1 + C

1 − C
G(C)

)
∇C

]
+ λCF (C), (3.38)

where
D0 = M

4 lim
∆,τ→0

∆2

τ
, λ = lim

τ→0

P

τ
. (3.39)

If we define
D(C) = D0

[
CG′(C) + 1 + C

1 − C
G(C)

]
, (3.40)
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then the continuum limit is written as

∂C

∂t
= ∇ · [D(C)∇C] + λCF (C). (3.41)

3.9.3 Numerical method

To numerically calculate solutions of the reaction-diffusion equation

∂C

∂t
= ∂

∂x

(
D(C)∂C

∂x

)
+R(C), (3.42)

on 0 < x < L, we first discretise the spatial derivative in Equation (3.42) with an
(I + 1) uniformly distributed nodes with spacing δx > 0, which are indexed by xi with
i = 0, 1, 2, ..., I satisfying I = L/δx. We leave the time derivative continuous and obtain

dCi

dt = 1
2δx2 (D(Ci+1) +D(Ci))Ci+1

− 1
2δx2 (D(Ci+1) + 2D(Ci) +D(Ci−1))Ci

+ 1
2δx2 (D(Ci) +D(Ci−1))Ci−1

+R(Ci).

(3.43)

This equation is valid for interior nodes, and is modified on the boundary nodes to simulate
periodic boundary conditions. This system of I coupled ordinary differential equations is
then integrated through time using MATLABs function ode45 (MATLAB 2020).

3.9.4 Discrete-continuum comparisons with power-law diffusivity

Figure 3.9 show the continuum and discrete results obtained with the nonlinear diffusivity
functions D(C) = D0C

m for m = 1, 2, 3 and the corresponding movement crowding
functions. Discrete simulations are performed with parameters M = 1 and P = 1/1000,
leading to D0 = 1/4 and λ = 1/1000 in the continuum model. For the discrete model, we
average the simulation data over 40 times of identically-prepared realisations, and initially
locate agents in the middle of the domain with a vertical strip with width w = 20, which
means that the initial condition for the continuum model is C(x, 0) = 1 for x ∈ [40, 60]
and C(x, 0) = 0 elsewhere. We compare C(x, t) with ⟨C(x, t)⟩ in Figures 3.9(a)–(c), and
compare C(t) with ⟨C(t)⟩ in Figures 3.9(d)–(f). Results in Figure 3.9 indicate that the
match between the solutions of continuum model and the appropriately averaged data
from discrete model is excellent.
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Figure 3.9: Population dynamics with different nonlinear diffusivity functions.
(a) C(x, t) (blue) obtained with D(C) = D0C, D(C) = D0C

2 and D(C) = D0C
3,

respectively, and ⟨C(x, t)⟩ (red) obtained with the corresponding G(C), at t =
1000, 3000, 5000. The dashed lines in (a)–(c) indicate the initial distribution, where
C(x, 0) = 1 for x ∈ [40, 60] and C(x, 0) = 0 elsewhere. The arrows in (a)–(c) show the
direction of increasing time. (d)–(f) C(t) (dashed cyan) and ⟨C(t)⟩ (solid orange) obtained
with D(C) = D0C, D(C) = D0C

2, D(C) = D0C
3, respectively. Note that we consider

M = 1 and P = 1/1000 leading to D0 = 1/4 and λ = 1/1000.

3.9.5 Phase diagrams with the well-mixed or vertical strip initial distributions

We show the phase diagram for the survival and extinction of the well-mixed populations
with G(C) = 1 − C, G(C) = (1 − C)(1 + C/2) and G(C) = (1 − C)(1 − C/2) in
Figure 3.10(a)–(c), respectively. In our discrete simulations we randomly distribute a fixed
number of agents on an L× L domain where L = 100, so that the density is, on average,
B at any site. We consider the (B,P/M) phase space and discretise it into 51 × 40 nodes,
where we change B ∈ [0.1, 0.6] and change P/M ∈ [1/1000, 4/100] by varying P where
M = 1 in the discrete model, and varying λ = P where D0 = 1/4 in the continuum
model. Since different identically-prepared realisations of the stochastic model can lead to
either survival or extinction of the population, for each pair of parameters w and P/M ,
we generate 40 identically-prepared realisations and compute the survival probability,
S ∈ [0, 1], as the fraction of realisations in which the population survives after a sufficiently
long period of time T , which we take T = max(30/P, 104) in practice. The blue shading
in Figures 3.10(a)–(c) shows the survival probability S. For the well-mixed population,
the continuum model simplifies to an ODE

dC(t)
dt = λC(t)F (C(t)), (3.44)
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Figure 3.10: Phase diagrams for the survival and extinction of populations with
the well-mixed initial distribution and different G(C). (a)–(c) Phase diagrams with
G(C) = 1 −C, G(C) = (1 −C)(1 +C/2) and G(C) = (1 −C)(1 −C/2), respectively. The
phase space is descretised into a rectangular mesh with 51 × 40 nodes for B ∈ [1/10, 1/60]
and P/M ∈ [1/1000, 4/100] where M = 1. The blue shading is the survival probability in
the discrete model. The red line in each phase diagram indicates B = 0.4, which relates to
the Allee threshold, A = 0.4, and is the survival/extinction boundary for the continuum
model.

where F (C) = 2.5(1 − C)(C − A) with the Allee threshold A = 0.4. Therefore, the
boundary separating the survival and extinction of populations in the continuum model
is always the vertical line B = 0.4, associated with the Allee threshold A = 0.4. Results
in Figure 3.10 indicate that the three movement crowding functions lead to very similar
boundaries for the survival and extinction of populations in the discrete model. This
suggests that nonlinear diffusion plays the same role as linear diffusion on the fate of
well-mixed populations.

We then consider the vertical strip initial distribution and compare the continuum
and discrete results. We take the (w,P/M) phase space and discretise it uniformly into
a rectangular mesh with 41 × 40 nodes, where w ∈ [0, 40] and P/M ∈ [1/1000, 4/100].
We vary P and fix M = 1 in the discrete model, leading to λ = P and D0 = 1/4 in
the continuum model. We show the survival probability on the (w,P/M) phase space
in Figure 3.11, and overlap with the boundary that separates survival and extinction of
the population in the continuum model. We show the results obtained with the linear
diffusion, increasing D(C) and decreasing D(C) in Figure 3.11(a)–(c), respectively. The
boundaries separating survival and extinction in discrete and continuum models are very
close on the phase diagram, which indicates that the discrete and continuum models are
consistent in generating the long-term outcomes of bistable populations.
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Figure 3.11: Phase diagrams for the survival and extinction of populations
with both discrete and continuum models. (a)–(c) Phase diagrams for the survival
and extinction of populations with G(C) = 1, G(C) = (1 − C)(1 + C/2) and G(C) =
(1 − C)(1 − C/2), respectively. The phase space is descretised into a rectangular mesh
with 41 × 40 nodes for w ∈ [0, 40] and P/M ∈ [1/1000, 4/100] where M = 1. The blue
shading is the survival probability in the discrete model. The solid line in each phase
diagram is the survival/extinction boundary obtained from the continuum model.



Chapter 4

Smooth travelling waves with nonlinear
diffusion and logistic growth source terms

4.1 Preamble

This chapter is a paper published in the Journal of Mathematical Biology

Li, Y., van Heijster, P., Marangell, R., Simpson, M. J., 2020. Travelling wave solutions
in a negative nonlinear diffusion–reaction model. Journal of Mathematical Biology, 81:
1495-1522. DOI:10.1007/s00285-020-01547-1. arXiv Preprint

In this chapter, we address the research question 3 of the thesis: What are the existence
and stability properties of smooth travelling wave solutions with nonlinear diffusion and
logistic growth source terms? We focus on a specific movement mechanism of individuals
in a one-dimensional discrete model, which leads to a nonlinear diffusivity function that
changes signs twice in the domain of our interest. We transform the reaction-diffusion
equation to a system of first-order ODEs by using the travelling wave coordinate and a
dynamical system approach. To address the problem of singularities in the ODE system,
we desingularise the system by using a stretched variable. We then study the desingularised
system with the method of phase plane analysis to prove the existence of travelling wave
solutions. We also study the spectral stability of travelling wave solutions, and explore
how the stability property relates to the speed of travelling wave solutions. Note that the
geometric approach developed here acts as a reference approach for further studies in the
next chapter, where extensions are made by adding higher order perturbation terms to
the original equation.
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4.2 Abstract

We use a geometric approach to prove the existence of smooth travelling wave solutions
of a nonlinear diffusion-reaction equation with logistic kinetics and a convex nonlinear
diffusivity function which changes sign twice in our domain of interest. We determine
the minimum wave speed, c∗, and investigate its relation to the spectral stability of the
travelling wave solutions.

4.3 Introduction

Invasion processes have been studied with mathematical models, especially partial differ-
ential equations (PDEs), for many years; see, for example, Murray (1989) and references
therein. These models describe, for instance, how cells are transported to new areas in
which they persist, proliferate, and spread (Mack et al. 2000). To incorporate information
about individual-level behaviours in invasion processes, lattice-based discrete models are
widely used (Deroulers et al. 2009; Johnston et al. 2017, 2012; Simpson et al. 2010c). In
these discrete models, individual agents are permitted to move, proliferate and die on a
lattice, and the average density of agents is related to PDE descriptions obtained using
truncated Taylor series in the continuum limit (Anguige and Schmeiser 2009; Codling
et al. 2008). The macroscopic behaviour described by the PDEs in terms of expected
agent density reflects the individual microscopic behaviour. Travelling wave solutions are
of particular interest among the macroscopic behaviours arising from these continuum
models, as they reflect various modes of microscopic invasive behaviours. One famous
model exhibiting travelling wave solutions is the Fisher-KPP equation (KPP refers to
Kolmogorov, Petrovsky, Piskunov) proposed in 1937 to study population dynamics with
linear diffusion and logistic growth (Fisher 1937; Kolmogorov et al. 1937). The existence
and stability of travelling wave solutions of the Fisher-KPP equation has been widely
studied, see, for instance, Aronson and Weinberger (1978); Fisher (1937); Harley et al.
(2015); Kolmogorov et al. (1937); Larson (1978); Murray (1989).

The Fisher-KPP equation can be derived as a continuum limit of a discrete model
under the assumption that the population of cells can be treated as a uniform population
without any differences in subpopulations (Bramson et al. 1986). However, differences
between individual and collective behaviour have been observed in cell biology and ecology
in practice. For instance, in cell biology, isolated cells called leader cells are more motile
than the grouped cells, called follower cells (Poujade et al. 2007). Also, contact interactions
lead to different motility rates between isolated cells and grouped cells in the migration of
breast cancer cells (Simpson et al. 2010c, 2014), glioma cells (Khain et al. 2011), would
healing processes (Khain et al. 2007) and the development of the enteric nervous system
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(Druckenbrod and Epstein 2007). In ecology, the population growth rate of some species
decreases as their populations reach small sizes or low densities (Courchamp et al. 1999).
This phenomenon is usually referred to as the Allee effect (Allee and Bowen 1932).

To describe the invasion process and reflect the difference between collective and
individual behaviour, Johnston and coworkers introduced a discrete model considering
birth, death and movement events of agents that are isolated or grouped on a simple one-
dimensional lattice (Johnston et al. 2017). A discrete conservation statement describing
δUj, which is the change of the occupancy of a lattice site j during a time step τ , gives

δUj =P
i
m

2 [Uj−1(1 − Uj)(1 − Uj−2) + Uj+1(1 − Uj)(1 − Uj+2)

− 2Uj(1 − Uj−1)(1 − Uj+1)]

+ P g
m

2 [Uj−1(1 − Uj) + Uj+1(1 − Uj) − Uj(1 − Uj−1) − Uj(1 − Uj+1)]

− P g
m

2 [Uj−1(1 − Uj)(1 − Uj−2) + Uj+1(1 − Uj)(1 − Uj+2)

− 2Uj(1 − Uj−1)(1 − Uj+1)]

+
P i

p

2 [Uj−1(1 − Uj)(1 − Uj−2) + Uj+1(1 − Uj)(1 − Uj+2)]

+
P g

p

2 [Uj−1(1 − Uj) + Uj+1(1 − Uj)]

− P g
p

2 [Uj−1(1 − Uj)(1 − Uj−2) + Uj+1(1 − Uj)(1 − Uj+2)]

− P i
d[Uj(1 − Uj−1)(1 − Uj+1)] − P g

dUj + P g
d [Uj(1 − Uj−1)(1 − Uj+1)].

(4.1)

Here, Uj represents the probability that an agent occupies lattice j, thus, 1 −Uj represents
the probability that lattice j is vacant (Simpson et al. 2010a). P i

m and P g
m represents the

probability per time step that isolated or grouped agent, respectively, attempts to step
to a nearest neighbour lattice site; P i

p and P g
p represents the probability per time step

that an isolated or grouped agent, respectively, attempts to undergo a proliferation event
and deposit a daughter agent at a nearest neighbour lattice site; P i

d and P g
d represents

the probability per time step that an isolated or grouped agent, respectively, dies, and
is removed from the lattice. See Figure 4.1a for a schematic of the lattice-based discrete
model.

To obtain a continuous description, Johnston and coworkers treated Uj as a continuous
function, U(x, t), and divide (4.1) by the time step τ . Next, they expanded all terms in
(4.1) in a Taylor series around x = j∆, where ∆ is the lattice spacing, and neglect terms
of O(∆3) (Simpson et al. 2010a). As ∆ → 0 and τ → 0 with the restriction that the ratio
∆2/τ held constant (Codling et al. 2008; Simpson et al. 2010a), they obtained a nonlinear
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diffusion-reaction equation

∂U

∂t
= ∂

∂x

(
D(U)∂U

∂x

)
+R (U) , (4.2)

where
D (U) = Di

(
1 − 4U + 3U2

)
+Dg

(
4U − 3U2

)
, (4.3)

is the nonlinear diffusivity function, and

R (U) = λgU (1 − U) + (λi − λg −Ki +Kg)U (1 − U)2 −KgU, (4.4)

is the kinetic term. Furthermore, the parameters are given by

Dg = lim
∆,τ→0

P g
m∆2

2τ , Di = lim
∆,τ→0

P i
m∆2

2τ , λg = lim
τ→0

P g
p

τ
,

λi = lim
τ→0

P i
p

τ
, Kg = lim

τ→0

P g
d

τ
, Ki = lim

τ→0

P i
d

τ
,

where we require that P i
p, P

g
p , P

i
d, P

g
d are O(τ) (Simpson et al. 2010a). Here, U(x, t) denotes

the total density of the agents at position x ∈ R and time t ∈ R+; Di ≥ 0 and Dg ≥ 0 are
diffusivities of the isolated and grouped agents, respectively; λi ≥ 0 and λg ≥ 0 are the
birth rates of isolated and grouped agents, respectively; Ki ≥ 0 and Kg ≥ 0 are the death
rates of isolated and grouped agents, respectively (Johnston et al. 2017).

In this manuscript, we study the effect that aggregation, which is modelled with
a nonlinear diffusivity function that goes negative (Simpson et al. 2010b), has on the
dynamics of the model. Therefore, we assume that Di > 4Dg such that D(U) given by
(4.3) is convex and changes sign twice in our domain of interest (however, see Section 4.6.2
for a short discussion related to the other case). For simplicity, we furthermore assume
equal proliferation rates, λ = λi = λg, and no agent death, Ki = Kg = 0. This way, the
kinetic term simplifies to a logistic term

R (U) = λU (1 − U) , (4.5)

and D (U) has a sign condition:

D (U) > 0 for U ∈ [0, α) ∪ (β, 1] , D (U) < 0 for U ∈ (α, β) , (4.6)

where the interval where D(U) < 0 is centred around U = 2/3, and α, β are given by

α = 2
3 −

√
D2

i + 4D2
g − 5DiDg

3 (Di −Dg) , β = 2
3 +

√
D2

i + 4D2
g − 5DiDg

3 (Di −Dg) , (4.7)
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Figure 4.1: (a) describes one possible time step of the lattice-based discrete model of
(Johnston et al. 2017): a new grouped agent (agent E) is born and the grouped agent
B moves from lattice site 5 to lattice site 4 to become an isolated agent. Pink circles
represent isolated agents with birth rate P i

p, death rate P i
d and motility rate related to

P i
m; cyan circles represent grouped agents with birth rate P g

p , death rate P g
d and motility

rate P g
m. (b) presents a diffusivity function D(U), given by (4.3) (cyan curve) satisfying

Di > 4Dg which makes D(U) change sign twice on (0, 1), and the kinetic term R(U), given
by (4.5) (orange curve) which is positive on (0, 1) and zero at end points U = 0 and U = 1.

with 1/3 < α < 2/3 and 2/3 < β < 1, see Figure 4.1b. That is, we have negative diffusion
for U ∈ (α, β). The relation that Di is larger than Dg indicates that isolated agents are
more active than grouped agents, which agrees with the experimental observation that
leader cells are more motile than follower cells (Poujade et al. 2007; Simpson et al. 2014).

Ferracuti et al. (2009) showed the existence of travelling wave solutions for a range of
positive wave speeds for (4.2) with general convex D(U) that changes sign twice on (0, 1)
and R(U) given by (4.5) based on the comparison method introduced by Aronson and
Weinberger (1978). Related studies proved the existence of travelling wave solutions for a
similar range of speeds for nonlinear diffusion-reaction equations with different D(U) and
different R(U): Malaguti and Marcelli (2003) studied (4.2) with a logistic kinetic term
and a nonlinear diffusivity function satisfying

D(0) = 0 and D(0) > 0 for all U ∈ (0, 1].

Maini et al. (2006) studied (4.2) with a logistic kinetic term and a nonlinear diffusivity
function satisfying

D(U) > 0 in (0, θ) and D(U) < 0 in U ∈ (θ, 1), (4.8)

for some given θ ∈ (0, 1) and with D(0) = D(θ) = D(1) = 0. In addition, Maini et al.
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(2007) studied (4.2) with (4.8) and a bistable kinetic term satisfying

R(0) = R(ϕ) = R(1) = 0,

R(U) < 0 in U ∈ (0, ϕ), R(U) > 0 in U ∈ (ϕ, 1).

In this manuscript, we show the following result:

Theorem 1 Model (4.2) with (4.3) and (4.5) and Di > 4Dg supports smooth monotone
nonnegative travelling wave solutions for

c ≥ 2
√
λDi =: c∗. (4.9)

This theorem agrees with the result of Ferracuti et al. (2009), and because of the specific
nonlinear diffusivity function, we can further extend their results. Moreover, instead of the
comparison method used by Ferracuti et al. (2009), we use a geometric approach to prove
the existence of travelling wave solutions. This geometric approach has the advantage that
it can also be used to study shock-fronted travelling wave solutions (Harley et al. 2014a,b;
Wechselberger and Pettet 2010). While shock-fronted travelling wave solutions are not
the focus in this manuscript, we show in the final section that they do exist for (4.5) with
different D(U), see Figure 4.10a in Section 4.6.3. The lower bound c∗ in Theorem 1 is
often called the minimum wave speed as it represents the monotone nonnegative travelling
wave solutions with the lowest wave speed (Murray 1989). Numerical simulations show
that (4.2) with (4.3) and (4.5) indeed support smooth travelling wave solutions even
though the nonlinear diffusivity function goes negative. Moreover, the speed relates to
the initial condition, and the wave speed converges to the minimum wave speed c∗ as the
initial condition limits to the Heaviside initial condition, see Figure 4.2. We will also show
the connection between the existence of smooth monotone nonnegative travelling wave
solutions, the spectrum of the travelling wave solutions, and the minimum wave speed c∗.

This manucript is organised as follows. We prove Theorem 1 in Section 4.4 by using
desingularisation techniques (Aronson 1980) and detailed phase plane analysis which have
not been applied to (4.2) before. In Section 4.5, we determine the spectral properties of the
travelling wave solutions and show how the minimum wave speed c∗ is related to absolute
instabilities (Kapitula and Promislow 2013; Sandstede 2002; Sherratt et al. 2014). Some
interesting results for different nonlinear diffusivity functions with the same kinetic term
(4.5) are discussed in Section 4.6. Here, we also discuss the implications of the analytical
results for the discrete model.
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Figure 4.2: (a) shows the evolution of a Heaviside initial condition to a smooth travelling
wave solution obtained by simulating (4.2) with (4.3) and (4.5) with parameters Di = 0.25,
Dg = 0.05 and λ = 0.75. We use a finite difference method with space step δx = 0.1,
time step δt = 0.01 and no-flux boundary conditions. Notice that D(U) = 0 at α = 0.5
and β ≈ 0.83. (b) measures the position of the wave L(t) by looking for the left-most
leading edge point where U is smaller than 10−5, indicating that the solution is travelling
at a constant speed c = 0.864. (c) gives the wave speed as a function of the initial
condition U(x, 0) = 1/2 + tanh (−η(x− 40)) /2. Notice that as η grows to infinity this
initial condition limits to the Heaviside initial condition used for the simulation in (a), and
the wave speed converges to c ≈ 0.864. The minimum wave speed c∗ = 2

√
λDi ≈ 0.866

(4.9).

4.4 Existence of travelling wave solutions

4.4.1 Transformation and desingularisation

A travelling wave solution of (4.2) is a solution of the form u(x− ct, t) that travels with
constant speed c and constant wave shape, and that asymptotes to 1 as x → −∞ and to
0 as x → ∞. We only consider positive wave speeds since (4.2) with (4.3) and (4.5) is
monostable with a Fisher-KPP imprint, that is, U ≡ 1 is a PDE stable solution of (4.2),
while U ≡ 0 is a PDE unstable solution. We introduce the travelling wave coordinate
z = x− ct, where z ∈ R, and write (4.2) in its travelling wave coordinate

∂U

∂t
= ∂

∂z

(
D(U)∂U

∂z

)
+ c

∂U

∂z
+R(U). (4.10)

A travelling wave solution to (4.2) is now a stationary solution to (4.10), that is, ∂U/∂t = 0,
and (4.10) simplifies to a second-order ordinary differential equation (ODE)

d

dz

(
D(u)du

dz

)
+ c

du

dz
+R(u) = 0, (4.11)
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with asymptotic boundary conditions limz→−∞ u = 1 and limz→∞ u = 0. We use a
dynamical systems approach to analyse (4.11). Upon introducing p := D(u)du/dz, it can
be written as a system of first-order ODEs





D(u)du
dz

= p,

D(u)dp
dz

= −cp−D(u)R(u).
(4.12)

Note that p > 0 if du/dz < 0 and D(u) < 0. Thus, while we expect that the derivative of a
travelling wave solution is always negatvie, p is not necessarily always negative. Travelling
wave solutions of (4.2) now correspond to heteroclinic orbits of (4.12) connecting (1, 0) to
(0, 0). However, (4.12) is singular as D(u) is zero for u = α and u = β, see (4.7). That is,
we have two walls of singularities u = α and u = β (Harley et al. 2014a; Pettet et al. 2000;
Wechselberger and Pettet 2010). On these walls of singularities the right hand sides of
(4.2) also dissappear if p = 0. That is, each wall of singularities has one (potential) hole in
the wall (Harley et al. 2014a; Pettet et al. 2000; Wechselberger and Pettet 2010). In system
(4.12), the holes are at (α, 0) and (β, 0). To remove the singularities, we desingularise
system (4.12) by introducing a stretched variable ξ satisfying D(u)dξ = dz (Aronson 1980;
Murray 1989; Sánchez-Garduño and Maini 1994). Subsequently, system (4.12) becomes





du

dξ
= p,

dp

dξ
= −cp−D(u)R(u).

(4.13)

When D(u) > 0, dξ/dz > 0 and therefore trajectories on the phase planes of (4.12) and
(4.13) have the same moving directions. In contrast, when D(u) < 0, dξ/dz < 0 and
trajectories on the two phase planes are in the opposite direction, see Figure 4.3. Therefore,
heteroclinic orbits of (4.12) connecting (1, 0) to (0, 0) crossing the holes in the walls (α, 0)
and (β, 0), if they exist, are transformed and separated to heteroclinic orbits connecting
(1, 0) to (β, 0), (α, 0) to (β, 0) and (α, 0) to (0, 0) of (4.13) and vice versa. Next, we will
prove the existence of these heteroclinic orbits in system (4.13) for a range of wave speeds
c.

4.4.2 Phase plane analysis of the desingularised system

We first study the desingularised system (4.13). It has nullclines p = 0 and

p = −D(u)R(u)
c

. (4.14)
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Figure 4.3: (a) is the phase plane of system (4.12) with parameters Di = 0.25, Dg = 0.05,
λ = 0.75 and c = 0.866. The vertical dashed lines are the walls of singularities u = α and
u = β and the solid blue lines are nullclines. Red arrows show the moving direction of
trajectories. (b) is the phase plane of system (4.13) for the same parameter values and red
lines are nullclines. For u in between α and β, the moving direction of the trajectories is
opposite compared to (a), while the moving direction is the same for u < α and u > β.

The intersections of the two nullclines give four equilibrium points: (0, 0), (1, 0), (α, 0), (β, 0).

Lemma 1 The equilibrium points (1, 0) and (α, 0) are saddles. The equilibrium point
(0, 0) is a stable node if

c ≥ 2
√
D(0)R′(0) = 2

√
λDi = c∗, (4.15)

and a stable spiral otherwise. The equilibrium point (β, 0) is a stable node if

c ≥ 2
√
D′(β)R(β), (4.16)

and a stable spiral otherwise.

Proof The Jacobian of system (4.13) is

J(u, p) =




0 1

−F (u) −c


 , where F (u) := (D(u)R(u))′ . (4.17)

The Jacobian has eigenvalues and eigenvectors

λ± =
−c±

√
c2 − 4F (u)
2 , E± = (1, λ±).
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For the equilibrium point (1, 0) this reduces to

λ1± =
−c±

√
c2 − 4D(1)R′(1)

2 , E1± = (1, λ1±). (4.18)

The eigenvalues λ1± are real and negative since D(1) = Dg > 0 and R′(1) = −λ < 0. Thus
(1, 0) is a saddle.

Similarly, the Jacobian of the equilibrium point (α, 0) has eigenvalues and eigenvectors

λα± =
−c±

√
c2 − 4D′(α)R(α)

2 , Eα± = (1, λα±). (4.19)

Knowing that D′(α) < 0 and R(α) > 0, λα+ is real and positive and λα− is real and
negative. Thus (α, 0) is a saddle.

The Jacobian of the equilibrium point (0, 0) has eigenvalues and eigenvectors

λ0± =
−c±

√
c2 − 4D(0)R′(0)

2 , E0± = (1, λ0±). (4.20)

The eigenvalues λ0± are real and negative if (4.15) holds since D(0) = Di > 0 and
R′(0) = λ > 0. Thus equilibrium point (0, 0) is a stable node if (4.15) holds. Otherwise,
λ0± are complex-valued with negative real parts and (1, 0) is a stable spiral.

Similarly, the Jacobian of equilibrium point (β, 0) has eigenvalues and eigenvectors

λβ± =
−c±

√
c2 − 4D′(β)R(β)

2 , Eβ± = (1, λβ±). (4.21)

The eigenvalues λβ± are real and negative if (4.16) holds since D′(β) > 0 and R(β) > 0.
Thus the equilibrium point (β, 0) is a stable node if (4.16) holds. Otherwise, λβ± are
complex-valued with negative real parts and (β, 0) is a stable spiral.

Lemma 2 For Di > 4Dg, the thresholds of conditions (4.15) and (4.16) give

c∗ > 2
√
D′(β)R(β). (4.22)

Proof The right hand side of (4.22) is given by

2
√
D′(β)R(β) = 2

√
3λ(Di −Dg)β(1 − β)(β − α).

Since c∗ = 2
√
λDi, proving relation (4.22) is equivalent to proving

Di > 3(Di −Dg)β(1 − β)(β − α),
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which is equivalent to proving

Di

Di −Dg

> 3β(1 − β)(β − α). (4.23)

Knowing that 2/3 < β < 1 and 0 < β − α < 2/3 gives 3β(1 − β)(β − α) < 2/3. Since
Di > 4Dg, we have that Di/(Di −Dg) > 1 since Di > Di −Dg. Hence, (4.23) holds and
thus (4.22) holds.

For c < c∗, (0, 0) becomes a spiral node and hence we expect trajectories approaching
(0, 0) to become negative which in the end would lead to travelling wave solutions become
negative. Therefore, we now assume that c ≥ c∗. To prove the existence of heteroclinic
orbits between the equilibrium points, we construct invariant regions in the phase plane from
which trajectories cannot leave, so that the Poincaré-Bendixson theorem can be applied
(Jordan and Smith 1999), see Figure 4.4. The slope of nullcline (4.14) is χ(u) = −1/ (cF (u)),
where F (u) is given by (4.17), while the slope of the unstable eigenvector of (1, 0) is λ1+,
see (4.18). We thus have

λ1+ − χ(1) =
−c+

√
c2 − 4D(1)R′(1)

2 + 1
c
D(1)R′(1)

=
c
√
c2 − 4D(1)R′(1) − (c2 − 2D(1)R′(1))

2c

=

√
c4 − 4c2D(1)R′(1) −

√
c4 − 4c2D(1)R′(1) + 4 (D(1)R′(1))2

2 < 0.

(4.24)

That is, the unstable eigenvector of (1, 0) has a smaller slope than nullcline (4.14) at
(1, 0). In other words, the trajectory leaving (1, 0) with decreasing u initially lies above
the nullcline (4.14).

Similarly, the slope of the unstable eigenvector of (α, 0) is λα+, see (4.19). We have,
after similar computation as (4.24), λα+ − χ(α) < 0. Thus, the unstable eigenvector of
(α, 0) has a smaller slope than nullcline (4.14) at (α, 0). Therefore, the trajectory leaving
(α, 0) with decreasing u initially lies above the nullcline (4.14), while the trajectory leaving
(α, 0) with increasing u initially lies below the nullcline (4.14).

Under condition (4.15), the least negative slope of the stable eigenvectors of equilibrium
point (0, 0) is λ0+, see (4.20). This gives, after a similar computation as (4.24), λ0+−χ(0) <
0. Thus, both eigenvectors of (0, 0) have slopes that are more negative than nullcline (4.14)
at (0, 0). In other words, the eigenvectors of (0, 0) initially lie under the nullcline (4.14)
for u > 0.

Similarly, under condition (4.16), the least negative slope of the stable eigenvectors of
(β, 0) is λβ+, see (4.21). This gives λβ+ − χ(β) < 0. Thus, both eigenvectors have slopes
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Figure 4.4: A qualitative phase plane of system (4.13). The three dashed lines are u = α,
u = β and u = 1. The blue lines are the nullclines p = 0 and p = −D(u)R(u)/c. Region
R1 is bounded by p = 0, u = α and a straight line l1 with negative slope passing through
(0, 0). Region R2 is bounded by p = 0, u = α and a straight line l2 with negative slope
passing through (β, 0). Region R3 is bounded by p = 0, u = 1 and l2.

that are more negative than nullcline (4.14) at (β, 0). Therefore, the trajectory moving in
(β, 0) with decreasing u initially lies under the nullcline (4.14) for u > β, while they lie
above the nullcline (4.14) for u < β, see also Figure 4.4.

Next, we consider the region R1 bounded by p = 0, u = α and a straight line l1
through (0, 0) with a negative slope µ1. We aim to prove that for c ≥ c∗, there always
exists a slope µ1 so that no trajectories in region R1 can cross through its boundaries.
Trajectories starting on p = 0 have negative vertical directions since du/dξ = p = 0 and
dp/dξ = −D(u)R(u) < 0 for u ∈ (0, α). Thus, trajectories in R1 cannot cross through
p = 0. Trajectories starting on u = α with negative p values point into region R1 since
du/dξ = p < 0 and dp/dξ = −cp > 0. Trajectories starting on l1 satisfy p = µ1u, and they
point into R1 only if

dp

du

∣∣∣∣
p=µ1u

= −c− D(u)R(u)
µ1u

≤ µ1, for u ∈ (0, α).
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After rearranging and recalling that µ1 < 0, we obtain

µ1(µ1 + c) ≤ −D(u)R(u)
u

= −λD(u)(1 − u), for u ∈ (0, α). (4.25)

Lemma 3 For c ≥ c∗, there exists a µ1 such that inequality (4.25) is valid for any
u ∈ (0, α).

Proof Proving inequality (4.25) is equivalent to proving

µ1(µ1 + c) ≤ −λ sup
u∈(0,α)

D(u)(1 − u). (4.26)

The left hand side of inequality (4.26) is minimal when µ1 = −c/2. Setting µ1 = −c/2
and substituting into inequality (4.26) gives a lower bound for the speed

c1 = 2
√
λ sup

u∈(0,α]

√
D(u)(1 − u), (4.27)

such that (4.26) holds for c ≥ c1. The right hand side of (4.27) gives

2
√
λ sup

u∈(0,α)

√
D(u)(1 − u) = 2

√
λD(0) = 2

√
λDi,

since D(u) and (1 − u) are both decreasing functions on u ∈ (0, α). Thus, c1 = c∗. Hence,
for c ≥ c∗, inequality (4.26) is valid for µ1 = −c/2.

Knowing that for c ≥ c∗ inequality (4.25) is valid, trajectories on l1 with µ1 = −c/2
point into region R1. Thus, based on the Poincaré-Bendixson theorem (Jordan and Smith
1999), the trajectory leaving from the equilibrium point (α, 0) with decreasing u and
decreasing p must connect with the equilibrium point (0, 0) without going negative in u.

Similarly, we consider the region R2 bounded by p = 0, u = α and a straight line l2
through (β, 0) with a negative slope µ2, and the region R3 bounded by p = 0, u = 1 and
l2. Trajectories starting on p = 0 have positive vertical directions for u ∈ (α, β) since
du/dξ = p = 0 and dp/dξ = −D(u)R(u) > 0 and they have negative vertical directions
since for u ∈ (β, 1), du/dξ = 0 and dp/dξ = −D(u)R(u) < 0. Trajectories starting on
u = α with positive p point into region R2 since du/dξ = p > 0 and dp/dξ = −cp < 0.
Similarly, trajectories starting on u = 1 with negative p point into region R3. In addition,
requiring the existence of a slope µ2 such that trajectories starting on l2 point into regions
R2 and R3 leads to the condition

µ2(µ2 + c) ≤ −D(u)R(u)
u− β

= −3(Di −Dg)(u− α)R(u), for u ∈ (α, 1). (4.28)
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Lemma 4 For c ≥ c∗, there exists a µ2 such that inequality (4.25) is valid for any
u ∈ (α, 1).

Proof The proof of Lemma 4 is analogous to the proof of Lemma 3 and we will omit
some of the details. Again, there exist a lower bound c2

c2 = 2
√

3(Di −Dg) sup
u∈(α,1)

√
(u− α)R(u),

such that (4.28) holds for c ≥ c2. Next, we show that c2 < c∗. That is, we show that

2
√
λDi > 2

√
3(Di −Dg) sup

u∈(α,1)

√
(u− α)R(u).

This is equivalent to proving Di/(Di − Dg) > 3u(1 − u)(u − α) for u ∈ (α, 1). Noticing
that u− α < 2/3, and u(1 − u) ≤ 1/4, we obtain 3u(1 − u)(u− α) < 1/2. Subsequently,
we have

Di

Di −Dg

> 1 > 1
2 > 3u(1 − u)(u− α),

since Di > 4Dg by assumption. Thus, c2 < c∗.

Knowing that for c ≥ c∗ the inequality (4.28) is valid, trajectories on l2 in between α

and β point into region R2. Thus, based on the Poincaré-Bendixson theorem (Jordan and
Smith 1999), the trajectory leaving from the equilibrium point (α, 0) with increasing u and
increasing p must connect with the equilibrium point (β, 0). Analogously, the trajectory
leaving from the equilibrium point (1, 0) with decreasing u and decreasing p must connect
with the equilibrium point (β, 0).

In summary, for c ≥ c∗ there exist heteroclinic orbits connecting (1, 0) to (β, 0), (α, 0)
to (β, 0) and (α, 0) to (0, 0) in system (4.13). Since trajectories in u ∈ (0, α) ∪ (β, 0) in
system (4.12) have the same moving direction as in system (4.13), there exist trajectories
connecting (1, 0) to the hole in the wall (β, 0) and trajectories connecting the hole in the
wall (α, 0) to (0, 0) in system (4.12). For u ∈ (α, β), trajectories of system (4.12) have the
opposite moving direction compared to (4.12). The trajectory leaving from (α, 0) with
increasing u, positive p and connecting to (β, 0) in system (4.13) becomes a trajectory
leaving from (β, 0) with decreasing u, positive p and connecting to (α, 0) in system (4.12).
Thus, there exists an orbit connecting (β, 0) to (α, 0) in system (4.12). Combining the
above, we get that for c ≥ c∗, there exists a heteroclinic orbit with u ≥ 0 connecting (1, 0)
to (0, 0) passing through holes in the walls (α, 0) and (β, 0) in system (4.12). Hence, there
exist smooth monotone travelling wave solutions of (4.2) with positive speed c ≥ c∗. This
completes the proof of Theorem 1.
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Figure 4.5: Phase plane of system (4.13) with parameters Di = 0.25, Dg = 0.05, λ = 0.75
and c = 0.4. The latter is smaller than c∗ ≈ 0.866 but larger than 2

√
D′(β)R(β) ≈ 0.289.

The blue lines are the nullclines p = 0 and p = −D(u)R(u)/c. The red lines are the
heteroclinic orbits connecting (0, 0), (α, 0), (β, 0), and (1, 0).

For 2
√
D′(β)R(β) < c < c∗ the equilibrium point (β, 0) is still a stable node, while

(0, 0) is a stable spiral, see Lemma 1. We can use similar techniques as above to show that
system (4.13) still possesses heteroclinic orbits connecting (1, 0) to (β, 0), (α, 0) to (β, 0)
and (α, 0) to (0, 0), see also Figure 4.5. However, this latter heteroclinic orbit now spirals
into (0, 0). Consequently, also for 2

√
D′(β)R(β) < c < c∗ there exists a heteroclinic orbit

connecting (1, 0) to (0, 0) passing through holes in the walls (α, 0) and (β, 0) in system
(4.12). However, these correspond to smooth travelling wave solutions of (4.2) with (4.3)
and (4.5) that are not monotone and instead oscillate around 0. These solutions are not
feasible as U represents the population density in the discrete model and thus cannot be
negative.

4.5 Stability analysis

We showed that, similar to the Fisher-KPP equation (Harley et al. 2015, e.g.), (4.2)
with (4.3) and (4.5) supports smooth travelling wave solutions for c > 2

√
D′(β)R(β), but

that only the travelling wave solutions with c ≥ c∗ (4.9) are feasible. The minimal wave
speed for the Fisher-KPP equation is closely related to the onset of absolute instabilities.
Roughly speaking, absolute instabilities imply that perturbations to a travelling wave
solution will grow for all time and at every point in space (Sherratt et al. 2014). These
instabilities are related to the absolute spectrum of the travelling wave solution and are
fully determined by the asymptotic behaviour (z → ±∞) of the travelling wave solution
(Kapitula and Promislow 2013; Sandstede 2002). The travelling wave solutions of (4.2)
with (4.3) and (4.5) as constructed in Section 4.4 asymptote to 0 and 1 and the nonlinear
diffusivity function D(U) is positive near U = 0 and U = 1, see (4.6). That is, near
these points (4.2) with (4.3) and (4.5) has a Fisher-KPP imprint and we therefore expect
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that the minimal wave speed c∗ of (4.2) is also closely related to the onset of absolute
instabilities. In other words, we expect that the travelling wave solutions of (4.2) with
(4.3) and (4.5) are absolutely unstable for 2

√
D′(β)R(β) < c < c∗. Therefore, we expect

perturbations to these travelling wave solutions to always grow and we will never observe
them in, for instance, numerical simulations. Consequently, while (4.2) with (4.3) and
(4.5) support these unfeasible travelling wave solutions that go negative, they will never
be observed and thus do not effect the feasibility of the model.

Below, we briefly describe how to determine the absolute spectrum of a travelling
wave solution, for a more detailed and complete mathematical description, we refer to
Davis et al. (2017); Kapitula and Promislow (2013); Sandstede (2002). To determine the
absolute spectrum of a travelling wave solution û(z), we add a small perturbation q(z, t)
to the travelling wave solution and determine how this perturbation evolves under the
PDE in its moving frame. That is, we substitute u(z, t) = û(z) + q(z, t) into (4.10) and,
upon ignoring higher-order perturbative terms O(q2), we get

∂q

∂t
= Lq,

L := D(û) ∂
2

∂z2 +
(

2D′(û)dû
dz

+ c

)
∂

∂z
+

D′(û)d

2û

dz2 +D′′(û)
(
dû

dz

)2

+R′(û)

 .

The associated eigenvalue problem, which is obtained by setting q(z, t) = eΛtq(z), is given
by

Lq = Λq. (4.29)

The spectral stability of the travelling wave solution û is now determined by the spectrum
of the linear operator L, that is, the Λ ∈ C for which L − Λ is not invertible. In particular,
if the spectrum is in the open left half plane, or the origin, then we call the travelling wave
solution û spectrally stable and unstable otherwise. This spectrum naturally breaks up into
two sets, the point spectrum and the essential spectrum (Kapitula and Promislow 2013;
Sandstede 2002). Roughly speaking, the essential spectrum of the travelling wave solution
deals with instabilities at infinity and it is related to the spectrum of the background
linear operator L as z → ±∞, while the point spectrum deals with the stability of the
actual wave front.

Obviously, the spectral properties of L depend on the space we allow the perturbations
q to be taken from. A natural choice is the space of square integrable functions whose first
(weak) derivative (in z) is also square integrable, that is, the Sobolev space H1(R). Another
choice is the related weighted space H1

ν(R) defined as q ∈ H1
ν(R) if and only if eνzq ∈ H1(R)

(Kapitula and Promislow 2013; Sattinger 1977). For positive ν the weight forces q to
decay at a rate faster than e−νz as z → ∞, while it is allowed to grow exponentially, but
at a rate less than e−νz, as z → −∞. That is, the weight provides information whether
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the travelling wave solution is more sensitive to perturbations at plus or minus infinity
(Davis et al. 2017). The weighting of H1(R) does not influence the point spectrum of L,
however, it does shift the essential spectrum (Kapitula and Promislow 2013). That is, a
travelling wave solution can be unstable with respect to perturbations in H1(R), while it
is stable with respect to perturbations in an appropriately weighted space H1

ν(R). This is,
for instance, the case for the Fisher-KPP equation and a particular Keller-Segel model
(Davis et al. 2017, 2019). The absolute spectrum of a travelling wave solution, which is
strictly speaking not always part of the spectrum, is not affected by the weighting of the
space and gives an indication on how far the essential spectrum can be weighted (as the
absolute spectrum is always to the left of the rightmost boundary of the essential spectrum
(Davis et al. 2017)). In other words, if the absolute spectrum of a travelling wave solution
contains part of the right half plane then the essential spectrum cannot be weighted into
the open left half plane and the travelling wave solution is said to be absolutely unstable.

The eigenvalue problem (4.29) can be written as a system of first order ODEs

T (Λ)

q

s


 :=

(
d

dz
− A(z; Λ)

)
q

s


 = 0 , where A(z; Λ) :=




0 1

B C


 ,

with

B = − 1
D(û)


D′(û)d

2û

dz2 +D′′(û)
(
dû

dz

)2

+R′(û) − Λ

 ,

C = − 1
D(û)

(
2D′(û)dû

dz
+ c

)
.

The unweighted essential spectrum and the absolute spectrum of the operator L are
determined by the asymptotic behaviour of the operator T (Λ) since the operator is a
relatively compact perturbation of the operator when you plug in z = ±∞ (Kapitula and
Promislow 2013). Therefore, we define the asymptotic matrices

A+(Λ) := lim
z→+∞

A(z,Λ) =




0 1
−R′(0) + Λ

D(0) − c

D(0)


 ,

and

A−(Λ) := lim
z→−∞

A(z,Λ) =




0 1
−R′(1) + Λ

D(1) − c

D(1)


 .

More specifically, for the problem at hand the boundary of the unweighted essential
spectrum of L is determined by those Λ for which A±(Λ) has a purely imaginary eigenvalue.

In contrast, the absolute spectrum at ±∞ is determined by those Λ for which the
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ℑ(Λ)
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abs σ+
abs

λ−λK+K−

Figure 4.6: The unweighted essential spectrum and the absolute spectrum of the linear
operator L for c > c∗. The boundary of the unweighted essential spectrum is determined
by the dispersion relations of A+ (dashed blue curve) and A− (solid blue curve) and the
green region is the interior of the unweighted essential spectrum. The solid red line is
the absolute spectrum σ−

abs (4.33), while the dashed red line is the absolute spectrum σ+
abs

(4.32).

eigenvalues of A±(Λ) have the same real part (Sandstede 2002). The eigenvalues of A+

are

µ±
+ =

−c±
√
c2 − 4D(0)R′(0) + 4D(0)Λ

2D(0) , (4.30)

and those of A− are

µ±
− =

−c±
√
c2 − 4D(1)R′(1) + 4D(1)Λ

2D(1) . (4.31)

Hence, the boundary of the unweighted essential spectrum is given by the so-called
dispersion relations

Λ+ = −D(0)k2 + ick +R′(0), and Λ− = −D(1)k2 + ick +R′(1),

where k ∈ R and where µ+
± = ik are the purely imaginary spatial eigenvalue of A±. These

dispersion relations form two parabolas, opening leftward and intersecting the real axis at
R′(0) = λ > 0 and R′(1) = −λ < 0, see Figure 4.6. That is, all travelling wave solutions
of (4.2) with (4.3) and (4.5) have unweighted essential spectrum in the right half plane.

From (4.30) we get that the absolute spectrum at +∞ is given by

σ+
abs =

{
Λ ∈ R

∣∣∣∣∣ Λ < − c2

4D(0) +R′(0) = − c2

4Di

+ λ =: K+
}
. (4.32)

Similarly, from (4.31) we get that the absolute spectrum at −∞ is given by

σ−
abs =

{
λ ∈ R

∣∣∣∣∣ Λ < − c2

4D(1) +R′(1) = − c2

4Dg

− λ =: K−
}
. (4.33)
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That is, σ−
abs is always fully contained in the open left half plane including the origin,

while σ+
abs is only fully contained in the open left half plane including the origin for

c ≥ c∗ = 2
√
λDi, see Figure 4.6.

In conclusion, a travelling wave solution with speed 2
√
D′(β)R(β) < c < c∗ is absolutely

unstable and no weights exist to shift its unweighted essential spectrum into the open left
half plane. In contrast, the absolute spectrum of a travelling wave solution with speed
c ≥ c∗ is fully contained in the open left half plane including the origin and weights can
be found that shift the unweighted essential spectrum into this region.

Remark 1 To fully establish spectral stability of the operator L, we also need to determine
the point spectrum of L and show that it is contained in the open left half plane including
the origin when c ≥ c∗ provided our perturbations stay in an appropriately chosen Hilbert
space X . With this in mind, we define

w(z) := D(û)q(z)e
∫

c/(2D(û(t)))dt. (4.34)

Then if Lq = Λq (4.29) we have that w will solve

Mw(z) := D(û)wzz +
(
R′(û) − c (c+ 2D′(û)ûz)

4D(û)

)
w(z) = Λw(z).

We have thus reduced the problem to showing that M is negative semi-definite on some
appropriately chosen Hilbert space X . Unfortunately, the natural choice for such a Hilbert
space in these problems is the one with“inner product”

(u, v) :=
∫ uv

D(û)dz,

but the sign change in D(û) means that this is actually no longer an inner product (it is
strictly negative for a localised pulse near where D(û) is negative for instance).

However, if we instead work with the desingularised system (4.13), then for a perturba-
tion q̃ about û, linearising gives the eigenvalue problem for the linearised desingularised
system

q̃ξξ + cq̃ξ + F (û)q̃ = Λq̃ , (4.35)

where F (u) is defined in (4.17). The standard Liouville transformation w̃(ξ) := q̃(ξ)ecξ/2

now does lead to a self adjoint eigenvalue problem in terms of w̃(ξ)

w̃ξξ +
(
F (û) − c2

4

)
w̃(ξ) = Λw̃(ξ) .
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Here, one can show explicitly that the operator

M̃ := d2

dξ2 +
(
F (û) − c2

4

)

is negative semi-definite precisely when c ≥ c∗. Indeed, as we are assuming that Di > 4Dg,
the potential term in M̃ satisfies

(
F (û) − c2

4

)
<

1
4
(
−c2 + λDi(4 − 32û+ 63û2 − 36û3)

)

and the polynomial term 4 − 32û+ 63û2 − 36û3 has a maximum value of 4 when û ∈ [0, 1]
(at û = 0). So, we have that F (û) − c2/4 ≤ 0 when c ≥ c∗ = 2

√
λDi. Thus, M̃ is a

negative semidefinite operator in the space of perturbations which decay faster than ecξ,
that is, H1

c. This is usually referred to as a transient instability in the stability literature
(Sandstede 2002; Sherratt et al. 2014).

Lastly, we remark that given what was just shown, the only remaining step in the proof
of stability of these travelling wave solutions for c ≥ c∗ is how to relate the eigenvalue
problem of the desingularised system (4.35) to the spectrum of the operator L. Due to
the singular nature of the operator, it is unclear how to even define the ‘natural’ Hilbert
spaces which should act as domains for the original linearised problem. Further, the
weighting given in (4.34) involves a nonlinear, singular exponential weight, and to the best
of our knowledge there is no such work which describes the dynamic effects of stability or
instability in these cases. So, we cannot even say whether we would have only a transient
instability even if we could show that the ‘natural’ operator was negative definite on an
appropriate domain.

4.6 Conclusion and outlook

4.6.1 Summary of results

We started this manuscript with a lattice-based discrete model reflecting the differences in
individual and collective cell behaviour introduced in Johnston et al. (2017). Based on
Johnston et al. (2017), the discrete model has the continuous description (4.2) obtained
by using truncated Taylor series in the continuum limit. Our analysis focused on the case
where Di > 4Dg so that we can obtain a convex nonlinear diffusivity function D(U), given
by (4.3) which changes sign twice in our domain of interest. Furthermore, the assumption
of equal proliferation rates and zero death rates leads to a logistic kinetic term R(U), given
by (4.5). The associated numerical simulations of (4.2) with (4.3) and (4.5), see Figure 4.2,
provided evidence of the existence of smooth monotone travelling wave solutions. To study
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these travelling wave solutions of (4.2), we used a travelling wave coordinate z = x− ct and
looked for stationary solutions in the moving frame. Consequently, (4.2) was transformed
into the singular second-order ODE (4.11) which we transformed into a singular system
of first-order ODEs (4.12). To remove the singularities, we used the stretched variable
D(u)dξ = dz and transformed (4.12) into system (4.13). Next, we analysed the phase
plane of the desingularised system (4.13) and proved the existence of heteroclinic orbits
connecting the equilibrium points (0, 0), (α, 0), (β, 0) and (1, 0) for wave speeds c ≥ c∗,
given by (4.9). Subsequently, based on the relation between the phase planes of (4.12) and
(4.13), we proved the existence of a heteroclinic orbit in (4.12) connecting the equilibrium
points (1, 0) and (0, 0) passing through (α, 0) and (β, 0), that are special points on the
phase plane called a hole in the wall of singularities. That is, we proved the existence
of smooth monotone travelling wave solutions of (4.2) for c ≥ c∗. In the end, we showed
that the travelling wave solutions of (4.2) with wave speeds c < c∗ are absolutely unstable,
which in turn explained that the numerical simulations only provided travelling wave
solutions with wave speeds c ≥ c∗.

Based on our analysis, one-dimensional agent density profiles will eventually spread
with a speed c ≥ c∗ if the two types of agents have equal proliferation rates, zero death
rates and different diffusivities satisfying Di > 4Dg. Notice that c∗ = 2

√
λDi, hence, the

lowest speed for the travelling wave only relates to the diffusivity of individuals and is
independent of the diffusivity of the gouped agents. That is, the diffusivity of grouped
agents which is smaller than that of isolated agents (Di > 4Dg) does not give restrictions
for the lowest speed of the moving front. Consequently, we infer that the speed of invasion
processes for organisms, for instance, cells, is mainly determined by the behaviour of
individuals. Furthermore, the Fisher-KPP equation also has a minimum wave speed for
the existence of smooth monotone travelling wave solutions (Fife 2013; Kolmogorov et al.
1937). Hence, a discrete mechanism of invasion processes considering the differences in
individual and collective behaviours can lead to the similar macroscopic behaviour as the
discrete mechanism with no differences in isolated and grouped agents.

4.6.2 Smooth travelling wave solutions for positive D(U)

If Di < 4Dg, then the nonlinear diffusivity function D(U) is positive for U ∈ [0, 1], see
Figure 4.7a. Thus the corresponding system of first-order ODEs (4.12) is not singular,
and the nullcline p = −D(u)R(u)/c does not cross u-axis, see Figure 4.7b. In other words,
(0, 0) and (1, 0) are the only equilibrium points. Following the same method as applied in
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Figure 4.7: (a) shows D(U) with Di = 0.25 and two different Dg. (b) gives the
corresponding phase planes of system (4.12) for λ = 0.75, c = 1, Di = 0.25, Dg = 0.2 and
Dg = 0.6, respectively. The two solid curves are the nullclines p = −D(u)R(u)/c with
Dg = 0.2 (blue curve) and Dg = 0.6 (orange curve), respectively. The red dashed lines are
the corresponding heteroclinic orbits representing travelling wave solutions in (4.2).

Section 4.4.2, we obtain the lower bound

S1 = sup
u∈(0,1)

2
√
D(u)R(u)

u
= sup

u∈(0,1)
2
√
λ(1 − u)D(u),

such that there exist smooth monotone travelling wave solutions of (4.2) for c ≥ S1. The
origin is still a stable node for c ≥ 2

√
λDi := S2 and S1 ≥ S2. So, if S1 ≠ S2, c ≥ S1

is only a sufficient condition because there may exist smooth monotone travelling wave
solutions of (4.2) for wave speeds S2 ≤ c < S1. Thus, we can only conclude that the
minimum wave speed is in the range

S2 ≤ ĉ ≤ S1, (4.36)

such that there exist smooth monotone nonnegative travelling wave solutions of (4.2) for
c ≥ ĉ. Note that the minimum wave speed ĉ can be different from the minimum wave
speed c∗ in Theorem 1, and Lemma 2 does not necessarily hold.

This estimate is consistent with the result in Malaguti and Marcelli (2003) obtained
based on the comparison method introduced by Aronson and Weinberger (1978). The
corresponding numerical simulations also give the expected results, see Figure 4.8. Witelski
(1994) obtained an asymptotic travelling wave solution for a PDE motivated by polymer
diffusion with a positive nonlinear diffusivity function and logistic kinetics for wave speeds
greater than a minimum wave speed which is greater than S2. This is consistent with the
estimate of the minimum wave speed in (4.36). For solutions with an asymptotic wave
speed equal to S2, the front of the travelling wave is called a pulled front; for solutions
with asymptotic speeds greater than S2, the front of the travelling wave is called a pushed
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Figure 4.8: (a) gives the wave speed as a function of the initial condition U(x, 0) =
1/2 + tanh (−η(x− 40)) /2. Notice that as η grows to infinity this initial condition limits
to the Heaviside initial condition. Parameters are λ = 0.75, Di = 0.25 and Dg = 0.6. The
wave speed reaches its minimum which is between S1 and S2 and then converges to a
bigger value which is still between S1 and S2. In (b), Dg = 0.2 while the other parameters
are the same. In this case, the wave speed converges to S2.

front (van Saarloos 2003). Unravelling the differences in wave speed selection remains to
be explored.

4.6.3 Shock-fronted travelling waves

In Section 4.4, we mainly considered the equilibrium point (0, 0) as a stable node in the
phase plane of system (4.13). With (0, 0) a stable node, (β, 0) is also a stable node based
on (4.22). However, (4.22) does not hold for any convex D(U) which changes sign twice.
For instance, for

D̂(U) = (U − 0.1)(U − 0.3), (4.37)

condition (4.15) and condition (4.16) become

c ≥ 2
√
D̂(0)R′(0) = 0.3, c ≥ 2

√
D̂′(0.3)R(0.3) ≈ 0.355.

With the nonlinear diffusivity function D̂(U), the equilibrium point (0, 0) is a stable node
and the equilibrium point (β, 0) is a stable spiral for speeds 0.3 < c < 0.355... in (4.13).
In this case, only shock-fronted travelling wave solutions of (4.2) can exist since (4.13)
no longer possesses heteroclinic orbits connecting to (β, 0) that do not cross the walls of
singularities, see Figure 4.9. The corresponding numerical simulation of (4.2) indeed
gives a shock-fronted travelling wave solution with a speed c = 0.3, see Figure 4.10.
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Figure 4.9: (a) is the phase plane of the desingularised system (4.13) with D̂(u), c = 0.3
and λ = 0.75. The vertical dashed lines are the wall of singularities at u = 0.1 and
u = 0.3. The blue lines are the nullclines p = 0 and p = −D(u)R(u)/c. The red line is the
heteroclinic orbit connecting (1, 0) to (0.3, 0). (b) is the phase plane of system (4.12) with
D̂(u), c = 0.3 and λ = 0.75. The vertical dashed lines are the walls of singularities u = 0.1
and u = 0.3. The blue lines are the nullclines p = 0 and p = −D(u)R(u)/c. The red line
shows the opposite moving directions of the same trajectory in (a) on different sides of the
wall of singularities u = 0.3.
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Figure 4.10: (a) shows the evolution of a Heaviside initial condition to a smooth travelling
wave solution obtained by simulating (4.2) with (4.37) and (4.5) with λ = 0.75 at t = 0,
t = 25 and t = 50. Notice that D(U) = 0 at α = 0.1 and β = 0.3. The travelling wave
solution eventually has a constant positive speed, c = 0.3. (b) amplifies the region around
the shock. Blue dots represent the numerical simulations of the corresponding travelling
wave solutions which indicate the existence of a shock.
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It is not a surprise to see shock-fronted travelling wave solutions in negative nonlinear
diffusion equations. Shocks in negative nonlinear diffusion equations with no kinetic terms
have been studied in the context of many physical phenomena, such as the movement
of moisture in partially saturated porous media (DiCarlo et al. 2008); the motion of
nanofluids (Landman and White 2011) and these kinds of PDEs also arise in the study
of Cahn-Hilliard models (Witelski 1995b). Numerical simulations of (4.2) with nonlinear
diffusivity function (4.3) and Allee kinetics (4.4) also lead to shock-fronted solutions, see
Johnston et al. (2017). In addition, Allee kinetics support shock-fronted travelling wave
solutions for reaction-diffusion-advection equations with small diffusion coefficients (Sewalt
et al. 2016; Wang et al. 2019). The analysis of shock-fronted travelling wave solutions
in nonlinear diffusion-reaction equations with generic diffusivity functions and logistic
kinetics is left for future work.



Chapter 5

Shock-fronted travelling waves with nonlinear
diffusion and strong Allee effect source terms

5.1 Preamble

This chapter is a paper published in the Physica D: Nonlinear Phenomenon

Li, Y., van Heijster, P., Simpson, M.J., Wechselberger, M., 2021. Shock-fronted travelling
waves in a reaction-diffusion model with nonlinear forward-backward-forward diffusion.
Physica D: Nonlinear Phenomena. 423: 132916. DOI:10.1016/j.physd.2021.132916. arXiv
Preprint

In this chapter, we address the research question 4 of the thesis: Do shock-fronted
travelling wave solutions exist with nonlinear diffusion and strong Allee effect source
terms? We extend the geometric approach developed in Section 4 by considering two
smaller higher order perturbation terms, so that we can regularise the original system and
study the properties of shock-fronted travelling wave solutions in an ODE system with
higher dimensions. With these two regularisations, we explore how to identify the profile
of shocks, and how to calculate the speed of shock-fronted travelling wave solutions.
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https://arxiv.org/abs/2011.07857
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5.2 Abstract

Reaction-diffusion equations (RDEs) are often derived as continuum limits of lattice-
based discrete models. Recently, a discrete model which allows the rates of movement,
proliferation and death to depend upon whether the agents are isolated has been proposed,
and this approach gives various RDEs where the diffusion term is convex and can become
negative (Johnston et al., Sci. Rep. 7, 2017), i.e. forward-backward diffusion. Numerical
simulations suggest these RDEs support shock-fronted travelling waves when the reaction
term includes an Allee effect. In this work we formalise these preliminary numerical
observations by analysing the shock-fronted travelling waves through embedding the RDE
into a larger class of higher order partial differential equations (PDEs). Subsequently,
we use geometric singular perturbation theory to study this larger class of equations and
prove the existence of these shock-fronted travelling waves. Most notable, we show that
different embeddings yield shock-fronted travelling waves with different properties.

5.3 Introduction

Reaction-diffusion equations (RDEs) are widely used to study population dynamics in
cell biology and ecology (Murray 1989). Often, U(x, t) represents a population density
and provides a macroscopic description of individual behaviour. For RDEs established
from the continuum limit of stochastic models, a solution of the RDE not only shows
the macroscopic evolution of U(x, t), but it also reflects how microscopic behaviour of
individuals influences the macroscopic outcomes (Anguige and Schmeiser 2009; Deroulers
et al. 2009; Johnston et al. 2017, 2012; Li et al. 2020; Simpson et al. 2010a). Johnston
et al. (2017) introduced a lattice-based stochastic model to study how a population of
individuals can undergo motility, proliferation and death events with the aim of studying
biological and ecological invasion, see Figure 5.1. By considering different behaviours of
isolated and grouped agents, including motility, proliferation and death events, an RDE
with a nonlinear diffusivity function and a logistic or Allee type reaction term was derived
as the continuum limit. In particular,

∂U

∂t
= ∂

∂x

(
D(U)∂U

∂x

)
+R (U) , (5.1)

where U(x, t) represents the total population density at position x ∈ R and time t ∈ R+.

The nonlinear diffusivity function is given by

D (U) = 3(Di −Dg)U2 − 4(Di −Dg)U +Di, (5.2)

where Di ≥ 0 and Dg ≥ 0 are diffusivities of the isolated and grouped agents, respectively.
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Figure 5.1: Schematic depiction of the evolution rules of the lattice-based model
introduced in Johnston et al. (2017). Pink discs represent isolated agents and blue
discs represent grouped agents. During each time step of duration τ , isolated agents
attempt to move to nearest neighbour lattice sites with a probability P i

m, to proliferate to
form new agents in neighbour sites with a probability P i

p and to die with a probability P i
d.

Similarly, grouped agents attempt to move to neighbour sites with a probability P g
m, to

proliferate to form new agents in neighbour sites with a probability P g
p and to die with a

probability P g
d . The attempts that would move to an occupied site or place an agent on

an occupied site are aborted.

When Di > 4Dg, D(U) has two real roots, α and β, which are centred around 2/3, and
are given by

α = 2
3

(
1 −

√
Di − 4Dg

4(Di −Dg)

)
, β = 2

3

(
1 +

√
Di − 4Dg

4(Di −Dg)

)
, (5.3)

and D(U) < 0 for U ∈ (α, β). While the negativity of a nonlinear diffusivity function is
sometimes related to aggregation in the underlying discrete model (Simpson et al. 2010b),
here it is actually a macroscopic effect of the isolated and the grouped motility of the agents,
together with competition for space, that leads to a net aggregation effect (Johnston et al.
2017). The condition Di > 4Dg implies that the motility rate of isolated agents is greater
than the motility rate of grouped agents, which is consistent with the common biological
observation that isolated leader cells are more motile than follower cells (Poujade et al.
2007; Simpson et al. 2014). Note that Di and Dg are related to P i

m and P g
m, respectively, in

the lattice-based model in Figure 5.1. Full details of the discrete model and the continuum
limit derivation are given in Johnston et al. (2017).

The reaction term, whose parameters are also related to parameters in the lattice-based
model depicted in Figure 5.1, is given by

R (U) = λgU(1 − U) + (λi − λg −Ki +Kg)U(1 − U)2 −KgU, (5.4)
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Figure 5.2: (a) The nonlinear diffusivity function D(U) (5.2) centred around 2/3 (dashed
line). (b) The reaction term R(u) corresponding to the logistic growth with λg = 1 (red),
the weak Allee effect with r = 0.8 and A = −0.9 (blue), and the strong Allee effect with
r = 3 and A = 0.3 (green).

where λi ≥ 0 and λg ≥ 0 are the proliferation rates of isolated and grouped agents,
respectively; Ki ≥ 0 and Kg ≥ 0 are the death rates of isolated and grouped agents,
respectively Johnston et al. (2017). If the proliferation mechanism is the same for isolated
and grouped agents and no death event occurs, that is, λi = λg and Ki = Kg = 0, then
(5.4) simplifies to a logistic reaction term

R(U) = λgU(1 − U). (5.5)

If the proliferation and death mechanisms are either competitive or co-operative, that is,
λi ̸= λg and Ki ̸= Kg (Stephens et al. 1999; Taylor and Hastings 2005), then the reaction
term takes the form of an Allee effect (Taylor and Hastings 2005). For simplicity, but
without loss of generality, we assume Kg = 0.1 Subsequently, (5.4) simplifies to

R(U) = rU(1 − U)(U − A), (5.6)

where r = Ki −λi +λg is the intrinsic growth rate and A = 1 −λg/r is the Allee parameter
Johnston et al. (2017). If r > λg, which is equivalent to Ki > λi and thus implies that
isolated agents have a higher death rate than proliferation rate, then 0 < A < 1 and
R(U) < 0 in (0, A) and R(U) > 0 in (A, 1). This represents the strong Allee effect.
Conversely, if 0 < r < λg, which implies that isolated agents have a higher birth rate
than death rate, then A < 0 and R(U) > 0 in (0, 1). This is called the weak Allee effect
Johnston et al. (2017). See Figure 5.2 for the different potential forms of R(U). For
simplicity, we assume that A ̸= α and A ̸= β.

Understanding travelling wave solutions, that is, solutions that propagate through
1 Although we assume Ki = Kg = 0 to obtain the logistic reaction term (5.5) and Kg = 0 to obtain the

Allee reaction term (5.6), similar reaction terms are obtained without these assumptions by scaling
the population density U(x, t) (Johnston et al. 2017).
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space with a fixed shape and a constant speed, is important in the study of biological
and ecological invasion processes (Ducrot et al. 2021; El-Hachem et al. 2020; Harley et al.
2014a; Sewalt et al. 2016). In this work, we are interested in travelling wave solutions
supported by (5.1) with Di > 4Dg, such that the nonlinear diffusivity function is negative
for U ∈ (α, β), see (5.3). In this case, the nonlinear diffusivity function can be written as

D (U) = k(U − α)(U − β) , k := 3(Di −Dg) . (5.7)

With the implicit finite difference method introduced in Johnston et al. (2017), numerical
solutions of (5.1) with D(U) as in (5.7) and with either logistic or weak Allee forms for
R(U) lead to smooth travelling wave solutions with positive speeds, while simulations
of (5.1) with D(U) as in (5.7) and strong Allee forms for R(U) lead to shock-fronted
travelling wave solutions with either positive or negative speeds (Johnston et al. 2017;
Li et al. 2020), see Figure 5.3 for different travelling wave solutions at t = t1, t2, t3, with
t1 < t2 < t3. To calculate the wave speed, we locate the front of the wave by looking for
the left-most coordinate xl satisfying U(xl, t) < 10−3. Then, we estimate the speed from
the distance the front of the wave has travelled from t2 to t3. Interestingly, the speeds of
the shock-fronted travelling wave solutions are much smaller than the speeds of the smooth
travelling wave solutions, which potentially indicates that the mechanisms giving rise to
shock-fronted travelling waves are fundamentally different to the mechanisms that give
rise to smooth travelling waves. Note that with the nonlinear diffusivity function D(U)
centred around 2/3 given by (5.2) we only observe shock-fronted travelling wave solutions
with the strong Allee effect. However, a forward-backward-forward nonlinear diffusivity
function which is not centred around 2/3 may also lead to shock-fronted travelling wave
solutions with logistic or weak Allee forms of R(U), see Figures 9 and 10 in Li et al. (2020)
for an example.

Ferracuti et al. (2009) showed that there exist smooth travelling wave solutions of (5.1)
with logistic R(U) for a range of positive wave speeds based on the comparison method
(Aronson 1980). Kuzmin and Ruggerini (Kuzmin and Ruggerini 2011) provided necessary
conditions for the existence of smooth travelling wave solutions of (5.1) with R(U) that
takes the form of an Allee effect and the speed of the wave can be either negative or positive
according to the shape of D(U) and R(U). However, to the best of our knowledge, the exis-
tence of shock-fronted travelling wave solutions to (5.1) with D(U) (5.7) and R(U) taking
the form of an Allee effect is an open question. The methods used in Kuzmin and Ruggerini
(2011) can also be used to identify necessary conditions for the existence of shock-fronted
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Figure 5.3: Travelling wave solutions of (5.1) evolving from a Heavidside initial condition, U = 1 for x ∈ [−20, 40] and U = 0 for
x ∈ (40, 120], with Di = 0.25 and Dg = 0.05 such that D(U) = 0.6U2 − 0.8U + 0.25 and for different R(U). The implicit finite difference
method we used had no-flux boundary conditions, a time step δt = 0.01, a space step δx = 0.1 and an error tolerance 10−6. With a logistic
type R(U) = 0.75U(1 − U), (a) shows a travelling wave solution with speed c ≈ 0.86 at t1 = 20, t2 = 40, t3 = 60. With a weak Allee
type R(U) = 0.5U(1 − U)(U + 0.2), where λi = 0.5, λg = 0.6 and Ki = 0.4, (c) shows a smooth travelling wave solution with c ≈ 0.99 at
t1 = 15, t2 = 30, t3 = 45. With a strong Allee type R(U) = 0.5U(1 − U)(U − 0.2), where λi = 0.4, λg = 0.4 and Ki = 0.5, (e) shows a
shock-fronted travelling wave solution with positive speed c = 0.0123 at t1 = 1000, t2 = 2000, t3 = 3000. With a different strong Allee type
R(U) = 0.3U(1 − U)(U − 1/3), where λi = 0.4, λg = 0.2 and Ki = 0.5, (h) shows a shock-fronted travelling wave solution with negative
speed c = −0.0127 at t1 = 500, t2 = 1000, t3 = 1500. (b) & (d) show the derivatives of the last simulated travelling wave solutions in (a) &
(c) and highlight the smoothness of the waves. (f) & (h) show the derivatives of the last simulated travelling wave solutions in (e) & (g)
and highlight the shocks in these waves.
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travelling wave solutions. In particular, let U1 and U2 (with U1 ≤ α < β ≤ U2) denote the
U -values at the endpoints of the shock, then a necessary condition for the existence of a
monotonically decreasing shock-fronted left-travelling wave solution is

∫ Ua

0
D(U)R(U)dU < 0 , (5.8)

for all Ua ∈ (0, U1).

Similarly, a necessary condition for the existence of a monotonically decreasing shock-
fronted right-travelling wave solution is

∫ 1

Ub

D(U)R(U)dU > 0 , (5.9)

for all Ub ∈ (U2, 1). We refer to Section 5.7.1 for a derivation, inspired by Kuzmin and
Ruggerini (2011), of these necessary conditions. Heuristically this means that for shock-
fronted travelling wave solutions with a positive speed, the A value in R(U), in order to
satisfy (5.9), should not be too close to 1. Since A = 1 − λg/r where r = Ki − λi + λg,
this implies that a relatively much higher death rate of isolated agents compared to the
birth rate of isolated agents will not result in a successful invasion event. Similarly, a very
small birth rate of grouped agents will also not result in a successful invasion event.

In Li et al. (2020), we derived, among other things, the same condition as in Ferracuti
et al. (2009) for the existence of smooth travelling wave solutions of (5.1) with logistic
R(U) by using a geometric approach. Furthermore, geometric approaches have been used
to study shock-fronted travelling wave solutions. For example, in Harley et al. (2014a)
and Sewalt et al. (2016), the authors studied shock-fronted travelling wave solutions in
an advection-reaction-diffusion equation for malignant tumour invasion using geometric
singular perturbation theory (GSPT) (Fenichel 1979; Hek 2010; Jones 1995) and canard
theory (Szmolyan and Wechselberger 2001; Wechselberger 2012; Wechselberger and Pettet
2010). In this work, we use GSPT to further explore the existence of shock-fronted
travelling wave solutions of (5.1) with limx→−∞ U(x, t) = 1 and limx→∞ U(x, t) = 0.2

Moreover, we assume Di > 4Dg – such that D(U) < 0 for U ∈ (α, β) – and Kg = 0 and
r > λg – such that we have a strong Allee effect type R(U). To apply GSPT, we smooth
out the shock and regularise (5.1) by adding a small higher order perturbation term. This
embeds (5.1) into a larger class of PDEs. Regularisation of RDEs is typically considered in
one of two ways (Padrón 2004; Pego and Penrose 1989). The first method of regularisation
accounts for non-local effects by adding a small fourth-order spatial derivative term (Pego
2 U ≡ 0 and U ≡ 1 are both constant solutions of (5.1) with the logistic R(U) and the weak and strong

Allee type R(U). However, U ≡ 0 and U ≡ 1 are both PDE stable for the strong Allee type R(U),
while only U ≡ 1 is PDE stable for the logistic R(U) and the weak Allee type R(U). Therefore, it is
no surprise that left-moving traveling wave solutions are only found for the strong Allee type R(U),
see Figure 5.3.
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and Penrose 1989; Witelski 1995b). In particular, equation (5.1) becomes

∂U

∂t
= ∂

∂x

(
D(U)∂U

∂x

)
+R(U) − ε2∂

4U

∂x4 , 0 ≤ ε ≪ 1. (5.10)

The second method of regularisation accounts for viscous relaxation by adding a small
mixed derivative term (Novick-Cohen and Pego 1991; Padrón 2004; Witelski 1996). In
particular, equation (5.1) becomes

∂U

∂t
= ∂

∂x

(
D(U)∂U

∂x

)
+R(U) + ε

∂3U

∂x2∂t
, 0 ≤ ε ≪ 1. (5.11)

It is important that the sign of the perturbation terms in (5.10) and (5.11) is such that
setting ε > 0 generally leads to well-posed problems. However, see Li et al. (2020) and
references therein, for a further discussion related to the well-posedness of (5.1). Also note
that other types of regularisations have been used to smooth out shocks (Barenblatt et al.
1993).

In Section 5.4, we study travelling wave solutions of (5.10) and first derive a higher-
dimensional slow-fast system of ordinary differential equations (ODEs). The related
reduced singular limit ODE systems give useful information of underlying shock-fronted
travelling wave solutions of (5.1) and (5.10) based on GSPT and Fenichel theory (Fenichel
1979). Because the reduced systems are algebraically intractable, we use a numerical
ODE solver to determine the speed of the shock-fronted travelling wave solutions. In
Section 5.5, we use a similar approach to establish a different higher-dimensional system of
ODEs based on the viscous relaxation PDE (5.11) and find shock-fronted travelling wave
solutions with different properties. Note that in this case, GSPT has to be extended since
the critical manifold loses normal hyperbolicity near a fold point. Although (5.10) and
(5.11) are the same in the singular limit ε = 0, they yield shock-fronted travelling wave
solutions with different speeds and different shock sizes when ε > 0. Finally, we discuss
various extensions of the current work including the relationship between the discrete
model and the continuous description, the option of including different regularisation
terms, the possibility of shock-fronted travelling wave solutions with logistic R(U) and the
spectral stability of travelling wave solutions of (5.1).

Remark 1 In the remainder of this article we will use nonlinear diffusivity functions
D(U) (5.2) and reaction terms R(U) (5.4) that are larger than the D(U) and R(U) used
in Figure 5.3 to generate larger speeds. As the model based on (5.1) is dimensionless, those
larger parameters in D(U) and R(U) still correspond to the parameters introduced in the
latticed-based model in Figure 5.1 upon rescaling space and/or time. However, note that
the connection between the discrete and continuum models is only accurate when the rate
of motility of both the grouped and isolated agents is much greater than rate of proliferation
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and death of both the grouped and isolated agents and this should be kept in mind when
rescaling space and/or time. For more details, see Johnston et al. (2017).

5.4 Non-local regularisation

In this section, we look for shock-fronted travelling wave solutions of (5.10) connecting
U = 1 to U = 0. We first introduce a travelling wave coordinate to transform (5.10)
into a fourth-order ODE. Next, we use a dynamical system approach to transform the
ODE into a four-dimensional singular perturbed slow-fast system. The four-dimensional
system has two equivalent forms as ε ̸= 0. However, these forms produce different lower-
dimensional subsystems, called the reduced problem and the layer problem in the singular
limit ε = 0.3 The concatenation of solutions of each of the subsystems yields a solution of
the four-dimensional system in the singular limit. We give an outline, and conclude based
on GSPT, that it persists for ε sufficiently small in the full four-dimensional system. This
solution corresponds to a travelling wave solution of (5.10).

5.4.1 Preliminary observations

A travelling wave solution of (5.10) is a solution of the form U(x, t) = u(x− ct) = u(z),
where c ∈ R is the constant speed of the travelling wave solution and z = x − ct is the
travelling wave coordinate. Writing (5.10) in its travelling wave coordinate leads to

∂U

∂t
= ∂

∂z

(
ε2∂

3U

∂z3 − cU − ∂

∂z
(F (U))

)
−R(U), (5.12)

where F (U) =
∫
D(U)dU and the reaction term R(U) (5.6) is of strong Allee effect type.

A travelling wave solution u(z) is a stationary solution to (5.12) that asymptotes to one
as z → −∞ and to zero as z → ∞. Thus, it satisfies

0 = d
dz

(
ε2 d3u

dz3 − cu− d
dz (F (u))

)
−R(u). (5.13)

Upon defining

p := ε2 d3u

dz3 − cu− d
dz (F (u)), v := ε2 d2u

dz2 − F (u), w := ε
du
dz , (5.14)

3 The reduced problem is called the slow reduced system and the layer problem is called the fast reduced
system in studies of phase separation, see for example, Doelman et al. (2009).
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(5.13) transforms into a four-dimensional singular perturbed slow-fast dynamical system




ε
du
dz = w,

ε
dw
dz = v + F (u),
dp
dz = R(u),
dv
dz = p+ cu.

(5.15)

Here, (u,w) ∈ R2 are fast variables and (p, v) ∈ R2 are slow variables. By using a stretched,
or fast variable, ξ = z/ε Fenichel (1979), (5.15) is transformed into an equivalent fast
system, provided ε ̸= 0, 




du
dξ = w,

dw
dξ = v + F (u),

dp
dξ = εR(u),

dv
dξ = ε(p+ cu).

(5.16)

The three fixed points4 of the two equivalent systems (5.15) and (5.16) are

P 0
ε = (0, 0, 0,−F (0)), P 1

ε = (1, 0,−c,−F (1)), PA
ε = (A, 0,−cA,−F (A)), (5.17)

and we are interested in heteroclinic orbits connecting P 1
ε with P 0

ε as these correspond to
travelling wave solutions of (5.10) that asymptote to 1 as x → −∞ and to 0 as x → ∞.
Note that due to the symmetry (w, p, z, c) 7→ (−w,−p,−z,−c) of system (5.15), the
existence of a heteroclinic orbit connecting P 1

ε with P 0
ε also implies the existence of a

heteroclinic orbit connecting P 0
ε with P 1

ε and this latter orbit corresponds to a travelling
wave solution of (5.10) that asymptotes to 0 as x → −∞ and to 1 as x → ∞ and moves
in the opposite direction.

The characteristic equation of the Jacobian of (5.16) is given by

τ 4 −D(u)τ 2 − ετc− ε2R′(u) = 0, (5.18)

where we used that F ′(u) = D(u) and observe that u = 0, 1 or A at a fixed point. Upon
substituting a regular expansion τ = τ0 + ετ1 + O(ε2) into (5.18), we obtain an expansion
4 Even though the fixed points are independent of ε, we use the subscript ε to indicate that these are

fixed points of the full four-dimensional systems (5.15) and (5.16).



Chapter 5. Shock-fronted travelling waves 134

for the four eigenvalues of the Jacobian

τ±
1 (u) =

−c±
√
c2 − 4D(u)R′(u)
2D(u) ε+ O(ε2),

τ±
2 (u) = ±

√
D(u) + c

2D(u)ε+ O(ε2).
(5.19)

At P 0
ε , R′(0) < 0, D(0) > 0, thus τ+

1,2(0) > 0, τ−
1,2(0) < 0. Similarly, at P 1

ε , R′(1) < 0,
D(1) > 0 and τ+

1,2(1) > 0, τ−
1,2(1) < 0. That is, both the stable and unstable manifolds

P 0,1
ε are two-dimensional. At PA

ε , the stable and unstable manifolds depend on the sign of
c. If c > 0, the stable manifold of PA

ε is three-dimensional and the unstable manifold of
PA

ε is one-dimensional, while the situation for the stable and unstable manifolds of PA
ε is

the opposite for c < 0. For c = 0, that is, for a standing wave, we again have that the
stable and unstable manifold of PA

ε are two-dimensional.

While the slow system (5.15) and the fast system (5.16) are equivalent for ε ̸= 0, they
have different singular limits. The singular limit of the fast system, that is, the layer
problem, describes the dynamics near the shock and the fast variables (u,w) will change
significantly here while the slow variables (p, v) are to leading order constant. In contrast,
the singular limit of the slow system, that is, the reduced problem, describes the dynamics
away from the shock and here the fast variables will be slaved to the slow variables.

5.4.2 Layer problem

The layer problem is obtained by letting ε → 0 in the fast system (5.16), which gives




du
dξ = w,

dw
dξ = v + F (u),

(5.20)

as well as dp/dξ = 0 and dv/dξ = 0, that is, (p, v) ∈ R2 are constants in (5.20). The
union of fixed points of (5.20)

M0 := {(u,w, p, v) ∈ R4 : w = 0, F (u) = −v}, (5.21)

forms a two-dimensional invariant manifold, which is the so-called critical manifold (Jones
1995), see Figure 5.4.

The Jacobian of (5.20) is

J =




0 1

D(u) 0


 ,
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Figure 5.4: (a) A projection of the four-dimensional phase plane of (5.15) and the critical manifold M0. A shock-fronted travelling wave
solution of (5.10) as shown in (b) corresponds to a heteroclinic orbit (indicated in blue in (a)) that starts at P 1

ε on the normally hyperbolic
branch M−

0 of M0 and that follows the dynamics of the reduced problem (RP), whose projection on the (u, p)-plane is shown in (c),
before it jumps to the other normally hyperbolic branch M+

0 according to the dynamics of the layer problem (LP). The projection of
the layer dynamics on the (u,w)-plane, since p and v are constant, is shown in (d) and the two blue curves connecting u− and u+ in (a)
correspond to the heteroclinic orbits

(
u0,±

h , w0,±
h

)
in (d). On M+

0 , the heteroclinic orbit again follows the dynamics of the reduced problem
and asymptotes to P 0

ε . A shock-fronted travelling wave solution is thus composed by orbits in the reduced problem and the layer problem
as indicated in (b).
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with eigenvalues
τ±(u,w) = ±

√
D(u). (5.22)

Therefore, the manifold M0 loses normal hyperbolicity when D(u) ≤ 0, that is, for
u ∈ [α, β] the eigenvalues τ± (5.22) are purely imaginary. As such, we split the critical
manifold M0 into two two-dimensional normally hyperbolic saddle-type branches

M+
0 := {(u,w, p, v) ∈ R4 : w = 0, F (u) = −v, u ∈ [0, α)},

M−
0 := {(u,w, p, v) ∈ R4 : w = 0, F (u) = −v, u ∈ (β, 1]},

a two-dimensional not normally hyperbolic centre-type branche

M0
0 := {(u,w, p, v) ∈ R4 : w = 0, F (u) = −v, u ∈ (α, β)},

and the two one-dimensional boundary sets

F+
0 := {(u,w, p, v) ∈ R4 : w = 0, F (u) = −v, u = α},

F−
0 := {(u,w, p, v) ∈ R4 : w = 0, F (u) = −v, u = β}.

The layer problem (5.20) describes the dynamics near the shock away from the critical
manifold. It is a Hamiltonian system and, as such, we are looking for a heteroclinic orbit
connecting M−

0 with M+
0 . The Hamiltonian of (5.20) is given by

H(u,w) = −1
2w

2 +G(u) + vu,

where G(u) =
∫
F (u) du. Any solution is confined to a level set of the Hamiltonian and

we have that
G(u+) + vu+ = G(u−) + vu−,

where u± ∈ M±
0 are the end-points of the heteroclinic orbit such that 0 < u+ < α < β <

u− < 1. This is equivalent to the integral equation

∫ u−

u+
(F (u) + v) du = 0, (5.23)

which is the well-known equal area rule, see, for example, Witelski (1995b). Recall that
F (u) =

∫
D(u) du and F (u) thus has an integration constant. Therefore, for a specific

F (u) the value of v satisfying the equal area rule (5.23) is unique. In 5.7.2 we show that
(5.20) supports two heteroclinic orbits connecting (u+, 0) and (u−, 0) and these heteroclinic
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Figure 5.5: (a) & (b) The case when u+ and u− satisfy the equal area rule (5.23) with
D(u) = 6(u− 7/12)(u− 3/4) leading to F (u) = 2u3 − 4u2 + 21u/8 and v = −61/108. (c)
The related phase plane of (5.20) including the two heteroclinic orbits

(
u0,±

h , w0,±
h

)
. (d) &

(e) The case when u+ and u− do not satisfy the equal area rule with v = −163/288. (f)
The related phase plane.

orbits
(
u0,±

h , w0,±
h

)
are given by

u0,±
h (ξ) = u− + u+

2 ± u− − u+

2 tanh
(

−a(u− − u+)
2 ξ

)
,

w0,±
h (ξ) = ∓a(u− − u+)2

4 sech2
(

−a(u− − u+)
2 ξ

)
,

where a =
√

(Di −Dg)/2 and we recall that u− > u+ by construction. See Figure 5.5.

5.4.3 Reduced problem

The reduced problem is obtained from (5.15) by letting ε → 0, which gives




dp
dz = R(u),
dv
dz = p+ cu,

(5.24)
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and the two algebraic constraints w = 0 and v + F (u) = 0. Hence, (5.24) simplifies to




−D(u)du
dz = p+ cu,

dp
dz = R(u).

(5.25)

Morever, since w = 0 and F (u) = −v, (5.25) governs the flow on the critical manifold
M0. The reduced problem is singular along the two lines u = α and u = β since
D(α) = D(β) = 0. Therefore, we transform (5.25) into a desingularised system5 by using
a stretched variable dψ = dz/D(u) (Aronson 1980; Li et al. 2020)





du
dψ = −p− cu,

dp
dψ = D(u)R(u).

(5.26)

It is important to note that, while the stretching changes the speed along a trajectory in a
nonlinear fashion, the trajectories of the phase portraits of the reduced problem (5.25)
and the desingularised problem (5.26) are the same. However, the orientation along a
trajectory is reversed for u ∈ (α, β) as D(u) < 0.

System (5.26) has five fixed points (0, 0), (α,−cα), (A,−cA), (β,−cβ) and (1,−c).
The eigenvalues and eigenvectors of the Jacobian of (5.26) are given by

τ± =
−c±

√
c2 − 4(D(u)R′(u) +D′(u)R(u))

2 , E± = (1,−τ∓).

If we let χ1 be the minimum of the set {A,α, β}, χ3 its maximum, and χ2 the remaining
element, then the characteristics of D(u) and R(u) yield the following results:

• (0, 0), (1,−c) and (χ2,−cχ2) are saddles; and

• (χi,−cχi), i ∈ {1, 3}, is a(n)

– stable node for c > 2
√
D(χi)R′(χi);

– stable spiral for 0 < c < 2
√
D(χi)R′(χi);

– centre for c = 0;

– unstable spiral for −2
√
D(χi)R′(χi) < c < 0; and

– unstable node for c < −2
√
D(χi)R′(χi).

5 Deriving the desingularised system from (5.25) is, strictly speaking, not necessary for our analysis
as we only need to consider (5.25) on M±

0 away from α and β since the heteroclinic orbit of the
layer problem jumps from M−

0 ∋ u− > β to ∈ M+
0 ∋ u+ < α, see Figures 5.4 and 5.5. However,

the desingularised system is more amenable to analysis and we thus study the dynamics of this
desingularised system.
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5.4.4 The construction of the heteroclinic orbit in the singular limit

Since the fixed points P 0,1
ε (5.17) are on the normally hyperbolic branches M±

0 of the
critical manifold M0, a shock-fronted travelling wave solution to (5.10) corresponds to a
heteroclinic orbit of (5.15) that, to leading order, starts on M−

0 , follows the dynamics of
the reduced problem (5.25) before it jumps, according to the layer dynamics (5.20), to
the other normally hyperbolic branch M+

0 on which it asymptotes to P 0
ε following the

dynamics of (5.25) again. In particular, if we split the spatial domain z ∈ (−∞,∞) into
three parts:

z ∈ I−
s := (−∞,−√

ε+ z∗) , z ∈ If := [−√
ε+ z∗,

√
ε+ z∗] ,

z ∈ I+
s := (

√
ε+ z∗,∞) ,

(5.27)

then the heteroclinic orbit is, to leading order, on M±
0 and governed by the reduced

problem (5.25) for z ∈ I±
s , while it is, to leading order, governed by the layer problem

(5.20) for z ∈ If , see Figure 5.4. Note that due to translation invariance of (5.12) we can,
without loss of generality, set z∗ = 0 in (5.27).

Since w = 0 and F (u) = −v on the critical manifold, the fixed points (0, 0) and (1,−c)
of the reduced problem (5.25) correspond to P 0

ε and P 1
ε , respectively. Furthermore, the

analysis of the layer problem (5.20) – which is independent of the speed c – indicates there
may exist shocks with endpoints u− (> β) and u+ (< α). Consequently, if there exists a
shock-fronted travelling wave solution of (5.10) with a shock from u− to u+, it relates to two
trajectories in system (5.25), see also Figure 5.4. These, in turn, relate to two corresponding
trajectories in the desingularised system (5.26). One is the unique trajectory γ+, for a given
speed c, that starts on the line {(u+, p+), p+ ∈ R} and approaches (0, 0) as ψ → ∞, while
the other one is the unique trajectory γ− that arrives at the line {(u−, p−), p− ∈ R} and
approaches (1,−c) as ψ → −∞. Note that these unique trajectories can intersect the lines
{(u±, p±), p± ∈ R} multiple times, see, for instance, Figure 5.6a. However, only the first
intersections may lead to monotone travelling wave solutions. We are mainly interested in
monotone travelling wave solutions since nonmonotonic travelling wave solutions are often
PDE unstable Volpert et al. (1994). Therefore, we only look for these first intersections.
As p is a slow variable, it should, to leading order, hold constant at the endpoints of the
shock (dp/dξ = 0 in the singular limit). Hence, we are interested in the speeds c0 for
which the p-value of the trajectory γ− at u−, say p−

∗ , is the same as the p-value of the
trajectory γ+ at u+, say p+

∗ , see Figure 5.6b. These c-values determine the actual speed of
the shock-fronted travelling wave solution.

As the stable and unstable manifolds of (0, 0) and (1,−c) are algebraically too
complicated to study analytically, we use numerical tools to detect the speeds leading
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Figure 5.6: (a) – (c) Phase planes of the desingularised system (5.26) for different values
of c with D(u) = 6(u − 7/12)(u − 3/4) and R(u) = 5u(1 − u)(u − 1/5). The green and
black dots are fixed points and red points are the endpoints u± of the fast jump (as derived
from the layer problem). The black solid lines are the nullclines p = −cu. The red straight
solid line in (b) indicates the shock from (u−, p−

∗ ) to (u+, p+
∗ ), while the grey straight lines

in (a) & (c) cannot lead to shocks as p+
∗ ̸= p−

∗ . With c = 0.197, it leads to a feasible
desingularised system where p+

∗ = p−
∗ . (d) The difference ∆p = p+

∗ − p−
∗ as a function of c

shows that ∆p = 0 for c = c0 ≈ 0.197.
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Figure 5.7: The comparison between numerical and analytical results. (a) Numerical
simulation of (5.15) with D(u) = 6(u − 7/12)(u − 3/4), R(u) = 5u(1 − u)(u − 1/5)
and ε = 10−5 obtained using Matlab ODE solver ‘bvp4c’. Boundary conditions are
u(−L) = 1, w(−L) = 0, w(L) = 0, p(−L) = −c, v(L) = −F (0) and q(−L) = −5 (where
dq/dz = u). The numerically obtained speed is c = 0.196, which is close to the analytically
obtained speed c0 = 0.197. (b) The numerically obtained (u, p)-trajectory in terms of the
stretched variable ψ (green line) superimposed onto the phase plane of the desingularised
system (5.26) with c = c0 = 0.197. (c) The numerically (green) and analytically (red)
obtained speeds for a varying reaction term of the form R(U) = 5U(1 − u)(u− A) with
A ∈ (0, 0.5).

to a feasible desingularised system (5.26). In particular, we use the function ode45 in
MATLAB to obtain the phase plane of (5.26) and then calculate ∆p := p+

∗ − p−
∗ for

different speeds c. Note that we locate the initial points of trajectories approaching (0, 0)
or (1,−c) with a small step along their eigenvectors. We find the crossing point of the
trajectory leaving from (1,−c) and the straight line u = u− as (u−, p−

∗ ) and the crossing
point of the trajectory arriving at (0, 0) and the straight line u = u+ as (u+, p+

∗ ). Finally,
we calculate ∆p as function of c.

As shown in Figure 5.6, for a given prototypical D(u) = 6(u − 7/12)(u − 3/4) and
R(u) = 5u(1 − u)(u − 1/5), the difference between two p-values at u± is zero when
c = c0 ≈ 0.197, that is, the phase plane of (5.26) aligns the endpoints of the shock u− → u+

when c = c0 ≈ 0.197. Thus, in the singular limit ε → 0, we expect that (5.10), with the
given D(u) and R(u), supports a shock-fronted right-travelling wave solution with speed
c = c0 ≈ 0.197, see Figure 5.3b.

Due to the complexity of numerically simulating a singularly perturbed fourth-order
PDE like (5.10), we simulate solutions of the perturbed ODE system (5.15) with Matlab’s
ODE solver ‘bvp4c’ and compare it with our analytical results from the singular limit. With
the diffusivity function and reaction term as above, the numerical results and analytical
results coincide (to leading order), see Figure 5.7. Furthermore, in Figure 5.7c we compare
the numerical and analytical speeds for reaction terms of the form R(u) = 5u(1−u)(u−A)
with varying A. Again, the numerical and analytical speeds coincide (to leading order).
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5.4.5 Persistence analysis

For c = c0, the orbit in the layer problem connecting u− to u+ and the orbits in the
reduced problem and desingularised problem connecting 1 to u− and connecting u+ to 0
form a complete heteroclinic orbit connecting 1 to 0 in the singular limit ε → 0. Below we
will argue that such solution persists in the four-dimensional system (5.15) for sufficiently
small ε, i.e. 0 < ε ≪ 1. Note that we do not present the full proof for the persistence claim
– which follows from geometric singular perturbation theory (GSPT) based on Fenichel’s
persistence theorems Fenichel (1979); Hek (2010); Jones (1995) since M±

0 are normally
hyperbolic – because this is rather standard, but quite technical, at this stage. Instead,
we provide some heuristic arguments for the persistence.

The endpoints of the heteroclinic orbit in the full system (5.15) are P 0
ε and P 1

ε (5.17)
and the heteroclinic orbit lies in the intersection of the two-dimensional stable manifold of
P 0

ε , Ws(P 0
ε ), and the two-dimensional unstable manifold of P 1

ε , Wu(P 1
ε ), see (5.19). This

intersection will generically not be transversal since the full system is four-dimensional, i.e.
2 + 2 − 1 < 4. Therefore, we extend the full system (5.15) to a five-dimensional system by
appending it with an equation for the unknown speed {c′ = 0}. That is, we threat c as
a variable and not as an unknown parameter. In the extended system the heteroclinic
orbit now lies in the intersection of the three-dimensional centre stable manifold Wcs(P 0

ε )
and the three-dimensional centre unstable manifold Wu(P 1

ε ) and this intersection will
generically be transversal since the full system is five-dimensional, i.e. 3 + 3 − 1 = 5.
Typically, transversality follows from a Melnikov-type analysis (Hek 2010; Robinson 1983;
Szmolyan 1991). We decided to omit this calculation, but its proof is numerically verified
in Figure 5.6(b) and (d). As a result, and for sufficiently small ε, the heteroclinic orbit
will persist with a nearby speed c(ε), with c(0) = c0, the speed found in the singular limit.
Finally, recall that such a heteroclinic orbit corresponds to a shock-fronted travelling wave
solution of (5.10).

5.5 Viscous relaxation

In this section, we study shock-fronted travelling wave solutions in (5.11) and we use
similar mathematical techniques as in Section 5.4 to obtain a three-dimensional singular
perturbed slow-fast system. The reduced problem is the same as in Section 5.4, however,
it has different algebraic constraints. In contrast, the layer problem is different and only
one-dimensional which leads to shocks with different characteristics. Since the methodology
of the analysis is similar, we only present a succinct and brief derivation of the main
results.
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5.5.1 Preliminary observations

The travelling wave solution of (5.11) of interest here is a solution of

d
dz

(
εc

d2u

dz2 − cu− d
dz (F (u))

)
= R(u), (5.28)

that asymptotes to one as z → −∞ and to zero as z → ∞. Here, z := x− ct is again the
travelling wave coordinate. Next, with some abuse of notation, we define

p := εc
d2u

dz2 − cu− d
dz (F (u)), v := εc

du
dz − F (u), (5.29)

and transform (5.28) into a three-dimensional singular perturbed slow-fast dynamical
system 




ε
du
dz = 1

c
(v + F (u)),

dp
dz = R(u),
dv
dz = p+ cu,

(5.30)

where u ∈ R is fast variable and (p, v) ∈ R2 are slow variables. By using a stretched
variable ξ = z/ε, (5.30) is transformed into an equivalent fast system, provided ε ̸= 0,





du
dξ = 1

c
(v + F (u)),

dp
dξ = εR(u),

dv
dξ = ε(p+ cu).

(5.31)

The fixed points of the two equivalent systems (5.30) and (5.31) are

Q0
ε = (0, 0,−F (0)), QA

ε = (A,−cA,−F (A)), Q1
ε = (1,−c,−F (1)),

and we are interested in heteroclinic orbits connecting Q0
ε with Q1

ε. The Jacobian of (5.31)
has three eigenvalues with the expansion of ε

τ±
1 (u) =

−c±
√
c2 − 4D(u)R′(u)
2D(u) ε+ O(ε2),

τ2(u) = D(u)
c

+ c

D(u)ε+ O(ε2).
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At Q0
ε, R′(0) < 0, D(0) > 0, thus, τ+

1 (0) > 0, τ−
1 (0) < 0 and τ2(0) > 0. Similarly,

at Q1
ε, R′(1) < 0, D(1) > 0, thus, τ+

1 (1) > 0, τ−
1 (1) < 0 and τ2(1) > 0. That is, the

stable manifolds of Q0,1
ε are one-dimensional and the unstable manifolds of Q0,1

ε are two-
dimensional. At QA

ε , for positive speeds, the stable manifold is two-dimensional and
the unstable manifold is one-dimensional; for negative speeds, the stable manifold is
one-dimensional and the unstable manifold is two-dimensional.

5.5.2 Layer problem

Letting ε → 0 in (5.31) gives the layer problem

du
dξ = 1

c
(v + F (u)), (5.32)

and dp/dξ = 0 and dv/dξ = 0. Thus, we have a two-dimensional critical manifold

M̂0 := {(u, p, v) ∈ R3 : F (u) = −v}.

Upon recalling that F ′(u) = D(u), we observe that the critical manifold loses normal
hyperbolicity along the one-dimensional set

F̂ := {(u, p, v) ∈ M̂0 : D(u) = 0},

which has two branches

F̂ = F̂+ ∪ F̂− := {(u, p, v) ∈ M̂0 : u = α} ∪ {(u, p, v) ∈ M̂0 : u = β}.

Thus, we split the critical manifold into five branches M̂0 = M̂−
0 ∪ F̂− ∪ M̂0

0 ∪ F̂+ ∪ M̂+
0 ,

with
M̂+

0 := {(u, p, v) ∈ R3 : u < α}, M̂−
0 := {(u, p, v) ∈ R3 : u > β},

repelling manifolds for c > 0 and attracting manifolds for c < 0. Similarly

M̂0
0 = {(u, p, v) ∈ R3 : α < u < β},

is an attracting manifold for c > 0 and an unstable manifold for c < 0, see Figure 5.8.

Considering the stability of the different branches of critical manifold, there may exist
connections between M̂±

0 and M̂0
0 and between M̂±

0 and F̂∓. In contrast to the previous
section, we are now interested in connections between M̂±

0 and F̂∓ since we are looking
for travelling wave solutions that connect u = 0 and u = 1, and both of these points are
on M̂±

0 . There are two ways to establish these connections. If c > 0, M̂±
0 are repelling
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Figure 5.8: (a) Connections from M̂±
0 to F̂∓ for c > 0. (b) These connections are

reversed for c < 0.

and F (u) = −v has two non-repeating real roots β and ul (< α), or u = α and ur (> β).
In this case, the related shocks are ur → α and ul → β, see Figure 5.8a. If c < 0, M̂±

0 are
attracting. and the related shocks are in the opposite direction α → ur and β → ul, see
Figure 5.8b.

5.5.3 Reduced problem

The reduced problem of (5.30), obtained by letting ε → 0, is the same as the reduced
problem (5.25) of the previous section and is given by





−D(u)du
dz = p+ cu,

dp
dz = R(u).

Similarly, its desingularised system6 is the same and given by




du
dψ = −p− cu,

dp
dψ = D(u)R(u).

(5.33)

However, note that the slow variable p is defined differently, see (5.14) and (5.29), and
thus has a different meaning.
6 The desingularised system is required this time because we need to study the dynamics around u = α

and u = β where the reduced problem is singular.
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Figure 5.9: (a) and (b) Phase planes of the desingularised system (5.26) with D(u) =
6(u− 7/12)(u− 3/4) and R(u) = 5u(1 − u)(u− A) with A = 0.2 (a) and A = 0.4 (b). In
the former case, we observe a shock ur → α with a positive speed c = c0 = 0.199, while
in the latter case we have a shock β → ul with a negative speed c = c0 = −0.241. (c)
The change of speed as function of A where the line with positive speed represents shocks
ur → α and the line with negative speed represents shocks β → ul. We remark that we
could not find an Allee type R(u) for which both types of travelling wave solutions exist
simultaneously.

5.5.4 The construction of the heteroclinic orbit in the singular limit

From the analysis of the layer problem (5.32), the shocks ur → α and ul → β have
positive speeds, while the shocks in the opposite directions, α → ur and β → ul, have
negative speed. The shocks ur → α and β → ul potentially relate, in the singular limit,
to trajectories of (5.30) leaving from u = 1 and arriving at u = 0, that is, they have the
asymptotic conditions limz→−∞ u = 1 and limz→∞ u = 0 we are interested in. In contrast,
the shocks ul → β and α → ur correspond to trajectories with the opposite asymptotic
conditions limz→−∞ u = 0 and limz→∞ u = 1. Thus, we are interested in positive speeds c
for which there exist trajectories of the desingularised system (5.33) that connect (1,−c)
with (ur, p∗) and (α, p∗) with (0, 0) (both in forward ψ). Similarly, we are interested in
negative speeds c for which there exist trajectories of the desingularised system (5.33) that
connect (1,−c) with (β, p∗) and (ul, p∗) with (0, 0).

Following the same procedure as in the previous section using ode45 in MATLAB, we
can now construct orbits of the correspond to heteroclinic orbits in the singular limit of
(5.30), and thus to shock-fronted travelling wave solutions of (5.11). See Figure 5.9 for
two prototypical examples of these orbits. One corresponding to a shock-fronted travelling
wave solution with positive speed and one with negative speed.
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5.5.5 Persistence analysis

To show that these singular orbits indeed persist for ε sufficient small, and thus correspond
to shock-fronted travelling wave solutions of (5.11), we have to proceed in a similar fashion
as in the previous section and extend the full three-dimensional system (5.30) with an
equation for the speed {c′ = 0} (since the stable and unstable manifold Ws,u(Q0,1

ε ) are
respectively one and two-dimensional and 1 + 2 − 1 < 3) such that transversality is
generically possible. Transversality again follows from a Melnikov-type argument, but we
have to extend Fenichel theory near the regular fold point F̂±, where the critical manifold
loses normal hyperbolicity – one of the necessary conditions for Fenichel’s persistence
theorems. This way, we can show that the orbits persist even though in the singular limit
we leave, or arrive at, the critical manifold at a fold point F̂±. We decided to not go into
the details of this analysis and refer to Beck et al. (2008), and references therein, instead,
for an outline how the persistence of these singular orbits can be shown. In the end, this
shows the persistence of the heteroclinic orbit for sufficiently small ε and with nearby
speed c(ε), with c(0) = c0, the speed found in the singular limit.

5.6 Conclusion and outlook

In this article, we studied shock-fronted travelling wave solutions supported by the RDE
(5.1) with a convex nonlinear diffusivity function D(U) (5.2) that is negative for U ∈ (α, β)
(5.3), and with an Allee-type reaction-term R(U) (5.6). This RDE with forward-backward
diffusion was previously derived by Johnston et al. (2017) from a lattice-based stochastic
model modelling a population of individuals and groups that can undergo movement, birth
and death events to describe the its macroscopic behaviour. We studied the RDE by
adding two different small regularisations; a non-local regularisation −ε2∂4U/∂x4, with ε

small, see (5.10) and Section 5.4, and a viscous relaxation ε∂3U/(∂x2∂t), see (5.11) and
Section 5.5. Note that in the singular limit ε → 0 both PDEs reduce to (5.1).

These two regularisations allowed us to use a dynamical systems approach to study the
shock-fronted travelling wave solutions. In particular, for the non-local regularisation the
PDE (5.10) could be reduced to a singularly perturbed four-dimensional system of ODEs
(5.15). As the regularisation term is assumed to be small there is a scale separation in
this system of ODEs. This allowed for a further reduction by investigating (5.15) singular
limit in the fast and slow scaling. The singular limit in the fast scaling, called the layer
problem (5.20), described the dynamics near the shock of a shock-fronted travelling wave
solutions, and was a two-dimensional Hamiltonian system independent of the speed c, see
Figure 5.5. The singular limit in the slow scaling, called the reduced problem (5.24), was
a singular two-dimensional system of ODEs. It is constraint to the critical manifold M0
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(5.21) and described the dynamics away from the shock. Note that we use MATLAB to
investigate the reduced problem as it is algebraically too involved to determine the sought
after trajectories. A shock-fronted travelling wave solution can now be constructed, in the
singular limit, upon concatenating the three parts of the solution, see Figures 5.4 and 5.6.
Subsequently, GSPT can be used to show that the solution persists for sufficiently small ε.
Note that the details of this final calculation were omitted, instead it was shown that the
dynamics of the full ODE (5.15) agrees with the obtained results in the singular limit, see
Figure 5.7.

For the viscous relaxation the PDE (5.10) could be reduced to a singularly perturbed
three-dimensional system of ODEs (5.30). Whilst this ODE had the same reduced problem
as with the non-local regularisation, it had a different layer problem (5.32). This difference
can lead to shock-fronted travelling wave solutions with different characteristics for same
nonlinear diffusivity function D(U) (5.2) and reaction-term R(U) (5.6), see Figure 5.10.
In addition, as the shock-connection in the layer problem is at a point where the critical
manifold loses normal hyperbolicity, GSPT has to be extended to prove the persistence of
the singular orbit for sufficiently small ε. Again, details of this computation were omitted.

5.6.1 Regularisations and the lattice-based stochastic model

While the two regularised PDEs have the same singular limit (5.1), the different regu-
larisations yielded shock-fronted travelling wave solutions with different characteristics.
Therefore, we mainly compared the singular limit results of the two models with the
travelling wave ODE systems, and not with the numerical results of (5.1). The reason
for this is that the numerical schemes used to simulate (5.1) naturally introduce artificial
regularisation (and error) terms and, as shown in this article, different regularisations
yield shock-fronted travelling wave solutions with different characteristics. The connection
between the numerical results of (5.1) and the analytical results therefore needs to be
further explored.

In addition, (5.1) was derived from a lattice-based stochastic model and during this
derivation of the continuous description small higher order terms were omitted. Including
some of these small higher order terms would potentially result in a (differently) regularised
version of (5.1), which in turn could lead to shock-fronted travelling wave solutions with
different properties. Therefore, studying the connection between the lattice-based stochastic
models and the regularisations is also an interesting topic.

For instance, a natural question to ask is what happens when we consider a linear
combination of the non-local regularisation (considered in Section 5.4) and viscous
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Figure 5.10: (a) – (d) Phase planes of the desingularised system (5.26)/(5.33) with
D(u) = 6(u− 7/12)(u− 3/4) and R(u) = 5u(1 − u)(u− A) with A = 0.2 (a) & (c) and
A = 0.4 (b) & (d). For A = 0.2 in the non-local regularisation we observe a shock u− → u+

for c = 0.197, while for A = 0.2 in the viscous relaxation we observe a shock ur → α for
c = 0.199. For A = 0.4 in the non-local regularisation we observe a shock u− → u+ for
c = −0.245, while for A = 0.4 in the viscous relaxation we observe a shock β → ul for
c = −0.241. (e) The three different types of shock, u− → u+, ur → α and β → ul, for
changing A from 0 to 0.5. The dashed line A = 0.2 relates to (a) & (b) and the dashed line
A = 0.4 relates to (c) & (d). (f) For a D(U) not centred around 2/3 the differences among
the speeds of the shocks is more prevalent. In particular, D(u) = 6(u− 2/5)(u− 3/4).
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regularisation (considered in Section 5.5)

∂U

∂t
= ∂

∂x

(
D(U)∂U

∂x

)
+R(U) + (1 − µ)ε ∂

3U

∂x2∂t
− µε2∂

4U

∂x4 ,

where µ ∈ [0, 1] is a constant. Note that µ = 0 corresponds to the viscous regularisation
(5.11) and µ = 1 corresponds to the non-local regularisation (5.10). The associated
four-dimensional slow-fast system7 is given by





εµ
du
dz = (µ− 1) cu+ w,

ε
dw
dz = v + F (u),
dp
dz = R(u),
dv
dz = p+ cu.

The corresponding layer problem, for µ ̸= 0, is




du
dξ =

(
1 − 1

µ

)
cu+ 1

µ
w,

dw
dξ = v + F (u).

(5.34)

If v is such that (5.34) has three fixed points (u−, w−), (u0, w0) and (u+, w+), where
u+ < α < u0 < β < u−. Then, for µ ̸= 1, (5.34) does not have heteroclinic orbits
connecting (u−, w−) with (u+, w+). Hence, we do not expect shock-fronted travelling wave
solutions in this case.

5.6.2 Generalisations

In this article, we concentrated on a specific quadratic nonlinear diffusivity function D(U)
(5.2) centred around 2/3 and a specific Allee-type reaction-term R(U) (5.6) as these were
derived from an underlying lattice-based stochastic model (Johnston et al. 2017). However,
the techniques used in this article can in fact be easily extended to more general nonlinear
diffusivity functions and reaction terms. For instance, if we change the reaction term
from an Allee type (5.6) to a logistic type (5.5) (as studied in Li et al. (2020)), we can
still construct the higher-dimensional systems based on the two regularisations (5.10)
and (5.11). Since the two layer problems (5.20) and (5.32) only depend on F (u), the
anti-derivative of D(u), and not on R(u), we obtain the same conditions for the shocks
as for the Allee type reaction term. That is, for the non-local regularisation the shocks
7 For µ = 0 this slow-fast system is actually three-dimensional and given by (5.30).
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will have, to leading order, endpoints u− and u+, while the shocks will have, to leading
order, endpoints ur and α or ul and β for the viscous relaxation. In other words, the size
of the shock depends on the relaxation and the nonlinear diffusivity function D(U), but
not the reaction term R(U). For both regularisations, the reduced desingularised problem
has four fixed points which are determined by the roots of the product of the nonlinear
diffusivity function D(U) and the reaction term R(U). In particular, the fixed points are
(0, 0), (1,−c), (α,−cα) and (β,−cβ). In the desingularised system, the fixed point (0, 0)
is a stable node or stable spiral for c > 0 and an unstable node or unstable spiral for c < 0.
For shock-fronted travelling wave solutions with the asymptotic conditions limz→−∞ U = 1
and limz→∞ U = 0, we expect (0, 0) to be stable in the desingularised problem. Therefore,
we expect those travelling wave solutions to have positive speeds. Hence, if the reaction
term is logistic, we do not expect shock-fronted travelling wave solutions with negative
speeds. However, using other boundary conditions may provide novel characteristics, see
El-Hachem et al. (2020); Fadai and Simpson (2020a) for examples of moving boundary
problems with logistic type reaction terms.

5.6.3 Stability

Another natural extension of this work is to analyse the stability of the constructed shock-
fronted travelling wave solutions. This was partly done for smooth travelling wave solution
supported by (5.1) with D(U) as in (5.2) and logistic reaction term R(U) (5.5) in Li et al.
(2020). In that article we studied the absolute spectrum of the associated desingularised
stability problem and showed that for speeds above the minimal wave speed, the essential
spectrum (Kapitula and Promislow 2013; Sandstede 2002) of the desingularised system can
always be weighted into the left-half plane, while this is not possible for speeds below the
minimal wave speed (Li et al. 2020). This analysis can be repeated for the shock-fronted
travelling wave solutions constructed in this article since the essential spectrum is related
to the behaviour of the wave at infinity and thus only determined by the asymptotic end
states of the shock-fronted travelling wave solution under consideration. For brevity we
decided not to show this computation and instead refer to Li et al. (2020). In short, the
computation shows that the essential spectrum of the associated desingularised stability
problems of (5.1), (5.10) and (5.11) are all fully contained in the left-half plane, see Figure
5.11, thus there are no absolute instabilities. However, what remains to be determined is
the point spectrum, as well as the connection of the essential spectrum of the associated
desingularised stability problem and the original stability problem, to complete the linear
stability analysis. This is part of future work, see also the discussion in Li et al. (2020).
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Figure 5.11: The essential spectrums (shaded green regions plus boundaries) of the
desingularised stability problems associated to (5.1) (a), (5.10) (b) and (5.11) (c) with
ε = 0.1. Note that the essential spectrums are to leading order the same and fully contained
in the left-half plane.

5.7 Additional results

5.7.1 Necessary conditions for shock-fronted travelling wave solutions

In this section, we follow Kuzmin and Ruggerini (2011) and derive the two necessary
conditions (5.8) and (5.9) for the existence of shock-fronted travelling wave solutions as
mentioned in the Introduction. A shock-fronted travelling wave solutions of (5.1) solves
the travelling wave ODE

c
du
dz + d

dz

(
D(u)du

dz

)
+R(u) = 0,

where z := x − ct is the travelling wave coordinate. Define g(u) := D(u)du/dz in
(0, u1) ∪ (u2, 1), that is, g(u) is defined in the region where the travelling wave solution
u is smooth. As we focus on monotonically decreasing travelling wave solutions we have
that g(u) < 0. The travelling wave ODE can now be written as

g(u)
(

d(g(u))
du + c

)
= −R(u)D(u). (5.35)

Integrating both sides (5.35) between 0 and ua(< u1) gives
∫ ua

0
g(u)dg(u) + c

∫ ua

0
g(u)du = −

∫ ua

0
R(u)D(u)du,
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which leads to

c = −

∫ ua

0
R(u)D(u)du+ 1

2(g(ua))2

∫ ua

0
g(u)du

.

Thus, for c < 0 a necessary condition for the existence of a shock-fronted travelling wave
solution is ∫ ua

0
R(u)D(u)du < −1

2(g(ua))2 < 0 .

Similarly, integrating (5.35) between ub(> u2) and 1 gives

c = −

∫ 1

ub

R(u)D(u)du− 1
2(g(ub))2

∫ 1

ub

g(u)du
,

which, for c > 0, leads to the necessary condition
∫ 1

ub

R(u)D(u)du > 1
2(g(ub))2 > 0.

5.7.2 The heteroclinic orbits of the layer problem

We derive the analytic expressions for the heteroclinic orbits given in the layer problem
supported by 




du
dξ = w,

dw
dξ = v + F (u),

where v is a constant. Based on its Hamiltonian, we require

H(u,w) = −1
2w

2 +G(u) + vu = 0,

on the heteroclinic orbits
(
u0,±

h , w0,±
h

)
. Subsequently, we obtain

w = ±
√

2 (G(u) + vu).

Note that G(u) has two integration constants. With specific integration constants, w(u)
can become a second-order polynomial with specific roots. That is, we can write w as

w(u) = ±
√

2 (G(u) + vu) = ±
√
a2(u−B1)2(u−B2)2.
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Furthermore, as w(u±) = 0, we can write w as

w(u) = ±a
(
u− u+

) (
u− u−

)
,

where a =
√

(Di −Dg)/2 > 0. If we assume w < 0 in (u+, u−), then we have

du
dξ = a(u− u+)(u− u−). (5.36)

Deriving the equation (5.36) gives

u0,+
h (ξ) = u+ + u−

2 + u− − u+

2 tanh
(

−a(u− − u+)
2 ξ

)
.

Subsequently, we obtain the expression of w(ξ):

w0,+
h (ξ) = −a(u− − u+)2

4 sech2
(

−a(u− − u+)
2 ξ

)
,

which satisfies limξ→±∞ w(ξ) = 0. Similarly, for the asymptotic conditions limξ→−∞ u(ξ) =
u+ and limξ→∞ u(ξ) = u−, we have

du
dξ = −a(u− u+)(u− u−). (5.37)

Subsequently, solving (5.37) gives the expressions of u0,−
h (ξ) and w0,−

h (ξ):

u0,−
h (ξ) = u− + u+

2 − u− − u+

2 tanh
(

−a(u− − u+)
2 ξ

)
,

w0,−
h (ξ) = a(u− − u+)2

4 sech2
(

−a(u− − u+)
2 ξ

)
.
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Conclusions

In this chapter we summarise the results and novel contributions of this work. We then
outline possible extensions for further investigation.

6.1 Summary

In this thesis, we explore the influence of nonlinear diffusion on population dynamics in
reaction-diffusion models. We pay particular attention to the role of nonlinear diffusion on
the survival or extinction of bistable populations, and the role of nonlinear diffusion on
the properties of travelling waves.

In Chapter 2 and 3, we construct a novel discrete-continuum modelling framework that
connects the behaviour of individuals influenced by crowding effects in a two-dimensional
lattice-based model to population dynamics described by reaction-diffusion equations. This
framework can be used to study a wide range of macroscopic phenomena including linear
diffusion, nonlinear diffusion, as well as logistic growth and strong Allee kinetics. We first
consider a simple movement mechanism associated with linear diffusion in Chapter 2, and
explore the role of initial shape of spatial distributions on the fate of bistable populations.
Both discrete and continuum results indicate that the initial shape of spatial population
distributions is a key factor in determining whether a bistable population will survive
or go extinct. A bistable population may survive with one initial spatial distribution,
and go extinct with another initial spatial distribution. This suggests the importance of
considering the influence of spatial arrangements of individuals in studies of population
dynamics.

We then consider more complicated movement mechanisms associated with nonlinear
diffusion in Chapter 3, and identify whether a given nonlinear diffusivity function will
encourage or suppress extinction relative to the classical linear diffusion model. Through
the discrete-continuum framework, we build a new relationship between the nonlinear
diffusivity function and the movement mechanisms of individuals. This relationship allows

155
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us to explore how the averaged population-level flux of individuals varies with different
choices of nonlinear diffusivity functions. Our results show that choices of nonlinear
diffusivity function that decrease the flux suppress population extinction relative to the
classical linear diffusion model. In contrast, choices of nonlinear diffusivity function that
increase the flux encourage population extinction.

In mathematical biology, most continuum models are derived using arguments based
on population-level phenomena. While some discrete models incorporate the movement
mechanism of individuals into a discrete-continuum framework and derive the well-defined
continuum limit equations, the form of nonlinear diffusivity functions is often limited by
the particular movement mechanism of individuals (Deroulers et al. 2009; Anguige and
Schmeiser 2009; Yates et al. 2015). In contrast, our discrete-continuum framework provides
a general form of nonlinear diffusivity function associated with a wide range of movement
mechanisms of individuals, as well as a general form of source term associated with a wide
range of proliferation and death mechanisms of individuals. Not only can we derive the
nonlinear diffusivity function from a particular movement mechanism of individuals, but
we can also find the movement mechanism for a given nonlinear diffusivity function. This
framework can be applied to study a broad range of population dynamics and to interpret
the population-level phenomena based on the individual-level mechanisms.

In Chapter 4 and 5, we develop a geometric approach to study properties of travelling
waves in reaction-diffusion models. We consider a reaction-diffusion equation derived
from the continuum limit of a one-dimensional lattice-based discrete model, which has a
nonlinear diffusivity function that changes signs twice in the domain from zero to carrying
capacity density. In Chapter 4, we use a travelling wave coordinate and transform the
reaction-diffusion equation into a singular system of ODEs. To remove singularities, we
use a stretched variable and transform the original system to a desingularised system.
Through analysing the phase plane of the desingularised system, we prove the existence of
travelling wave solutions with speeds greater than a minimum wave speed. In addition,
we show that travelling wave solutions with speeds smaller than the minimum wave speed
are absolutely unstable, which supports the numerical observations.

We then extend the geometric approach to study the characteristics of shock-fronted
travelling wave solutions with nonlinear diffusion and strong Allee kinetics in Chapter 5.
We studied the reaction-diffusion equation by adding two different small regularisations,
so that we can use a dynamical systems approach to study shock-fronted travelling wave
solutions. Since the regularisation term is assumed to be small, there is a scale separation
in this system. This allows us to investigate singular limits of the system in the fast
and slow scaling, so that we can construct the shock-fronted travelling wave solutions by
concatenating the dynamics in singular limits. Our analysis and numerical results identify
the profile of shocks and the speed of shock-fronted travelling wave solutions. Moreover,
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we show that different regularisations yield shock-fronted travelling wave solutions with
different characteristics.

Since the reaction-diffusion equation is derived from the continuum limit of a discrete
model, the travelling wave solutions intuitively indicate the agent density profiles. As the
Fisher-KPP equation also has a minimum wave speed for the existence of smooth travelling
wave solutions (Kolmogorov et al. 1937; Fife 2013), our analysis indicates that a discrete
mechanism of invasion processes considering the differences in individual and collective
behaviours can lead to the similar macroscopic behaviour as the discrete mechanism
with no differences in isolated and grouped agents. Unlike the infinite number of smooth
travelling wave solutions associated with logistic kinetics, we only find several shock-fronted
travelling wave solutions associated with strong Allee kinetics. The characteristics of
shock-fronted travelling wave solutions are closely related to the regularisation terms. The
geometric approach developed in Chapter 4 and 5 addresses the limitation of the previous
method which can not be used to study shock-fronted travelling wave solutions (Ferracuti
et al. 2009).

Overall, we explored the role of initial shape of spatial distributions and the role
of nonlinear diffusion on the fate of populations. We further studied the existence and
stability of travelling wave solutions in reaction-diffusion equations with nonlinear diffusion.
Nonlinear diffusion affects population extinction, as well as the properties of travelling
waves in reaction-diffusion models. Since we study population dynamics in reaction-
diffusion models with a discrete-continuum framework, the influence of nonlinear diffusion
in population dynamics is related to the movement mechanism of individuals described by
the discrete model. For a bistable population located on a finite domain, the movement
mechanism of individuals determines the population-level flux and influences the long-term
survival or extinction. For a population that spreads through space with a travelling wave,
the movement mechanism of individuals determines the speed and the profile of travelling
waves.

6.2 Future work

While the modelling framework presented in this thesis is relatively general and considers
various scenarios where nonlinear diffusion plays a crucial role in governing population
dynamics, there are many ways that it could be extended. We now discuss these potential
extensions.
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6.2.1 Exploring the role of various initial conditions on the fate of bistable
populations in reaction-diffusion models

In Section 2, we consider several shapes of initial population distributions on a finite
L × L domain with periodic boundary conditions. There are many shapes of initial
distributions and other initial conditions which have not been investigated. However,
similar numerical explorations of the long-term survival or extinction of populations
can be conducted using our discrete-continuum framework. In Section 2.9.7, we show
that no-flux boundary conditions lead to the same result as when we consider periodic
boundary conditions. Other boundary conditions, such as homogeneous Dirichlet boundary
conditions representing the situation where individuals leak through boundaries, may
lead to different outcomes relative to periodic boundary conditions and no-flux boundary
conditions. Similarly, in Section 3 we only consider a simple one-dimensional vertical strip
initial distribution. Nonlinear diffusion may play a different role on the fate of bistable
populations if we consider other shapes or boundary conditions. For example, in Section
3.9.5 we consider the well-mixed initial distribution, which leads to the results indicating
that nonlinear diffusion plays the same role as linear diffusion on contributing to the
eventual survival or extinction of bistable populations. Furthermore, although we have
highlighted the influence of dimensionality on the fate of bistable populations in Chapter
2, our discrete simulations are only performed on two-dimensional domains. Considering a
three-dimensional population model, which may represent a population of cells in tumour
spheroids (Nyga et al. 2011; Kopanska et al. 2016), is an interesting extension for exploring
the role of initial spatial arrangements on the fate of bistable populations.

6.2.2 Extending the framework for studying interacting species

Although in this thesis we only consider the situation where individuals in a population
follow the same mechanism influenced by crowding effects, the discrete model can be
extended to study population dynamics of interacting species (Simpson et al. 2009a). The
same averaging approach could be used to derive the continuum limit, which would take
the form of a system of coupled partial differential equations (Shigesada et al. 1979; Painter
and Sherratt 2003; Hughes et al. 2010; Mart́ınez-Garćıa et al. 2020). If the dynamics of
subpopulations incorporate strong Allee effects, interactions can also play an important
role in determining the eventual survival or extinction of any of the subpopulations (Taylor
et al. 2020; Krause and Van Gorder 2020).
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6.2.3 Extending the framework for studying biased migration

Another feature of this framework that could be explored is to consider other interesting
movement mechanisms. In particular, a directed movement mechanism of individuals
could be incorporated to mimic the biased migration of populations (Cai et al. 2006). For
example, extracellular signals cause cells to migrate in a biased way towards the source of
the attractant (Mason et al. 2001). This would extend our reaction-diffusion models to
advection-reaction-diffusion models.

6.2.4 Investigating the influence of stochasticity on population dynamics in
the discrete model

In this thesis we use the stochastic discrete model to generate averaged data that matches
well with solutions of the continuum model. However, there are additional information
of population dynamics in the discrete model that cannot be easily extracted from the
continuum model. For example, since the evolution of population in the discrete model
is a stochastic process, different identically-prepared realisations may lead to different
outcomes. This is different to the continuum equations, which always generate the same
result. We estimate the robustness of the stochastic simulations in Section 2.9.8. The result
indicates that stochasticity influences the fate of bistable populations when parameters
are close to the boundary separating survival and extinction in the continuum model.
Therefore, care must be taken when different identically-prepared realisations generate
different outcomes as reaction-diffusion equations ignore the influence of stochasticity.

6.2.5 Studying shock-fronted travelling waves in reaction-diffusion equations
with other diffusion terms

In Section 4 the discrete model constrains the choices of nonlinear diffusivity functions.
However, other choices of nonlinear diffusivity function changing signs twice may lead to
shock-fronted travelling wave solutions as shown in Figure 4.10. One possible extension
of our work is to analyse shock-fronted travelling wave solutions in reaction-diffusion
equations with generic diffusivity functions and logistic kinetics or strong Allee kinetics.
We anticipate that the analysis can follow the same geometric approach used in this
thesis, since the approach is relatively general in studying travelling wave solutions of
reaction-diffusion equations with nonlinear diffusion that changes signs.
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6.2.6 Exploring the connection between the discrete model and the regulari-
sations

Since we use truncated Taylor series in the discrete-to-continuum averaging approach
to arrive at the continuum limit equation, there are indeed small higher order terms
that we ignore in derivations. It is interesting to explore the relationship between the
regularisations and the discrete model, so that we can find the shock-fronted travelling
waves in the discrete model, and in turn gain insight into the individual-level mechanisms
leading to shock-fronted travelling waves. We note that the ignored higher order terms
may not have the same form as the two regularisations considered in our thesis, while
there could be more feasible regularisations leading to shock-fronted travelling waves. For
example, we may expand the choices of regularisations by considering a linear combination
of the two regularisations considered in our thesis, as suggested in Section 5.6.1.

6.2.7 Calculating the point spectrum to complete the stability analysis of
travelling wave solutions

In this thesis we determine the absolute spectrum for both smooth and shock-fronted
travelling wave solutions. The property of absolute stability of travelling wave solutions
supports our numerical observations. However, to fully establish the spectral stability of
these travelling wave solutions, we need to calculate the point spectrum. The remaining
challenge of calculating the point spectrum is to connect a desingularised stability problem
to the original stability problem. In our scope of knowledge, there is currently no available
method to solve this issue.

6.3 Final remarks

In this thesis, we have explored the influence of nonlinear diffusion on population dynamics
in reaction-diffusion models. The discrete-continuum modelling framework suggests that
the spatial-temporal population dynamics described by the reaction-diffusion equation
relate to the movement, proliferation and death of individuals. The diffusion mechanism
of populations relates to the movement of individuals, and the reaction mechanism
of populations relates to the proliferation and death of individuals. In particular,
nonlinear diffusion reflects how crowding effects influence the movement of individuals.
Studying population dynamics in reaction-diffusion models based on the discrete-continuum
framework reveals how the behaviour of individuals influence the evolution of populations.
This work shows the usefulness of reaction-diffusion models in studying the survival or
extinction of populations and biological invasion processes.
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