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Abstract

In vitro tumour spheroid experiments have been used to study avascu-

lar tumour growth and drug design for the last 50 years. Unlike simpler

two-dimensional experiments, tumour spheroids lead to realistic hetero-

geneity within the growing population of cells that is thought to be related

to spatial and temporal differences in nutrient availability. The relatively

recent development of real-time fluorescent cell cycle labels allows us to

identify the position of individual cells, as well as the cell cycle status of

individual cells within the growing population, giving rise to the notion of

a four-dimensional (4D) tumour spheroid. In this thesis, we develop the

first stochastic individual-based model (IBM) of a 4D tumour spheroid and

show that IBM simulation data compares very well with experimental data

from a suite of 4D tumour spheroids constructed using a metastatic hu-

man melanoma cell line. Not only does the IBM replicate key qualitative

features of the experiments, we also explore how the IBM provides quan-

titative information about nutrient availability within the spheroid, which

is important because it is very difficult to measure these data in standard

tumour spheroid experiments.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Context

Tumour spheroids are a valuable experimental tool for studying the dy-

namics of in vivo tumours. The relevance of tumour spheroid experiments

is due to how they physiologically mimic the structural and temporal het-

erogeneity of solid tumours to a degree unmatched by two dimensional (2D)

cell culture experiments [1–3] (Figure 1.1), where nutrient is freely avail-

able above the monolayer of cells (Figure 1.1c). In tumour spheroids, the

three dimensional spatial structure limits the diffusion of nutrient, caus-

ing a gradient of nutrient availability (Figure 1.1c). In addition, tumour

spheroid experiments respond to the influence of anticancer drugs and nu-

trient deprivation in a manner reminiscent of that exhibited by tumours

in vivo [2, 4, 5]. Hence, tumour spheroids are experimental assays that are

valuable intermediates between 2D cell culture experiments and live-tissue

animal models [6].

Tumour spheroids begin as a cells suspended in a growth medium, which

aggregate themselves together over time, forming a spheroid which then be-

gins growing [2, 7]. Once a spheroid reaches approximately 300-400 µm in

diameter, the cells in the centre become quiescent and arrest their progres-

sion through the cell cycle, and stop proliferating, as a response to reduced

access to nutrient [7,8]. Further growth causes the spheroid, with its centre

even more restricted from access to nutrient, to begin developing a necrotic

core, region of reduced proliferation, and freely proliferating periphery in

a concentric structure [7–9]. The three dimensions of spatial growth and

1
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(b)

Three spatial dimensions Two spatial dimensions

(c)

(a)

Figure 1.1: Advantages of tumour spheroid experiments. (a)–(b) Com-
parison of spheroids with and without cell cycle status labels. Images show
(a) cell nuclei and (b) cell nuclei exhibiting fluorescence indicating the cell
cycle status of each cell. (c) Schematic comparison of tumour spheroid
experiments (left) and 2D cell cultures (right) with nutrient (arrows).

additional information about the individual cell cycle status of each cell

(Figure 1.1b) gives rise to the terminology of a 4D tumour spheroid. Fig-

ure 1.2 demonstrates this spheroid growth and internal heterogeneity in a

human melanoma cell line over a 6 day period.

The study of these tumour spheroids is an important field in mathe-

matical oncology [9]. Continuum mathematical models aiming to describe

the formation and growth phases of internal spheroid structure were first

developed over 50 years ago [9, 10]. Modelling of tumour spheroids has

since been further developed and analysed to model nutrient diffusion into

the spheroid, necrotic core growth, and the formation of quiescent re-

gions [11–17]. Continuum models describe the spheroid as a continuum

of cells, where partial differential equations govern nutrient concentrations

and cell migration, proliferation and death [18].
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t = 0 days t = 2 days

t = 4 days t = 6 days

Figure 1.2: Cross section images of a tumour spheroid demonstrating
structural growth at t = 0, 2, 4, and 6 days. Different colours indicate cells
in different stages of the cell cycle, and the absence of fluorescence in the
centre at t = 6 days is the region of the necrotic core. Scale bars represent
200 µm.

In this thesis, we will take a different approach by considering the tu-

mour spheroids as a conglomeration of individual cells, with an evolution

arising from the collective behaviour cells and their interaction with their

environment, such as nutrient availability. This modelling approach will

be connected with new experiments performed for this thesis. In Figure

1.2, we see cells at an individual resolution via the indication of their cell

cycle statuses. Hence, the opportunity to model the spheroid and its evo-

lution by considering individual cell behaviours and properties, including

cell cycle indicators, arises.
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1.1.2 Fluorescent cell cycle labelling

Until 2008, individual cell cycle status data were obscured from cell culture

assays, with no means of explicitly distinguishing the cycling phases of in-

dividual cells [19]. However, the advent of fluorescent ubiquitination-based

cell cycle indicator (FUCCI) technology has enabled the identification of

the cell cycle status of individual cells with fluorescent sensors [5, 19, 20].

With FUCCI, cell nuclei in gap 1 (G1) phase fluoresce red, and cell nu-

clei in the synthesis/gap 2/mitosis (S/G2/M) phase fluoresce green (Figure

1.3). When cell nuclei are in early S (eS) phase, they emit both colours,

and appear yellow [19]. A significant application of cell cycle labelling is

explicitly indicating regions where cells are arrested in G1 phase and there-

fore not cycling and proliferating. This may be natural, as a consequence

of low nutrient availability [7, 8], or from the inclusion of drugs that rely

on impeding or disrupting the cell cycle [4, 5].

G1

eS

S/G2/M

G1

Figure 1.3: Schematic of fluorescent ubiquitination-based cell cycle indi-
cator (FUCCI) technology on cycling cells. Cell nuclei fluoresce red when
in G1 phase, yellow when in eS phase, and green in S/G2/M phase.

Just as FUCCI labelling enables experimentalists to see additional cell

cycle status details, so too can modellers see greater detail in models with

collective cell behaviour. While there are mathematical models of tumour

spheroids and cell cultures with proliferation without FUCCI labelling [21–

24], other models have implemented cell cycle labelling mechanisms with
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success. Some models have used FUCCI labelling in continuous models of

tumour spheroid experiments [25, 26], whereas others explicitly label the

cell cycle status of individual cells in 2D cell culture experiments [20, 27–

30]. In this thesis, we consolidate these approaches by explicitly indicating

the cycling status of individual cells in a mathematical model of tumour

spheroid experiments.

1.1.3 Individual-based modelling

Individual-based models (IBMs) are a class of discrete model simulations

that describe systems as comprised of collections of individuals whose be-

haviours are influenced by their state variables. This kind of approach can

have substantial utility in a biological context, where individual-level infor-

mation can be highly heterogeneous [31]. These models have been applied

with great success to modelling collective cell behaviour in 2D [21,22,32,33],

where the behaviour of individual cells is responsible for the overall evo-

lution of the system. Individual-based models, like most discrete models,

can be less computationally efficient than continuum models [18]. IBMs

overcome this disadvantage of increased computational workload by often

being a highly appropriate choice for the biology being modelled [21,22,32],

or by simply relaying more detailed information at the individual level than

a continuous model can.

A key difference between assays with two spatial dimensions and tu-

mour spheroid experiments is the spatial variation in nutrient availability.

Tumour spheroid experiments have the additional restriction on local nu-

trient availability for cells in the spheroid centre; once the spheroid exceeds

a certain size, it is larger than the diffusion limit for nutrients [7–9], and

cells in the centre are deprived of nutrient necessary for cell cycling or even

survival [5,34]. Because of this feature of 3D experiments that isn’t present

in 2D assays, we must also consider the reaction-diffusion (consumption-

diffusion) of nutrient, and the relationship between nutrient concentration

and cell behaviours, such as committing to the cell cycle, cell migration,

and cell death.

If the information on the individual cell level is of interest, then IBMs

are the most suitable approach. Some IBMs of tumour spheroid growth

have been developed, where individual cells are classified based on their lo-

cal oxygen level and entry into a quiescent or necrotic state [23,24,35]. How-

ever, cell cycle indicators (see Section 1.1.2) are uniquely suited individual-
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based approach, as they naturally assign each individual cell an additional

state variable – its cell cycle status. Since much of the spatial heterogeneity

is hypothesized to be driven by arrest of the cell cycle, we are motivated

to explicitly include cell cycle indicators into a mathematical model to in-

vestigate these dynamics. In this thesis, we aim to consolidate IBMs of

4D tumour spheroids with IBMs explicitly modelling the cell cycle, tak-

ing advantage of directly modelling cell cycle labelling with FUCCI and

cell death, which has the added benefit of direct comparisons between our

model results with those from experiments.

As many mathematical models are developed with the intention of repli-

cating experimental phenomena, the utilisation of experimental data is

central to verifying these models. As such, since IBMs may utilise and

impart the same cell-level information as the experimental counterparts,

they are a strong choice for modelling biological phenomena, as an IBM’s

fidelity can be directly compared to the experimental data [31]. It is for this

reason that, in this thesis, we place significant emphasis on how measure-

ments from the model compare with experimental results. We can then use

the model to extract data that are obscured in experiments, after demon-

strating that the simulation is a viable representation of the experimental

growth of a 4D tumour spheroid with cell cycle labelling.

1.1.4 Research questions

In this thesis, we aim to address the following research questions:

1. How can previous techniques used in cell population dynamics and

cell cycle labelling be extended to three dimensions?

2. How do individual-based models of tumour spheroid growth compare

with experimental images of tumour spheroids grown in vitro?

3. What insight can an individual-based model of tumour spheroid growth

provide into information normally obscured in experiments?

In answering these questions, the methods in previous studies are con-

solidated and extended, and the spatial and temporal evolution of 4D tu-

mour spheroids is investigated.
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1.2 Thesis structure

This thesis contains two main chapters. In Chapter 2, we include the

main document of a scientific manuscript submitted to the Journal of the

Royal Society Interface (November 2020). In Chapter 3, we present the

supplementary material supporting the manuscript in Chapter 2. Both

the manuscript and supplementary material are available on bioRxiv, at

https://www.biorxiv.org/content/10.1101/2021.11.28.470300v1. Software

and code required to implement the IBM is also available on GitHub, at

https://github.com/ProfMJSimpson/4DFUCCI.

Chapter 2 presents a continuous-space, continuous-time individual-based

model of 4D tumour spheroid growth with fluorescent cell cycle indicators.

Individual cell migration, death, and proliferation are explicitly described

in the context of a 4D tumour spheroid, and biologically inspiration is used

to model how the local nutrient concentration influences these behaviours.

Qualitatively comparing the results of the IBM with experiments demon-

strates its biological fidelity, and quantitative data is then extracted from

the IBM. Using a careful selection of parameter values, the quantitative ex-

perimental behaviour of experimental spheroids is matched with the IBM.

In Chapter 3, the numerical methods for the individual-based model

and coupled reaction-diffusion equation utilised in Chapter 2 are described.

A series of computational experiments justifying the selection of numerical

parameter choices for the solution of the reaction-diffusion equation are

also presented. The calculations of experimentally supported parameters,

with an overview of the associated experimental method to achieve them,

are also outlined in Chapter 3. The methodology and pseudo-code for the

IBM and reaction-diffusion equation are also included.

In Chapter 4, we summarise this thesis and its key findings, and outline

possible avenues for extending this research.

1.3 Statement of joint authorship

This section outlines the joint contributions of the Masters candidate and

the co-authors of the scientific manuscript and supporting material pre-

sented in this thesis.

https://www.biorxiv.org/content/10.1101/2021.11.28.470300v1
https://github.com/ProfMJSimpson/4DFUCCI
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Chapter 2: A stochastic mathematical model of 4D tumour

spheroids

This chapter is the main document of the manuscript titled “A stochastic

mathematical model of 4D tumour spheroids with real-time fluorescent cell

cycle labelling”. This manuscript is publicly available on bioRxiv, and has

been submitted for publication in the Journal of the Royal Society Interface

(November 2020). Below, the contribution of each author is listed:

• Jonah J. Klowss developed the IBM, performed all numerical simu-

lations, performed all experiments, analysed the simulation and ex-

perimental data, generated the figures, and drafted the manuscript,

• Alexander P. Browning assisted with numerical simulations, assisted

with experimental work, supervised the data analysis and figure gen-

eration, and critically reviewed the manuscript.

• Ryan J. Murphy assisted with numerical simulations, assisted with

experimental work, and critically reviewed the manuscript.

• Elliot J. Carr supervised the numerical simulations, data analysis,

and figure generation, and critically reviewed the manuscript.

• Michael J. Plank supervised the data analysis and figure generation,

and critically reviewed the manuscript.

• Gency Gunasingh instructed and supervised the experimental work,

supervised the experimental data analysis and figure generation, and

critically reviewed the manuscript.

• Nikolas K. Haass supervised the experimental work, experimental

data analysis and figure generation, and critically reviewed the manuscript.

• Matthew J. Simpson initiated the research concept, supervised the

numerical simulations, data analysis, and figure generation, and crit-

ically reviewed the manuscript.

Chapter 3: Supporting information for a stochastic mathe-

matical model of 4D tumour spheroids

This chapter is the supplementary material document for the manuscript

titled “A stochastic mathematical model of 4D tumour spheroids with real-

https://www.biorxiv.org/content/10.1101/2021.11.28.470300v1
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time fluorescent cell cycle labelling”, which comprises Chapter 2. Below,

the contribution of each author is listed:

• Jonah J. Klowss developed the mathematical techniques, performed

the analysis and supplementary experiments, generated the figures,

and drafted the manuscript.

• Alexander P. Browning supervised the data analysis and figure gen-

eration, and critically reviewed the manuscript.

• Ryan J. Murphy critically reviewed the manuscript.

• Elliot J. Carr supervised the mathematical techniques, data analysis,

and figure generation, and critically reviewed the manuscript.

• Michael J. Plank supervised the mathematical techniques, data anal-

ysis and figure generation, and critically reviewed the manuscript.

• Gency Gunasingh instructed and supervised the supplementary ex-

perimental work, supervised the experimental data analysis and fig-

ure generation, and critically reviewed the manuscript.

• Nikolas K. Haass supervised the supplementary experimental work,

experimental data analysis and figure generation, and critically re-

viewed the manuscript.

• Matthew J. Simpson supervised the mathematical techniques, data

analysis, and figure generation, and critically reviewed the manuscript.
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Chapter 2

A stochastic mathematical

model of 4D tumour

spheroids

2.1 Introduction

In vitro tumour spheroid experiments are widely-adopted to study avas-

cular tumour growth and anti-cancer drug design [1–3]. Unlike simpler

two-dimensional assays, tumour spheroid experiments exhibit heterogene-

ity within the growing population of cells, and this heterogeneity is thought

to be partly driven by spatial and temporal differences in the availability

of diffusible nutrients, such as oxygen [2,5]. Historically, tumour spheroids

have been analysed experimentally using bright field imaging to measure

the size of the growing spheroid [8, 36], however this approach does not

reveal information about the internal structure of the growing population.

Since 2008, fluorescent ubiquitination-based cell cycle indicator (FUCCI)

has enabled real-time identification of the cell cycle for individual cells

within growing populations [5, 19, 20]. Using FUCCI, nuclei of cells in G1

phase fluoresce red, nuclei of cells in S/G2/M phase fluoresce green, and

nuclei of cells in early S (eS) phase appear yellow as a result of both red and

green fluorescence being active [19] (Figure 2.1a). FUCCI simultaneously

provides information about spheroid size and heterogeneity of the cell cy-

cle status (Figure 2.1c-e). In particular, at early times the entire spheroid

is composed of freely cycling cells, with a relatively even distribution of

FUCCI colours, whereas at intermediate times cells in the central region

12
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(c)

(d)

(e)

 = 0 days
m0  = 212

 = 3 days
m3  = 248

 = 6 days
m6  = 269

 = 10 days
m10  = 269

(a) G1

Dead

eSS/G2/M

Upper 
cross section

Equator

Lower 
cross section

(b)

Figure 2.1: Motivation. (a) A schematic of the cell cycle, indicating the
transition between different cell cycle phases, and their associated FUCCI
fluorescence. Red, yellow, and green colouring indicates cells in G1, eS,
and S/G2/M phase, respectively. (b) Locations of the upper cross section,
equator and lower cross section. (c)–(e) Experimental images of a tumour
spheroid using the human melanoma cell line WM793B at days 0, 3, 6,
and 10 (after formation) showing: (c) full spheroids, viewed from above;
(d) spheroid hemispheres; and, (e) spheroid slices, where the cross section
is taken at the equator. White dashed lines in (e) denote the boundaries of
different regions, where the outermost region is the proliferative zone, the
next region inward is the G1-arrested region, and the innermost region at
days 6 and 10 is the necrotic core. In (a) and (d) we use cyan colouring
for dead cells, which assist in identifying the necrotic core in (d). Spheroid
outer radii are labelled alongside their corresponding time points, and scale
bars represent 200 µm.

become predominantly red, indicating G1-arrest [5]. Late time growth is

characterised by the formation of a central necrotic region, indicated by a
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complete absence of fluorescence. FUCCI allows us to identify both the

position of individual cells within the growing spheroid in three spatial di-

mensions, as well as identifying cell cycle status, giving rise to the notion of

a four-dimensional (4D) tumour spheroid [25]. Assuming spherical sym-

metry, we can characterise the geometry of 4D spheroids by three radii:

ro(t) > 0 is the outer radius, ra(t) ≥ 0 is the arrested radius, and rn(t) ≥ 0

is the necrotic radius, with ro(t) > ra(t) ≥ rn(t). In Figure 2.1e, we see

that rn(t) = 0 for t ≤ 3, with the necrotic core forming sometime between

t = 3 and t = 6 days.

Continuum mathematical models of tumour spheroids have been devel-

oped, analysed, and deployed for over 50 years [10–14, 16, 17, 37, 38], and

these developments have included very recent adaptations of classical mod-

els so that they can be used to study tumour spheroids with FUCCI [25].

However, continuum modelling approaches lack the ability to track individ-

ual cells within the growing population, and typically neglect heterogeneity

and stochasticity within the population. In comparison, individual-based

models (IBMs) allow us to study population dynamics in detail by keeping

track of all individuals within the population, as well as explicitly includ-

ing effects of heterogeneity and stochasticity [22,30,32,39,40]. While some

previous IBMs have been developed to describe classical tumour spheroid

experiments without FUCCI [23,24], no IBMs have been developed with the

specific goal of simulating 4D tumour spheroid experiments with FUCCI.

In this work, we develop a continuous-space, continuous-time IBM of

4D tumour spheroid growth with FUCCI. The IBM explicitly describes

how individual cells migrate, die, and progress through the cell cycle to

mimic FUCCI. Certain mechanisms in the IBM are coupled to the local

availability of a diffusible nutrient. We demonstrate the biological fidelity

of the IBM by qualitatively comparing simulation results with detailed ex-

perimental images at several cross sections (Figure 2.1b), with the aim of

providing more comprehensive detail about the internal structure. Quanti-

tative data from the model are then used to assess the spheroid population

distribution, nutrient concentration, and the role variability plays in the

spheroid. We extract and quantitatively compare simulation radius esti-

mates with measurements from a series of 4D tumour spheroid experiments

using a human primary melanoma cell line (Figure 2.1). Using a careful

choice of parameter values, we also show that the IBM quantitatively repli-

cates key features of 4D tumour spheroids.
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2.2 Methods

2.2.1 Experimental methods

Spheroid growth and staining : Human melanoma cells from the WM793B

cell line were genotypically characterised [41–43], grown as described in [2],

and authenticated by short tandem repeat fingerprinting (QIMR Berghofer

Medical Research Institute, Herston, Australia). The WM793B cells were

transduced with FUCCI constructs [5]. Spheroid seeding, growth, and

staining were performed as described in [2], with 1% penicillin-streptomycin

(ThermoFisher, Massachusetts, USA). Three 96-well plates of spheroids,

seeded with a density of 10,000 cells per well, were grown and harvested

over 14 days. One 96-well plate was placed in an IncuCyte S3 (Sartorius,

Göttingen, Germany) and imaged at 6 hour intervals over 14 days. Har-

vested spheroids were stained with either DRAQ7 (ThermoFisher, Mas-

sachusetts, USA) for necrosis or pimonidazole for hypoxia, fixed in 4%

paraformaldehyde solution, and stained with DAPI as per [44].

To reveal the hypoxic region, spheroids stained with pimonidazole were

permeabilised with 0.5% triton X-100 in phosphate buffered solution (PBS)

for one hour, then blocked in antibody dilution buffer (Abdil) [45] for 24

hours. Spheroids were stained with a 1:50 anti-pimonidazole mouse IgG1

monoclonal antibody (Hypoxyprobe-1 MAb1) in Abdil for 48 hours, before

washing in PBS with 0.1% tween-20 for six hours. These spheroids were

then placed in a 1:100 solution of Alexa Fluor 647 in Abdil for 48 hours.

Following this, the spheroids were washed for six hours in PBS.

Confocal imaging : Harvested spheroids were mounted in 2% low melt-

ing agarose in PBS solution and cleared in clearing reagent 2 with matching

refractive index [44], on #1.5 glass bottom plates. For collecting 2D cross

sections, images were taken at the equator and upper and lower cross sec-

tions (Figure 2.1b), which we define as the Z coordinate halfway between

the equator and the top or bottom of the spheroid. If the necrotic core

exists, the upper and lower cross sections are at the top or bottom of the

necrotic core, respectively. 3D spheroid images were collected by imaging

over the entire Z range of the spheroid.

Computational image analysis: The image processing algorithm [46]

was used to estimate ro(t), ra(t), and rn(t).
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2.2.2 Individual-based mathematical model

We simulate 4D spheroid growth inside a cubic domain, Ω, of side length

L, where L is chosen to be large enough so that agents do not reach the

boundary of the domain during the simulation, but not so large as to

incur significant computational overhead (Section 3.3.3). Biological cells

are represented as discrete agents located at xn(t) = (xn(t), yn(t), zn(t))

for n = 1, 2, 3, . . . , N(t), where N(t) is the total number of agents at time

t.

Gillespie algorithm

The IBM describes key cellular-level behaviours; namely cell cycle progres-

sion and mitosis, cell motility, and cell death, as discrete events simulated

using the Gillespie algorithm [47]. Each agent has an allocated rate of

cell cycle progression, dependent on its cell cycle status and the local nu-

trient concentration (Figure 2.2a). Agents in each phase of the cell cycle

are coloured according to FUCCI, with G1 agents coloured red, eS agents

coloured yellow, and S/G2/M agents coloured green.

We make the natural assumption that biological cells require access to

sufficient nutrients to commit to entering the cell cycle. Therefore, the

red-to-yellow transition rate, Rr(c), depends on the local nutrient concen-

tration, c(x, t) (Figure 2.2a). Once an agent has committed to entering

the cell cycle, we assume the yellow-to-green transition takes place at a

constant rate Ry, and the green-to-red transition, which involves mitosis,

occurs at a constant rate Rg (Figure 2.2a).

The rate of agent death is assumed to depend on the local nutrient

concentration, d(c). When an agent dies, it is removed from the simula-

tion and we record the location at which the death event occurs (Figure

2.2c). When an agent moves or undergoes mitosis (Figure 2.2d-e), a ran-

dom direction in which the agent will migrate, or its daughter agents will

disperse, is chosen (Figure 2.2b). For an agent undergoing mitosis, the

first daughter agent is placed a distance σ/2 along the randomly chosen

direction, and the second daughter agent is placed at a distance σ/2 in the

opposite direction, leaving the two daughter agents dispersed a distance of

σ apart, where we set σ to be equal to a typical cell diameter [49] (Figure

2.2d, Table 2.1). When migrating, agents are displaced a distance µ along

the randomly chosen direction (Figure 2.2e). Similar to the dispersal, we

simulate migration by taking the step length µ to be a typical cell diameter.
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(d) (e)Mitosis MigrationDeath(c)

(b)(a)

Figure 2.2: IBM schematic. (a) Nutrient-dependent rates (Equations
(2.1)–(2.5)). (b) Random directions for migration and mitosis are obtained
by sampling the polar angle θ, and the azimuthal angle φ separately [48].
(c)–(e) Schematics showing agent-level events; death, mitosis, and migra-
tion, across a time interval of duration τ . (c) Any living agent may die,
removing it from the simulation. (d) An agent located at xn undergoes mi-
tosis to produce two daughter agents in G1 phase and dispersed a distance
of σ/2 from xn in opposite, randomly chosen directions. (e) Any living
agent can migrate in a random direction with step length µ.

We specify the agent cycle progression rates,

Rr(c) = Rr
cη1

cη1a + cη1
, (2.1)

Ry(c) = Ry, (2.2)

Rg(c) = Rg, (2.3)

m(c) = (mmax −mmin)
cη2

cη2m + cη2
+mmin, (2.4)

d(c) = (dmax − dmin)

(
1− cη3

cη3d + cη3

)
+ dmin, (2.5)

where c(xn, t) ∈ [0, 1] is the non-dimensional nutrient concentration at the

location of the nth agent; Rr > 0 is the the maximum red-to-yellow tran-

sition rate; mmax > mmin ≥ 0 are the maximum and minimum migration

rates, respectively; dmax > dmin ≥ 0 are the maximum and minimum death

rates, respectively; η1 > 0, η2 > 0, and η3 > 0 are Hill function indices;
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and ca > 0, cm > 0, and cd > 0 are the inflection points of Rr(c), m(c),

and d(c) respectively (Figure 2.2a).

Nutrient dynamics

We make the simplifying assumption that cell migration, death, and pro-

gression through the cell cycle are regulated by a single diffusible nutrient,

such as oxygen [5,10,12]. The spatial and temporal distribution of nutrient

concentration, C(x, t), is assumed to be governed by a reaction-diffusion

equation
∂C

∂t
= D∇2C − κCv, in Ω, (2.6)

with diffusivityD > 0 [µm2/h], and consumption rate κ > 0 [µm3/(h cells)],

and where v(x, t) ≥ 0 [cells/µm3] is the cell density at position x and time

t. In the algorithm, we compute v(xi,j,k, t) by considering the density of

agents Ni,j,k/h
3 within the control volume surrounding the node located at

(xi, yj , zk). In this approach we make the simple assumption that the nutri-

ent diffusion is described by linear diffusion, and the source term explicitly

describes the consumption of nutrient at a rate of κ [µm3/(h cells)]. On

the boundary, ∂Ω, we impose C = Cb, where Cb is some maximum far-field

concentration.

Our experiments lead to spheroids of diameter 500–600 µm over a pe-

riod of 10 days after spheroid formation (Figure 2.1) (14 days after seed-

ing). Since these length and time scales are clear, we leave the independent

variables x and t in Equation (2.6) as dimensional quantities. In contrast,

spatial and temporal variations of C(x, t) are very difficult to measure dur-

ing spheroid growth, so we non-dimensionalise the independent variable

c(x, t) = C(x, t)/Cb, giving

∂c

∂t
= D∇2c− κcv, in Ω. (2.7)

with c = 1 on ∂Ω, and c(x, t) ∈ [0, 1].

Typically, the time scale of nutrient diffusion is much faster than the

time scale of spheroid growth [10]. Consequently, we approximate Equation

(2.7) by

0 = ∇2c− αcv, in Ω, (2.8)

where α = κ/D > 0 [µm/cells]. Therefore, we describe the spatial and

temporal distribution of nutrients by solving Equation (2.8) repeatedly
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during the simulation. This quasi-steady approximation is computationally

convenient, as we describe later. We solve Equation (2.8) with a finite

volume method on a uniform structured mesh (Section 3.3).

2.2.3 Simulation algorithm

We simulate spheroid growth by supposing the spheroid initially contains

N(0) agents distributed uniformly within a sphere of radius ro(0) > 0 [µm].

While it is experimentally relevant to assume the population is spherically

symmetric at t = 0, this assumption is not necessary, and we will discuss

this point later. The proportion of agents chosen to be red, yellow, or

green at t = 0 can be selected arbitrarily, but we choose these proportions

so that the internal structure and composition of the in silico spheroids

are consistent with our in vitro measurements. We achieve this by choos-

ing the initial red, yellow, and green population, Nr(0), Ny(0), and Ng(0),

respectively, noting that N(0) = Nr(0)+Ny(0)+Ng(0) (Section 3.7). The

most appropriate time scale for individual cell-level behaviour is hours,

however spheroid development takes place over 10 days, so we will use a

mixture of time scales to describe different features of the experiments and

simulations as appropriate. We simulate spheroid growth from t = 0 to

t = T h, updating the nutrient concentration at M equally-spaced points

in time. This means that the nutrient concentration is updated at inter-

vals of duration t∗ = T/M [h]. The accuracy of our algorithm increases

by choosing larger M (smaller t∗), but larger M decreases the computa-

tional efficiency. We explore this tradeoff and find that setting t∗ = 1 h

is appropriate (Section 3.3.4). When Equation (2.8) is solved for c(x, t),

the value of c(xn, t) at each agent is calculated using linear interpolation.

These local nutrient concentrations are held constant for each agent while

resolving all the various agent-level events (cycling and proliferation, mi-

gration, death) from time t to time t+ t∗. After resolving the appropriate

agent-level events, we update the agent density before updating the nu-

trient profile again. Pseudo-algorithms for the IBM are provided (Section

3.8), and code to reproduce key results is available on GitHub.

2.2.4 IBM image processing

To estimate ro(t), ra(t), and rn(t), we apply methods described in [38,

46, 50] to the IBM output. Briefly, we import the agent locations from a

particular cross section, and map these locations to an (L + 1) × (L + 1)

https://github.com/ProfMJSimpson/4DFUCCI
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pixel image, increase the size of the agents to 12 pixels in diameter, and use

edge detection to identify and estimate ro(t), ra(t), and rn(t) (Section 3.1).

This procedure adapts the image processing approach for the experimental

images so that it is applicable to the synthetic results from the IBM.

2.3 Results and Discussion

We now compare and analyse images and measurements from a range of

in vitro experiments and in silico simulations. All experiments use the

WM793B melanoma cell line, which takes approximately four days to form

spheroids after the initial seeding in the experiments [26]. This means that

t = 0 days corresponds to four days after seeding to give the experimental

spheroids sufficient time to form. Snapshots from the IBM correspond to

a single realisation, however time-series data from the IBM are reported

by simulating 10 realisations of the IBM and then averaging appropriate

measurements across the 10 simulations.

2.3.1 Parameter values

Table 2.1 summarises the parameter values used in this study. While some

parameters are based on separate, independent two-dimensional experi-

mental measurements (Section 3.4 – 3.5) or measurements directly from

the spheroids where possible (Section 3.6), other parameters are chosen

based on a series of numerical screening tests (Section 3.3). We will return

to discuss other options for parameter choices later.



A stochastic mathematical model of 4D tumour spheroids 21

Table 2.1: IBM parameter values.

Parameter Name Symbol Value Source

Numerical Parameters

Initial number of agents N(0) 30 000 Experimental measurement

(Section 3.6)

Initial number of red agents Nr(0) 20,911 Assumption

(Section 3.7)

Initial number of yellow agents Ny(0) 995 Assumption

(Section 3.7)

Initial number of green agents Ng(0) 8,094 Assumption

(Section 3.7)

Domain length L 4000 µm Numerical experiments

(Section 3.3.3)

Initial spheroid radius ro(0) 245 µm Experimental measurement

Dispersal distance σ 12 µm Assumption

(Section 3.4)

Migration distance µ 12 µm Assumption

(Section 3.4)

Simulation termination time T 240 h Experimental measurement

Per Capita Agent Rates

Maximum G1-eS transition rate Rr 0.047 /h Experimental measurement

(Section 3.5)

Constant eS-S/G2/M transition rate Ry 0.50 /h Experimental measurement

(Section 3.5)

Constant S/G2/M-G1 transition rate

(mitosis)

Rg 0.062 /h Experimental measurement

(Section 3.5)

Maximum death rate dmax 2 /h Assumption

Minimum death rate dmin 0.0005 /h Assumption

Maximum migration rate mmax 0.12 /h Assumption

Minimum migration rate mmin 0.06 /h Assumption

Hill function index for arrest η1 5 Assumption

Hill function index for migration η2 5 Assumption

Hill function index for death η3 15 Assumption

Nutrient Parameters

Number of nodes I3 2013 Assumption

(Section 3.3.4)

Steady-state solution interval t∗ 1 h Assumption

(Section 3.3.4)

Consumption-diffusion ratio α 0.15

µm/cells

Assumption

Critical arrest concentration ca 0.4 Assumption

Critical migration concentration cm 0.5 Assumption

Critical death concentration cd 0.1 Assumption
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2.3.2 Qualitative comparison of experiments and simula-

tions

We now qualitatively compare images of in vitro (Figure 2.3a,c,e) and

in silico (Figure 2.3b,d,f) spheroids by imaging various cross sections at

different locations, including the equator (Figure 2.3a-b), the lower cross

section (Figure 2.3c-d), and the upper cross section (Figure 2.3e-f). We use

the definitions in Section 2.2.1 (Confocal imaging) to identify the lower and

upper cross sections in the analysis of both the experimental images and

the simulation images. While previous studies have often compared model

predictions with experimental observations at a single cross section [24,

26], we aim to provide more comprehensive information about the internal

structure of the spheroid by making comparisons at multiple locations.

At the beginning of the experiment, in all cross sections (in vitro and

in silico) we see the population is relatively uniform, with an even distribu-

tion of colours, suggesting the entire spheroid is composed of freely-cycling

cells. At t = 2 and t = 4 days, however, we begin to see the development

of heterogeneity within the growing in vitro and in silico populations, with

those cells and agents at the centre of the growing spheroid predominantly

red, indicating G1-arrest. By t = 4 days we see the value of compar-

ing different cross sections, since the G1-arrest is clear in the centre of

the equatorial cross section, but there is no obvious heterogeneity present

across either the upper or lower cross section at that time. Similarly, by

t = 6 days we see the formation of a necrotic core in the equatorial cross

section, but this is not present at either cross section. By t = 8 and t = 10

days the spheroid has developed into a relatively complicated heteroge-

neous structure where the outer spherical shell contains freely cycling cells,

the intermediate spherical shell contains living G1-arrested cells, and the

internal region does not contain any fluorescent cells.

Overall, the qualitative match between the IBM and the experiment

confirms that the IBM captures both the macroscopic growth of the entire

spheroid, as well as the emergent spatial and temporal heterogeneity. We

now build on this preliminary qualitative information by extracting quanti-

tative measurements of the spheroid growth and exploring the performance

of the IBM.
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(a) 

(b)

(c)

(d)

(e)

(f)

 = 0 days
m0  = 232

 = 10 days
m10  = 300

 = 2 days
m2  = 243

 = 4 days
m4  = 261

 = 6 days
m6  = 269

 = 8 days
m8  = 288

Figure 2.3: Comparison of in vitro and in silico 4D spheroids. Experimental results (a,c,e) are compared with simulation
results (b,d,f) by examining 2D slices at the equator, lower and upper cross section, respectively. Agent colour (red, yellow, green)
corresponds to FUCCI labelling (G1, eS, S/G2/M). Schematics in the left-most column indicate the location of the 2D cross section.
The images are taken at (a)–(b) the equator, (c)–(d) the lower cross section, and (e)–(f) the upper cross section. Experimental
spheroid radii at the equator are labelled at each time point, and scale bars represent 200 µm.
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2.3.3 Spheroid structure and nutrient profiles

Given the ability of the IBM to capture key spatial and temporal pat-

terns of spheroid growth, cell cycle arrest, and cell death throughout the

spheroid, we now demonstrate how to take these preliminary simulations

and extract detailed quantitative data that would be difficult to obtain

experimentally. Figure 2.4a shows a typical IBM simulation during the in-

terval where we observe the development of internal structure. For clarity,

we plot the locations of all living agents as in Figure 2.3, but we now also

plot the locations at which agents die, which is difficult to estimate exper-

imentally, but is straightforward with the IBM. Each spheroid in Figure

2.4a is shown with an octant removed to highlight the development of the

internal structure, and for further clarity we show equatorial cross sections

in Figure 2.4b.

To quantify the internal spheroid structure we simulate 10 identically

prepared realisations of the IBM and extract averaged quantitative data

that are summarised in Figure 2.4c (Section 3.9). These data include

plotting the nondimensional nutrient concentration, c(x, t), and various

normalised agent densities, ϱ(p(t), t), as a function of distance from the

spheroid periphery, p(t) = ro(t) − r, where r is the distance from the

spheroid centre. Hence, p(t) = 0 at the spheroid periphery, and p(t) = ro(t)

at the spheroid centre. This representation of internal spheroid structure

is made by assuming that the growing population remains spherically sym-

metric, which is a reasonable assumption since our initial condition and

spheroid growth is spherically symmetric (Figure 2.4a). Each density pro-

file is normalised relative to the maximum value of all agent densities across

all time points, so that we can compare how the density of the various sub-

populations of agents and nutrient are distributed (Section 3.9). Using the

IBM we are able to describe the spatial and temporal densities of living

agents in various phases of the cell cycle (G1, eS and S/G2/M) as well

as G1-arrested agents. We plot each density profile as a function of the

distance from the periphery as this allows us to compare various profiles

as the size of the spheroid increases [25, 51].

Averaged relative agent density profiles from the IBM provide quantita-

tive information that cannot be easily obtained from experimental observa-

tions. Initially we see the relatively evenly distributed G1, eS and S/G2/M

populations become rapidly dominated by agents in G1 phase, which then

form an obvious inner-most arrested region by about t = 2 days. During
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Figure 2.4: Typical IBM simulation, showing: (a) visualisations of in
silico spheroids including dead agents (cyan) and (b) cross sections through
the spheroid equator with dead agents. (c) Relative concentrations ϱ(p, t)
of nutrient (black) and cycling red, yellow, and green agents (coloured
appropriately), based on distance from the periphery p(t) = ro(t) − r,
averaged over 10 identically-prepared simulations. The dashed red line
shows the relative density of arrested red agents, also averaged over 10
simulations with identical initial conditions. For nutrient, ϱ(p, t) = c. For
agents, ϱ(p, t) is the relative agent density (Section 3.9). Shaded areas
represent plus or minus one standard deviation about the mean, and are
non-zero as a consequence of stochasticity in the model, even though the
10 simulations start with identical populations and radii.

the interval 3 < t < 6 days we see rapid growth in the arrested popula-

tion, and the eventual formation of a clear necrotic core in the interval

6 < t < 10 days. These results indicate the spatial and temporal role of

stochasticity, with the variability most evident in the G1 and arrested G1

populations at early times. Plotting the relative agent densities in this way

provides a simple approach to interpret the spatial and temporal organi-

sation of cell cycle status within the growing spheroid, and visualising the

agent densities together with the nondimensional nutrient concentration is

particularly useful when this kind of information cannot be easily obtained

experimentally. In particular, it is technically challenging to measure abso-

lute concentrations of nutrient profiles during these experiments [17,52,53]

and so we now focus on visualising the nutrient concentration profile that
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Figure 2.5: Nutrient concentration profiles (a) in three spatial dimen-
sions, (b) at the equator z = 0, with the arrest critical level ca shown in
red, and the size of the necrotic region in white. (c) Nutrient profiles along
the midline y = z = 0, where the shaded region represents the size of the
spheroid, and the red and cyan lines are the critical levels for arrest and
death, ca and cd respectively. The colourbar corresponds to the profiles in
(a)–(b), and denotes the values ca (red) and cd (cyan).

drives this heterogeneity.

Results in Figure 2.5 show spatial and temporal patterns in the nu-

trient profile, c(x, t), for a typical IBM simulation from Figure 2.4. Fig-

ure 2.5a shows the three-dimensional evolution of c(x, t), with the colour-

bar highlighting the death and arrest thresholds, cd and ca, respectively.

These three-dimensional plots show the depletion of nutrient over time

in the central region of the spheroid, leading to strong spatial gradients

of nutrient concentration near the edge of the growing spheroid. Profiles

in Figure 2.5b show the nutrient profile at the equatorial plane with the

c(x, y, 0) = ca contour (red) and the approximate size of the necrotic core

(cyan) superimposed. Simplified one-dimensional profiles of c(x, t), along

x = (x, 0, 0), are shown in Figure 2.5c, where the diameter of the growing
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spheroid (−ro(t) < x < ro(t)) is shaded in yellow. Again, these simplified

cross sections illustrate how nutrient consumption leads to the formation

of spatial nutrient gradients near the outer radius of the growing spheroid.

Overall, a key strength of the IBM is the ability to extract agent-level infor-

mation (Figure 2.4) as well as information about the nutrient distribution

(Figure 2.5), whereas experimental studies typically report cell-level data

without explicitly showing nutrient-level information [5, 36].

While it is very difficult to measure the spatial and temporal distri-

bution of diffusible nutrient experimentally in the growing spheroid, it is

possible to indirectly examine our assumption that spatial and temporal

differences in cell cycle status are partly driven by the availability of oxy-

gen. Figure 2.6 shows a series of spheroids stained with pimonidazole and

pimonidazole-detecting antibodies, which indicate hypoxia [54]. In this se-

ries of images, we see evidence of hypoxia staining in the central region

of the spheroid at t = 0, with persistent hypoxia staining adjacent to the

necrotic core at later times. These results support our hypothesis that

spatial and temporal differences in nutrient availability correspond with

spatial and temporal differences in cell cycle status, and in this case the

pimonidazole staining suggests that oxygen availability plays a role in the

development of heterogeneity within the growing population. While this

observation is consistent with our IBM, it does not rule out the possibil-

ity of multiple diffusible signals acting in unison, and we will discuss this

possibility later.

2.3.4 Role of variability

Experimental images (Figure 2.1, Figure 2.3, Figure 2.6) suggest that

spheroid development is quite variable, as we see spheroids of slightly dif-

ferent diameters at the same time points. One of the limitations of relying

on experimentation alone is that it can be difficult to quantify the impor-

tance of different sources of variability, whereas this can be assessed very

simply with the IBM. For example, we can simulate multiple spheroids that

start from precisely the same initial condition to quantify the variability

that arises due to the stochastic growth process, or we can deliberately

introduce variability into the initial composition of the spheroid to explore

how this variability evolves during spheroid growth for a suite of simulated

spheroids.
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 = 0 days
m0  = 274

 = 3 days
m3  = 302

 = 6 days
m6  = 333

 = 10 days
m10  = 363

Figure 2.6: Spheroids stained for hypoxia at 0, 3, 6, and 10 days af-
ter spheroid formation, imaged at the spheroid equator. Hypoxia-positive
staining fluoresces magenta, and white dashed lines denote ro(t) and rn(t),
detected with image processing, to contextualise the regions of hypoxia.
For clear visualisation, we label the outer radii of the spheroid with the
corresponding days. Image intensity was adjusted for visual purposes, and
scale bar corresponds to 200 µm.

Simulation data in Figure 2.7a show the temporal evolution of various

agent subpopulations, including the total number of living agents, dead

agents, G1, eS, S/G2/M, and G1-arrested agents. Each profile shows the

mean number of agents obtained by simulating 10 identically initialised

spheroids with ro(0) = 245µm, which matches the average spheroid diam-

eter at t = 0 days in the suite of in vitro experiments. The variability

in these profiles is quantified by calculating the sample mean and sam-

ple standard deviation and shading the region corresponding to the sample

mean plus or minus one sample standard deviation, and we see that, at this

scale, the variability is barely noticeable. In contrast, results in Figure 2.7b

show equivalent data from a suite of simulations where the initial density

of agents in the spheroid is held constant, but the initial radius of the 10

simulated spheroids is deliberately varied to mimic the observed variability

in our experiments. The initial radius in each simulation corresponds to

one of 10 particular experimental measurements (Figure 2.7), with a sam-

ple mean of r̄o(0) = 245µm. Comparing results in Figure 2.7a-b shows

that the average population profiles are very similar, but the variability is

strikingly different. This simple exercise shows that quantifying the vari-

ability in spheroid size at the beginning of the experiment is the key to

understanding and predicting the variability in spheroid composition and

size at the end of the experiment. We also see that 10 simulations is suffi-

cient to observe the difference in variability between both test cases, where

the spheroids start from identical initialisations or with induced variability.
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Figure 2.7: Modelling results for the population growth of dif-
ferent spheroid populations, averaged over 10 simulations with (a)
identical initial conditions for each realisation and (b) introduced ex-
perimental variability in initial spheroid radius and population, with
the agent density held constant and initial radius ro(t) ∈ [232.75,
235.47, 238.97, 242.19, 244.89, 247.76, 247.93, 251.23, 251.48, 260.13]µm. In
each row, left: living (black) and dead (cyan dashed) populations, N(t)
and Nd(t), respectively, centre: arrested red (dashed), cycling red (solid),
and total red (dotted) populations, Na(t), Nc(t), and Nr(t), respectively,
and right: yellow and green populations, Ny(t) and Ng(t), respectively.
Shaded areas represent plus or minus one standard deviation. Initial sub-
populations in each simulation in both (a) and (b) are variable, as initial
cell cycle status is assigned randomly (Section 3.7), and so the initial sub-
populations in (b) also naturally vary with the overall initial population,
N(0).

These simulation results are also consistent with our previous observations.

For example, the in vitro spheroids in Figure 2.3 have ro(0) = 232µm and

we see that it takes until t = 6 days for a clear necrotic core to form in the

equatorial cross section. In contrast, the spheroid in Figure 2.6 is larger

with ro(0) = 274µm and we see a clear necrotic core at t = 3 days. This

highlights the importance of taking great care with measurements at the

beginning of the experiment [26].

2.3.5 Quantitatively matching experimental and mathemat-

ical spheroids

Results in Figure 2.8 compare the temporal evolution of ro(t), ra(t), and

rn(t), from our suite of experiments and simulations. The data in Figure 2.8

show the value in working with a stochastic model since the experimental
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Figure 2.8: Comparison of computational estimates of ro(t) (black),
ra(t) (red), and rn(t) (cyan) with experimental data. The experimental
data (dots) are compared with (a) simulations with each run starting with
an identical parameter set and (b) simulations with variations of the ini-
tial spheroid radius and population, with each initial radius selected from
experimentally measured radii at t = 0 days and agent density kept con-
stant. Computational results are the average of 10 simulations, and error
regions represent plus or minus one standard deviation. The initial sub-
populations vary in both (a) and (b), due to randomly assigning cell cycle
status (Section 3.7). In (b), we also naturally see higher variations in each
subpopulation initially, due to explicitly including initial population vari-
ability, which in turn induces variability in ra(0).

measurements are quite variable, with estimates of ra(t) and rn(t) more

variable than estimates of ro(t). This difference in variability is because

we measure ro(t) automatically with an IncuCyte S3 every 6 hours. In

contrast, measurements of ra(t) and rn(t) require manual harvesting, fixing,

and imaging, and accordingly we report these measurements daily.

Similarly to Section 2.3.4, we compare experimental results of average

data in simulations with and without induced variability in the initial con-

dition. The experiment-IBM comparison in Figure 2.8a corresponds to the

case where we simulate 10 identically-prepared realisations of the IBM,

where each simulated spheroid has the same initial radius ro(0) = 245µm,

and we see that the average simulation results capture the average trends in

the experimental measurements well, but the IBM simulations do not cap-

ture observed variability in the evolution of ra(t) or rn(t). In contrast, the

experiment-IBM comparison in Figure 2.8b, where we deliberately mimic

the experimental variability at t = 0, captures both the average experi-

mental trends and variability in the experimental data quite well. Again,

the difference between Figure 2.8a-b suggests that incorporating the initial
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variability in the experimental data is critical if we wish to capture the

observed variability in the experiments.

Interestingly, our experimental data in Figure 2.8 suggest that we have

an approximately linear increase in ro(t) over time, whereas the develop-

ment of the internal structure is more complicated. The initial arrested

radius decreases for the first day before growing rapidly, and we do not

see the formation of a necrotic core until approximately t = 4 days. While

our IBM-experimental comparison in Figure 2.8 suggests that the IBM can

quantitatively capture experimental trends, we have obtained this match

with a careful choice of parameters without undertaking a more rigorous

parameter estimation exercise [55].

2.4 Conclusions and Future Work

In this work we develop a novel IBM that can simulate 4D tumour spheroid

experiments with explicit cell cycle labels. IBM simulations reveal that we

can successfully reproduce qualitative and quantitative patterns of spatial

and temporal differences in cell cycle status that we observe in in vitro ex-

periments. This heterogeneity is driven by spatial and temporal variations

in nutrient availability, which we model using a reaction-diffusion equation

coupled to the IBM.

An important advantage of the IBM is our ability to extract and de-

scribe measurements that are difficult to obtain in vitro. In particular, we

show how to visualise both the growing populations within the spheroid to-

gether with the spatial patterns of nutrient concentration over time within

the growing spheroid. Furthermore, the IBM makes it very simple to ex-

plore how various features contribute to the overall variability in spheroid

development, and we find that relatively small variations in the initial size

of the spheroid lead to relatively pronounced differences in spheroid size

and composition at later times [26]. We conclude our investigation by

showing that we can quantitatively match the spatial and temporal de-

velopment of a series of in vitro 4D spheroids using the WM793B human

primary melanoma cell line with a careful choice of parameters. We antic-

ipate that tumour spheroids formed with different cell lines will be able to

be simulated with our IBM, but will require different parameter values.

Overall, our modelling philosophy is always to work with the simplest

possible mechanisms required to capture our experimental observations.

Naturally, this means that there are many ways that the IBM can be ex-
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tended. For example, here we make the simple assumption that spheroid

growth is regulated by a single diffusible nutrient, which seems appropriate

for our data. If, however, experiments show that it is important to consider

multiple nutrients in unison, our IBM framework can be extended to deal

with this. Similarly, we have focused on spheroid growth commencing with

a spherically symmetric initial condition which is consistent with our ex-

periments. This assumption can be relaxed in the present model simply by

specifying a different arrangement of agents at t = 0. Another point that

could be revisited is that we implement the simplest possible cell migration

mechanism where the direction of motion is random. While this assump-

tion appears reasonable for our data, it is possible to bias the migration in

response to either the nutrient concentration, the gradient of the nutrient

concentration, or the density of agents. Each of these potential extensions

could be incorporated into our IBM framework and increase the biologi-

cal fidelity of the model. However, here we caution against this approach

since these mechanisms also increase the number of parameters required

for simulation. To minimise issues with parameter identifiability, we pre-

fer to work with a minimal model [55]. If, however, future experimental

measurements indicate that our minimal assumptions need to be revised,

our IBM framework is sufficiently flexible to incorporate such extensions,

if warranted. Another option for future refinement is to conduct a more

thorough parameter estimation exercise. Here we carefully chose param-

eters that appear to match our data, but future analysis could include a

more rigorous assessment of parameter estimation, and we leave this for

future consideration.
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3.1 Image processing

The image processing algorithm for experimental images uses the algorithm

presented and described in [46]. Here, we describe the procedure used to

prepare the synthetic data from the IBM for estimates of ro(t) and rn(t).

We perform the image analysis on synthetic data in MATLAB as follows:

1. An image of (L+ 1)× (L+ 1) pixels is created, so that each pixel is

one micrometre in length,and all agents within 18 µm of z = 0 have

their x and y coordinates recorded,

2. Living agents from the synthetic dataset are rounded to their nearest

integer location with round and placed at the corresponding pixel in

the image with sub2ind,

3. Each agent is increased in size to a diameter of σ pixels,

4. Components of the binarised image with a connected area less than

a threshold value A are removed by area opening with bwareaopen,

where A is sufficiently large so that only the contiguous spheroid

remains,

33
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Figure 3.1: Example of applying the radius estimate image processing algorithm to a synthetic dataset. (a) A 2D slice at the
equator of the spheroid, (b) the agents are mapped into a single pixel each at their equivalent positions on a binary, (L+1)×(L+1)
image. The agent size is then increased, as shown in (c), to better represent their equivalent physical representation, before area
opening (d) and filling the remaining space (e). The radius of a circle with equivalent area to the filled space is calculated, and
used as the estimate for the outer radius, ro(t). (f) The mask of dead agents is created, along with (g) a mask of the empty space
inside the spheroid in (d). (h) The intersection between the dead agent mask and the empty space, and (i) the clearing of (h) to
only the largest continuous area. If this region is large enough, the necrotic region is taken to be the largest area in (g), and its
radius, rn(t), is the radius of a circle with equivalent area. (j) The estimates for ro(t) and rn(t) are shown plotted over the original
spheroid slice.
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5. Remaining holes are filled (imfill) and remaining peripheral seg-

ments disconnected from the main body are removed (imclearborder),

6. The area enclosed by the boundary is calculated with regionprops,

and ro(t) is estimated by assuming the region is circular, and calcu-

lating the radius of a circle with an equivalent area,

7. A mask of dead agents is created according to steps 1–3,

8. The intersection between the dead agent mask and the space left

unfilled by the living agents before performing step 5 is found,

9. If the radius of a circle with equivalent area to this intersection is

smaller than 2∆c (too small to be meaningful in the context of a

necrotic core), set the necrotic radius, rn(t) = 0,

10. Otherwise, rn(t) is set as the radius of a circle with equivalent area

to the filled space of the dead agent mask.

An example of this procedure is visualised in Figure 3.1.
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Similarly to the estimates of ro(t) and rn(t), we estimate ra(t) with

MATLAB, and the procedure is designed to mimic the procedure used

for estimating the arrested radius in experimental images, outlined in [46].

Visualisation of this process is given in Figure 3.2. We prepare the synthetic

data as follows:

1. Each green agent from the synthetic dataset at time t is converted

from its 3D Cartesian coordinate, xn, to its radial coordinate, rn,

with the transformation

rn = ||xn − x̄(t)||, n = 1, . . . , Ng(t), (3.1)

where Ng(t) is the number of green agents at time t and x̄(t) is the

mean location of all agents in the spheroid at time t (Figure 3.2a),

and || · || is the Euclidean length,

2. The green agents are organised into a distribution of radial position,

G(rl), where rl are the centres of the bins with binwidth w = 20 µm,

so that l = 0, . . . , round (ro(t)/w). We set lmax = round (ro(t)/w)

as this maximum index. The binwidth w = 20µm is chosen to be

sufficiently small to best identify spatial information about the radial

distribution of green agents, but also large enough to avoid fluctua-

tions in the distribution [56],

3. The agent density, g(rl), is calculated by dividing the agent count

distribution, G(rl), by the radial volume,

g(rl) =
3G(rl)

4π

((
rl +

w

2

)3
−
(
rl −

w

2

)3
) , l = 0, . . . , lmax, (3.2)

4. The agent density is then normalised, such that

ĝ(rl) =
g(rl)

max(g(rl))
, l = 0, . . . , lmax, (3.3)

where the max(g(rl)) is the maximum of the green agent density at

time t,

5. A Gompertz function,

ĝG(r) = γ1 exp (− exp (γ2 (γ3 − r))) , (3.4)
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is fit to the normalised agent density distribution, ĝ(rl), on the do-

main r ∈ [0, argmax(ĝ(rl))] using the method of least squares to

create a smoothed normalised green agent density as a function of

radial position, ĝG(r) (Figure 3.2b). The values γ1, γ2, γ3 are the

parameters fit by the method of least squares. This choice of do-

main, from r = 0 to r = argmax(ĝ(rl)), is used because it generates

a more accurate fit of ĝG(r) to ĝ(rl) in the region of interest, due to

the shapes of the Gompertz function and normalised agent density

function, ĝ(rl),

6. Adapting the method in [46], if ĝG(0) > ga, then ra(t) = 0. Other-

wise, ra(t) is defined such that ĝG(ra(t)) = ga. We use the tunable

threshold parameter ga = 0.2, so that the arrested region is consid-

ered to be the boundary where the smoothed relative green agent

density function surpasses 0.2.

(a) (b)

Figure 3.2: Example of how the arrested radius is estimated with syn-
thetic data. (a) The 3D Cartesian position of a green agent, xn, is converted
into a radial coordinate, rn, by calculating its Euclidean distance from the
mean position of all agents in the spheroid, x̄(t). (b) An example of the
normalised green agent density distribution, ĝ(rl), and the Gompertz func-
tion of smoothed agent density, ĝG(r), for a spheroid at late time. The
arrested radius, ra(t) is calculated as the value of r for which ĝG(r) = ga,
where ga = 0.2.
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3.2 Benchmarking the 3D numerical partial dif-

ferential equation solution

To ensure our spatial discretisation of the 3D partial differential equation

(PDE) model of the nutrient profile is accurate, we first solved a number

of simpler test cases with exact solutions. To this end, we consider an

infinite domain 3D diffusion-decay problem where some mass of diffusing

substance, S, is placed at the origin at t = 0 [57]. The governing equation

is
∂c

∂t
= D∇2c− κc, (3.5)

with diffusivity D > 0 and decay rate κ. The exact solution is,

c(r, t) =
S(

2
√
πDt

)3 exp

(
− r2

4Dt
− κt

)
, (3.6)

where r =
√

x2 + y2 + z2 [57].

To test the accuracy of our numerical method, we consider this prob-

lem on a truncated finite domain. In this case we consider a cube of side

length L = 20, with the origin at the centre of the cube. We discretise the

truncated domain using a uniform mesh with node spacing h = 0.2 so that

our mesh contains 1013 nodes. In our numerical simulations, we impose

homogeneous Dirichlet boundary conditions along all boundaries. The nu-

merical solution is obtained by discretising the flux and source terms in

Equation (3.5) on the finite volume mesh in exactly the same way as for

the nutrient model in the main document. This leads to a system of cou-

pled ordinary differential equations that we solve in time using MATLAB’s

ode45 solver [58]. Results in Figure 3.3 compare exact and numerical

solutions along the y = z = 0 midline for x ∈ [−5, 5]. In Figure 3.3a

we consider a conservative problem where κ = 0, and in Figure 3.3b we

consider a diffusion-decay problem with κ > 0. In all cases the numerical

solution matches the exact solution well, giving us confidence in our spatial

discretisation method.

We set the total amount of mass diffusing through the domain at S =

100 and use diffusivity D = 1, and consider two decay parameters, κ = 0

(diffusion without a source term) and κ = 0.3. In Figure 3.3, we compare

exact and numerical solutions at t = 1, t = 1.5, and t = 2. Due to the

radial symmetry of our solution, we plot the numerical and exact solutions
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along the y = z = 0 midline for x ∈ [−5, 5], which gives better clarity in

our comparison.

(a) (b)

Figure 3.3: Comparison of exact (solid) and numerical (stars) solutions
of Equation (3.5). All results correspond to S = 100 and D = 1, with
h = 0.2. Results in (a) are for κ = 0, whereas results in (b) are for κ = 0.3.
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3.3 Numerical method and parameters

Here we provide the discretisation for the numerical method and additional

evidence to justify our choices of the numerical parameters chosen for the

simulation. In summary, these choices include tolerances for the numerical

solution of the linear system associated with solving Equation (2.8); the

size of the domain; the time duration between solving Equation (2.8); and

the spatial discretisation required to solve Equation (2.8).

3.3.1 Numerical discretisation

We solve Equation (2.8) by discretising the domain, Ω, into a uniform

structured finite volume mesh with cubic finite volumes, consisting of I3

equally-spaced nodes with node spacing h [µm]. We approximate the cell

density v(x, t) in Equation (2.8) by the agent density, Ni,j,k/h
3, around

node (xi, yj , zk), where Ni,j,k [cells] is the the number of agents inside the

node’s control volume, and h = L/(I−1). The discretised 3D finite volume

equation is

h (ci−1,j,k + ci,j−1,k + ci,j,k−1 + ci+1,j,k + ci,j+1,k + ci,j,k+1 − 6ci,j,k)

− αci,j,kNi,j,k = 0, (3.7)

for the internal nodes, and ci,j,k = 1 at boundary nodes. Assembling these

discrete equations gives a linear system that we solve numerically,

Ac = b, (3.8)

where A ∈ RI3×I3 is the coefficient matrix and b ∈ RI3 is the right-hand

side vector for Equation (3.7), and c ∈ RI3 is the solution.

3.3.2 GMRES tolerance

To solve Equation (3.8), we use the generalised minimal residual method

(GMRES) in MATLAB [59]. Initially, we solve the linear system by assum-

ing that c = 1 at all nodes and specify a strict relative tolerance ε given

by,

ε =
||b−Ac||

||b||
, (3.9)

where || · || is the 2-norm. Once this initial solution is obtained using a

strict tolerance, we find that all subsequent solutions of Equation (3.7) can
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be obtained with a larger tolerance since we have an improved estimate of

the solution to initialise the iterative solver.

To determine the first tolerance required to solve the linear system, ε1,

we suppose that c = 1 at all nodes on a mesh with I3 = 2013 equally–

spaced nodes (Section 3.3.4) and solve the resulting system with a range of

ε1 using MATLAB’s gmres function. Table 3.1 compares the computation

time as a function of ε1, and Figure 3.4 compares the resulting nutrient

profile solutions along the midline of the domain, y = z = 0.

Table 3.1: Runtimes for the initial solution to Equation (3.8). Solution runtimes were achieved
with high performance computing, using four 64 bit Intel Xeon core processors per simulation.

ε1 Runtime (min.)

1× 10−6 0.8

1× 10−7 13.0

1× 10−8 19.3

1× 10−9 24.4

Approaches utilising other, more specified initial guesses were also per-

formed, but showed no improvement on runtimes for the initial solution.

Since we see that the solutions for ε1 = 1× 10−8 and 1× 10−9 are visually

indistinguishable at this scale, we always work with ε1 = 1× 10−8.

0
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0.4

0.6

0.8

1

-2000 20000

1
1
1
1

m

Figure 3.4: Comparison of steady-state solutions to Equation (3.7) with
different values of ε1. Solutions with ε1 ≤ 1 × 10−8 are entirely visually
indistinguishable, and those for a tolerance of ε1 = 1×10−7 or lower visually
match in the region occupied by the spheroid at t = 0 days, denoted by
the vertical lines.
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To update the nutrient distribution subsequently, we find that we do

not need such a strict tolerance choice for subsequent solutions of Equation

(3.7), ε2, as we have an improved estimate for the nutrient profile from the

initial solution. To improve the estimate for the initial guess, we solve

Equation (3.7) on a relatively coarse mesh of I3 = 513 nodes and solve the

linear system using MATLAB’s left matrix division (backslash) operator

[60], and then interpolate this coarse solution onto the finer I3 = 2013

mesh, which serves as an initial guess for the next GMRES solution that

can be obtained with a more relaxed tolerance. Table 3.2 compares the

computation time between subsequent solutions as a function of ε2.

Table 3.2: Runtimes for subsequent solutions to Equation (3.8). Solution runtimes were
achieved with high performance computing, using four 64 bit Intel Xeon core processors per
simulation.

ε2 Runtime (min.)

1× 10−6 0.15

1× 10−7 0.95

1× 10−8 10.1

1× 10−9 20.6

Results in Figure 3.5 show c(x, y, z) plotted along the midline y = z =

0 for one of these subsequent solutions for various choices of tolerances.

Since we see that the solutions are all largely indistinguishable, and more

restrictive tolerances are associated with significant increases in runtime

with insignificant improvement in accuracy, we set ε2 = 1 × 10−6 for all

remaining calls to gmres.
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Figure 3.5: Comparison of GMRES solutions to Equation (3.7) with
different values of ε2. When the initialisation is set to a previous solution,
ε2 = 1× 10−6 is sufficient to find solutions that are visually indistinguish-
able from solutions with more restrictive tolerances.

3.3.3 Domain size

Another important consideration for the numerical simulation is the choice

of domain size, L. We aim to choose L to be large enough that the agents

do not touch the boundary during the simulations, but not so large as to

incur a significant computational overhead (Figure 3.6).

m

m
m
m

Figure 3.6: Comparison of steady-state solutions to Equation (3.7) along
one dimension (x) with varying domain lengths. The vertical lines represent
the region of the test spheroid.
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Figure 3.7: Influence of variation in I3 and t∗ on nutrient solution over time. From left to right: nutrient profile solutions for
day 0, 2, 4, 6, 8, and 10. Solution profiles show comparisons at these time points for t∗ = 1 h (solid yellow), t∗ = 2 h (solid
purple), t∗ = 6 h (solid green), and t∗ = 24 h (dashed cyan). Solutions are averages of 10 simulations, shown for (a) I3 = 1013, (b)
I3 = 1513, and (c) I3 = 2013.
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To explore the choice of L we always use the same number of nodes to

discretise the nutrient equation, with I3 = 2013 equally–spaced nodes, and

we set the first estimate of the solution for the GMRES algorithm to be

the solution obtained by considering a different spheroid of the same radius

but with a different placement of agents, similar to Section 3.3.2, so that

the computational efficiency of these tests is improved. We consider the

domain lengths L = 2000, 4000, and L = 6000µm, and plot the resulting

nutrient profiles along the midline y = z = 0 in Figure 3.6. While the

boundary has a clear effect on the solution on the outer regions of the

domain, the solutions are very similar in the region |x| < 500µm where

agents are located and nutrient is being consumed. The two solutions for

L = 4000µm and L = 6000µm are very similar in the region of the spheroid

and also its immediate vicinity. Consequently, we choose a domain length

L = 4000µm.

3.3.4 Spatial and temporal resolution of the nutrient profile

There are two main considerations when we solve Equation (3.7) for the

nutrient profile: first we must choose an appropriate spatial discretisation,

I3; second, we must choose the duration of time between solutions of Equa-

tion (3.7), t∗. Results in Figure 3.7 show the nutrient profiles along the

midline y = z = 0 for a range of values of I3 and t∗. The time scale for t∗

is hours, as this is the most appropriate choice for simulating agent-level

behaviour, but we represent the results in days as a more intuitive and

natural choice for growth on the scale of the spheroids.

Profiles in Figure 3.7 indicate that the solution is relatively insensitive

to the choice of I3, but we see a clear difference in solutions depending on

the choice of t∗. The solutions in Figure 3.7 are insensitive to t∗ when we

choose t∗ ≤ 2 h. Estimates of combinatorial runtime in Table 3.3 show

that setting t∗ < 1 h slows the simulations considerably. As a consequence,

we choose t∗ = 1 h.

Table 3.3: Table of average runtime data (min.) for 10 simulations with varying I3 and t∗. The
computational experimental period of these simulations is T = 240 h. Simulation runtimes are
from high performance computing, using four 64 bit Intel Xeon core processors per simulation.

I3 t∗ = 0.1 h t∗ = 0.5 h t∗ = 1 h t∗ = 2 h t∗ = 6 h t∗ = 24 h

1013 55.1 38.6 37.7 37.4 27.5 26.2

1513 101.0 57.1 50.8 48.4 37.6 36.3

2013 224.9 100.0 84.7 75.9 63.3 58.5
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Figure 3.8: Influence of variation in I3 when setting t∗ = 1 h. (a)–(k) are comparisons of the solutions for I3 = 1013 (solid blue),
I3 = 1513 (dashed red), and I3 = 2013 (dashed yellow) at days 0-10 respectively. As before, solutions are averages of profiles from
10 simulations.
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Additional results in Figure 3.8 show solutions for various grid reso-

lutions I3 = 1013, 1513, 2013 for t∗ = 1 h. At early time we see some

difference in these solutions on the coarser mesh, but the solutions for

I3 = 1513 and 2013 are visually indistinguishable at this scale. Therefore,

in all simulations we set t∗ = 1 h and I3 = 2013.
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3.4 Estimation of cell diameter

To reduce the number of unknown input parameters for the numerical

experiments, we fix the experimental cell diameter ∆, which in turn informs

the proliferation and migration step size, σ and µ, respectively [49].

WM793B cells were stained with 10 µM CellTracker™ [61], at a den-

sity of 1 × 106 cells in 100 µL of tracker solution. After spinning the cell

suspension at 300 relative centrifugal force for 2 minutes in a centrifuge,

the CellTracker solution was removed and the pellet resuspended in 5 mL

of growth medium. The cell suspension was spun down, before removal of

the growth medium and resuspension of the stained cells in a solution of

2% low melting agarose in phosphate buffered solution (PBS). The solu-

tion was mounted on a chamber slide for preparation for imaging (Figure

3.9a). Images of the cell size were taken with a 20x Olympus UPlanSApo

objective, where the Z range was set so that it was large enough to en-

compass a large sample of cells for analysis. Quantitative estimates of the

WM793B cell size were achieved through computational image analysis

with Fiji (ImageJ) software [62], using the 3D Cell Counter function to

calculate the volume of the cells lying in the Z range.

12.0(a) (b)

Cell diameter

Figure 3.9: Estimation of the cell diameter for the WM793B cell line.
(a) A visualisation of part of the window at one of the 50 Z heights, show-
ing the equators of some of the suspended cells in the sample. The region
identified with magenta colouring represents the entire cell. (b) Distribu-
tion of cell diameters from calculated volumes of the objects in the imaged
volume. The solid line is the average diameter, and dashed lines represent
one standard deviation from this average.

The 3D volume calculated by ImageJ is converted into an equivalent

diameter of a sphere, giving ∆ = 12.0µm by taking the sample mean from

84 objects, distributed as shown in Figure 3.9b.
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3.5 Estimation of cell cycle progression rates

We repeat the procedure for cell cycle duration estimates from [5] for the

WM793b cell line. To estimate the maximum G1-early S phase (G1-eS)

cycling rate Rr, the constant eS-S/G2/M cycling rate Ry, and the constant

S/G2/M mitosis rate Rg, we use a series of 2D experiments as follows. The

WM793B melanoma cells were seeded into a 12 well (3.82 cm2 per well)

#1.5 glass bottom plate, at a seeding density of 40 000 cells per well,

and covered with 1 mL of growth medium, prepared as in [2]. The 2D cell

culture was imaged in a Zeiss AxioObserver (Zeiss, Oberkochen, Germany)

every 5 minutes for a period of 72 h, allowing for at least one full cell cycle

to be completed. Then, 30 cells were tracked from the point of cell division

through a full cell cycle, and the duration spent in each phase was measured

and recorded. An example case of the fluorescence exhibited by individual

cells in the two-dimensional assay is shown in Figure 3.10a.

Our measurements suggest that the average time spent in each stage

of the cell cycle is tr = 21.3 h in red, ty = 2.0 h in yellow, and tg = 16.2 h

in green. The progression rates are the reciprocals of these values, giving

values of Rr = 0.047 /h, Ry = 0.50 /h, and Rg = 0.062 /h, which are

the values for cell cycle progression that we use in the model. Figure 3.10b

shows the time spent in the different phases of the cell cycle for each phase,

with the mean and one standard deviation indicated.

(a) (b)

1 2

3

Cell cycle phase

Figure 3.10: Estimation of the time spent in different stages of the cell
cycle. (a) A section of one of the windows, indicating the visualisation and
colourisation of the acquired FUCCI cell images. Examples of a red (1),
yellow (2), and green (3) cell, where the yellow colour is generated by a
composite of emission in the red and green channel. (b) A swarm chart of
the duration of red, yellow, and green stages for 30 individual observations.
Bars are mean ± standard deviation.
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(a) (b) (c)

(d) (e) (f)

Upper cross section
Equator
Lower cross section

Figure 3.11: Demonstration of the process for preparing spheroid images for analysis. The spheroid is (a) imported into ImageJ,
(b) binarised, and (c) watershed processed. (d)-(e) A zoomed-in demonstration showing the spheroid (d) before processing with
watershed and (e) after processing with watershed. (f) Representation of the locations of the upper cross section, equator and
lower cross section. Scale bars represent 200 µm.
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3.6 Initial cell number

Using the 3D experimental images, we estimate the initial cell count in

the spheroid using FIJI (ImageJ) software [62] analysis of images at three

different heights in the spheroid at t = 0 days. Once the image is loaded

into ImageJ (Figure 3.11a), the image is binarised (Figure 3.11b) so that

all pixels below a brightness threshold are black, and all above the thresh-

old are white. Then, the watershed feature is used to segment connected

groups of objects in the image, so that they may be counted properly (see

Figure 3.11c-e). The finalised image is then processed with the Analyse

Particles function, where the minimum size for an object is mandated to

avoid counting residual pixels from the background removal. The mini-

mum area for a cell was set at 25 µm2. No maximum threshold was set, as

experimentation with this parameter showed that it had a negligible effect

on the cell count.

The area of the cells in the 2D image was recorded along with the cell

count. Using the estimate of the cell diameter of 12 µm (from Section

3.4), and assuming the density of cells in the slice area is the same as the

volume density of cells in the entire spheroid, we obtain an approximate

count of the cells in the spheroid at t = 0 days. This process was applied to

images from the equator, and one from halfway to the top or bottom of the

spheroid, labelled as the upper and lower cross sections (see Figure 3.11f).

Two different spheroids at t = 0 days are used to estimate the total cell

number at formation. Results (Table 3.4) indicate that spheroids at t = 0

days are composed of approximately 27 000 – 31 000 cells per spheroid. For

simplicity, we simulate spheroids with 30 000 cells per spheroid at t = 0

days.

Table 3.4: Measurements of spheroid geometry and number of cells. Numbers in brackets in
column 1 indicate the spheroid replicate imaged in 3D.

Image location
Area
(µm2)

Radius
(µm)

Volume
(µm3)

Cell count
(2D area)

Density
(%)

Cell count
(3D volume)

Equator (1) 1.58×105 224.24 4.72×107 739 52.91 27619
Upper cross sect. (1) 1.18×105 193.77 4.72×107 542 51.97 27128
Lower cross sect. (1) 1.14×105 190.15 4.72×107 511 50.88 26560

Equator (3) 1.84×105 242.24 5.95×107 766 46.99 30926
Upper cross sect. (3) 1.07×105 184.22 5.95×107 449 47.63 31343
Lower cross sect. (3) 1.58×105 223.94 5.95×107 643 46.16 30376
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3.7 Initialising the IBM

Here we describe how we choose the initial proportion of red, yellow, and

green agents in each simulation. Results in Section 3.5, show that the

average time a cell spends in each phase of the cell cycle is tr = 21.3 h

(red), ty = 2.0 h (yellow), and tg = 16.2 h (green). Therefore, we assume

that the total cell cycle time is

tc = tr + ty + tg. (3.10)

We then define various population proportions βr = tr/tc, βy = ty/tc, and

βg = tg/tc, for red, yellow, and green agents, respectively.

In the freely-cycling region of a spheroid, ra(t) < r < ro(t), we dis-

tribute agent numbers according to these proportions. Since βr+βy+βg =

1, we can form a cumulative distribution of these agent proportions. For

each agent, we sample a uniform random number u1 ∈ [0, 1], and perform

inverse transform sampling on our cumulative distribution created by our

population proportions, such that the agent is red if u1 < βr, yellow if

u1 ∈ [βr, βr + βy], and green otherwise (Figure 3.12a).

Experimentally, we see an initial arrested radius ra(0) > 0, meaning

that the intensity of yellow and green for r < ra(0) is less than 20% (Sec-

tion 3.1). Since we assume that G1-arrest is associated with low nutrient

availability, we reduce the proportion of yellow and green agents to 16% of

the population in the region where c(x, 0) < ca, with the remaining 84%

of the population specified to be red. Our choice of 16% is selected from a

series of screening simulations that show this choice provides a good match

to early experimental measurements. The algorithm implementing this ap-

proach is similar to that applied to agents in the freely-cycling region. For

each agent with c(x, 0) < ca the agent is red with probability 0.84 (Figure

3.12b). Otherwise, we sample a uniform random number u2 ∈ [0, 1]. Since

we assume that commitment to the cell cycle (progression from G1 phase

to eS phase) frees an agent from reliance on the local nutrient concentra-

tion, we expect that the yellow and green agents will be proportional to

their cell cycle durations in this final 16% of the population, so that

ζy =
ty

ty + tg
(3.11)

is the proportion of the remaining 16% that is taken up by yellow agents,
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and

ζg =
tg

ty + tg
(3.12)

is the proportion of the 16% taken up by green agents. Hence, the agent

is yellow if u2 < ζy, and green otherwise (Figure 3.12b). Overall, we find

that this experimentally-motivated approach to initialise our IBM simu-

lations leads to a good match between simulated estimates of ra(t) and

our experimental measurements. Of course, if the IBM were applied to a

model of 4D tumour spheroids with a different cell line, we anticipate that

this approach would be valid, but that new measurements of tr, ty, and tg

would be required to apply this method.

0.84

(a)

(b)

Figure 3.12: Representation of initial agent cell cycle stage proportions
in (a) the freely-cycling region (c(x, 0) > ca) and (b) the region of restricted
nutrient concentration (c(x, 0) < ca). In the freely-cycling region in (a),
subpopulation proportions are set strictly by the proportions of time spent
in each phase of the cell cycle, βr for red agents, βy for yellow agents, and βg
for green agents. In the region of restricted nutrient concentration in (b),
the best qualitative match to experimental data is when red agents make
up 84% of the population, and the remaining 16% is partitioned between
yellow and green with proportions ζy and ζg, respectively.
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3.8 Simulation algorithms

Here, we describe pseudo-algorithms for the IBM, where Algorithm 1 solves

the nutrient concentration with MATLAB code, and calls Algorithm 2 to

calculate the agent-level behaviours with code in C.

Algorithm 1: A single realisation of the IBM, from t = 0 h to
t = T h.

1 Set parameter values from function inputs, θ = (N(0), L, r, σ, µ, T,
t∗, Rr, Ry, Rg, dmax, dmin,mmax,mmin, η1, η2, η3, I, α, cb, ca, cm, cd)

2 Establish an I3 equally-spaced finite volume mesh grid for the
steady-state nutrient profile

3 Set N(0) random initial agent locations within a sphere of radius r
4 Set t = 0
5 Solve the linear system of Equation (3.7) for the initial agent

density C with MATLAB’s inbuilt GMRES function [59], setting
tol = 1× 10−8 (ε1) and an initial guess of c = 1 at all nodes
(Section 3.3.2)

6 Calculate the nutrient concentrations from the mesh at the agent
locations with linear interpolation

7 Assign each agent a cell cycle status (red, yellow, green), and
record Nr(0), Ny(0), and Ng(0) (Section 3.7)

8 Calculate nutrient-dependent rates Rr(c), m(c), and d(c) for all
agents from Equation (2.1), Equation (2.4), and Equation (2.5)

9 while t < T
10 Set t = t+ t∗

11 Solve the steady-state system of Equation (3.7) with the
current spheroid agent locations with MATLAB’s inbuilt
GMRES function, setting tol = 1× 10−6 (ε2) and an initial
guess of cp, where cp is the previous steady-state solution
(Section 3.3.2)

12 Update cn for each agent with trilinear interpolation
13 Resolve the cell events (Algorithm 2)

14 end
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Algorithm 2: The Gillespie algorithm for simulating migration, cell
cycle progression, and death.

1 Set inner timer tin = 0
2 while tin < t∗

3 dt =
∑N(t)

n=1 (d(c))n, mt =
∑N(t)

n=1 (m(c))n,

Rt =
∑Nr(t)

n=1 (Rr(c))n +Ny(t)Ry +Ng(t)Rg

4 Calculate the total rate of events λ = dt +mt +Rt

5 Sample the Gillespie time step to the next event τ ∼ Exp(λ)
6 Set tin = tin + τ
7 Perform an event, with cycling probability Rt/λ, migration probability

mtot/λ, and death probability dtot/λ
8 if cycling event
9 Sample agent n to continue through the cell cycle, with probability

proportional to its cycling rate
10 if the agent is red
11 Turn the agent yellow
12 Nr = Nr − 1, Ny = Ny + 1
13 Set the nth agent’s cycling rate to Ry

14 else if the agent is yellow
15 Turn the agent green
16 Ny = Ny − 1, Ng = Ng + 1
17 Set the nth agent’s cycling rate to Rg

18 else if the agent is green
19 Turn the agent red
20 Set θ = 2πu1, φ = arccos(1− 2u2); u1, u2 ∼ U(0, 1)
21 xn = xn + σ/2 cos(θ) sin(φ), yn = yn + σ/2 sin(θ) sin(φ),

zn = zn + σ/2 cos(φ)
22 xnew = xn − σ/2 cos(θ) sin(φ), ynew = yn − σ/2 sin(θ) sin(φ),

znew = zn − σ/2 cos(φ)
23 Ng = Ng − 1, Nr = Nr + 2
24 Interpolate the nutrient concentrations to both new locations
25 Set Rr(c), m(c), and d(c) for both new agents according to Equation

(2.1), Equation (2.4), and Equation (2.5)
26 Adjust the population count in the agents’ control volumes

27 end

28 else if migration event
29 Sample agent n to migrate, with probability proportional to its

migration rate
30 Set θ = 2πu1, φ = arccos(1− 2u2); u1, u2 ∼ U(0, 1)
31 xn = xn + µ cos(θ) sin(φ), yn = yn + µ sin(θ) sin(φ), zn = zn + µ cos(φ)
32 Interpolate the nutrient concentration at the new location xn

33 Set Rr(c), m(c), and d(c) for the agent at its new location with
Equation (2.1), Equation (2.4), and Equation (2.5)

34 Account for changes to populations in control volumes, if necessary

35 else if death event
36 Sample an agent to die, with probability proportional to its death rate
37 N = N − 1
38 Remove the agent from the simulation, and move it to the dead

population

39 end

40 end
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3.9 Calculation of agent density profiles

Here, we describe the procedure to estimate the profiles of relative agent

densities as functions of distance from the periphery in Figure 2.4c. At

a given time, t, we select the largest outer radius from all simulations,

measured with image processing (Section 3.1). We then calculate the

largest multiple of 10 µm that is less than this selected radius, and de-

note this rmax. For example, if at time t the outer radii from all simula-

tions are ro(t) = 247, 248, 249, 251, and 252µm, the largest outer radius

is ro(t) = 252µm, and we choose rmax = 250µm. This choice of rmax

ensures that the bin corresponding to the largest radial distance does not

include space beyond the spheroid periphery, and this is reasonable as, for

10 identically-prepared simulations, the variability in ro(t) is less than 1%

(Figure 2.8).

We partition the interval [0, rmax] into bins of width w = 10 µm, which

we find is sufficiently small to capture the spatial evolution of agent density,

but is also sufficiently large to avoid excessive fluctuations [56]. The bins

representing radial position are converted into bins representing distance

from the periphery with the transformation,

pb = rmax − rb, (3.13)

where rmax [µm] is a vector with all elements equal to rmax and length equal

to the number of bin edges, and rb [µm] and pb [µm] are the locations of

the bin edges for the radial distance and the distance to the periphery,

respectively (Figure 3.13a).

We now demonstrate the calculation of the relative agent density dis-

tributions, using the green agents as an example, but the calculation is

identical for the other agent types. First, all 3D Cartesian agent locations

in a given simulation at t are imported. We calculate the radial coordinate

of the nth green agent, rn, as the Euclidean distance from its 3D Cartesian

coordinate, xn, to the mean location of all agents of all types at time t,

x̄(t), such that

rn = ||xn − x̄(t)||, n = 1, . . . , Ng(t), (3.14)

where Ng(t) is the number of green agents at time t. Assuming spherical

symmetry, the distance to the spheroid periphery, pn(t), is calculated by

subtracting rn from the outer radius, ro(t),
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pn(t) = ro(t)− rn, n = 1, . . . , Ng(t), (3.15)

where pn(t) is explicitly time-dependent through ro(t). This calculation of

the distance to the periphery for all green agents at time t in a particular

simulation is then repeated for all 10 simulations, and the sample means

and standard deviations for these counts in each bin are calculated.

bins

bins

(a) (b)

o

(c)

m

m

Figure 3.13: Schematic representation of the radial and distance to the
periphery calculations. (a) The partitioning of bins for radial distance,
and the associated bins for the distance to the periphery, calculated from
the transformation in Equation (3.13). (b) Demonstration of the posi-
tional calculations for radial coordinate and distance to the periphery un-
der the assumption of spherical symmetry. An agent located at xn within a
spheroid at time t with radius ro(t) has its radial coordinate, rn, calculated
as the Euclidean distance to the average position of all agents, x̄(t). This
is then converted into the agent’s distance from the periphery, pn(t), cal-
culated from the transformation in Equation (3.15) under the assumption
of spherical symmetry. (c) An example plot of the relative agent density
distributions, ϱ(p, t), with the distance to the periphery on the lower axis,
and the corresponding radial coordinate r on the upper axis. We show
example distributions of the cycling G1 (solid red), G1-arrested (dashed
red), eS (yellow), and S/G2/M (green) relative agent densities.

We convert the average population counts by distance to the periphery,

C(pl, t), into an agent density profile, P (pl, t) by dividing by the concentric
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spherical shell volume,

P (pl, t) =
3C(pl, t)

4π

((
rl +

w

2

)3
−
(
rl −

w

2

)3
) , l = 0, . . . , lmax, (3.16)

where pl and rl are the centres of the lth bin for distance from the periphery

and radius, respectively, and lmax = rmax/w − 1 is the number of bins.

We then repeat the full procedure for the other agent types (cycling red,

arrested red, yellow) to calculate the average agent density profiles for all

agent types at t. We then repeat the calculation of rmax, pb, and density

profiles for all agents at other values of t. All agent density profiles at all

values of t are then normalised with respect to a maximum density, ϱmax,

so that, for each agent type,

ϱ(pl, t) =
P (pl, t)

Pmax
, l = 0, . . . , lmax, (3.17)

where Pmax is determined as the highest density of any type of agent over

all values of t. This normalisation then gives the relative agent densities

profiles, ϱ(p, t) (Figure 3.13c), which are plotted in Figure 2.4c at their

corresponding time points.

3.10 Conclusion

In this chapter, we present additional numerical and mathematical tech-

niques, as well as experimental methods and results, to support the method-

ology, parameter choices, and results presented in Chapter 2. We demon-

strate the numerical techniques for the estimates of the radii of each region

for in silico data, and present a suite of numerical experiments to justify

the choices of numerical parameters used in Table 2.1. A collection of

experiments for estimating cell cycle progression rates, cell diameter es-

timates, and population count at the time of spheroid formation justify

the choices of biological parameters used in Table 2.1. The algorithms for

pseudo-code of the model and the calculation of agent density profiles are

described here as well. These mathematical and experimental techniques

presented in this chapter provide support to the methods and results in

Chapter 2.



Chapter 4

Conclusion

4.1 Summary

In this thesis, an IBM of 4D tumour spheroid growth with cell cycle la-

belling is formulated. Cell cycling, migration, and death are all regulated

with the concentration of nutrient throughout the domain. A key outcome

of the research is that the qualitative and quantitative experimental data

can be matched with the IBM, and further detail that is unattainable in

experimental assays can also be achieved with the model. Previous studies

employ FUCCI labelling in 2D IBMs [20,28,30,33], or IBMs of 4D tumour

spheroids without FUCCI labelling [23, 24, 35]. This study consolidates

these works to explicitly include FUCCI labelling into the modelling of 4D

tumour spheroids.

In Chapter 2, a continuous-space, continuous-time IBM of 4D tumour

spheroids with cell cycle indicators is presented. Unlike continuum models,

the tumour spheroid evolution is modelled as the consequence of the collec-

tive behaviours of individual cells interacting with their environment. The

environmental heterogeneity in the local nutrient concentration drives the

heterogeneity in the cell cycle status, regions of necrosis, and the motilities

of the agents. A key result of the research presented in Chapter 2 is the

qualitative match between spheroids grown in vitro and in silico outcomes

of the mathematical model. The formation and growth of the outer radius,

arrested region, and necrotic core all exhibit the same qualitative behaviour

in vitro and in silico. Demonstration of the model’s biological fidelity then

allows for the extraction and analysis of quantitative data that cannot

be ascertained experimentally, such as nutrient concentration profiles and

population counts, which further illuminate details about spheroid growth

59
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in the model. These behaviours in the model arise from the biologically-

inspired mechanisms of cell cycling, arrest, motility, and death. Chapter 2

is concluded by comparing the experimentally-accessible quantitative data

– the radii of the spheroid, the arrested region, and the necrotic core –

with estimates of these same quantities from the model, and showing that

for a carefully selected parameter set, the IBM can reproduce quantitative

experimental data. The code to reproduce key results in Chapter 2 are

also made available on GitHub. Chapter 2 shows that an IBM approach

to modelling and reproducing the qualitative and quantitative evolution of

tumour spheroids is effective, and also presents a method with which such

a modelling approach can be constructed and extended.

Chapter 3 presents supporting information for Chapter 2. Numerical

techniques for computational quantities are presented and demonstrated,

as well as a collection of computational experiments that justify several nu-

merical parameter choices. Additional supporting experiments are method-

dologically presented, and used to justify biological parameter choices.

These additional methods and results complement the findings in Chapter

2.

4.2 Discussion

In this thesis, the growth of tumour spheroids is analysed through the de-

velopment of an IBM, where behaviour on the individual scale determines

the evolution of the spheroid as a whole. This individual-based model, un-

der the assumption that nutrient diffusion is responsible for adjustments

of cell behaviour, couples the availability of nutrient to the readiness of

model agents to engage in cell cycling, migration, and death. The model

assumes a quasi-steady state of nutrient, in congruence with previous stud-

ies and mathematical models of tumour spheroids with nutrient [10,12,24],

an assumption that is appropriate due to the relative speed with which the

nutrient diffuses in comparison with spheroid growth [10].

The validity of the IBM is investigated through a comparison of the

mathematically-generated spheroids and spheroids grown in vitro. In doing

so, we observe that the model captures the same qualitative behaviour of

the typical in vitro tumour spheroid, particularly the rates of growth of the

spheroid and the different regions that make up its composition. Numerical

results in Chapter 3 demonstrate an appropriate choice of parameters for

an accurate solution to the PDE is made; parameter choices with higher

https://github.com/ProfMJSimpson/4DFUCCI
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temporal or spatial resolution (and therefore more accurate solutions) are

indistinguishable from those selected for use in the model. Thus, we are

confident in the accuracy of both the nutrient diffusion model and the

spheroid evolution arising from behaviours coupled to the availability of

this nutrient.

There are a variety of different human melanoma cell lines, each with

their own properties [5]. While the IBM presented in this thesis utilises the

metastatic human melanoma cell line WM793B, it is anticipated that the

model is just as capable at matching the growth of spheroids with other

cell lines and a variety of different initial conditions. However, we also

anticipate that the the parameter set required to achieve a match between

the IBM and experimental assay may be drastically different; for example,

the rates of progression through the stages of the cell cycle calculated in

Chapter 3 may not necessarily be the same for other cell lines, as evidenced

in [5]. Nonetheless, we anticipate the reproducing the growth of spheroids

with other experimental conditions (cell line, initial population, etc.) would

be possible under an appropriate parameter set.

4.3 Future Work

In this thesis, the modelling approach has been to work with the simplest

possible mechanisms. Consequently, there are various avenues through

which the IBM can be extended with future research.

In the model presented in this research, we implement a cell migration

and proliferation mechanism where the direction of migration or prolifera-

tion is chosen at random, which is appropriate for our philosophy of using

primarily simple modelling mechanisms. Previous IBMs studying 2D cell

proliferation and migration have implemented a bias so that the cells can

be more likely to move along a cell density gradient [21, 22, 32]. Although

our simple assumption appears suitable for the data, it is possible to apply

a proliferation and migration bias along the gradient of the 3D cell den-

sity or even nutrient concentration. This bias could be used to drive the

spheroid growth in place of random proliferation and migration. Another

extension of this approach could be to apply a mechanism of cell-to-cell

mechanical forces. Similarly to [24], a mechanical force that mimics cell

adhesion and repulsion can be implemented to improve the biological ap-

plication of the model. In general, accounting for interaction behaviours

between cells in the model would be a natural avenue of extension for the
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IBM in this thesis.

In constructing the model, spheroid growth and cell behaviours are

regulated by a single diffusible nutrient. This choice seems reasonable for

our experimental data, which does not indicate that multiple, highly dis-

tinct species of nutrients play major roles in the spheroid’s evolution. If,

however, future experimental results indicate that a single diffusible nutri-

ent species would be insufficient to adequately reproduce in vitro spheroid

growth and nutrient profiles, the IBM framework is adaptable and can be

modified to include new nutrients. Alternatively, the diffusion of a disrup-

tive or cytotoxic cancer treatment drug could be implemented in tandem

with the nutrient diffusion. The resulting interaction between the cells,

nutrient, and drug could then become a focal point of investigation.

Each of these potential extensions to the IBM could readily be imple-

mented and possibly lead to better qualitative or quantitative matches to

experimental data. However, such an approach requires caution, as each

new extension must involve an increase in the number of unknown param-

eters in the model. The IBM in this thesis uses a minimal model to avoid

issues with parameter identifiability. However, the flexible construction of

the IBM makes modifying it to include new extensions, such as those sug-

gested here, a straightforward task, should future works determine that a

minimal model is insufficient.

The model could also be refined through a thorough parameter esti-

mation exercise. Here, tumour spheroid growth is modelled with carefully

selected parameters, but future computation could analyse and estimate

these parameter values and work towards a more rigorous parameter esti-

mate assessment. In engaging in this task, it is important to consider that,

like many discrete models, the IBM is less computationally efficient than a

continuum model [18]. This presents an inherent barrier to parameter esti-

mation exercises. However, a meticulous approach to estimating the model

parameters would be a valuable direction of extension to this research.

This thesis demonstrates the potential of IBM approaches to reproduc-

ing the evolution behaviour of 4D tumour spheroids. The findings in this

research show that both qualitative and quantitative experimental spheroid

evolution can be reproduced by the with IBMs that explicitly include flu-

orescent cell cycle labelling, and the methodology can be further extended

to include many more biological functions. Further opportunities to inves-

tigate the modelling potential of IBMs to tumour spheroids can be found

in extending the scope of the IBM presented in this thesis.
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[35] Ruiz-Arrebola S, Tornero-López AM, Guirado D, Villalobos M, Lal-

lena AM, 2020. An on-lattice agent-based Monte Carlo model simu-

lating the growth kinetics of multicellular tumor spheroids. Physica

Medica, 77:194–203. doi: 10.1016/j.ejmp.2020.07.026. 5, 59

[36] Beaumont KA, Mohana-Kumaran N, Haass NK, 2014. Mod-

elling melanoma in vitro and in vivo. Healthcare, 2:27–46. doi:

10.3390/healthcare2010027. 12, 27

[37] Landman KA, Please CP, 2001. Tumour dynamics and necrosis:

surface tension and stability. Mathematical Medicine and Biology,

18:131–158. doi: 10.1093/imammb/18.2.131. 14

[38] Browning AP, Sharp JA, Murphy RJ, Gunasingh G, Lawson B, Bur-

rage K, Haass NK, Simpson MJ, 2021. Quantitative analysis of tumour

spheroid structure. eLife, 10:e73020. doi: 10.7554/eLife.73020. 14, 19

[39] Codling EA, Plank MJ, Benhamou S, 2008. Random walk models

in biology. Journal of the Royal Society Interface, 5:813–834. doi:

10.1098/rsif.2008.0014. 14

[40] Mallet DG, De Pillis LG, 2006. A cellular automata model of tumor-

immune system interactions. Journal of Theoretical Biology, 239:334–

350. doi: 10.1016/j.jtbi.2005.08.002. 14

[41] Hoek KS, Schlegel NC, Brafford P, Sucker A, Ugurel S, Kumar R, We-

ber BL, Nathanson KL, Phillips DJ, Herlyn M, et al., 2006. Metastatic

potential of melanomas defined by specific gene expression profiles

with no BRAF signature. Pigment Cell Research, 19:290–302. doi:

10.1111/j.1600-0749.2006.00322.x. 15

[42] Smalley KSM, Contractor R, Haass NK, Kulp AN, Atilla-Gokcumen

GE, Williams DS, Bregman H, Flaherty KT, Soengas MS, Meggers E,

et al., 2007. An organometallic protein kinase inhibitor pharmacolog-

ically activates p53 and induces apoptosis in human melanoma cells.

Cancer Research, 67:209–217. doi: 10.1158/0008-5472.CAN-06-1538.

15

https://doi.org/10.1007/s00018-014-1645-9
https://doi.org/10.1016/j.ejmp.2020.07.026
https://doi.org/10.3390/healthcare2010027
https://doi.org/10.1093/imammb/18.2.131
https://doi.org/10.7554/eLife.73020
https://doi.org/10.1098/rsif.2008.0014
https://doi.org/10.1016/j.jtbi.2005.08.002
https://doi.org/10.1111/j.1600-0749.2006.00322.x
https://doi.org/10.1158/0008-5472.CAN-06-1538


68

[43] Smalley KSM, Contractor R, Haass NK, Nathanson KL, Medina CA,

T. FK, Herlyn M, 2007. Ki67 expression levels are a better marker

of reduced melanoma growth following MEK inhibitor treatment than

phospho-ERK levels. British Journal of Cancer, 96:445–449. doi:

10.1038/sj.bjc.6603596. 15

[44] Spoerri L, Gunasingh G, Haass NK, 2021. Fluorescence-based quan-

titative and spatial analysis of tumour spheroids: a proposed tool to

predict patient-specific therapy response. Frontiers in Digital Health,

3:1–19. doi: 10.3389/fdgth.2021.668390. 15

[45] Cold Spring Harbor Laboratory Press, 2018. Antibody dilution buffer

(Abdil) protocol. doi: 10.1101/pdb.rec103978 (Accessed: December

2021). 15

[46] Browning AP, Murphy RJ, 2021. Image processing algorithm to iden-

tify structure of tumour spheroids with cell cycle labelling. Zenodo.

doi: 10.5281/zenodo.5121093. 15, 19, 33, 36, 37

[47] Gillespie DT, 1977. Exact stochastic simulation of coupled chemical

reactions. The Journal of Physical Chemistry, 81:2340–2361. doi:

10.1021/j100540a008. 16

[48] Weisstein EW, 2021. Sphere point pick-

ing. mathworld – A Wolfram web resource.

https://mathworld.wolfram.com/SpherePointPicking.html. (Ac-

cessed: December 2021). 17

[49] Simpson MJ, Landman KA, Hughes BD, 2010. Cell invasion with

proliferation mechanisms motivated by time-lapse data. Physica

A: Statistical Mechanics and its Applications, 389:3779–3790. doi:

10.1016/j.physa.2010.05.020. 16, 48

[50] Treloar KK, Simpson MJ, 2013. Sensitivity of edge detection methods

for quantifying cell migration assays. PLoS One, 8:e67389–e67389.

doi: 10.1371/journal.pone.0067389. 19

[51] Spoerri L, Tonnessen-Murray CA, Gunasingh G, Hill DS, Beaumont

KA, Jurek RJ, Chauhan J, Vanwalleghem GC, Fane ME, Daignault-

Mill SM, et al., 2021. Phenotypic melanoma heterogeneity is regulated

through cell-matrix interaction-dependent changes in tumor microar-

chitecture. bioRxiv preprint. doi: 10.1101/2020.06.09.141747. 24

https://doi.org/10.1038/sj.bjc.6603596
https://doi.org/10.3389/fdgth.2021.668390
https://doi.org/10.1101/pdb.rec103978
https://doi.org/10.5281/zenodo.5121093
https://doi.org/10.1021/j100540a008
https://mathworld.wolfram.com/SpherePointPicking.html
https://doi.org/10.1016/j.physa.2010.05.020
https://doi.org/10.1371/journal.pone.0067389
https://doi.org/10.1101/2020.06.09.141747


Bibliography 69

[52] Miniaev MV, Belyakova MB, Kostiuk NV, Leshchenko DV, Fedotova

TA, 2013. Non-obvious problems in Clark electrode application at ele-

vated temperature and ways of their elimination. Journal of Analytical

Methods in Chemistry, 2013:249752. doi: 10.1155/2013/249752. 25

[53] Langan LM, Dodd NJF, Owen SF, Purcell WM, Jackson SK, Jha AN,

2016. Direct measurements of oxygen gradients in spheroid culture

system using electrion parametric resonance oximetry. PLoS One,

11:e0149492. doi: 10.1371/journal.pone.0149492. 25

[54] Varia MA, Calkins-Adams DP, Rinker LH, Kennedy AS, Novotny DB,

Fowler WC, Jr, Raleigh JA, 1998. Pimonidazole: a novel hypoxia

marker for complementary study of tumor hypoxia and cell prolifer-

ation in cervical carcinoma. Gynecologic Oncology, 71:270–277. doi:

10.1006/gyno.1998.5163. 27

[55] Simpson MJ, Baker RE, Vittadello ST, Maclaren OJ, 2020. Practical

parameter identifiability for spatio-temporal models of cell invasion.

Journal of the Royal Society Interface, 17:20200055. doi: 10.1098/r-

sif.2020.0055. 31, 32

[56] Binder BJ, Simpson MJ, 2015. Spectral analysis of pair-correlation

bandwidth: application to cell biology images. Royal Society Open

Science, 2:140494. doi: 10.1098/rsos.140494. 36, 56

[57] Crank J, 1975. The Mathematics of Diffusion. Clarendon Press, Ox-

ford, 2nd edition. 38

[58] Mathworks, 2021. MATLAB ode45. https://www.mathworks.com/

help/matlab/ref/ode45.html. (Accessed: December 2021). 38

[59] Mathworks, 2021. MATLAB gmres. https://www.mathworks.com/

help/matlab/ref/gmres.html. (Accessed: December 2021). 40, 54

[60] Mathworks, 2021. MATLAB mldivide. https://au.mathworks.com/

help/matlab/ref/mldivide.html. (Accessed: December 2021). 42

[61] ThermoFisher Scientific, 2021. Celltracker™. https://www.

thermofisher.com/order/catalog/product/C34565. (Accessed: Decem-

ber 2021). 48

[62] Schindelin J, Arganda-Carreras I, Frise E, Kavnig V, Longair M, Piet-

zsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al., 2012. Fiji:

https://doi.org/10.1155/2013/249752
https://doi.org/10.1371/journal.pone.0149492
https://doi.org/10.1006/gyno.1998.5163
https://doi.org/10.1098/rsif.2020.0055
https://doi.org/10.1098/rsif.2020.0055
https://doi.org/10.1098/rsos.140494
https://www.mathworks.com/help/matlab/ref/ode45.html
https://www.mathworks.com/help/matlab/ref/ode45.html
https://www.mathworks.com/help/matlab/ref/gmres.html
https://www.mathworks.com/help/matlab/ref/gmres.html
https://au.mathworks.com/help/matlab/ref/mldivide.html
https://au.mathworks.com/help/matlab/ref/mldivide.html
https://www.thermofisher.com/order/catalog/product/C34565
https://www.thermofisher.com/order/catalog/product/C34565


70

an open-source platform for biological-image analysis. Nature Meth-

ods, 9:676–682. doi: 10.1038/nmeth.2019. 48, 51

https://doi.org/10.1038/nmeth.2019

	Statement of Original Authorship
	Acknowledgements
	Abstract
	Introduction
	Overview
	Context
	Fluorescent cell cycle labelling
	Individual-based modelling
	Research questions

	Thesis structure
	Statement of joint authorship

	A stochastic mathematical model of 4D tumour spheroids
	Introduction
	Methods
	Experimental methods
	Individual-based mathematical model
	Simulation algorithm
	IBM image processing

	Results and Discussion
	Parameter values
	Qualitative comparison of experiments and simulations
	Spheroid structure and nutrient profiles
	Role of variability
	Quantitatively matching experimental and mathematical spheroids

	Conclusions and Future Work

	Supporting information for a stochastic mathematical model of 4D tumour spheroids
	Image processing
	Benchmarking the 3D numerical partial differential equation solution
	Numerical method and parameters
	Numerical discretisation
	GMRES tolerance
	Domain size
	Spatial and temporal resolution of the nutrient profile

	Estimation of cell diameter
	Estimation of cell cycle progression rates
	Initial cell number
	Initialising the IBM
	Simulation algorithms
	Calculation of agent density profiles
	Conclusion

	Conclusion
	Summary
	Discussion
	Future Work

	Bibliography

