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“Science is made up of so many things that appear obvious after they are explained.”

– Frank Herbert, Dune



Abstract

Mathematical models provide valuable insight into complex processes in the life sciences.

Models can further our understanding of underlying mechanisms, facilitate development

and testing of hypotheses, guide experimentation and data collection, and design inter-

vention strategies that optimise resource allocation. Models must be sophisticated enough

to adequately capture the behaviour of the underlying system, while ideally admitting

parameters that carry a physical interpretation, that can be estimated from available or

obtainable data. Often, closed-form analytical solutions are not available for such models,

so numerical techniques are required to obtain approximate solutions. This thesis con-

cerns numerical methods, with a focus on techniques for optimal control, and for param-

eter estimation and uncertainty quantification. In the first part of this thesis, we consider

numerical methods for optimal control, with a particular focus on the forward-backward

sweep method (FBSM) for solving two-point boundary value problems. Initially, we ap-

ply optimal control techniques to a model of acute myeloid leukaemia, and investigate the

convergence behaviour of the FBSM. Then, motivated by combination therapies observed

in cancer treatment, we consider the application of multiple optimal controls simultane-

ously. Finally, we discuss numerical techniques to improve and accelerate its convergence.

Connecting models with data poses significant challenges, particularly in the life sciences;

where data is often limited, noisy or incomplete. As such, we are interested not only in

point-estimates of parameters but also information characterising the associated uncer-

tainty. In the second part of this thesis we explore techniques from information geometry

to supplement traditional likelihood-based uncertainty quantification for parameter infer-

ence. The outcomes of this thesis include four published papers. Code for implementing

all of the numerical methods used in this work, and for reproducing the results of each

chapter, is available on GitHub.
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Chapter 1

Introduction

1.1 Overview

Throughout the life sciences, we encounter systems with behaviour that we seek to un-

derstand and influence. Whether we consider virus transmission [1, 238], cancer treat-

ment [25,59,290], muscle contraction and gait regulation [103,181,254], cellular processes

in synthetic biology [87, 139], cell population growth [78, 294], or biodiversity and inva-

sive species management [31, 61, 72]; we are faced with decisions about how to design

interventions to achieve the best outcomes with limited resources.

Mathematical and computational models provide significant insight into complex pro-

cesses in the life sciences. These versatile tools enable the development and testing of

novel hypotheses, guide experimentation and data collection, facilitate interpretation of

data, assist in generating parameter estimates, improve our understanding of biolog-

ical interactions, and aid in the design of interventions. Mathematical models are a

convenient, inexpensive tool for investigating biological processes and interventions; for

which experimental data may be scarce, incomplete, cost-prohibitive to obtain, or of poor

quality (noisy). However, due to these issues with data, challenges arise when estimat-

ing the parameters of mathematical models. Often, this leads us to consider not only

point-estimates of parameters, but also measures of the uncertainty associated with the

point-estimates. The overarching objective of this thesis is to develop, implement and

improve numerical methods in the life sciences, and increase their accessibility. This the-

sis comprises two parts; with three chapters devoted to optimal control, and one devoted

to parameter inference and uncertainty quantification using information geometry.

Optimal control

Acute myeloid leukaemia (AML) is a cancer of the blood, characterised by haematopoi-

etic stem cells in the bone marrow becoming leukaemic [82, 233]. Leukaemic cells do

not respond to normal regulators of cell proliferation and do not undergo normal differ-

1



Chapter 1. Introduction 2

entiation or maturation [100, 135]. The presence of leukaemic cells in the bone marrow

disrupts normal blood function leading to significant mortality rates [6]. There are several

approaches to treatment and management of AML, such as chemotherapy, immunother-

apy, leukapheresis (centrifugal separation of white blood cells from whole blood), and

radiotherapy [19, 233, 265]. Often clinical approaches will implement multiple therapies

concurrently. Key benefits derived from a combination therapy approach include a re-

duction of the toxicity and adverse effects of treatment, and improved outcomes in the

presence of drug resistance and tumour cell heterogeneity [35, 152, 338]. Administering

stem cell transplants between rounds of chemotherapy enables clinicians to administer a

higher dose of chemotherapy, reduces adverse effects of the chemotherapy, and reduces

the risk of recurrence [59,207,339].

An ordinary differential equation (ODE) model describing AML in terms of the in-

teractions between leukaemic stem cells and haematopoietic stem cells within the bone

marrow niche is given by [82]:

dS

dt
= ρsS(K1 − Z1)− δSS,

dA

dt
= δSS + ρAA(K2 − Z2)− δAA,

dD

dt
= δAA− µDD,

dL

dt
= ρLL(K2 − Z2)− δLL− αL

γ + L
,︸ ︷︷ ︸

immune response

dT

dt
= δLL− µTT, (1.1)

where S(t), A(t), D(t), L(t) and T (t) represent haematopoietic stem cells, blood progeni-

tor cells, terminally differentiated blood cells, leukaemia stem cells and fully differentiated

leukaemia cells, respectively. A schematic outlining the interspecies interactions in the

model is presented in Figure 1.1, alongside descriptions of the model parameters. We

introduce the immune response as it is both biologically relevant and mathematically

convenient, as we discuss in Chapter 2. Determining optimal chemotherapy treatment

regimes is of great practical and theoretical interest. But how do we determine the appro-

priate dose, and over what duration should it be administered? Optimal control theory

provides a mathematical framework through which to address these questions.
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γ+L
α

ρL

ρAρS

δS

δL

δA

μT

μD

T

S A D

L

AML model schematic

Figure 1.1: This schematic provides details of the interactions and associated parameters
for the original model proposed in [82], with an immune response that we introduce in
Chapter 2. Curved arrows represent proliferation, at rate ρi; arrows between compart-
ments represent cell differentiation at rate δi, with i ∈ {S,A, L}. Arrows out of the D
and T compartments represent migration out of the bone marrow niche into the blood
stream at rate µj, j ∈ {D,T}. The red arrow out of the L compartment represents death
of leukaemic stem cells due to the immune response, at rate α/(γ + L). The grouping
of A(t) and L(t) reflects resource competition between the leukaemic cells and the blood
progenitor cells.

The seminal works of Pontryagin; through the Pontryagin Maximum Principle (PMP)

[264], and Bellman; through dynamic programming and the Hamilton-Jacobi-Bellman

equation [37], form the foundations of modern optimal control. These ideas build upon

hundreds of years of development of the calculus of variations [125]. Optimal control is a

science of trade-offs; whereby the benefits of control measures must be considered against

their costs, to determine the best allocation of resources.

In the language of optimal control, the system of ODEs in Equation (1.1) constitute

the state equations, expressed in vector form in Equation (1.2). The fundamental idea

then, is to determine an intervention, the control, that causes the state to follow a more

favourable trajectory, or arrive at a more desirable state. Specifically, the goal of optimal

control is to identify the control that maximises or minimises a specified objective func-

tional, the pay-off. In typical optimal control problems the state equations are expressed

as functions of the state, x(t), and the control, u(t), with either a fixed final time tf , such

that the final state is free to vary, or a fixed final state x(tf ), with the final time free to

vary.
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dx

dt
= f(t,x(t), u(t)), x(t0) = x0, x(t) ∈ Rn. (1.2)

The pay-off function, J , given in Equation (1.3), characterises what optimal means math-

ematically, within a given context. Typically the pay-off depends on some function, ϕ, of

the final state, x(tf ), and/or a cumulative cost function, L(t,x(t), u(t)), integrated from

initial time (t0) to final time (tf ):

J = ϕ(x(tf )) +

∫ tf

t0

L(t,x(t), u(t)) dt. (1.3)

The optimal control, u∗(t), is the control that minimises or maximises Equation (1.3). We

illustrate key optimal control concepts in Figure 1.2, and through the following example.

Suppose crop yield will grow from x0 to 2x0 without intervention. To induce additional

growth we may apply fertiliser. It is not obvious how much fertiliser should be applied,

nor over what time period. The optimal application of fertiliser depends on the pay-off

characterising optimality; the form of Equation (1.3) significantly impacts the dynamics

of the optimal control. The optimal control may be continuous, such that the strength can

be readily adjusted throughout time; or bang-bang (discontinuous), such that the control

is applied exclusively at a lower or upper bound with finitely many discrete switching

points.

To determine the optimal control, we apply Pontryagin’s Maximum Principle (PMP)

[264] to obtain necessary conditions for optimality. We construct the Hamiltonian,

H(t,x, u,λ) = L(t,x, u) + λ · f , where λ = [λ1(t), λ2(t), ..., λn(t)] for an n-dimensional

state. The adjoint, λ, links the state equations, f , to the pay-off via the Hamiltonian.

The necessary conditions are obtained from the Hamiltonian [191]:

1. The optimality condition is obtained by minimising the Hamiltonian with

respect to the control,

∂H

∂u
= 0 gives

(
∂L
∂u

+ λ · ∂f
∂u

)
= 0,

2. the adjoint is found by setting,

∂H

∂x
= −dλ

dt
, giving

dλ

dt
= −

(
∂L
∂x

+ λ · ∂f
∂x

)
.

3. Finally, the transversality condition must be satisfied, namely

λ(tf ) =
∂ϕ

∂x

∣∣∣
t=tf

.
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Figure 1.2: A pictorial example of optimal control for a growing crop. We want to grow
this crop to increase the yield, represented by the green line. Actions taken to increase
the growth rate of the crop; such as applying fertiliser, are the controls, represented
using black dashed lines. Scenarios are presented for (a) no control, (b) continuous
control, and (c) bang-bang control. Optimal control theory helps us determine how
best to apply these controls. Illustrations adapted from ilyakalinin/iStock/Getty Images,
johavel/iStock/Getty Images.
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The adjoint, also referred to as the co-state, provides a link between our state and our

pay-off function. The transversality condition defines a final-time condition on the co-

state. Following these steps yields a two-point boundary value problem (TPBVP) for x

and λ that must be solved to determine the optimal control. A more detailed introduction

to these optimal control concepts is provided in Chapter 2.

Underpinning the necessary conditions for optimality of the PMP is the assumption

that an optimal control exists. For an optimal control to exist, the optimal control

problem must have a solution; such that the pay-off is finite when evaluated at the

optimal control and corresponding state [191]. Formally, existence of an optimal control

requires that the reachable set—the set of all states traversed from all possible control

sequences from an initial state x0—is compact. A compact set is both bounded and

closed [195]. For systems of ODEs of the form we consider in this thesis (Equation 1.2),

compactness of the reachable set can be established via Filippov’s theorem [107]. This

imposes requirements on the boundedness of the states and their derivatives. Throughout

the work in this thesis, we assume the existence of an optimal control, and do not seek to

treat it further. Additional information and examples concerning the existence of optimal

controls can be sought in the following texts [171,191,195].

Seldom do the TPBVPs arising from optimal control problems admit closed-form

analytical solutions. Instead, numerical methods are sought to obtain approximate solu-

tions. Numerical methods for optimal control are generally classed as either indirect or

direct methods. Indirect methods rely on deriving optimality conditions, such as via the

PMP, often necessitating the solution to a two-point boundary value problem. For direct

methods the control problem is discretised and reformulated as a nonlinear program-

ming problem [275]. Early numerical methods in optimal control include gradient-based

methods, Newton-Raphson methods, quasilinearisation, feasible direction algorithms and

feedback solutions [56]. More recent developments include the forward-backward sweep

method (FBSM), multiple-shooting methods, control parameterisation, collocation and

pseudospectral methods and dynamic programming [275,284].

The FBSM is a popular indirect method for solving optimal control problems in the

life sciences—despite only satisfying necessary conditions for optimality, in contrast to

the more powerful sufficient conditions satisfied by many direct methods—primarily be-

cause it scales well with system size and is conceptually relatively straightforward. Direct

methods such as dynamic programming suffer significantly from the curse of dimension-

ality ; use of this popular expression is particularly apt here, as it was originally coined

by Bellman in direct relation to dynamic programming [38]. With a large number of

state variables, as we frequently encounter in systems biology, the computational effort

required to solve the control problem renders dynamic programming infeasible.

The FBSM starts from an initial guess for the control. The state equations are

solved forwards in time, and the result is used to solve the co-state equations backwards
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in time. This information is used in conjunction with the optimality condition obtained

from the Hamiltonian to form an updated guess for the control. This procedure is applied

iteratively. The forward-backward sweep method algorithm is presented in Algorithm 1.

Algorithm 1: Forward-backward sweep

i. Make an initial guess for the control, u(0)(t).

ii. Iterate for k = 0, 1, ..., until converged or iteration limit met:

iii. Solve for x(k)(t) forward in time using initial values x(0), and u(k)(t).

iv. Solve for λ(k)(t) backwards in time from the transversality condition λ(tN),

using u(k)(t) and x(k)(t).

v. Compute temporary update, û(k+1)(t), using x(k)(t), λ(k)(t), and the opti-

mality condition derived from minimising the Hamiltonian.

vi. Update u(k+1)(t) = ωu(k)(t) + (1− ω)û(k+1)(t).

vii. Check for convergence. If not converged, return to Step ii.

In Chapter 2 and Chapter 3 we apply this method to problems of practical and the-

oretical significance in the life sciences. In the course of these investigations, we identify

and overcome challenges associated with numerical implementation and convergence of

the algorithm; though such challenges are not the focus of these chapters. We demon-

strate that the choice of ω, the control update weighting parameter in Step vi. of the

FBSM, is a critically important factor in determining the convergence behaviour of the al-

gorithm. Further, the appropriate choice of ω is problem dependent, and can be sensitive

to model and control parameters. These issues are exacerbated where multiple controls

are applied, as considered in Chapter 3. In Chapter 4 we comprehensively review the

practical implementation of the FBSM and its convergence behaviour. We propose novel

augmentations that improve the reliability and the rate of convergence.

Inference and information geometry

Significant challenges arise when calibrating models to data. Models should be sophisti-

cated enough to adequately describe the behaviour of the system, while ideally admitting

identifiable and physically interpretable parameters, that can be estimated from available

or obtainable data [116, 199]. As previously noted, data can be scarce, incomplete, cost-

prohibitive to obtain, or of poor quality. Due to these issues with data, there is uncertainty

associated with parameter estimates. Quantifying and interpreting this uncertainty can

improve our confidence in insights derived from models. Common approaches to un-

certainty quantification include Bayesian methods, profile likelihood, asymptotic analysis

and bootstrapping [114,118,231,325,330]. Uncertainty quantification also provides insight
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into identifiability. Identifiability describes the degree to which model parameters can be

determined from data [85], and is often considered in terms of structural identifiability

and practical identifiability [28,144,298,323,324]. Structural identifiability relates to the

underlying model structure and parameterisation; and refers to whether it is theoreti-

cally possible to determine unique parameter values, given an infinite amount of perfect

noise-free data [50, 299]. Practical identifiability is less well defined, and depends on the

quality and quantity of data available and prior knowledge of the parameters [50].

A standard method for parameter estimation is based on maximising the log-likelihood

function, that represents the joint probability density of all the data for a given set of

parameters. For a dataset X = [x1, x2, ..., xN ] with unknown parameters, θ, the log-

likelihood function is

ℓ(θ;X ) =
N∑
i

log f(xi;θ), (1.4)

where f(x;θ) is the probability density function associated with our observation process.

The maximum likelihood estimate (MLE) is the point-estimate, θ̂, that maximises ℓ(θ;X )

in Equation (1.4).

Wilks’ theorem states that asymptotically as N → ∞, an approximate α-level confi-

dence region is given by [255]: {
θ : ℓ(θ) ≥ ℓ(θ̂)− ∆ν,α

2

}
, (1.5)

where ∆ν,α is the αth-quantile of the χ2 distribution with ν degrees of freedom [52].

These confidence regions contour the log-likelihood function about the MLE, and their

size in parameter space gives insight into the degree of uncertainty associated with the

point-estimate. Using information geometry techniques we can explore the curvature of

the parameter space, through an information metric derived from the likelihood func-

tion [11]. While likelihood-based approximate confidence regions rely on an asymptotic

large sample argument [255], the geometric approach we consider provides data-agnostic

insight into the shape and sensitivity of the parameter space. For example, we can com-

pute geodesic curves describing geometrically the relationship between distributions with

different parameters [228]; and we can compute the scalar curvature throughout param-

eter spaces to gain insight into uncertainty and identifiability.

Information geometry is a branch of mathematics connecting aspects of information

theory including probability theory and statistics with concepts and techniques in dif-

ferential geometry [11]. Central to information geometry in an inference context is the

concept of a statistical manifold ; an abstract geometric representation of a probability

distribution space. For example, we can conceptualise the set of normal distributions

parameterised by mean, µ, and standard deviation, σ > 0:
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p(x;µ, σ) =
1

σ
√
2π

exp

[
−(x− µ)2

2σ2

]
, x ∈ R,

as a two-dimensional surface with coordinates (µ, σ) [64]. The Fisher information de-

scribes the curvature of the log-likelihood function; incorporating information about the

curvature induced by the observation process describing the data, and curvature induced

by parameter sensitivities through a mathematical model linking parameter estimates to

data. This highlights a link between sensitivity analysis, structural identifiability and

practical identifiability [209].

In some areas of applied science, such as cosmology, information geometry techniques

are used to supplement traditional likelihood-based uncertainty quantification [121]. How-

ever, these methods have not been widely adopted in the life sciences. We expect that

the reason for this slow uptake in the life sciences is that the foundational theory of

differential geometry is deeply rooted in the more formal mathematics literature that is

seldom read by practitioners in the life sciences. In Chapter 5 we address this gap in

the literature by outlining the key aspects of information geometry required for practical

implementation of the techniques. We are cognisant that the majority of practitioners in

the life sciences will not have prior knowledge of differential geometry, and present the

techniques accordingly; using straightforward explanations and practical examples. We

consider a combination of synthetic and publicly available data. By doing so, we open

new avenues for uncertainty quantification in the life sciences.
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1.2 Research questions

This thesis consists of two parts, each part within the purview of numerical methods in

the life sciences. The first part pertains to optimal control. The second part relates to in-

formation geometry in the context of parameter inference and uncertainty quantification.

We address the following research questions:

Part 1: Optimal control

(1) Can we implement the PMP approach to solve optimal control problems that are

of practical interest in mathematical biology?

(2) How do the optimal control techniques we consider extend to more complex, clini-

cally motivated treatment scenarios?

(3) How can the disparate parts of the literature be unified, to improve accessibility of

optimal control techniques to practitioners?

(4) What can we do to improve and accelerate the convergence behaviour of the FBSM

for optimal control?

Part 2: Parameter inference and information geometry

(5) What insights emerge from combining techniques from information geometry with

likelihood-based parameter inference?

(6) How can we overcome the barriers preventing practitioners from applying informa-

tion geometry techniques in the life sciences?

(7) What do we learn from information geometry that is difficult to learn from standard

likelihood-based methods?
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1.3 Objectives and outcomes of this thesis

The objectives of this thesis are designed to address the research questions identified

in Section 1.2. The key outcomes of this thesis are four published papers. The PhD

candidate made significant contributions to all articles, and is recognised as the first

author in each paper. As such, this work satisfies the Queensland University Technology

requirements for thesis by publication.

The publications included in this thesis are:

1. Sharp JA, Browning AP, Mapder T, Burrage K, Simpson MJ (2019). Optimal

control of acute myeloid leukaemia. Journal of Theoretical Biology.

doi:10.1016/j.jtbi.2019.03.006.

2. Sharp JA, Browning AP, Mapder T, Baker CM, Burrage K, Simpson MJ (2020).

Designing combination therapies using multiple optimal controls. Journal of The-

oretical Biology.

doi:10.1016/j.jtbi.2020.110277.

3. Sharp JA, Burrage K, Simpson MJ (2021). Implementation and acceleration

of optimal control for systems biology. Journal of the Royal Society Interface.

doi:10.1098/rsif.2021.0241.

4. Sharp JA, Browning AP, Burrage K, Simpson MJ (2022). Parameter estimation

and uncertainty quantification using information geometry. Journal of the Royal

Society Interface [in press].

arXiv:2111.12201.

We outline the objectives of this thesis and provide a brief summary of the outcomes of

addressing each objective. Comprehensive details of each research outcome are provided

in the main chapters of this thesis. For each objective, we identify the relevant chapter

of the thesis where the work is documented and list the corresponding publication.

Part 1: Optimal control

(1) Modify a stem cell model for AML to incorporate an immune response, and use

optimal control techniques to investigate optimal chemotherapy treatment regimes.

We find a haematopoietic stem cell model of AML [82] that permits a stable steady

state where populations of healthy and leukaemic cells coexist. The model also

permits an unstable healthy steady state with no leukaemia. We modify the model

by introducing a biologically appropriate and mathematically convenient immune

response that is effective for small leukaemic populations and ineffective for large

leukaemic populations, such that the modified model permits both healthy and

https://doi.org/10.1016/j.jtbi.2019.03.006
https://doi.org/10.1016/j.jtbi.2020.110277
https://doi.org/10.1098/rsif.2021.0241
https://arxiv.org/abs/2111.12201
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coexisting stable steady states. We apply continuous and bang-bang controls to

the modified model under a range of parameter regimes to steer the system from

a coexisting steady state to a healthy steady state. We investigate parameters

that influence convergence behaviour of numerical optimal control techniques. The

outcomes of this objective are presented in Chapter 2, and correspond to Paper 1:

Optimal control of Acute Myeloid Leukaemia.

(2) Extend the work with the model of AML from Objective 1 to investigate the ap-

plication of multiple optimal controls to interacting species.

This objective is motivated by combination therapies for cancer treatment, where

patients receive chemotherapy alongside radiotherapy and/or immunotherapy. We

model the application of multiple optimal controls simultaneously, to interacting

populations with resource competition; where abundance of one species is desirable

and the other is undesirable. We find that the response of the optimal control strat-

egy can be highly non-linear with respect to the parameters governing interaction

between species. Interspecies interactions introduce complexity when designing op-

timal interventions, but also provide opportunities. The outcomes of this objective

are presented in Chapter 3, and correspond to Paper 2: Designing combination

therapies using multiple optimal controls.

(3) Unify disparate parts of the optimal control and numerical methods literature and

improve accessibility of optimal control techniques.

In addressing the first two objectives, we implement and develop a variety of opti-

mal control techniques. Existing literature discussing practical implementation of

these techniques is fragmented and sparse. Texts such as [168, 191] give an excel-

lent overview of the theory of optimal control, and provide algorithms for numerical

implementation. However, there is little discussion regarding practical implemen-

tation of the algorithms; such as potential issues with convergence of the numerical

methods when applied to non-trivial examples. As such there is scope for a review

paper that brings implementation of optimal control techniques to the forefront of

the discussion in a practical and assimilable way. To address this objective, we

provide a comprehensive review of optimal control theory and numerical methods,

with a focus on the PMP approach to optimal control, and the implementation of

the FBSM. We consider a single-variable linear model, and a multi-variable nonlin-

ear model; and pose and solve continuous, bang-bang, and fixed endpoint control

problems. Drawing on our experience in addressing the first two objectives, and

insights scattered throughout the literature, we discuss practical considerations for

numerical implementation, and consider in detail the convergence behaviour of the

FBSM. To improve accessibility of the techniques to practitioners, we do not as-
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sume any prior knowledge of optimal control, and we provide code with detailed

and clear documentation for implementation of all numerical techniques considered.

The outcomes of this objective are presented in Chapter 4, and correspond to Paper

3: Implementation and acceleration of optimal control in systems biology.

(4) Develop novel improvements to the FBSM for optimal control, to achieve faster and

more reliable convergence.

When considering iterative numerical methods, we are typically interested not only

in whether or not they converge, but also how quickly. Achieving fast and reliable

convergence of the FBSM is an open challenge. By conceptualising the FBSM as

a fixed point iteration process, we provide novel augmentations of the FBSM to

improve its convergence behaviour. We show that we can achieve improved conver-

gence even without prohibitively costly tuning of the parameters of the acceleration

techniques. We also demonstrate that in some instances the acceleration techniques

can induce convergence where the underlying FBSM does not converge. The out-

comes of this objective are presented in Chapter 4, and correspond to Paper 3:

Implementation and acceleration of optimal control in systems biology.

Part 2: Parameter inference and information geometry

(5) Demonstrate the insights that can be attained by supplementing likelihood-based

parameter inference with information geometry techniques.

We investigate the insights that can be obtained via techniques from information

geometry, including geodesic curves and the Ricci scalar curvature, to supplement

likelihood-based parameter inference and uncertainty quantification. We implement

the information geometry techniques for familiar pedagogical examples. We con-

sider observational data that includes single and multiple observations at varying

time-points. We demonstrate how these techniques can provide additional insights

into uncertainty quantification and identifiability, and can be used to guide ex-

perimentation and data collection. The outcomes of this objective are presented

in Chapter 5, and correspond to Paper 4: Parameter estimation and uncertainty

quantification using information geometry.

(6) Improve the accessibility of information geometry techniques to practitioners in the

life sciences.

Using information geometry techniques to supplement traditional likelihood-based

uncertainty quantification and gain insights into identifiability is currently an under-

explored and inaccessible area, particularly in the life sciences. We attribute this

partly to the underlying theory of differential geometry being deeply rooted in more

formal mathematics literature. This area of the literature is seldom frequented
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by practitioners in the life sciences. We make information geometry techniques

accessible to practitioners in the life sciences by producing a review paper with a

heavy focus on the practical implementation and interpretation of the techniques.

We outline the fundamental aspects of information geometry required to support

the techniques. However, we do so sparingly, and with no assumption of prior

knowledge of inference or differential geometry. We implement the information

geometry techniques to support likelihood-based parameter inference for linear and

nonlinear ODE models, and systems of coupled nonlinear ODEs, with observational

data that includes examples where single and multiple observations are recorded.

We consider cases where combinations of model parameters, initial conditions, and

the variability of observations are estimated. The outcomes of this objective are

presented in Chapter 5, and correspond to Paper 4: Parameter estimation and

uncertainty quantification using information geometry.
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1.4 Thesis structure

This research program is presented as a thesis by published papers. Chapters 2-5 cor-

respond, sequentially, to the four published papers listed in Section 1.3. Each chapter

includes: an abstract; an introduction that motivates the study, identifies key areas of fo-

cus, provides background information and reviews relevant literature; a detailed overview

of the methods implemented in the work and any mathematical modelling undertaken;

results; conclusions and future avenues for investigation and extension. Each main chap-

ter is a standalone publication, although the common themes introduce overlap in some

sections, particularly in terms of literature review and methods. References from each

chapter have been combined to produce a single alphabetised bibliography at the end of

this thesis, to avoid duplication. Supplementary material is presented in Chapters 2A-4A

at the end of this thesis. Content in each supplementary material chapter varies between

publications, but typically includes: additional results and figures, sensitivity analysis,

long analytical results and derivations, algorithms and details on numerical implementa-

tion.

In Chapter 2 we incorporate a biologically appropriate and mathematically conve-

nient immune response into a haematopoietic stem cell model for AML, and discuss the

impact this has on the steady states of the model. We use optimal control techniques

to investigate both continuous and bang-bang optimal chemotherapy treatment regimes.

We explore optimal controls under a range of scenarios, including varying the parameters

in the pay-off that weight the relative importance of the negative effects of the disease

and the negative effects of the treatment; and varying the maximum strength of the

chemotherapy treatment. We investigate how the control update weighting parameter,

ω, and the parameters weighting the importance of terms in the pay-off function, influ-

ence convergence behaviour of the FBSM. The corresponding supplementary material is

provided in Chapter 2A.

In Chapter 3 we recast the haematopoietic stem cell model for AML presented in

Chapter 2 in an ecological context; as a case study of a two species model with resource

competition, where abundance of one species is desirable and abundance of the other is

undesirable. We investigate the dynamics of optimal therapies where two controls are

implemented simultaneously. In particular, we model a combination therapy intervention

with one control that negatively affects healthy and leukaemic cells (chemotherapy), and

another control that positively affects only the desirable species (stem cell transplant).

We produce results for pay-off regimes corresponding to both controls being continuous,

both controls being bang-bang, and a combination of continuous and bang-bang controls.

The impact of key parameters influencing the combination therapy dynamics are also

considered. The corresponding supplementary material is provided in Chapter 3A.

In Chapter 4 we review the theory of optimal control, and numerical methods for
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solving control problems; with a focus on the PMP approach to optimal control, and the

implementation of the FBSM. We apply optimal control techniques to solve continuous,

bang-bang, and fixed endpoint control problems for both a single-variable linear model,

and a multi-variable nonlinear model. Discussion is focused on practical considerations

for numerical implementation, and the convergence behaviour of the FBSM. By concep-

tualising the FBSM as a fixed point iteration process, we propose novel augmentations

to improve and accelerate its convergence behaviour. The corresponding supplementary

material is provided in Chapter 4A.

In Chapter 5 we investigate the use of techniques from information geometry, in-

cluding geodesic curves and the Ricci scalar curvature, to supplement likelihood-based

parameter inference and uncertainty quantification. We review the fundamental aspects

of information geometry required to support the implementation of these techniques.

We implement the information geometry techniques for familiar pedagogical examples,

including linear and nonlinear ODE models, and systems of coupled nonlinear ODEs.

We consider observational data that includes single and multiple observations at varying

time-points. We estimate combinations of model parameters, initial conditions, and the

variability of observations.
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Here, we outline the contribution of the PhD candidate and the co-authors to each piece
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Article published 2019 in Journal of Theoretical Biology

Sharp JA, Browning AP, Mapder T, Burrage K, Simpson MJ (2019). Optimal control of

acute myeloid leukaemia. Journal of Theoretical Biology. doi:10.1016/j.jtbi.2019.03.006.

Abstract

Acute myeloid leukaemia (AML) is a blood cancer affecting haematopoietic stem cells.

AML is routinely treated with chemotherapy, and so it is of great interest to develop

optimal chemotherapy treatment strategies. In this work, we incorporate an immune

response into a stem cell model of AML, since we find that previous models lacking an

immune response are inappropriate for deriving optimal control strategies. Using optimal

control theory, we produce continuous controls and bang-bang controls, corresponding to

a range of objectives and parameter choices. Through example calculations, we provide

a practical approach to applying optimal control using Pontryagin’s Maximum Principle.

In particular, we describe and explore factors that have a profound influence on numerical

convergence. We find that the convergence behaviour is sensitive to the method of control

updating, the nature of the control, and to the relative weighting of terms in the objective

function. All codes we use to implement optimal control are made available on GitHub.

https://doi.org/10.1016/j.jtbi.2019.03.006
https://github.com/Jesse-Sharp/Sharp2019
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2.1 Introduction

Acute Myeloid Leukaemia (AML) is a blood cancer that is characterised by haematopoi-

etic stem cells, primarily in the bone marrow, transforming into leukaemic blast cells

[82, 233]. These blast cells no longer undergo normal differentiation or maturation and

stop responding to normal regulators of proliferation [100]; their presence in the bone mar-

row niche disrupts normal haematopoiesis [82]. AML has significant mortality rates, with

a five-year survival rate of 24.5% [6], and challenges in treatment arise not only in eradica-

tion of the leukaemic cells but also prophylaxis and treatment of numerous life threatening

complications that arise due to the absence of sufficient healthy blood cells [335]. Mul-

tiple interventions are employed in the management and treatment of AML, including:

leukapheresis; haematopoietic stem cell transplants; radiotherapy; chemotherapy and im-

munotherapy [19,233,265].

Mathematical models are widely used to gain insight into complex biological pro-

cesses [167, 235]. Mathematical models facilitate the development of novel hypotheses,

allow us to test assumptions, improve our understanding of biological interactions, in-

terpret experimental data and assist in generating parameter estimates. Furthermore,

mathematical models provide a convenient, low-cost mechanism for investigating bio-

logical processes and interventions for which experimental data may be scarce, cost-

prohibitive or difficult to obtain owing to ethical issues. Mathematical models are rou-

tinely used to interrogate a variety of processes relating to cancer research including:

incidence; development and metastasis; tumour growth; immune reaction and treat-

ment [63, 76, 82, 170, 211, 312]. Recently, mathematical models have been used to inves-

tigate various aspects of AML, including: incidence [201]; pathogenesis [83]; interactions

between cancer and healthy haematopoietic stem cells within the bone marrow niche [82];

and recurrence following remission [247].

Determining how to apply optimally a treatment such as chemotherapy is of great

practical and theoretical interest. Chemotherapy, a common treatment for AML [92], is

associated with significant health costs related to the cytotoxicity of chemotherapeutic

agents [60,233], but also substantial economic cost [345]. Optimal control theory provides

us with tools for determining the optimal way to apply a control to a model such that

some desired quantities of interest are minimised or maximised. Further, it facilitates

assessment of the efficacy of hypothetical treatment protocols relative to a theoretical

optimal treatment. Optimal control has been applied to a range of medically motivated

biological models recently; including vaccination, tumour therapy and drug scheduling

[75,77,187,188,213].

In this work we consider a recent haematopoietic stem cell model of AML [82]. After

examining the steady state behaviour associated with this model, we make a biologically

appropriate and mathematically convenient modification by incorporating an immune
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response in the form of a Michaelis-Menten kinetic function. Overall, in this work we

pursue two broad aims:

1. Determine how to apply optimal control to the model, accounting for key clinical

features such as the competition between the negative effects of the disease and the

negative effects of the treatment;

2. Provide a concise and insightful discussion of the methodology and numerical im-

plementation of optimal control, as we find that much of the existing literature is

opaque with regard to practical implementation.

In addressing these aims, we provide a brief introduction to the theory of optimal con-

trol and apply optimal control techniques to the modified model, identifying optimal

treatment strategies under a variety of circumstances. This leads us to consider both

continuous and discontinuous bang-bang optimal controls. Our work provides a compre-

hensive discussion of practical issues that can arise when applying optimal control, and we

explore key factors that influence numerical convergence when using a forward-backward

sweep algorithm to solve two-point boundary value problems that arise. The code we

use to implement the algorithms associated with the optimal control solutions is freely

available on GitHub.

In Section 2.2 we present a haemotopoietic stem cell model of AML [82], and discuss

the steady states. In Section 2.3 the importance of an immune response is outlined, and

the model is modified to include such a response. In Section 2.4, we present discussion

and results of optimal control applied to the modified AML model. Finally, concluding

remarks are provided in Section 2.5. In the supplementary material document we extend

the work in this document to consider: (i) arbitrary initial conditions, and; (ii) controls

that impact multiple species.

https://github.com/Jesse-Sharp/Sharp2019
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2.2 Acute myeloid leukaemia model

Crowell, MacLean and Stumpf [82] propose a system of ordinary differential equations

(ODEs) to model AML. Their model can be written as,

dS

dt
= ρsS(K1 − Z1)− δSS,

dA

dt
= δSS + ρAA(K2 − Z2)− δAA,

dD

dt
= δAA− µDD,

dL

dt
= ρLL(K2 − Z2)− δLL,

dT

dt
= δLL− µTT. (2.1)

Here S(t), A(t), D(t), L(t) and T (t) represent haematopoietic stem cells, progenitor

cells, terminally differentiated cells of S(t), leukaemia stem cells and fully differentiated

leukaemia cells, respectively. Z1(t) = S(t) and Z2(t) = A(t) + L(t), where A(t) and

L(t) are coupled as the proliferating leukaemia population (L(t)) competes with the

haematopoietic progenitor cell population (A(t)). This competition is motivated in [82]

by the hypothesis that leukaemic stem cells and haematopoietic stem cells occupy the

same niche within the bone marrow [149, 301] and hence compete for resources. This

niche interaction has been demonstrated as being crucial to similar haematopoietic and

leukaemic cell models of chronic myeloid leukaemia [211]. Throughout this work we

present numerical solutions to this model and other related models. In all solutions

presented the parameters are dimensionless, such that the time scale is arbitrary and

cell population sizes within the bone marrow are expressed as a portion of the carrying

capacities; K1 = K2 = 1. Setting these carrying capacities to be of equal size is a

simplifying assumption in our analysis, though we note that this is not required, and

could be relaxed if suitable alternative estimates of the carrying capacities were identified.

Crowell, MacLean and Stumpf use numerical solutions of Equation (2.1) to identify

parameter values that lead to particular long-time steady state solutions of the model [82].

In this work we will use standard variables to denote time dependent quantities, such as

S(t), and an overbar to denote long-time steady quantities, such as lim
t→∞

S(t) = S̄. The

parameters we use are summarised in Table 2.1, and we note that the model supports

three non-trivial steady states:

1. The coexisting steady state requires S̄, Ā, D̄, L̄, T̄ > 0 simultaneously. In this work

we are interested in modelling the optimal application of an intervention (or control)

such as chemotherapy to the system that shifts it from the coexisting steady state

towards the healthy steady state. Examples trajectories resulting in the coexisting
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steady state are given in Figure 2.2a and Figure 2.2b.

2. The healthy steady state consists of S̄, Ā, D̄ > 0 and L̄ = T̄ = 0, such that there is

a population of each healthy cell species and no leukaemia is present. The healthy

steady state is demonstrated in Figure 2.2c.

3. The third steady state is leukaemic, characterised by S̄ = Ā = D̄ = 0 and L̄, T̄ > 0,

such that only leukaemic cells are present. The leukaemic steady state is demon-

strated in Figure 2.2d.

The leukaemic steady state is less interesting from an intervention perspective as it cannot

be steered towards the healthy steady state via a control such as chemotherapy alone;

requiring in addition a source of healthy cells.
Table 2.1: Parameters values used in this work.

Parameter description Value

Proliferation of S ρS = 0.5
Proliferation of A ρA = 0.43
Proliferation of L ρL = 0.27
Differentiation of S into A δS = 0.14
Differentiation of A into D δA = 0.44
Differentiation of L into T δL = 0.05
Migration of D into the blood stream µD = 0.275
Migration of T into the blood stream µT = 0.3
Carrying capacity of the compartment with S K1 = 1
Carrying capacity of the compartment with A and L K2 = 1
Characteristic rate of the immune response α = 0.015
Half saturation constant of the immune response γ = 0.1

Parameter values in Table 2.1 are used in all numerical solutions presented in this

work, unless otherwise indicated. These values match those specified in [82] to produce

a healthy steady state, with the exception of δL, noting that [82] included parameter

sweeps over ρS, ρA, δS and δA. We have set δL = 0.05 to produce the coexisting steady

state, although other values for δL also produce this coexisting steady state.

Schematics showing the key features of the original model, a modified model that

incorporates an immune response (Section 2.3), and the modified model subject to a

control (Section 2.4) are presented in Figure 2.1. Typical numerical solutions of the

original model are presented in Figure 2.2. All numerical results presented in this study

are obtained using a fourth-order Runge-Kutta method [269] with a constant time step of

δt = 0.001. We find that this choice is sufficient to produce numerical solutions that are

grid-independent. From the numerical results we observe that for the parameter values

given in Table 2.1, provided that initially S(0) > 0 and L(0) > 0, the system will tend

towards the coexisting steady state. In Section 2.3 we modify the model to incorporate an

immune response, such that sufficiently small leukaemic populations will decay without

intervention.
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Figure 2.1: Schematics present the interactions and associated parameters for the (a)
original model [82], (b) modified model with immune response and (c) modified model
subject to a control, u. In each schematic the additional response is highlighted in
red.
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Figure 2.2: Numerical solutions of Equations 2.1 for various initial conditions: (a)
Coexisting steady state solution with [S(0), A(0), D(0), L(0), T (0)] = [0.1, 0, 0, 0.1, 0].
(b) Coexisting steady state with [0.5, 0, 0, 10−3, 0]. (c) Healthy steady state with
[0.1, 0, 0, 0, 0]. (d) Leukaemic steady state with [0, 0, 0, 0.1, 0].

In Figure 2.2b we note that although the initial leukaemia stem cell population is

small compared to the initial haematopoietic stem cell population, the system eventually

evolves to the same coexisting steady state as in Figure 2.2a. However, this steady state

condition requires a longer timescale to develop from the different initial conditions.

2.3 Incorporating the immune response

The immune system is known to play a critical role in the development, metastasis,

treatment and recurrence of cancers [117, 159]. This knowledge is supported by a range

of clinical evidence, including a well-documented increased risk of cancer incidence in

patients with immunodeficiency [79]. This is exemplified by experimental mouse models

where mice are typically immunocompromised to avoid transplanted cancers being de-

stroyed by the immune response in xenograft studies [86]. Furthermore, tumours found

in immunocompetent hosts are observed to exhibit mechanisms for avoiding immune

response [226].
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The behaviour exhibited in Figure 2.2b indicates that the system cannot reach a

healthy non-leukaemic steady state in the presence of even small leukaemic stem cell

populations. It is reasonable to expect that under some circumstances a small leukaemic

population may be outcompeted by healthy cells occupying the same niche [210], without

intervention. Therefore, we consider a modification to the model proposed by Crowell,

MacLean and Stumpf [82] to incorporate an immune response. We expect this immune

response to be effective for small L and ineffective for large L, and so we mimic this by

introducing a Michaelis-Menten term to represent the immune response, giving,

dS

dt
= ρsS(K1 − Z1)− δSS,

dA

dt
= δSS + ρAA(K2 − Z2)− δAA,

dD

dt
= δAA− µDD,

dL

dt
= ρLL(K2 − Z2)− δLL− αL

γ + L
,︸ ︷︷ ︸

immune response

dT

dt
= δLL− µTT. (2.2)

Including an immune response in the model is not only mathematically convenient

in that it provides desirable steady states that we discuss later in this section, but also

biologically relevant. Immune responses are widely studied in both the theoretical and

experimental biology literature and acknowledged as an important contributor to patho-

genesis and tumour dynamics in AML [29, 173, 328]. Additionally, immunotherapy is

being investigated as an alternative to chemotherapy for treatment of AML and many

other cancers [44,196,220].

Michaelis-Menten terms are commonly used to incorporate immune responses in other

biologically motivated models [9, 111, 192]. However, it is unclear, simply by inspection,

what parameter values are required to obtain two stable steady states: one coexisting

and one healthy. For γ ≪ α the Michaelis-Menten term behaves as exponential decay at

a rate of α, while for γ ≫ L it behaves as a linear sink term [296, 297]. Intuitively, we

expect setting γ = O(L) will produce the desired dynamics whereby the immune response

is effective for small L and ineffective for large L.

We investigate further by considering the potential steady states permitted by Equa-

tion (2.2). We note that S is governed by a logistic growth mechanism that does not

depend on any of the other species so we have S̄ = 1 − δS/ρS. Similarly, D and T

do not influence the other populations and hence can be neglected in the consideration

of the steady states. Therefore, we consider a reduced system in terms of A, L with
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S̄ = 1− δS/ρS, recalling that Z2 = A+ L, and through scaling K2 = 1,

dA

dt
= f(A,L) = δS

(
1− δS

ρS

)
+ ρAA(1− A− L)− δAA, (2.3)

dL

dt
= g(A,L) = ρLL(1− A− L)− δLL− αL

γ + L
. (2.4)

By inspection, there is a trivial L-nullcline at L̄ = 0. We can find the A-nullcline by

setting f(A,L) = 0 in Equation (2.3),

L̄ =
δSS̄

ρAA
+ 1− A− δA

ρA
. (2.5)

Similarly, we can find the non-trivial L-nullcline by setting g(A,L) = 0 in Equation (2.4),

Ā = 1− L− δL
ρL

− α

ρL(γ + L)
. (2.6)

The nullclines, given by Equations (2.5) and (2.6), are hyperbolas. In Figure 2.3

we present phase planes for both the modified (with immune response) and unmodified

(no immune response) models showing dynamics of the A and L populations within the

physically meaningful region, A+ L ≤ 1.

This system has the desired property that we outlined previously, namely that there

is a stable steady state of coexistence that we aim to steer to the stable state with no

leukaemia through applying optimal control. Numerical solutions of the modified model

with no control are presented in Figure 2.4.
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Figure 2.3: Nullclines and steady states of the model with (a) no immune response and
no control, (b) no immune response with control, (c) immune response with no control
and (d) immune response with control, using parameters for a coexistence steady state;
[ρS, ρA, ρL, δS, δA, δL] = [0.5, 0.43, .027, 0.14, 0.44, 0.05]. Physically realistic fixed points
are marked with closed discs if stable or open discs if unstable. The application of a control
in (b) and (d) corresponds to u ≡ 0.1, effectively increasing δL to 0.15 (a control could be
a treatment such as chemotherapy that increases the rate of decay of leukaemic stem cells,
this is discussed in Section 2.4). In (c), for particular choices of the introduced parameters
α and γ it is possible for the hyperbolas to intersect twice within the physically realistic
region (dashed triangle). Figures (c) and (d) are produced with α = 0.015, γ = 0.1.
Without an immune response, as illustrated in (a) and (b), application of a control can
steer the system towards a stable healthy steady state, however this fixed point becomes
unstable if the control is ceased, causing the system to revert to the coexisting steady
state. With an immune response, as illustrated in (c) and (d), once the control steers the
system into the attractor region of the healthy fixed point, the system does not revert to
the coexisting steady state upon ceasing the control.
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Figure 2.4: Numerical solutions to the modified model with an immune response
for initial conditions corresponding to Figure 2.2. In (a) we observe coexistence,
though it takes longer for the solutions to approach steady state when compared
with the original model (Figure 2.2a). This result is presented over a larger time-
scale. With the introduction of the Michaelis-Menten style immune response to
leukaemia, we observe in (b) that a small leukaemia stem cell population does not
survive in the presence of a haematopoietic stem cell population. This is in contrast
to Figure 2.2b, where a minute population of leukaemic stem cells was sufficient to
grow to a coexisting steady state. These figures are produced with immune response
parameters α = 0.015, γ = 0.1.
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2.4 Methods

In this section we provide a concise overview of the theory of optimal control. Methods

for solving optimal control problems are discussed. We determine optimal controls to the

model presented in Section 2.3. Specifically, we consider continuous optimal controls cor-

responding to quadratic pay-off functions and discontinuous bang-bang optimal controls

corresponding to linear pay-off functions. Numerical solutions are produced for several

different pay-off weighting parameter combinations.

2.4.1 Optimal control theory

The basic principle of optimal control is to apply an external force, the control, to a system

of differential equations, the state equations, to cause the solution, the state, to follow a

new trajectory and/or arrive at a different final state. The goal of optimal control is to

select a particular control that maximises or minimises a chosen objective functional, the

pay-off ; typically a function of the state and the control. The pay-off is chosen such that

the new trajectory/final state are preferred to that of the uncontrolled state, accounting

for any cost associated with applying the control.

A typical optimal control problem will introduce the state equations as functions of

the state x(t) and the control u(t), with initial state x(0) = x0,

dx

dt
= f(t,x(t), u(t)), x(t) ∈ Rn. (2.7)

It is also necessary to specify either a final time tf with the final state free, or a final

state x(tf ), with the final time free.

A pay-off function J is defined as a function of the final state, x(tf ), and a cost

function L(t,x(t), u(t)) integrated from initial time (t0) to final time (tf ). Through

choosing an optimal control u∗(t) and solving for the corresponding optimal state x∗(t),

we seek to maximise or minimise this objective function. Selecting the pay-off enables us

to incorporate the context of our application and determine the meaning of optimality.

In general, the pay-off function can be written as,

J = ϕ(x(tf )) +

∫ tf

t0

L(t,x(t), u(t)) dt. (2.8)

Depending on the form of ϕ, it may be possible to incorporate ϕ into L by restat-

ing the final state constraint in terms of an integral expression using the Fundamental

Theorem of Calculus, and noting that ϕ(x(t0)) is constant and hence does not impact

the optimal control. The resulting unconstrained optimal control problem is often more

straightforward to solve than the constrained problem.

The optimal control can be found by solving necessary conditions obtained through
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application of Pontryagin’s Maximum Principle (PMP) [264], or a necessary and sufficient

condition by forming and solving the Hamilton-Jacobi-Bellman partial differential equa-

tion; a dynamic programming approach [37]. In this work we use the PMP and we con-

struct the Hamiltonian, H(t,x, u,λ) = L(t,x, u)+λ ·f , where λ = [λ1(t), λ2(t), ..., λn(t)]

are the adjoint variables for an n-dimensional state. The adjoint is analogous to La-

grange multipliers for constrained optimisation problems. Through the Hamiltonian, the

adjoint allows us to link our state to our pay-off function. The necessary conditions can

be expressed in terms of the Hamiltonian,

1. The optimality condition is obtained by minimising the Hamiltonian,

∂H

∂u
= 0 gives

(
∂L
∂u

+ λ · ∂f
∂u

)
= 0, (2.9)

2. the adjoint, also referred to as co-state, is found by setting,

∂H

∂x
= −dλ

dt
, giving

dλ

dt
= −

(
∂L
∂x

+ λ · ∂f
∂x

)
, and (2.10)

3. satisfying the transversality condition (a final time condition on the co-state),

λ(tf ) =
∂ϕ

∂x

∣∣∣
t=tf

. (2.11)

2.4.2 Continuous optimal control

In this section we consider optimal control applied to the AML model presented in Section

2.3. From this point we omit the implied time dependence of all control, state and co-

state variables for notational convenience. Consider the steady states we observed for the

coexistent parameter values of model 1. Suppose we wish to apply an optimal control

that steers the system from a steady state observed in Figure 2.4a towards a healthy

steady state (Figure 2.4b). This could be achieved by applying a drug u(t), the dosage

of which may vary over time, that kills leukaemic stem cells,

dS

dt
= ρSS(K1 − Z1)− δSS,

dA

dt
= δSS + ρAA(K2 − Z2)− δAA,

dD

dt
= δAA− µDD,

dL

dt
= ρLL(K2 − Z2)− δLL− αL

γ + L
− uL,

dT

dt
= δLL− µTT. (2.12)
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A potential pay-off function for this optimal control problem is to minimise,

J =

∫ tf

0

(
a1u

2 + a2L
2
)
dt, (2.13)

where the control problem is assumed to start at time zero and run until a fixed end time

of tf . Note that we have not included a function of the final state in the pay-off: ϕ = 0.

In defining a pay-off function there is significant scope for flexibility, and what constitutes

an appropriate choice depends on the application. The parameters a1 > 0 and a2 > 0 are

chosen to weight the importance of each term in the pay-off, and can be adjusted to best

suit a particular application. Through scaling it can be seen that for this example only

the relative weighting (a1/a2) is important, however we specify a1 and a2 separately for

clarity.

Quadratic pay-off functions have several desirable mathematical properties that in-

crease the ease of finding optimal solutions; they are smooth and have only a single

extremum. Furthermore, quadratic pay-off functions help to avoid non-physical controls

that may otherwise be found. For example; if the pay-off was a cubic function of u, set-

ting u to be large and negative may minimise the pay-off but be physically unrealisable.

Quadratic pay-off functions also have some desirable physical properties; a quadratic

term will apply a harsher penalty to large amounts of control than small amounts [26],

which in many treatments, such as chemotherapy, is desirable [169]. In control engineer-

ing applications, the control, u, is thought to be proportional to a voltage or current,

in which case a quadratic pay-off has a convenient interpretation, as u2 is proportional

to power, and the integral of this power over an interval is proportional to the energy

expended [26]. Pay-off functions that are quadratic in the control variable are used in

many biological [193,270] and engineering applications [17, 246].

We can construct the Hamiltonian as H = L + λ · f ; where f is the right hand

side of Equation (2.12), λ = [λ1, λ2, λ3, λ4, λ5], and from Equation (2.13), we have L =

a1u
2 + a2L

2, giving,

H = a2L
2 + a1u

2 + λ1[ρSS(1− S)− δSS]

+ λ2[δSS + ρAA(1− A− L)− δAA]

+ λ3(δAA− µDD)

+ λ4[ρLL(1− A− L)− δLL− αL/(γ + L)− uL]

+ λ5(δLL− µTT ). (2.14)

From Equation (2.9), we find the optimal control by setting ∂H/∂u = 0, giving

u∗ = λ4L/2a1. Following Equation (2.10), the co-state equations for λ are found by

setting dλ/dt = −∂H/∂x,
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dλ1
dt

= 2Sλ1ρS + δSλ1 − δSλ2 − λ1ρS,

dλ2
dt

= 2Aλ2ρA + Lλ2ρA + Lλ4ρL + δAλ2 − δAλ3 − λ2ρA,

dλ3
dt

= µDλ3,

dλ4
dt

= −2a2L+ ρAAλ2 + λ4ρLA+ 2ρLLλ4 − λ4ρL

+ λ4δL +
αγλ4

(γ + L)2
+ λ4u− δLλ5,

dλ5
dt

= µTλ5. (2.15)

The transversality condition, Equation (2.11), gives final time conditions on the co-

state, Equation (2.15); λ(tf ) = [0, 0, 0, 0, 0]. Assuming that the initial state is known;

[S(0), A(0), D(0), L(0), T (0)], it is now possible to determine the optimal control and

corresponding state and co-state through solving a two-point boundary value problem

(BVP).

We solve Equation (2.2) numerically to reach the stable coexisting steady state of

the uncontrolled model. These steady state values in the absence of the control are used

as the initial state conditions to solve the BVP to find the optimal control solution.

The initial condition for the optimal control problem is [S(0), A(0), D(0), L(0), T (0)] =

[0.7200, 0.3255, 0.5207, 0.3715, 0.0619]. Initialising the optimal control solution from the

uncontrolled steady state is not necessary, however it helps to illustrate the role of the

control. We demonstrate this flexibility by generating results for a range of arbitrary

initial conditions and control start times. These results are presented and discussed in

the supplementary material.

There are a range of analytical methods available for solving some forms of BVP

under certain conditions [5, 337]. However, in this work we focus on numerical solutions

with a view to identifying and discussing typical issues that may arise in implementation.

Common numerical solution techniques include shooting and forward-backward sweep

methods (FBSM) [165,191]. The most effective numerical method depends on the partic-

ular BVP. The single shooting method is relatively straightforward, but can be sensitive

to the initial guess of the co-state. Forming a suitable guess for the initial values of the

co-state is challenging, as the co-state does not have a straightforward physical inter-

pretation. Although the FBSM calls for an initial guess for the control over the entire

interval, this can often be straightforward to determine, as we will demonstrate.
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We apply the FBSM using an initial guess for the control, u(t) ≡ 0, to solve for the

state variables forward in time. The co-state is then solved backward in time. In each

case a fixed step fourth order Runge-Kutta method is applied to solve the relevant system

of ODEs. Using these solutions, the control is updated and the process is repeated until

convergence is achieved. The algorithm for the FBSM is given in Algorithm 1.

Algorithm 1: Forward-backward sweep

i. Make an initial guess of u(t).

Typically u(t) ≡ 0 is sufficient, though a more thoughtful choice may result in

fewer iterations required for convergence.

ii. Using the initial condition x(0) = x0, solve for x(t) forward in time using the

initial guess of u(t).

iii. Using the transversality condition λ(tf ), solve for λ(t) backwards in time, using

the values for u(t) and x(t).

iv. Calculate unew(t) by evaluating the expression for the optimal control u∗(t) using

the updated x(t) and λ(t) values.

v. Update u(t) based on a combination of unew(t) and the previous u(t). For contin-

uous controls applied to relatively simple systems, it may be possible to use unew(t)

directly (u(t) = unew(t)), however this is not sufficient to achieve convergence in

general. We discuss this further in Section 2.4.4.

vi. Check for convergence.

If x(t), λ(t) and u(t) are within a specified absolute or relative tolerance of the

previous iteration, accept x(t), λ(t) and u(t) as having converged, otherwise re-

turn to Step ii. and repeat the process using the updated u(t).
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Solutions are provided in Figure 2.5 for various weighting on the control parameters.

As expected, when a1 > a2, placing a greater weighting on the negative impact of the

control than the negative impact of the leukaemic stem cells we observe that the control

is applied at a lower level than when a1 < a2. When the pay-off weightings are equal, as

shown in Figure 2.5b, the continuous control is applied at an amount similar to the level

of the leukaemic stem cell population. Similarly, when the amount of control applied

is larger, we observe that the leukaemic stem cell population declines at a faster rate.

With a1 > a2, as in Figure 2.5c, we observe that the leukaemic population is effectively

eradicated by tf , whereas when a1 < a2 we see, in Figure 2.5d, that a leukaemic population

remains at tf . A limitation of specifying a fixed final time, as opposed to a fixed final

state, is that the optimal outcome is dependent on the specified final time, and there is

no consideration for what may happen after tf . In many applications, the notion of what

happens beyond the control interval is not of interest, though in some instances specifying

a final state may be more sensible. In this work we consider fixed final time problems

for ease of comparison between controls under different parameter regimes, though we

acknowledge that specifying a final state, such as no leukaemic stem cells, may be more

biologically appropriate.

For each of the optimal controls presented in Figure 2.5, we include an estimate of J ,

calculated by evaluating Equation (2.13) with the trapezoid rule. It is critical to note that

these pay-offs should not be directly compared with each other. This kind of comparison

would be meaningless as each result corresponds to different choices of a1 and a2, and

these values explicitly contribute to J . For example; suppose an optimal control with

pay-off weightings a1 and a2 is computed to have a pay-off of J1. Recomputing the opti-

mal control with weightings 2a1 and 2a2 would produce a near identical optimal control

and corresponding state, with slight deviation due to floating-point error. However, the

corresponding pay-off J2 would be twice as large.
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Figure 2.5: Application of a continuous optimal control (black dashed line) for various
pay-off weightings a1 and a2. The corresponding pay-off, J , is also given. (a) Coexist-
ing steady state solution with no control applied. (b) Equal weighting [a1, a2] = [1, 1],
J = 0.7167. (c) Leukaemia weighted more heavily [a1, a2] = [0.1, 1], J = 0.2288. (d)
Control weighted more heavily [a1, a2] = [1, 0.1], J = 0.2262. These figures are pro-
duced with immune response parameters α = 0.015, γ = 0.1.
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No pay-off is calculated for the uncontrolled steady state solution (Figure 2.5a) as the

choice of a1 and a2 would be arbitrary. In this sense, computed pay-offs are not useful for

comparing the outcome of treatment versus no treatment as there is no meaningful pay-

off associated with no treatment. Rather, computed pay-offs can be used for comparison

with other controls applied to a system with identical parameters to check whether or

not they are comparable in outcome to the optimal control, noting that the response of

the state will also change if the control changes.

To illustrate this point, we compare the optimal control obtained in Figure 2.5b

to other potential treatment scenarios. In Figure 2.6 we compare four different dosing

strategies where the same total amount of drug is applied using different temporal regimes.

Our calculations of J provide a measure of how much the optimal result (Figure 2.6a)

outperforms the other heuristically-determined dosing strategies. Applying the control

at a constant rate for the full duration of the simulation (Figure 2.6b) produces a worse

outcome than clinically-motivated cyclic treatment designs; applying the control at a

greater level for a shorter duration in one (Figure 2.6c) or two (Figure 2.6d) cycles [24].

Due to the quadratic control term in Equation (2.13), despite applying the same total

dosage, the control contributes more to the pay-off in Figure 2.6c than 2.6d, but this

is outweighed by the benefit of reducing the leukaemic population more quickly. The

optimal control framework provides us with tools to generate treatment hypotheses and

assess the efficacy of different treatment protocols relative to one another and to the

theoretical optimum for a given set of parameters.



Chapter 2. Optimal control of acute myeloid leukaemia 40

0 10 20 30 40 50

Time

0

0.2

0.4

0.6

0.8

1

S
ta
te

S

A

D

L

T

u

0 10 20 30 40 50

Time

0

0.2

0.4

0.6

0.8

1

S
ta
te

S

A

D

L

T

u*

0 10 20 30 40 50

Time

0

0.2

0.4

0.6

0.8

1

S
ta
te

S

A

D

L

T

u

0 10 20 30 40 50

Time

0

0.2

0.4

0.6

0.8

1

S
ta
te

S

A

D

L

T

u

0 10 20 30 40 50

Time

0

0.2

0.4

0.6

0.8

1

S
ta
te

S

A

D

L

T

u*

(a)

(c) (d)

(b)

J = 1.7370J = 1.3454
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Figure 2.6: Comparison of (a) continuous optimal control with other possible controls
of the same total dosage; (b) control applied at a constant rate over the entire
duration, (c) control applied at a higher rate over a short cycle and (d) control
applied in two cycles. These figures are produced with a1 = a2 = 1 and immune
response parameters α = 0.015, γ = 0.1.
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2.4.3 Bang-bang optimal control

In addition to considering continuous controls, it is also relevant to consider discontinuous

bang-bang controls as this kind of on-off control could be thought to be more clinically

relevant than a continuous setting. Bang-bang control problems require a specified bound

on the control variable. A bang-bang optimal control takes the value of either the upper

or lower bound with finitely many switching points over an interval. As a starting point

we re-consider Equation (2.12) and note that a control will be either bang-bang optimal

or singular if the pay-off function is linear in the control term. A pay-off that should

produce a bang-bang or singular optimal control of Equation (2.12) is to minimise

J =

∫ tf

0

(a1u+ a2L) dt, (2.16)

subject to b1 ≤ u ≤ b2. We can construct the Hamiltonian as H = L+ λ · f , where L is

the integrand of Equation (2.16), λ = [λ1, λ2, λ3, λ4, λ5] and f is the right hand side of

Equation (2.12), giving

H = a2L+ a1u+ λ1[ρSS(1− S)− δSS]

+ λ2[δSS + ρAA(1− A− L)− δAA]

+ λ3(δAA− µDD)

+ λ4[ρLL(1− A− L)− δLL− αL/(γ + L)− uL]

+ λ5(LδL − TµT ). (2.17)

As for the continuous control case, we differentiate the Hamiltonian with respect to our

control variable u. With a linear pay-off, however, the result no longer contains u. Rather

than solving for u, we define a switching function, ψ(t), given by

ψ(t) =
∂H

∂u
= −λ4(t)L(t) + a1. (2.18)

From PMP [264], it is implied that the Hamiltonian will be minimised under the

following conditions,

u∗(t) =

{
b1, if ψ(t) > 0,

b2, if ψ(t) < 0.
(2.19)

Conditions in Equation (2.19) produce a bang-bang control. Here, the control variable

takes a value of either its upper or lower bound. Notably, Equation (2.19) omits the case

where ψ(t) = 0, as a bang-bang optimal control requires that ψ(t) = 0 only at discrete

points, if at all [71]. If ψ(t) = 0 for any finite interval aside from isolated points, the

control is singular. Singular controls are most commonly encountered in cases where the

Hamiltonian is linear in the control variable but non-linear in some state variables [55].
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When ψ(t) = 0 over an interval, the Hamiltonian is not a function of the control, so the

state and co-state variables no longer determine the control [55]; over this interval the

control is determined by requiring ∂H/∂u = 0. Our control problem defined by Equation

(2.12) and Equation (2.16) is not singular, so we do not discuss singular controls further.

Our co-state equations for λ are found as ∂H/∂x = −dλ/dt. The co-state in the

bang-bang control problem is given by,

dλ1
dt

= 2Sλ1ρS + δSλ1 − δSλ2 − λ1ρS,

dλ2
dt

= 2Aλ2ρA + Lλ2ρA + Lλ4ρL + δAλ2 − λ2ρA,

dλ3
dt

= µDλ3,

dλ4
dt

= −a2 + ρAAλ2 + λ4ρLA+ 2ρLLλ4 − λ4ρL

+ λ4δL +
αγλ4

(γ + L)2
+ λ4u− δLλ5,

dλ5
dt

= µTλ5, (2.20)

and we note that Equation (2.20) is subtly different to Equation (2.15), as the first term

of the fourth line of Equation (2.20) is the constant −a2, and no longer depends on L.

The transversality condition, Equation (2.11), gives the final time conditions on the

co-state, [λ1(tf ), λ2(tf ), λ3(tf ), λ4(tf ), λ5(tf )] = [0, 0, 0, 0, 0]. Assuming again that the

initial state is known; [S(0), A(0), D(0), L(0), T (0)], it is now possible to determine the

optimal bang-bang control and corresponding optimal state and co-state through a two-

point BVP that we solve using the FBSM, as in the continuous control case. It is not

necessary to modify the FBSM algorithm to find bang-bang optimal controls, though

care must be taken in how the control is updated between iterations. This is discussed

further in Section 2.4.4. Depending on the numerical scheme used to integrate the state

and co-state equations through time, the discontinuous nature of the bang-bang control

may require careful handling. Solutions are provided in Figure 2.7 for various weighting

on the control parameters. In the continuous control case, when a1 > a2, placing a

greater weighting on the negative impact of the control than the negative impact of the

leukaemic stem cells; we observed that the control is applied at a lower level than when

a1 < a2. The optimal bang-bang control must take either the upper or lower bound of the

specified range. As such, in the bang-bang control case the pay-off weighting parameters

determine not the level at which the control is applied, but rather the times at which the

control switches from one bound to the other, hence the name switching function given

to Equation (2.19).

In Figure 2.7 it is clear that when the upper bound on the control is higher, meaning

in this context the maximum amount of chemotherapy that can be applied at any given
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Figure 2.7: Bang-bang control solutions for various weightings on control and
leukaemia in the pay-off (a1 and a2 respectively), with different control upper bounds.
These figures are produced with immune response parameters α = 0.015, γ = 0.1.

time is higher, the control switches to the lower bound earlier. In this case the lower

bound corresponds to u = 0, or no chemotherapy being applied (control switched off ),

though this is not required of the method. The interaction between the control and state

in Equation (2.20) means that the cumulative amount of control applied is not the same

for different bounds on the control. In Figure 2.5 we demonstrate that for a continuous

control with a1 = 1, a2 = 0.1, a small amount of control is applied. For the bang-bang

case with the same weighting, we observe in the rightmost column of Figure 2.7 that for

a range of control upper bounds, the control is not switched on at all - implying that

with such a pay-off, it is optimal not to apply the control. One may suppose that for
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a sufficiently small upper bound that the control would turn on even with this pay-off,

however a lower upper bound on the control also reduces the impact the control has on

the state.

Due to the immune response incorporated in Section 2.3, a sufficiently small leukaemic

population will tend towards extinction rather than grow back to a coexisting steady state.

Because of this, we observe in Figure 2.7 that the control switches off before the leukaemic

stem cells are totally eradicated - the immune response is sufficient once the leukaemic

population is sufficiently low. This is most evident in Figure 2.7k, where we can see that

the population of leukaemic stem cells is declining but has not become extinct by the final

time, t = 50. In absence of the immune response incorporated in Section 2.3, we would

observe the leukaemic population increasing as soon as the control is switched off, since

the healthy steady state would be unstable; applying fixed final time bang-bang optimal

control to the original model produces outcomes that are mathematically optimal but

physically undesirable.

In our discussion of continuous controls, we note the fixed final time as a limitation,

since changing the final time can change the profile of the optimal control and state. In

general the same is true of bang-bang controls with fixed final times, though in some

instances that we consider the optimal bang-bang control does not change significantly

if the final time is changed. For example; the optimal switching times and corresponding

optimal states in the leftmost column of Figure 2.7 do not change significantly if the final

time is increased to t = 100, because by t = 50 we see that L ≈ 0 and u = 0, so neither

contributes significantly to the pay-off in the interval 50 < t ≤ 100. For these cases the

control is not costly relative to the leukaemia (a1 < a2) so it is applied at the upper

bound until the leukaemic stem cell population is virtually eradicated before switching

off.

For this particular system, we only obtain bang-bang optimal controls with a single

switching time. We are able to verify these bang-bang optimal controls through an

exhaustive search of all possible bang-bang controls by specifying the switching time,

directly calculating the pay-off and determining the switching time that minimises the

pay-off. For all cases considered in Figure 2.7 the switching time identified via exhaustive

search is in agreement. It is also possible that the optimal bang-bang control may switch

between the upper and lower bounds numerous times, producing multiple ‘bangs’. Bang-

bang optimal controls that exhibit multiple bangs can be identified using the FBSM

without modification, though it is more difficult to find a convergent bang-bang optimal

control with multiple bangs. Similarly, without knowing a priori how many switching

times to expect, an exhaustive search for multiple bangs is not computationally feasible.
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2.4.4 Convergence and control updating

In this section we examine the convergence behaviour of solutions to the optimal control

problems presented in this work. Convergence behaviour of numerical solutions to optimal

control problems is influenced by multiple factors. In particular, we discuss the initial

guess of the control, convergence criteria, control updating and pay-off weightings. These

factors influence not only the number of iterations required to reach a converged numerical

solution, but also whether or not a converged solution will be reached at all.

Holding all other factors constant, provided that the initial guess for the control is

sensible, the initial guess does not have a significant impact on whether or not a converged

result is reached for the control problems considered in this work. However, convergence

is typically reached with fewer iterations when the initial guess is relatively closer to the

true value of the optimal control. For simplicity we use the initial guess u ≡ 0 for all

results presented in this work, while acknowledging that more thoughtful choices may

deliver convergence in fewer iterations.

For optimal control results presented in the previous sections, we determine whether

convergence has been achieved after each iteration based on the relative difference between

the updated control, uupdated, and the old control, uold. If this relative difference is

sufficiently small, the updated control is accepted as the optimal control. A typical

relative difference convergence criterion requires

|uupdated − uold|
|uupdated|

≤ ε, (2.21)

where 0 < ε ≪ 1 is the desired relative tolerance. Following [191], we adjust Equation

(2.21) to allow for a control of the form u ≡ 0, giving

ε

n∑
i=1

|uupdated(i∆t)| −
n∑

i=1

|uupdated(i∆t)− uold(i∆t)| ≥ 0, (2.22)

where t = i∆t, ∆t is the numerical time step and n is the number of nodes in the time

discretisation. The absolute value is taken to ensure that positive differences are not offset

by negative differences that could otherwise result in incorrectly detecting convergence.

The choice of convergence criterion and acceptable tolerance depends on the particular

problem at hand, and may need to be adjusted to be appropriate for another control

problem. In some instances, it may be necessary to check convergence of the state and

co-state as well as the control, particularly if the state response to control is sensitive.

For the control problems studied in this work, we find that state and co-state respond

predictably to the control, and convergence of the control is accompanied by convergence

of that state and co-state. As such we do not explicitly check for convergence of the state

and co-state.



Chapter 2. Optimal control of acute myeloid leukaemia 46

In each iteration of the FBSM we recalculate the control, unew, based on the newly

calculated state and co-state solutions and associated optimality criterion, as discussed

in Section 2.4.2 for the continuous control and Section 2.4.3 for the bang-bang control.

Typically, unew is not used directly as the control for the next iteration of the FBSM,

but rather we form an updated control uupdated as a weighted combination of unew and

the control from the previous iteration, uold. The motivation for this is two-fold; first, an

appropriately weighted control updating scheme can speed up convergence; and second,

for many optimal control problems, a direct update of uupdated = unew will fail to produce

converging results at all. A common approach is to update the control based on a

convex combination, such that the total weightings sum to one, of the new and previous

control(s). In this work we use a constant linear weighting, with 0 < ω < 1, giving

uupdated = ωuold + (1− ω)unew. (2.23)

We find that the best choice for ω depends not only on the form of the control, contin-

uous or bang-bang, but also on model parameters such as the pay-off weightings. There

is a trade-off between the number of iterations required to obtain convergence, and actu-

ally converging at all; a larger ω typically is more likely to produce converging solutions,

but this also means that the control changes less each iteration, so more iterations are

required. For example, a weighting of ω = 0.7 was sufficiently large that all continuous

control solutions presented in Figure 2.5 converged to a relative tolerance of ε = 1×10−3.

For ω = 0.6 only Figure 2.5d converges, and for ω = 0.8, all solutions in Figure 2.5

converge but require more iterations than when ω = 0.7.

Convergence in the bang-bang control case typically requires larger ω and more iter-

ations than the continuous controls. In the rightmost column of Figure 2.7, there is no

concept of convergence as the control never switches on. Only Figure 2.7j and Figure

2.7k converge to a relative tolerance of 1× 10−3 for ω = 0.7, with ω = 0.9 being sufficient

for convergence of all remaining solutions aside from Figure 2.7b, where we set ω = 0.95.

It is clear that the best control updating scheme depends on the particular problem;

and a scheme that works well for one problem may not necessarily work at all for another.

When solving control problems, it may be necessary to try a range of updating schemes to

achieve convergence. In this work we only consider constant weighted updating, though

there are more sophisticated updating schemes that shift the weighting towards unew as

the number of iterations increase [191]. In Figure 2.8 we examine the influence of the

control update weighting ω, and the pay-off weightings, a1 and a2, on the convergence

behaviour of the bang-bang control problem studied in Section 2.4.3. Specifically, we

consider the case where 0 ≤ u ≤ 0.5, and determine that a solution has converged if

it meets a relative tolerance of ε = 1 × 10−3 within 250 iterations. In each panel of

Figure 2.8 we observe three regions : in region I we have no concept of convergence as the
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control never switches on; in region II we find that the optimal control problem does not

converge; and in region III we observe convergence. Not all simulations conform strictly

to these regions since the boundary between the different regions is not always sharp and

well-defined. However, broadly speaking, these three regions capture the essence of the

convergence behaviour that we observe. These regions are constructed based on discrete

simulations of the problem for 0 < a1 ≤ 10 and 0 ≤ a2 ≤ 10, each in increments of 0.1.

The case where a1 = 0 is excluded as this corresponds to no cost associated with applying

the control, so there is no sense of convergence.
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Figure 2.8: Convergence behaviour for (a) ω = 0.85, (b) ω = 0.9, and (c) ω = 0.95,
with a1 and a2 ranging from 0 to 10 in increments of 0.1, excluding a1 = 0. In region
I (dark blue) we have no concept of convergence as the control never switches on.
In region II (light blue) we find that the optimal control problem does not converge,
and in region III (yellow) we observe convergence. These figures are produced with
immune response parameters α = 0.015, γ = 0.1.

From Figure 2.8 it is clear that convergence is achieved in a larger region of the (a1,

a2) parameter space when ω is increased. However, it is important to note that achieving

convergence in this context only implies that Equation (2.22) is satisfied, and does not

necessarily mean that a suitable bang-bang control is obtained. While some controls

corresponding to individual simulations in Figure 2.8c are suitable bang-bang controls; a

portion are approaching bang-bang but require additional iterations to accurately calcu-

late the control around the switching point. The weighting applied in Equation (2.23) has

the effect of smoothing u during intermediate iterations of the FBSM; this smoothness

is gradually reduced as the control converges to the optimal switching point. Since ω

explicitly influences the relative amount that the control can differ between iterations, if

a larger ω is required to achieve convergence for a given problem, it may also be necessary

to reduce the convergence tolerance ε to ensure that the resulting control is sufficiently

bang-bang.
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2.5 Conclusion and Outlook

In this work we consider a haematopoietic stem cell model of AML that incorporates

competition between leukaemic stem cells and blood progenitor cells within the bone

marrow niche. We incorporate a biologically appropriate immune response in the form of

a Michaelis-Menten term. This modification is mathematically convenient because of the

impact it has on the steady states, and biologically relevant because the immune response

is known to play an important role in cancer progression and treatment. With a view to

identifying the optimal way to apply a treatment such as chemotherapy to the model, we

formulate and solve optimal control problems corresponding to multiple objectives and

constraints. This includes quadratic pay-off functions, yielding continuous controls, as

well as linear pay-off functions, yielding discontinuous bang-bang controls.

We provide a brief overview of optimal control theory, with a focus on the necessary

conditions derived from Pontryagin’s Maximum Principle. This approach formulates the

optimal control problem as a coupled multi-species two-point boundary value problem.

The resulting optimal control problem is solved numerically using the iterative FBSM.

The algorithm for the FBSM is discussed, with a focus on highlighting typical issues that

may arise in implementing optimal control. Suggestions are provided for overcoming these

issues. In particular, we focus on factors that influence the convergence of the FBSM;

not only in terms of the number of iterations required, but also whether it converges at

all. These factors include the initial guess for the control, the convergence criterion, the

method of updating the control, the associated weighting placed on controls from prior

iterations and parameters such as pay-off weightings, and in the bang-bang control case,

the control bounds.

For the model we consider, a well informed initial guess for the control may reduce the

number of iterations required for convergence; but any sensible guess should not prevent

convergence. Most critically, we show that the method of updating the control and the as-

sociated weight placed on the control from the previous iteration has a significant impact

on whether or not convergence will be achieved, as do the weights in the pay-off function.

In the bang-bang control case, we observe that increasing the upper bound on the control

can prevent convergence, holding all other factors constant; in this case, placing a greater

weight on the solution from the previous iteration may produce convergence.

There are many potential avenues to extend the ideas explored in this work. Here,

we have incorporated the control via a simple mechanism, and more sophisticated phar-

macokinetic processes such as drug absorption and metabolism could be incorporated to

increase the biological detail captured by the model, but this additional biological detail

comes at the cost of increasing the number of unknown, and possibly unmeasurable pa-

rameters. Therefore, care must be exercised in following up this kind of extension. In the

main document we consider the most fundamental case of a control that only impacts
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leukaemic cells, however the methodology extends to a control affecting multiple species.

We demonstrate this extension in the supplementary material. The control problems

presented in this work could be reformulated as fixed final state problems, leaving the

final time free to vary which could be more clinically relevant than specifying the final

time. With the introduction of an immune mechanism to the model, it is also possible

to consider a control based around immunotherapy.

A recent idea of great interest in clinical cancer research is the possibility of intro-

ducing an interval of time during treatment in which no chemotherapy is applied. This

kind of intervention is reminiscent of a bang-bang control, and is often referred to as a

drug holiday [313]. There is some evidence to suggest that drug resistance of tumour cells

may reduce with time so that patients experience an improved response to chemotherapy

following a drug holiday [174, 180, 287]. This application of a drug in an on-off fashion

parallels the idea of the bang-bang controls we consider in this work and so it would be

interesting to formulate the concept of designing a drug holiday in terms of a bang-bang

optimal control problem by extending the model to include acquired drug resistance and

using the algorithms and concepts demonstrated in this work.
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signing combination therapies using multiple optimal controls. Journal of Theoretical

Biology. doi:10.1016/j.jtbi.2020.110277.

Abstract

Strategic management of populations of interacting biological species routinely requires

interventions combining multiple treatments or therapies. This is important in key re-

search areas such as ecology, epidemiology, wound healing and oncology. Despite the well

developed theory and techniques for determining single optimal controls, there is limited

practical guidance supporting implementation of combination therapies. In this work

we use optimal control theory to calculate optimal strategies for applying combination

therapies to a model of acute myeloid leukaemia. We consider various combinations of

continuous and bang-bang (discrete) controls, and we investigate how the control dynam-

ics interact and respond to changes in the weighting and form of the pay-off characterising

optimality. We demonstrate that the optimal controls respond non-linearly to treatment

strength and control parameters, due to the interactions between species. We discuss

challenges in appropriately characterising optimality in a multiple control setting and

provide practical guidance for applying multiple optimal controls. Code used in this

work to implement multiple optimal controls is available on GitHub.

https://doi.org/10.1016/j.jtbi.2020.110277
https://github.com/Jesse-Sharp/Sharp2020
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3.1 Introduction

Determining appropriate interventions for managing populations of interacting species

poses significant challenges. A wide variety of biological processes are characterised by

interactions between species, ranging from mutualistic to antagonistic. Mutualistic in-

teractions benefit all species involved: for example, the acacia-ant and acacia tree have

a mutualistic interaction; the ants are provided food and shelter by the tree, and in turn

protect the tree from herbivores, insects and other plants [155]. Antagonistic interactions

occur where one species gains at the expense of others, or where all species are disad-

vantaged; such as the predation of rabbits by foxes [105], competition for prey between

lions and hyenas occupying the same ecological niche [305], or in acute myeloid leukaemia

(AML) where progenitor blood cells and leukaemic stem cells in the bone marrow niche

compete for resources [149, 210, 301]. These interactions, coupled with the reality that

many interventions impact multiple species within an environment, increase the difficulty

of designing intervention strategies. We use optimal control techniques to explore the dy-

namics of multi-species systems subject to multiple intervention strategies. We present a

case study considering a combination therapy approach to treatment; analysing a stem

cell model of acute myeloid leukaemia (AML). We subject the system to a chemotherapy

control that destroys both leukaemic stem cells and progenitor blood cells, and a stem

cell transplant control that replenishes progenitor blood cells. This is an informative

system to study as the complexity makes it unclear how to best apply these interventions

without applying optimal control techniques, and the antagonistic dynamics of AML are

representative of many other systems in biology.

Where available intervention mechanisms incur different costs, target different species

or have a level of efficacy that varies based on the state of the system, it is reasonable to

consider a strategy with multiple interventions applied in combination. We are interested

in applying interventions to interacting multi-species processes to influence the outcomes.

Example situations where multiple interventions are employed include aerial baiting and

animal trapping for invasive species management in ecology [31]; vaccination, rehydration,

antibiotics and sanitation for outbreak control in epidemiology [238]; growth hormone

and hyperbaric oxygen therapy for wound healing [4]; and chemotherapy and stem cell

transplants for cancer treatment in oncology [59].

Interactions between species increase the complexity involved when considering in-

terventions, but can also provide opportunities. Failure to understand the interactions

between species can result in unintended effects of intervention. In the Boodaree National

Park in south-eastern Australia, intensive fox baiting was implemented to curb popula-

tion decline of native animals through predation by foxes. This significantly increased

the abundance of wallabies, with the unintended consequence of reducing abundance of

some tree species [90]. Conversely, understanding interspecies interactions can provide
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exploitable opportunities in designing interventions. In cancer research, particular genes

have been shown to exhibit cancer-promoting functions. There are significant challenges

associated with targeting these genes directly, prompting investigation into means of tar-

geting the upstream signalling pathways that activate the genes [277,342]. Understanding

the dynamics of interactions between species and the influence of proposed treatments

improves our ability to determine effective intervention strategies.

Mathematical models provide a low-cost, low-risk way of exploring the dynamics of

biological processes (and valuably, understanding the risks of proposed interventions)

[33, 76, 170, 232]. In cancer research mathematical models have been used to explore

key processes such as incidence; pathogenesis; tumour growth; metastasis; immune re-

action and treatment [63, 82, 83, 177, 211, 312]. Optimal control techniques are widely

applied, not only in mathematical biology broadly [77, 187, 188, 213], but also in cancer

therapy [75, 150, 285] and AML specifically [290]. Likewise, mathematical models have

been used to study stem cell dynamics [215,250], including optimal control of cancer via

chemotherapy with consideration for bone marrow destruction [109]. Optimal control

techniques have been applied to study various cancer therapies, including: chemotherapy

and immunotherapy [57], and combined broad spectrum and targeted chemotherapy [237],

for chronic myeloid leukemia; chemotherapy and anti-angiogenic therapy to control tu-

mour volume [95,185,285]; hormone therapy for prostate cancer [84]; chemotherapy in the

presence of drug resistant tumours [74]; and chemotherapy and radiotherapy treatments

for bone metastatic cancer [66].

Many interacting population dynamics can be explored through studying coupled

systems of differential equations. As a starting point, we could consider two species,

S1(t) and S2(t) with general growth and decay functions g1, g2 and d1, d2, respectively.

These systems are readily extended to incorporate multiple interventions or controls, say

u(t) and v(t), that result in some net impacts c1 and c2 on each species. Such a model

could take the following form, with all variables implicitly functions of time:

dS1

dt
=

growth of S1︷ ︸︸ ︷
g1(S1, S2)−

decay of S1︷ ︸︸ ︷
d1(S1, S2)+

interventions︷ ︸︸ ︷
c1(S1, S2, u, v),

dS2

dt
= g2(S1, S2)︸ ︷︷ ︸

growth of S2

− d2(S1, S2)︸ ︷︷ ︸
decay of S2

+ c2(S1, S2, u, v)︸ ︷︷ ︸
interventions

.
(3.1)

In Equation (3.1) all growth and decay terms are presented as functions of both

species. These terms can be reduced to functions of a single species to capture the range

of interactions from mutualism to antagonism. For example, the classic Lotka-Volterra

model for predator-prey interaction [40, 205] can be recovered if g1(S1, S2) reduces to

g1(S1), and d2(S1, S2) reduces to d2(S2). The intervention terms are expressed as functions

of both species and controls for generality, but can also be reduced to model specific
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interventions. We note that this formulation permits modelling of complex interactions

between species and provides flexibility in the application of controls, for example allowing

us to implement a control that impacts both species simultaneously.

This paper presents a case study of a two species model with resource competition,

where abundance of one species is desirable and the other is undesirable. We consider

the dynamics of optimal therapies involving two controls. In particular, we model the

dynamics of a combination therapy intervention with one control that negatively affects

both species, and another control that positively affects only the desirable species. Re-

sults are obtained under pay-off regimes corresponding to continuous applications of both

controls; combinations of continuous and bang-bang (discrete) controls; and bang-bang

applications of both controls [191, 290]. The impact of key parameters on the combi-

nation therapy dynamics are also considered. We find that the response of the optimal

control strategy to interaction parameters can be highly non-linear, with behaviour that

exhibits significant variation across the parameter space. We identify dynamics reflective

of clinical practice under some parameter regimes, and note that some interesting solu-

tion dynamics are transient, existing only over small regions of control parameter space.

We also demonstrate that the response of the system under optimal control dynamics

can provide insights into the quality of the underlying model. Finally, we comment on

the challenges involved in selecting appropriate pay-off weightings, and the flexibility it

affords.

There are two key aspects of novelty in this work. First, we have completed a novel

mathematical modelling exercise in which acute myeloid leukaemia is treated using a

combination of chemotherapy and stem cell transplants, determined using optimal control

theory. Secondly, we present a versatile framework, and make code available, for designing

combination therapy protocols using optimal control. We note that this framework can

be readily adapted to problems beyond oncology involving multiple interacting species

subject to multiple interventions.

In Section 3.2 we outline the optimal control approach taken in this work. In Section

3.3 we introduce a model of AML [82, 290] to examine as a case study on combination

therapy; we subject the model to both a chemotherapy control and a stem cell trans-

plant control. We identify candidate pay-off functions characterising optimality for the

AML model. Results and discussion corresponding to these candidate pay-off functions

are presented in Section 3.4. Concluding remarks are provided in Section 3.5. In the

supplementary material we present a broad collection of results corresponding to a wide

range of control parameter regimes, we provide a phase portrait illustrating the steady

state behaviour of the model, and we explore sensitivity of the optimal control regimes

to parameters, assumptions and initial conditions.

The code used to produce the optimal control results in this work is freely avail-

able on GitHub. Our implementation of the FBSM uses a fourth-order Runge-Kutta

https://github.com/Jesse-Sharp/Sharp2020
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method to generate numerical solutions to ordinary differential equations [191, 269]. A

sufficiently small constant time step is chosen to produce numerical solutions that are

grid-independent.

3.2 Optimal control theory

When considering a system with inputs that we can control, we are naturally interested

in determining the particular amount and timing of these inputs that produces the best

outcome. In the context of optimal control, best corresponds to a control that minimises

or maximises a specified pay-off. The pay-off is also modelled; as such it has assumptions,

and in complex systems it is not always clear how to appropriately represent objectives.

This is particularly evident when controls are designed to meet multiple objectives; there

is not necessarily a single way to value outcomes [218, 282]. When considering optimal

control for disease treatment, the pay-off typically incorporates factors such as reducing

the negative effect of the disease, and minimising the resources used and any adverse

effects of the treatment.

For the interacting multi-species system given by Equation (3.1) a general pay-off

functional, J , to be minimised over a fixed time interval is:

J =

∫ tf

t0

L(S1(t), S2(t), u(t), v(t)) dt,

where u(t) and v(t) represent the treatments or interventions applied. The integral cap-

tures cumulative costs over time, such as disease burden, side effects or toxicity of a

treatment, or resource costs. The particular form chosen for L determines the dynamics

of the optimal strategy, as we discuss later.

In this work, we determine optimal controls through applications of Pontryagin’s Max-

imum Principle (PMP) [264]. Although multiple interventions are commonly applied in

ecology, epidemiology, wound healing and oncology [4, 31, 59, 238], there is limited dis-

cussion of optimal control problems with multiple controls. The theory and practice of

modelling a single optimal control using the PMP approach has been thoroughly explored

in texts such as [17, 26, 55, 191], and extends readily to multiple control problems. As

such, we present here only a brief outline of the process, and focus this work on insights

and issues of practical implementation of multiple optimal controls. We construct the

Hamiltonian and appropriate co-state equations that couple the objective and cost to the

multi-species system. Applying the PMP produces a two-point boundary value problem

(TPBVP) that we must solve, in combination with known initial conditions for the state,

{S1(t0), S2(t0)}, to minimise the Hamiltonian and hence determine the optimal controls

and corresponding optimal state trajectories. The TPBVPs arising in optimal control

are typically characterised as being a system of differential equations where some ini-
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tial conditions and some final time conditions are known. As such, they are commonly

solved using iterative approaches such as the forward-backward sweep method (FBSM)

or shooting methods [165,191].

We apply the FBSM, an iterative process involving the following steps: an initial guess

is made for the controls over the interval; using this guess the state is solved forwards

in time from t0 to tf ; with this information and the transversality condition (a final

time constraint on the co-state variables, derived from the pay-off function), the co-state

equations are solved backwards in time from tf to t0, and; the guess for the controls

are updated based on the solutions for the state and co-state. This process is repeated

until the state, co-state and controls are deemed to have converged to some tolerance.

Practical guidance and code for implementation of the FBSM for optimal control problems

is available in the literature [191, 290]. The FBSM readily generalises to problems with

multiple controls with no modification beyond including the additional equations, though

typically incorporating additional controls also increases the computational cost. An

algorithm for the FBSM for multiple controls is provided in the supplementary material.

The pay-off functions we consider vary in regard to whether each of the terms in

the integrand are linear or quadratic. Linear and quadratic forms are prevalent in the

literature [17,193,246,270], although other forms are also considered, such as a logarithmic

pay-off to represent investor utility in mathematical finance [8, 178]. Quadratic control

terms in the pay-off produce continuous controls. Having the control term appear only

linearly in both the pay-off and the state produces bang-bang or singular controls. Bang-

bang controls require specified lower and upper bounds, are applied at either bound,

and switch based on the sign of the derivative of the Hamiltonian with respect to the

control variable. Singular controls arise when this derivative is zero over any finite interval

excluding isolated points. Over such intervals the optimal control cannot be determined

by simply looking for the value that minimises the Hamiltonian [55, 191]. In this work

we focus on control parameter regimes where the linear pay-off terms correspond to non-

singular bang-bang optimal control problems.

The functional form of state variables in the pay-off has a less clear impact on the con-

trol dynamics. Quadratic terms attribute a disproportionally greater cost to large quan-

tities than small; this can be desirable when modelling leukaemia, as a larger leukaemic

burden can be disproportionally more damaging than a smaller one [100]. The downside

of this is that very little cost is ascribed to a small leukaemic burden, meaning optimal

control regimes derived from a pay-off with a quadratic leukaemia term may reach a state

where significant leukaemia remains. Conversely, the penalty applied by a linear term is

proportional to the size of the leukaemic burden; optimal control regimes derived under

this type of pay-off will typically produce final states with less leukaemia remaining.

In the following sections, we explore the dynamics of multiple controls through a model

of AML subject to combination therapy. We present select results in this document to
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highlight key features of multiple control dynamics, and present a broad selection of

additional results in the supplementary material.

3.3 Case study: combination therapy for acute myeloid

leukaemia

Acute Myeloid Leukaemia (AML) is a blood cancer characterised by the transformation

of haematopoietic stem cells into leukaemic blast cells, primarily in the bone marrow [82,

233]. The presence of leukaemic cells in the bone marrow niche disrupts haematopoiesis

[82], as these cells stop responding to normal regulators of proliferation and no longer

undergo normal differentiation or maturation [100,135]. Typical treatments for AML in-

clude chemotherapy; immunotherapy; haematopoietic stem cell transplants; radiotherapy

and leukapheresis [19, 233, 265]. Treatment strategies often incorporate multiple thera-

pies concurrently, these combination therapies can be intramodal; such as chemotherapy

with multiple chemotherapeutic agents, or intermodal; such as chemotherapy in combi-

nation with stem cell transplantation. Combination therapies offer a range of potential

advantages over individual therapies, including reduction of toxicity and adverse effects

of treatment, improved outcomes in the presence of drug resistance and tumour cell

heterogeneity and potentiation of chemotherapy [35,152,338].

In a clinical setting, AML treatment may involve both chemotherapy to reduce the

leukaemic cell population and stem cell transplants to bolster the healthy cell populations.

This has been shown to allow a higher dose of chemotherapy to be given, reduce adverse

effects of the chemotherapy, reduce the risk of relapse and improve long-term survival [59,

207, 339]. When treating cancer via chemotherapy the exact mechanisms depend on the

type of cancer and the particular chemotherapeutic drug, but typically, cytotoxic drugs

are administered that target highly proliferative cells. Unfortunately, this commonly

includes not only cancer cells, but also healthy cells in the bone marrow, hair, skin and

digestive system [233]. The loss of these healthy cells contributes to the significant side

effects experienced by chemotherapy patients. A stem cell transplant can mitigate these

side effects by giving a patient allogeneic (from a matched donor) or autologous (from

the person receiving the transplant) stem cells, typically collected from the bone marrow

or the peripheral blood. Transplants are most often administered in remission, following

preparative high-dose chemotherapy and/or radiotherapy [59,67]. Side effects arising from

stem cell transplants can also be significant, including complications related to the liver,

kidneys and lungs, heightened risk of bacterial and viral infections, and graft-versus-host

disease [93, 127,207].

Development, progression and response to treatment of AML is highly heterogeneous,

due to its distinct genetic variation [100,307]. Measuring individual biological parameter
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values directly from experiments is challenging, and fitting models to clinical data pro-

duces parameter estimates that are not unique or with significant uncertainty [128,307].

Further, clinical data is often only collected at a course-grained level, sufficient to describe

only the collective behaviour of the system [82, 128]. In Ommen et al. (2014), patient

data is analysed to investigate the doubling time of the leukaemic burden in relapse of

AML [248]. The results are delineated according to molecular subgroups. The median

doubling times for these subgroups range from 12 to 24 days. There was significant vari-

ance between samples however, with doubling times ranging from 3 days to around 70

days. Another study of patients with untreated, newly diagnosed AML calculates the

median potential tumour doubling time to be 8 days, with a range of 3 to 48.9 days [48].

In treating AML with chemotherapy, the timing and dose of chemotherapeutic agents

is a critical factor in determining patient outcomes [263]. It follows that the dosages

applied in combination therapy are also critical, particularly with studies indicating that

synergistic relationships may exist between treatments in particular ratios and schedules

but not others [35,223]. As such, it is important to understand the dynamics of systems

subject to multiple treatments, and identify key factors that impact the optimal treatment

schedules and dosages. Different aspects of treatment schedules interact in a complex way

and models are a useful way to investigate the relationship [32].

We consider a stem cell model of AML first presented by Crowell, MacLean and

Stumpf [82], modified to incorporate an immune response to leukaemia [290]. The model

consists of five species; haematopoietic stem cells S(t), progenitor cells A(t), termi-

nally differentiated blood cells D(t), leukaemic stem cells L(t), and fully differentiated

leukaemia cells T (t). All dependent variables are functions of t, and rates have dimension

[T−1]. We do not explicitly specify a time scale. For notational convenience we often omit

the explicit time-dependence of S(t), A(t), D(t), L(t) and T (t) from this point forward:

dS

dt
= ρSS(1− S)− δSS,

dA

dt
= δSS + ρAA(1− A− L)− δAA,

dD

dt
= δAA− µDD,

dL

dt
= ρLL(1− A− L)− δLL− αL

γ + L
,

dT

dt
= δLL− µTT. (3.2)

The competition between progenitor blood cells and leukaemic stem cells is based on

the hypothesis that these cells occupy the same niche within the bone marrow [149,301].

Motivation for incorporating this kind of interaction in models of AML and other similar

leukaemias has been detailed in the literature [82,211].
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The steady state behaviour of the original model has been thoroughly explored in [82],

and the effect of the incorporated immune response on these steady states is outlined

in [290]. Briefly, the original model supports healthy (no leukaemia cells), leukaemic (no

healthy cells) and coexisting (both progenitor blood cells and leukaemia cells) steady

states, and the immune response incorporated in [290] has the effect of introducing a

stable healthy steady state in place of the previously unstable healthy steady state. A

phase portrait illustrating this steady state behaviour is included in the supplementary

material.

The haematopoietic stem cells in the original model grow logistically to steady state:

lim
t→∞

S(t) = S̄ = 1 − δS/ρS, independent of the other cell types. As such, in this work

we make a simplifying assumption that the haematopoietic stem cell population is held

constant at this steady state. Provided that S(0) is of a similar scale to A(0) and

L(0), relaxing this assumption does not significantly impact the results. Prior to S(t)

reaching steady state, the production of A from S is proportionally reduced, resulting

in less competitive pressure exerted on L by A, promoting an increased application of

control. This is demonstrated in the supplementary material. We neglect the terminally

differentiated cell populations as they do not feed back to the progenitor or leukaemic

stem cell populations, and as such will not influence the design of optimal combination

therapy based on progenitor and leukaemic stem cell populations.

The chemotherapy control, u(t), is modelled as an additional death term for both

progenitor blood cells and leukaemic stem cells. The additional death rate of each type of

cell depends on the amount of control applied and the size of the population. The stem cell

transplant control, v(t), is modelled as an increase in the progenitor blood cell population,

depending only on the amount of control applied. These assumptions reduce Equation

(3.2) to Equation (3.3). We consider scaled populations such that 0 ≤ A + L ≤ 1 in

absence of control, for suitably chosen initial conditions: A(0)+L(0) < 1 and L(0) ≲ 0.9.

dA(t)

dt
= δSS̄ + ρAA(t)(1− A(t)− L(t))− δAA(t) +

stem cell
transplant︷︸︸︷
v(t) −

chemotherapy︷ ︸︸ ︷
κu(t)A(t),

dL(t)

dt
= ρLL(t)(1− A(t)− L(t))− δLL(t)−

αL(t)

γ + L(t)
− u(t)L(t)︸ ︷︷ ︸

chemotherapy

.

(3.3)

The significant heterogeneity of AML development, progression and response to treat-

ment makes identifying realistic individual parameter values challenging; as such the pa-

rameter values in Table 3.1 are selected such that the qualitative behaviour we observe

from the uncontrolled model is consistent with previous studies [82,290]. For illustrative

purposes we treat the rates presented to be per day, and present solutions over a po-

tentially typical time-scale of days. We note that there is significant uncertainty in the

parameter values, and stress that the focus of this work is on the dynamics and interac-

tions of multiple controls, and in particular, how these dynamics change in response to
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varying control parameters. We provide additional results in the supplementary material

exploring parameter sensitivity.

In the context of applying multiple interventions, particularly when an intervention

impacts multiple species, understanding interactions between species and controls is cru-

cial for determining appropriate management strategies. As such, we are particularly

interested in the parameter κ, that describes the effectiveness of the chemotherapy in

killing progenitor blood cells, relative to leukaemic stem cells; κ < 1 corresponds to

chemotherapy that is more effective at killing leukaemic stem cells than progenitor blood

cells, κ = 1 corresponds to chemotherapy that is equally effective at killing either cell

type and κ > 1 corresponds to chemotherapy that is more effective at killing progenitor

blood cells than leukaemic stem cells. This parameter can be adjusted to reflect the

clinically observed heterogeneity in response to treatment. A description of the other

model parameters and the values used to produce results in this work are presented in

Table 3.1. In absence of control, these parameters can give rise to the coexisting steady

state. Dynamics of this model, for various initial conditions, and without any control,

are presented in Figure 3.1. Solutions in this work are initialised at the coexisting steady

state values for A and L unless otherwise specified, however this is not a requirement

of the technique. This is a sensible choice as it corresponds to a reasonable treatment

scenario, whereby a patient initially has some healthy cells and some leukaemic cells. It

also best allows us to investigate interplay between the interspecies interaction and the

control dynamics. In the supplementary material we present additional results demon-

strating that the optimal controls are relatively insensitive to moderate variation in the

initial conditions.

Table 3.1: Parameters

Parameter description Variable Value Dimensions

Haematopoietic stem cell (S) steady state S̄ 0.72 [-]
Proliferation of S ρS 0.5 [T−1]
Proliferation of A ρA 0.43 [T−1]
Proliferation of L ρL 0.27 [T−1]
Differentiation of S into A δS 0.14 [T−1]
Differentiation of A δA 0.44 [T−1]
Differentiation of L δL 0.05 [T−1]
Characteristic rate of the immune response α 0.015 [T−1]
Half saturation constant of the immune response γ 0.1 [-]

Parameters correspond to those presented with the original model [82], with immune
response parameters introduced in subsequent work [290].

Due to the significant cost and side effects associated with each treatment, we typically

define pay-offs that minimise not only the leukaemic burden but also the amount of

each control applied. In the remainder of this section we identify and discuss several
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Figure 3.1: Numerical solutions are presented for Equation (3.3) to demonstrate the
model dynamics for different initial conditions, in absence of control (u(t) ≡ v(t) ≡ 0).
Parameter values are given in Table 3.1. Initial conditions in (a) correspond to the
coexisting steady state. In (b) we observe that a small leukaemic population is depleted
through the immune response and competition with progenitor blood cells. In (c) we
observe that a small progenitor blood cell population is replenished from haematopoietic
stem cells, such that the model tends toward the coexisting steady state.

reasonable choices of pay-off. We model two controls and explore the dynamics of each

possible combination of continuous and bang-bang. This produces four distinct sets of

control dynamics. In the supplementary material we present numerical solutions for each

combination of control dynamics and investigate the impact of various parameters.

Bang-bang controls require lower and upper bounds on the control variable, and are

named as such because the optimal control takes either the lower or upper bound, with

finitely many discontinuous switching points throughout the interval. We also apply

bounds on the continuous controls. Bounds are used to incorporate practical constraints

such as a maximum tolerated dose. In this work, we apply a lower bound of zero to all

controls, corresponding to no treatment. The control techniques are general and do not

require the lower control bound to be zero. However, this is a practical choice in a treat-

ment context. Unless otherwise specified we choose upper bounds on continuous controls

to be arbitrarily large; such that they do not constrain the control dynamics. There is

no requirement for any relationship between the upper bounds on the chemotherapy and

stem cell transplant controls, ub and vb, respectively.

The pay-offs we consider in this work can be expressed in a general form as:

J =

∫ tf

0

(a1u(t)
p + a2v(t)

q + a3L(t)
r) dt, 0 ≤ u(t) ≤ ub, 0 ≤ v(t) ≤ vb. (3.4)

We focus our investigation on the combinations of continuous and bang-bang controls

possible with p ∈ {1, 2} and q ∈ {1, 2}. Linear control terms in the pay-off, corresponding

to p = 1 for chemotherapy control and q = 1 for stem cell transplant control, produce

bang-bang controls. Quadratic control terms in the pay-off, corresponding to p = 2 for

chemotherapy control and q = 2 for stem cell transplant control, produce continuous

controls. In each case we also explore the impact of a linear or quadratic luekaemic term
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in the pay-off, through choosing r ∈ {1, 2}.
Parameters a1, a2, a3 > 0 are chosen to weight the relative importance of each con-

tribution to the pay-off. For example, if we want to assign a greater penalty to the

chemotherapy control than to the stem cell transplant control and the leukaemia, we

increase a1 relative to a2 and a3. When mixing quadratic and linear control terms care

must be exercised when selecting weighting parameters. For the model given by Equation

(3.3), with 0 ≤ A + L ≤ 1, linear pay-off terms are proportionally more penalising than

quadratic terms (x > x2 for x ∈ (0, 1)).

The weighting parameters and exponents in the pay-off do not have a direct clinical

interpretation, but rather need to be considered in the context of how optimality is

characterised in a clinical setting. For example, the simplest fully linear pay-off, with

p = q = r = 1 and a1 = a2 = a3 = 1, implies that one unit of chemotherapy control

imposes the same cost or harm as one unit of stem cell transplant control or one unit

of leukaemia. For practical applications, these pay-off weightings and exponents could

be estimated through expert opinion of clinicians [120, 219, 245]. The combination of

parameters that best characterise optimality may vary between cases, and depend on

factors such as the particular controls and their side effects, and how a particular patient

is impacted by the leukaemia. Since the aim of this work is to present a general framework

rather than a specific application of that framework, we leave these constants unspecified

and note that code is provided on GitHub to facilitate particular applications.

3.3.1 Continuous chemotherapy, continuous stem cell transplant

controls

For a continuous chemotherapy control and continuous stem cell transplant control we

consider a pay-off that minimises the cumulative amount of leukaemia and the controls,

with each term squared. This corresponds to Equation (3.4) with p = 2 and q = 2.

Results investigating the effect of varying the parameter κ; the rate that the chemother-

apy control depletes progenitor blood cells relative to leukaemic cells, are presented in

Figure S1 of the supplementary material. Results exploring the impact of changing the

final time are presented in Figure S2 of the supplementary material.

3.3.2 Continuous chemotherapy, bang-bang stem cell transplant

controls

A pay-off that minimises the cumulative amount of chemotherapy control squared, with

the stem cell transplant control term entering the pay-off linearly, will produce a continu-

ous chemotherapy control with bang-bang stem cell transplant control. This corresponds

to Equation (3.4) with p = 2 and q = 1.

https://github.com/Jesse-Sharp/Sharp2020
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Results investigating greater variations in the parameter κ are presented in Figure S3

of the supplementary material. Upper bounds on the continuous chemotherapy control

are considered in Figure S4 of the supplementary material.

3.3.3 Bang-bang chemotherapy, continuous stem cell transplant

controls

Bang-bang chemotherapy control with continuous stem cell transplant control arises from

the pay-off in Equation (3.4) with p = 1 and q = 2. Noting that each control impacts the

state differently (u reduces both A and L while v increases A only), we can expect this

to produce different dynamics to the combination considered in the previous part with

p = 2 and q = 1.

We present results exploring the effect of the final time on the dynamics of the bang-

bang chemotherapy control in Figure S5 of the supplementary material. In Figure S6 of

the supplementary material we investigate how different upper bounds on the continuous

stem cell transplant control impact the dynamics.

3.3.4 Bang-bang chemotherapy, bang-bang stem cell transplant

controls

Finally, we investigate the case where both controls enter the pay-off linearly, such that

both optimal controls are bang-bang. This corresponds to Equation (3.4) with p = 1 and

q = 1.

In Figure S7 of the supplementary material, we investigate the impact of increasing

the upper bound on each of the bang-bang controls, effectively allowing for stronger doses

of each treatment to be applied. In Figure S8 of the supplementary material we consider

how the parameter κ impacts the dynamics when all controls are bang-bang.
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3.4 Results and discussion

In this section we draw insights about the behaviour of the model when subject to in-

terventions, and also more broadly investigate key factors influencing the dynamics of

multiple controls. In particular, we focus on the strength of interaction between controls

and species, the form and strength of the controls applied, the duration of the treatment

interval and the control weighting parameters. Suites of results investigating these as-

pects are presented in the supplementary material. In the remainder of this section, we

highlight key insights.

3.4.1 Optimal strategies respond non-linearly to control param-

eters

Due in part to the heterogeneity of AML, there is significant uncertainty around how an

individual will respond to treatment [100, 176], which is represented by κ in our model.

This poses challenges in determining appropriate intervention strategies, as it is unclear

how heavily chemotherapy treatment will deplete healthy blood cells. As such, a key

aspect of this work is to investigate how the optimal control dynamics change as we

vary κ. Varying κ allows us to change the rate that the chemotherapy control depletes

progenitor blood cells relative to leukaemic cells. Increasing κ makes chemotherapy more

damaging to the progenitor blood cells; intuitively one might expect this to promote a

reduced application of chemotherapy control. This occurs under some circumstances, but

the dynamics are non-linear due to the interactions between the progenitor blood cells

and leukaemic cells. In Figure 3.2 we present results demonstrating that adjusting κ can

both increase and decrease the duration of both chemotherapy and stem cell transplant

controls, depending on the control weighting parameters. Changing control weighting

parameters could be thought of as representing the way that different individuals may be

more or less heavily impacted by the (side) effects of leukaemia or the treatments [237].

These results agree with the clinically observed heterogeneity in response to regimented

treatment, and highlight a key challenge in managing the interacting populations. Even

when the nature of an interaction is known, the optimal intervention strategy can vary

significantly with changes to the strength of the relationship, the strength of the treatment

and the form of the controls.

The upper bound on a control represents the maximum strength of the treatment,

and can be used to enforce a practical constraint such as a maximum tolerated dose. For

bang-bang controls with a lower bound of zero, the optimal treatment is to apply the

drug at the maximum tolerated dose (over one or many intervals) or not at all. Bounds

can also be used to enforce a dosage threshold on continuous optimal controls, while still
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Figure 3.2: The control dynamics respond non-linearly to the parameter κ. Solutions are
presented corresponding to the linear pay-off given in Equation (3.4) with p = 1, q = 1,
r = 1 and upper control bounds ub = vb = 0.1. With equal weightings (a1 = a2 = a3 = 1),
increasing κ from κ = 0.5 to κ = 2 extends the duration of the stem cell transplant
control and has little effect on the chemotherapy control. With a reduced weight on the
chemotherapy control in the pay-off (a1 = 0.5), increasing κ from κ = 0.5 to κ = 2 extends
the duration of both controls. With a reduced weight on the stem cell transplant control
in the pay-off (a2 = 0.5), increasing κ from κ = 0.5 to κ = 2 increases the application of
the stem cell transplant control and reduces the application of the chemotherapy control.

admitting intermediate doses. In Figure 3.3 we observe that increasing the treatment

strength results in a reduced duration of application of both controls. For sufficiently

high maximum doses only chemotherapy control is applied. At lower κ, we observe that

the maximum doses must be higher before combination therapy is abandoned in favour

of solely chemotherapy. This demonstrates that the strength of a treatment can influence

whether or not it is applied, indicating a non-linear response of the optimal control

strategy to treatment strength.

3.4.2 Interesting optimal strategies can be transient in param-

eter space

Optimal control dynamics that resemble clinical practice are recovered under particular

pay-off weighting parameters. If a stem cell transplant is administered in practice, it

typically follows high-dose chemotherapy or radiotherapy to reduce the level of leukaemic

cells, suppress the immune system and condition the patient for the introduction and

growth of the new blood cells [68, 224]. In Figure 3.4(b) we observe that for particular
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Figure 3.3: Increasing the upper bound of the bang-bang controls can significantly al-
ter the dynamics. Solutions are presented corresponding to the linear pay-off given in
Equation 3.4 with p = 1, q = 1, r = 1 and equal pay-off weightings (a1 = a2 = a3 = 1).
When the chemotherapy control is more effective at killing leukaemia cells than progen-
itor blood cells (κ = 0.5), we observe that increasing the upper bound of each control
from ub = vb = 0.1 to ub = vb = 0.2 results in a reduced duration of application of both
controls. Increasing the bounds further to ub = vb = 0.3 leads to the result in panel
(c) where only the chemotherapy control is applied. When the chemotherapy control is
more effective at killing progenitor blood cells than leukaemia cells (κ = 2), the stem cell
transplant control is no longer applied after increasing the upper bound of each control
from ub = vb = 0.1 to ub = vb = 0.2.

pay-off weightings it is possible to recover similar behaviour through optimal control

solutions to the model. It is also interesting to note the transience of this result within

the pay-off weighting parameter space. In Figure 3.4(a) a small decrease in the weighting

on the stem cell transplant control in the pay-off causes the stem cell transplant control

to be applied earlier and for longer. Conversely, the small increase in the weighting on

the stem cell transplant control demonstrated in Figure 3.4(c) results in no stem cell

transplant control being applied at all. However, under these parameters the optimal

control results exhibit a significant leukaemia population remaining at final time.

3.4.3 Practical insights

Optimal control results can provide insight into the quality of the underlying model and

its assumptions. In this work we consider a simplified stem cell model of acute myeloid

leukaemia. In reducing this model, it is assumed that the haematopoietic stem cell pop-

ulation is held constant at its steady state, allowing us to focus on the dynamics of the
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Figure 3.4: Under particular pay-off weightings, we observe that the stem cell transplant
control is applied as the chemotherapy treatment is stopped. Solutions are presented
corresponding to the pay-off given in Equation 3.4 with p = 1, q = 1, r = 2 and upper
control bounds ub = vb = 0.3.

progenitor blood cells (that are replenished at a constant rate due to the haematopoi-

etic stem cell population) and the leukaemic cells. This assumption is reasonable for

a large region of control parameter space, although it is quite restrictive when we are

considering control regimes that would significantly deplete the progenitor population,

such as where κ and ub are large. This can be observed in Figure 3.3(e) where the pro-

genitor blood cell population remains almost constant from t ≈ 5 to t ≈ 10 despite the

chemotherapy control being applied up to t ≈ 10, due to the constant rate of replenish-

ment of progenitor blood cells. This causes the stem cell transplant control to be devalued

in these circumstances, suggesting that the model could be improved by reintroducing

the haematopoietic stem cell population, and having it also negatively impacted by the

chemotherapy control.

It is clear that the optimal control strategy entirely depends on the form and weighting

of the pay-off. The results in the main text and the associated supplementary material

demonstrate that these choices can produce fundamentally different optimal control dy-

namics and outcomes. Selecting an appropriate pay-off form and weighting is therefore a

significant and recurring challenge in applied optimal control. An ideal pay-off encodes

how each factor is truly valued relative to each other factor, although determining this

is often not feasible or requires subjective judgement. Determining appropriate pay-off

functions becomes increasingly complicated when dealing with multiple controls; it in-

troduces the need for relative weighting, and in some cases scaling or normalisation of

pay-off terms. Control problems in biology typically include non-monetary costs; such as

side effects of treatment, which are not easily valued [290,314]. Even for problems where

all elements of a pay-off are readily expressed in monetary terms, there can be challenges

associated with economic uncertainty [184].

When determining the form of a control term in the pay-off function it may be tempt-

ing to consider how the control can be applied practically. For example, if it is only

possible for the control to be active or not active (with no intermediate levels of acti-
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vation) using a linear term ensures that the optimal control is bang-bang. Particular

care must be taken in employing this approach for a multi-objective pay-off, as a linear

term implies a different cost weighting to (for example) a quadratic term, which penalises

disproportionally; (x > x2 for x ∈ (0, 1), x < x2 for x ∈ (1,∞)). A standard approach

in the literature is to consider a practical range of parameter values, often guided by the

literature or expert opinion, and examine how sensitive the control strategy is to changes

in these parameters [158,238]. The parameters can also be tuned to produce optimal con-

trol strategies that satisfy additional external constraints [30]. An alternative approach

feasible for some problems is to construct the simplest possible pay-off (for example, the

sole objective of minimising leukaemia), at the cost of requiring a more sophisticated

model that explicitly accounts for the negative impacts or costs of the controls.

In some regions of the parameter space, the FBSM fails to converge. Convergence

can often be achieved by adjusting the parameter that weights the contribution of the

control from previous iteration to the control in the next iteration [290]. However, there

are some regions of the parameter space where the control does not converge for any

value of this parameter. Interestingly, this non-convergence does not always occur at the

extremities of a parameter space. For example, comparing Figure S3(h) with Figure S3(i)

of the supplementary material, we show that increasing the rate that the chemotherapy

control kills progenitor blood cells relative to leukaemic cells from κ = 1 to κ = 10 moves

the optimal control solution from a moderate application of both controls, to a solution

dominated by stem cell transplant control. For intermediate values, 5.5 ≲ κ ≲ 7.5, this

control problem does not converge. This may correspond to a region where the optimal

control is not bang-bang, but rather is singular. Singular control problems arise when the

first order conditions derived from the PMP do not provide sufficient information over

an interval to determine the optimal control [55]. Singular controls can sometimes be

determined from higher order optimality conditions—for example, conditions involving

second order derivatives of the Hamiltonian—although this is non-trivial [110,124].

3.5 Conclusion

In this work we study the application of multiple optimal controls to a stem cell model

of AML. We consider a chemotherapy control that reduces the population of both pro-

genitor blood cells and leukaemic stem cells, and a stem cell transplant control that

replenishes progenitor blood cells. To investigate the dynamics arising from different

forms of control and interspecies interaction, we generate results corresponding to each of

the possible combinations of continuous and bang-bang controls, with pay-off functions

containing linear or quadratic leukaemia terms. The dynamics of multiple controls are

further explored through varying control parameters, treatment strengths and the rate

at which the chemotherapy control depletes progenitor blood cells relative to leukaemic
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stem cells.

We determine optimal controls through application of PMP, yielding two-point bound-

ary value problems. Numerical solutions to these problems are generated using an im-

plementation of the forward-backward sweep method. The method readily generalises

to solving problems with multiple controls, and we observe only a modest increase in

computational resources required beyond a comparable single optimal control problem.

Through investigating how optimal control dynamics change in response to the rel-

ative effectiveness of the chemotherapy control, the maximum strength of the controls

and other control and weighting parameters we show that the behaviour can be highly

non-linear. We observe that interesting and clinically reflective optimal control strate-

gies can be transient, existing only over small regions of control parameter space. We

also demonstrate how optimal control results can provide insight into the quality of the

underlying model.

Modelling multiple interventions that incur costs naturally increases the complexity

involved in determining appropriate pay-off functions. A pragmatic approach is to con-

sider a range of weighting parameters and observe the optimal control dynamics. The

sensitivity of these dynamics to the weighting parameters can provide insight into how

carefully a pay-off must be chosen. If the optimal control dynamics under a particular

set of control parameters do not represent a desirable outcome to the practitioner, then

the pay-off function may need to be modified [168].

The primary avenues for extending this work are model refinement and control ap-

proach. The model could be extended to incorporating a delay to the impact of the stem

cell transplant on the system, either through a delay differential equation, or an addi-

tional state equation acting as a reservoir of A cells produced by the stem cell transplant.

This is biologically motivated as it can take multiple weeks for the production of blood

cells to occur following a transplant [69]. This extension would also facilitate relaxing the

assumption of a constant reservoir of haematopoietic stem cells replenishing the stem cell

population. The control approach in this work focuses on fixed terminal time problems.

Although informative, this can result in optimal control results that are clinically unde-

sirable under some parameter regimes, such as having a significant amount of leukaemia

remaining at the terminal time. Alternatively, optimal controls can be determined for

problems with free terminal times and fixed final states; for example no leukaemia re-

maining [191]. The problems explored in this work could be recast as fixed final state

problems to determine how significantly this alters the optimal control dynamics.
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Abstract

Optimal control theory provides insight into complex resource allocation decisions. The

forward-backward sweep method (FBSM) is an iterative technique commonly imple-

mented to solve two-point boundary value problems (TPBVPs) arising from the ap-

plication of Pontryagin’s Maximum Principle (PMP) in optimal control. The FBSM is

popular in systems biology as it scales well with system size and is straightforward to

implement. In this review we discuss the PMP approach to optimal control and the

implementation of the FBSM. By conceptualising the FBSM as a fixed point iteration

process, we leverage and adapt existing acceleration techniques to improve its rate of

convergence. We show that convergence improvement is attainable without prohibitively

costly tuning of the acceleration techniques. Further, we demonstrate that these methods

can induce convergence where the underlying FBSM fails to converge. All code used in

this work to implement the FBSM and acceleration techniques is available on GitHub.

https://doi.org/10.1098/rsif.2021.0241
https://github.com/Jesse-Sharp/Sharp2021
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4.1 Introduction

Across the life sciences, we encounter systems over which we wish to exert control.

Whether we consider outbreak control in epidemiology [1, 238], chemotherapy in oncol-

ogy [25, 59, 290], muscle contraction and gait regulation in biomechanics [103, 181, 254],

engineering cellular processes in synthetic biology [87, 139], cell population growth in

tissue engineering [78, 294], or biodiversity and invasive species management in ecol-

ogy [31,61,72], we face decisions around how a particular intervention should be applied

to best achieve desired outcomes. Using mathematical models of such systems, optimal

control theory provides insight into these resource allocation decisions.

Optimal control is a science of trade-offs; between competing objectives, or in weighing

up the benefits of control measures against their costs. We illustrate some key concepts

of optimal control in Figure 4.1. Suppose that without intervention, a crop yield will

double, from x0 to 2x0, between now and harvest time. We might consider applying a

control, such as fertiliser, to increase the growth rate of the crop; thereby increasing the

yield at harvest to 3x0. Of course, applying fertiliser comes at a cost, and this must be

considered against the increase in crop yield. As such, it is not immediately apparent

how much fertiliser should be applied, and over what time period. This depends entirely

on our characterisation of optimality; the pay-off. Depending on the pay-off, the optimal

control may be continuous; whereby the strength can be readily and continuously adjusted

throughout time, or bang-bang (discontinuous); whereby the control is applied at either a

lower or upper bound with finitely many discrete switches between the two. The pay-off

determines the objective(s) of control; which in our stylised example may be to maximise

profits after cost of fertilising is considered, or achieve a specific yield, for example 3x0,

using the minimum amount of fertiliser.

Much of modern day optimal control theory stems from the seminal works of Pon-

tryagin; through the Pontryagin Maximum Principle (PMP) [264], and Bellman; through

the advent of dynamic programming and the Hamilton-Jacobi-Bellman equation [37], in

the 1950s and 1960s. These foundations of optimal control are built upon centuries of

development in the calculus of variations [125]. For brief but broad expositions of the

theoretical roots of optimal control and developments following these seminal works, we

direct the reader to articles such as [56,284].

Often we are unable to solve optimal control problems analytically, so we pursue

computational approaches. Broadly, the numerical methods for optimal control can be

classed as either indirect or direct methods; for indirect methods optimality conditions are

derived in the calculus of variations fashion via the PMP, leading to a two-point bound-

ary value problem (TPBVP), while for direct methods the control problem is discretised

and reformulated as a nonlinear programming problem [275]. For an early history of nu-

merical methods in optimal control, including gradient and conjugate gradient methods,
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Figure 4.1: A pictorial example of optimal control for a growing crop. Suppose that
initially, the crop yield is x0. We want to grow this crop to increase the yield, represented
by the green line, come harvest time. Actions taken to increase the growth rate of the
crop; such as applying fertiliser, are the controls, represented in black dash. Scenarios are
presented for (a) no control, (b) continuous control, and (c) bang-bang control. Optimal
control theory helps us determine how best to apply these controls. Illustrations adapted
from ilyakalinin/iStock/Getty Images, johavel/iStock/Getty Images.
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Newton-Raphson methods, quasilinearisation, feasible direction algorithms and feedback

solutions we suggest [262]. Surveys [275, 284] give an excellent overview of more re-

cent developments in relevant numerical methods, including the forward-backward sweep

method (FBSM), multiple-shooting methods, control parameterisation, collocation and

pseudospectral methods and complete discretisation into finite-dimensional nonlinear pro-

gramming problems.

Optimal control methodology and numerical solution techniques are continually be-

ing developed and improved. The growing popularity of artificial intelligence, machine

learning and related disciplines has precipitated significant advances in computational

techniques for handling large-scale systems with many variables, and related infinite-

dimensional optimisation problems. Nonlinear approximators, including neural networks,

can be used to reduce infinite-dimensional optimisation problems to finite-dimensional

nonlinear programming problems. This approach is presented in [348], alongside other

techniques that arise through unifying aspects of decision science, dynamic optimisation,

statistical and deterministic machine learning, nonlinear approximation theory and other

fields. One example of control paired with machine learning arises in autonomous vehi-

cles, where machine learning techniques can accelerate obtaining approximately optimal

controls where computational power on-board is limited and controls satisfying strict

safety constraints must be obtained rapidly [148]. Reinforcement learning, a technique

from artificial intelligence resembling a model-free analogue of dynamic programming, has

shown promising simulation results for the control of multi-species microbial communities

in bioreactors [317].

Formulation and approximate solutions of fractional optimal control problems (FOCP);

optimal control of systems involving fractional derivatives, has also garnered wide interest

recently within the control, numerical methods and applied mathematics communities.

This has resulted in the development of new numerical approaches such as the non-

standard two-step Lagrange interpolation method [46, 309]; and amalgamations of new

and existing techniques, such as pairing predictor-corrector methods for solving frac-

tional differential equations with the FBSM for optimal control [153, 154]. Applications

involving FOCPs arise in areas of systems biology including epidemiology, where the in-

corporation of memory effects through fractional time derivatives may better describe

disease transmission, by modelling the capacity for the population to learn from past

outbreaks [46,311]; and in cancer therapy for determining optimal chemotherapeutic and

immunotherapeutic treatment regimens [136,310].

The field of optimal control has historically focused on determining optimal interven-

tions to apply to systems to meet specified objectives. More recently, however, optimal

control techniques have been applied in a systems biology context to further our un-

derstanding of the underlying mechanisms or processes involved in a given system; for

example via inverse optimal control, whereby exhibited behaviour observed in a system
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is used to elicit the underlying optimality principles that may guide the system [318].

Optimality principles have been employed to investigate mechanisms in metabolism; for

example in [251], where optimal control techniques provide rationalisation for experi-

mentally and numerically observed sequential activation of metabolic pathways; in [319]

where optimal control techniques predict enzyme activation times and metabolite concen-

trations; and in other work reviewed in [101], where further insights are gained regarding

metabolic pathway activation and regulation. Optimal control has also provided insight

into the emergence of persister cells in the presence of environmental volatility [51].

The FBSM is an iterative method for solving the TPBVPs that arise from the indirect

PMP approach to optimal control. In systems biology the FBSM for optimal control is

very popular, owing particularly to its straightforward scalability to large systems, and

to its moderate computational cost and mathematical complexity [191]. In this work

we review the implementation of the FBSM to solve optimal control problems, and in-

vestigate means of accelerating the convergence. To contextualise our discussion of the

FBSM, we first consider the more familiar technique of successive over-relaxation (SOR).

SOR is a generalisation of the Gauss-Seidel method, and is widely applied in numerical

linear algebra to accelerate convergence when solving linear systems iteratively [322]. Es-

sentially, the process of SOR involves specifying an acceleration or relaxation parameter,

β ∈ (0, 2); a weighting factor that serves to reduce the spectral radius of the iterative

matrix operator [279]. The error and rate of convergence of SOR is sensitive to this

(problem dependent) choice of β, prompting investigation into theoretical convergence

results and methods of determining β [73,175,279]. Despite challenges in identifying the

optimal β, the SOR has historically been widely applied and studied in the literature due

to the ease with which it can be implemented, and the rapid convergence it can deliver;

even without identifying the optimal β [131,341].

This narrative closely parallels that of the FBSM in optimal control, where a weighting

factor ω can be applied when updating the control between iterations to aid convergence.

The optimal choice of ω is problem dependent, and significantly impacts the rate of con-

vergence, or whether the FBSM converges at all. Nonetheless, the FBSM is frequently

used in applied optimal control work as it is relatively straight-forward to implement,

and can still converge in absence of the optimal ω. Theoretical convergence results of

the FBSM are available in the literature [130, 225], although the focus is on the FBSM

without weighted updating, with no consideration for choosing ω. Using regularisation

techniques, the FBSM is modified in [194] to improve convergence properties for large

systems in a continuous setting, with a view to training deep neural networks in machine

learning. These convergence results have recently been extended to the numerically dis-

cretised setting through symplectic Runge-Kutta discretisation; taking advantage of the

variational structure of optimal control problems [203]. The authors also demonstrate

that the rate of convergence of the regularised FBSM with symplectic discretisation can
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be improved with Anderson acceleration, an iterative acceleration technique. Although

promising, this regularisation introduces a regularisation parameter, ρ. Similar to ω, the

choice of ρ impacts convergence, and its choice is problem dependent. Understanding

and implementing the regularisation and symplectic techniques is not trivial, and intro-

duces conceptual complexity beyond what is necessary for many applied optimal control

problems. As such, the standard FBSM remains an attractive choice for practitioners.

To this end, we aim to review acceleration techniques that can be paired with the

standard FBSM. We implement such techniques alongside the FBSM with the goals of:

(1) increasing the rate and frequency of convergence, and (2) reducing the importance of,

and challenges associated with, selecting ω. A graphical overview of the optimal control

process we employ in this work, including the incorporation of acceleration methods, is

presented in Figure 4.2. We note that all code used to implement the algorithms presented

in this review; the FBSM and the Wegstein, Aitken-Steffensen and Anderson acceleration

methods, is available on GitHub.

System with 

inputs we 

can control

Pontryagin

Maximum

Principle

Forward 

backward sweep 

iteration

No

Yes

Acceleration

methods

Optimal 

control

Convergence?

Two-point 

boundary value

problem

Figure 4.2: The process of optimal control via the Pontryagin Maximum Principle ap-
proach, with the incorporation of acceleration methods.

Throughout this work we consider optimal control in the systems biology context.

However, we note that optimal control is relevant to a wide variety of fields including

chemical engineering [204], aeronautics and astronautics [275], management science and

economics [289]. The FBSM, and by extension, the acceleration techniques we consider

in this work, can be readily applied in any of these areas.

In §4.2 we review the PMP approach to optimal control, and the implementation of the

https://github.com/Jesse-Sharp/Sharp2021
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FBSM. We provide a single-variable linear model, and a multi-variable nonlinear model

in §4.3; and pose and solve example continuous, bang-bang (discontinuous), and fixed

endpoint control problems. We review potential iterative acceleration methods in §4.4,

and present the results of selected techniques in §4.5. We discuss the performance of these

techniques in §4.6, and identify opportunities for application and further investigation.

4.2 Forward-backward sweep method

In an optimal control problem with one state variable, x(t), one control, u(t), over a

fixed time interval, t ∈ [t0, tN ]; such as the crop growth example presented in Figure

4.1, we seek the optimal control u∗(t) that minimises or maximises a specified pay-off

function, J , subject to the dynamics of the state. In this section we briefly review

the Pontryagin Maximum Principle approach to such an optimal control problem, and

the standard implementation of the FBSM for solving the resulting two-point boundary

value problem. The FBSM is readily extended to problems with multiple state variables,

multiple controls, state constraints and free end-times [191,225,290,291], however for this

overview we restrict ourselves to the single variable, single control, fixed end-time case

for clarity.

The pay-off typically comprises a cost function L(t, x(t), u(t)) integrated over the time

interval, and/or a function, ϕ, of the state at final time: ϕ(x(tN)). As such, we seek to

minimise or maximise J , subject to

J = ϕ(x(tN)) +

∫ tN

t0

L(t, x(t), u(t)) dt. (4.1)

dx

dt
= f(x(t), u(t), t), x(t0) = x0. (4.2)

By the PMP, we construct the Hamiltonian; H(t, x(t), u(t), λ(t)) = L(t, x(t), u(t)) +
λ(t)f(x(t), u(t), t), where λ(t) is the co-state variable linking our state to our pay-off.

The necessary conditions for optimal control are obtained from the Hamiltonian:

1. The optimal control, u∗(t), is obtained by minimising the Hamiltonian,

∂H

∂u
= 0. (4.3)

2. The co-state is found by setting,

dλ

dt
= −∂H

∂x
,
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3. satisfying the transversality condition,

λ(tN) = λN =
∂ϕ

∂x

∣∣∣
t=tN

. (4.4)

Following these steps yields a TPBVP to solve for x(t), λ(t), subject to x(t0) = x0, and

λ(tN) = λN . To solve this numerically, we discretise t into N + 1 time points separated

by a step-size dt = (tN − t0)/N ; t = [t0, t0 + dt, ..., t0 + Ndt] = [t0, t1, ..., tN ]. Here,

we consider a uniform discretisation in time; although this is not strictly necessary, as

discussed in §4.3. Using superscripts to denote the iteration number, provide an initial

guess of the control at each t; u(0) = [u
(0)
0 , u

(0)
1 , ..., u

(0)
N ]. From u(0), solve Equation (4.2)

numerically from t0 to tN to obtain x(0) = [x
(0)
0 , x

(0)
1 , ..., x

(0)
N ]. Now, using x(0), solve for

λ(0) = [λ
(0)
0 , λ

(0)
1 , ..., λ

(0)
N ] backwards in time from tN to t0, starting from λN . With the

optimality condition from Equation (4.3), generate a temporary update for the control,

û(1). The next iteration begins with an updated guess for the control, u(1). These steps

are repeated until a convergence condition is satisfied. The algorithm for the FBSM is

summarised in §1 of the supplementary material.

In some instances, directly updating the control, such that

u(k) = û(k), k = 1, 2, ... (4.5)

is sufficient, however more commonly a weighted update is performed [191,290], such that

in the (k + 1)th iteration,

u(k+1) = ωu(k) + (1− ω)û(k+1), k = 1, 2, ..., ω ∈ [0, 1). (4.6)

This weighted updating is also referred to as applying a relaxation factor, similar to

SOR as discussed in §4.1. An appropriate choice of ω in Equation (4.6) can acceler-

ate convergence relative to Equation (4.5), or in some cases induce convergence where

Equation (4.5) leads to divergence. The weighting parameter, ω, can be held constant

between iterations, although faster convergence may by achieved by updating ω. For

example, by reducing ω as the system approaches convergence, a greater portion of the

updated control is maintained relative to the control from the previous iteration [191],

possibly accelerating convergence. A challenge commonly faced in implementing this

control updating scheme is that the best choice for ω is problem dependent, and often

is determined heuristically in practice. We address the extent to which the proposed

acceleration algorithms address this issue in §4.4.

To facilitate the following discussion regarding acceleration, we note that the FBSM

can be thought of as a generalised fixed point iteration [225], where each iteration com-
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prises a forward and backward sweep and a control update. As such, for a control problem

with one control, discretised into N + 1 time points, each iteration of the FBSM can be

thought of as the application of a nonlinear operator, F , of dimension N + 1, such that

u(k+1) = F(u(k)), or:


u
(k+1)
0

u
(k+1)
1

...

u
(k+1)
N

 =


f0(u

(k)
0 , u

(k)
1 , ..., u

(k)
N )

f1(u
(k)
0 , u

(k)
1 , ..., u

(k)
N )

...

fN(u
(k)
0 , u

(k)
1 , ..., u

(k)
N )

 ,

where F = (f0, f1...fN)
T. However, in general we are not able to write down an explicit

expression for F . Viewing the FBSM as a fixed point iteration process informs the choice

of acceleration methods discussed in §4.4.

Importantly, we use the term function evaluation in this work to refer to the process

of solving the system of ODEs for the state forward in time and the system of ODEs for

the co-state backwards in time, once. This aligns with a single iteration of the standard

FBSM. The function evaluation nomenclature becomes convenient when discussing the

FBSM in the context of acceleration algorithms, that typically focus on reducing the

number of times expensive functions are evaluated. Producing numerical solutions to the

ODE systems is by far the most computationally expensive component of the FBSM. This

computational expense increases with the size and complexity of the systems; reducing

the number of times these systems must be solved becomes more advantageous as the

size and complexity of the systems increases. The function evaluation description also fa-

cilitates comparison between acceleration methods that require solving the ODE systems

a different number of times per iteration. Throughout this work, we use N to denote the

total number of function evaluations a given method takes to achieve convergence.

4.2.1 Adapted forward-backward sweep method

The FBSM can be extended to handle problems where we aim not only to minimise or

maximise a given quantity over time, but also ensure that a specific state is reached at

final time. This aligns with the crop growth example from Figure 4.1 if the objective is

to achieve a specific yield of 3x0 at harvest, rather than to maximise yield. In this case

we may have an integral term in the pay-off as described in Equation (4.1), however the

function of the final state, ϕ(x(tN)), is redundant in a control problem with a prescribed

final state. Equation (4.2) is also modified to incorporate the additional constraint:
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J =

∫ tN

t0

L(t, x(t), u(t)) dt, subject to,

dx

dt
= f(x(t), u(t), t), x(t0) = x0, x(tN) = xN . (4.7)

Here, xN is the specified state that must be reached at final time. Since we have intro-

duced an additional boundary value to the system, we no longer obtain the transversality

condition from Equation (4.4). Instead, we seek the final time condition on the co-state,

λN , and associated optimal control that satisfies Equation (4.7). We proceed by con-

sidering an adapted FBSM that takes as an input a guess for this final time condition,

λ̂N , and solves the corresponding control problem. If we denote this application of the

FBSM as the function V (λ̂N), and the corresponding final value of the state, x̂N , then

the adapted FBSM is an iterative process that solves for the root of V (λ̂N); the value of

λ̂N for which xN − x̂N = 0. This outer iterative process can be solved using standard

techniques such as the bisection method or secant method; the former converging more

reliably provided that the initial guesses for λ̂N form an interval that brackets the root,

the latter converging in fewer iterations [191]. Each of these outer iterations necessitates

solving a boundary value problem to convergence, often involving numerous iterations

of the FBSM. In this work we apply the secant algorithm as presented in [191] without

modification, for the adapted FBSM. The acceleration techniques described in §4.4 are

applied only to the inner FBSM processes, reducing N for each internal FBSM prob-

lem, leaving the outer secant iterations unchanged. Using N (k) to denote the number

of function evaluations in the kth internal FBSM problem, we can express the cumula-

tive function evaluations required for convergence of the adapted FBSM as Σ, such that

Σ = N (1) +N (2) + ....

The adapted FBSM can also be used to solve control problems with isoperimetric

constraints; integral constraints of the form∫ tN

t0

h(t, x(t), u(t)) dt = K,

whereK is a prescribed constant. For example, if h(t, x(t), u(t)) = u(t), thenK represents

a specific and known amount of control that must be applied. The approach to solve

problems with isoperimetric constraints, as outlined in [191], is to introduce an additional

state variable, z, with

dz

dt
= h(t, x(t), u(t)), z(t0) = 0, z(tN) = K.
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This transforms the problem with an isoperimetric constraint into a problem with a fixed

endpoint, that can be solved using the adapted FBSM as described.

4.3 Control problems

To investigate the robustness and effectiveness of the iterative acceleration techniques that

we will discuss in §4.4, we consider two distinct systems, and for each system we study

three example control problems. The first system is a single species linear differential

equation subject to a control. We later demonstrate that under certain conditions we are

able to obtain exact solutions for control problems applied to this model. The second

system is a three species model for acute myeloid leukaemia (AML) governed by a coupled

nonlinear system of differential equations, subject to a control. We construct the linear

model to examine the behaviour of the acceleration techniques as applied to a simple

idealised set of control problems. We include the AML model, variations upon which have

been considered in the literature [82,290,291], to examine how the acceleration techniques

perform when applied to problems more reflective of those considered in applied optimal

control. For each model, we consider three distinct control problems; continuous control,

bang-bang control and continuous control with fixed endpoint.

For all control results presented in this work, convergence is deemed to be achieved

when the error, ε, measured as the Euclidean norm of the difference between subsequent

controls, falls below a tolerance of 1× 10−10. Numerical solutions to ODEs are obtained

using a fourth-order Runge-Kutta method [269] with constant time-stepping. A uniform

time discretisation is sufficient for all control problems considered in this work. However,

the FBSM and acceleration methods readily generalise to a non-uniform discretisation. If

the desired discretisation for the state equations differs from that of the co-state equations,

it is necessary to perform interpolation within each iteration of the FBSM to obtain values

at corresponding time points. This can be computationally expensive and introduce an

additional source of error. Where the desired discretisations for the state and co-state

differ, numerical schemes with internal interpolation such as Continuous Runge-Kutta

methods may be appropriate [36,346].

4.3.1 Single-variable linear model

The linear model is a single species model for the growth of x(t), subject to control u(t)

that increases the growth rate. This model could represent our stylised crop growth

example presented in §4.1. We suppress the explicit time dependence of the state and co-

state variables and the control in the following equations for notational convenience. For

numerical results, we solve the linear problems on the domain 0 ≤ t ≤ 1, with time-step

dt = 3.91× 10−3, giving N = 257 time points.



Chapter 4. Implementation and acceleration of optimal control in systems biology 86

dx(t)

dt
= γx(t) + u(t), x(0) = x0, γ > 0, 0 ≤ t ≤ 1. (4.8)

In absence of control, u(t) ≡ 0, this model admits the solution x(t) = x0 exp(γt),

describing exponential growth.

Continuous control

We seek to maximise a quadratic cost function J , subject to

J =

∫ 1

0

(ax2 − bu2)dt, a > 0, b > 0. (4.9)

Following the standard Pontryagin Maximum Principle approach for solving optimal con-

trol problems, we form the Hamiltonian and derive the co-state equation, transversality

condition and optimality condition. The Hamiltonian is given by

H = ax2 − bu2 + λ(γx+ u). (4.10)

The co-state equation is

dλ

dt
= −∂H

∂x
= −2ax− λγ, (4.11)

with transversality condition λ(1) = 0. In this case the optimality condition is

∂H

∂u
= λ− 2bu = 0,

such that the optimal control is given by

u∗(t) =
λ(t)

2b
. (4.12)

For model parameter γ = 0.5 and pay-off weightings a = b = 1, with initial condition

x0 = 1, we are able to solve the control problem analytically using standard techniques

for linear systems with complex eigenvalues [160]. The process is laborious so we present

the approach and analytical solution in §2 of the supplementary material. In the sup-

plementary material we also plot the analytical results against the numerical results to

demonstrate the excellent agreement. The numerical solution to the linear continuous

control problem is presented in Figure 4.3. Convergence via the FBSM requires N = 57

iterations.
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Figure 4.3: Solution to the linear continuous control problem. The optimal control,
u∗(t), is shown in black dash and the corresponding state, x(t), in blue. This solution is
produced with model parameter γ = 0.5, time-step dt = 3.91 × 10−3, over the interval
0 ≤ t ≤ 1. The contributions of the state and the control to the pay-off are equally
weighted, with a = b = 1.

Bang-bang control

For the bang-bang control we consider the same state equation as in Equation (4.8), and

incorporate bounds on the control.

dx(t)

dt
= γx(t) + u(t), x(0) = x0, γ > 0, 0 ≤ t ≤ 1, 0 ≤ u(t) ≤ 2.

We seek to maximise a cost function J that is linear in u,

J =

∫ 1

0

(ax2 − bu)dt, a > 0, b > 0.

We form the Hamiltonian and derive the co-state equation and transversality condition:

H = ax2 − bu+ λ(γx+ u).

The co-state equation is

dλ

dt
= −∂H

∂x
= −2ax− λγ,

with transversality condition λ(1) = 0.
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In seeking the optimality condition we find

∂H

∂u
= λ− b. (4.13)

As Equation (4.13) does not depend on u, we define a switching function

ψ(t) = λ− b,

and produce an expression for the control, based on the bounds on u and the sign of the

switching function:

u∗(t) =

{
0, ψ(t) < 0,

2, ψ(t) > 0.
(4.14)

If ψ(t) is zero over any finite interval excluding isolated points, the optimal control

is singular rather than bang-bang. Over such intervals, minimisation of the Hamiltonian

does not provide sufficient information to determine the optimal control, and further

conditions must be considered. [55, 191]. We restrict our focus in this work to non-

singular bang-bang optimal control problems. The numerical solution to the linear bang-

bang control problem is presented in Figure 4.4. Convergence to this solution via the

FBSM required N = 8 iterations.
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Figure 4.4: Solution to the linear bang-bang control problem. The optimal control,
u∗(t), is shown in black dash and the corresponding state, x(t), in blue. This solution is
produced with model parameter γ = 0.5, time-step dt = 3.91 × 10−3, over the interval
0 ≤ t ≤ 1, with pay-off weightings of a = 1 for the state, and b = 3 for the control. The
bang-bang control has prescribed bounds of 0 ≤ u∗(t) ≤ 2.
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Continuous control with fixed endpoint

For the fixed endpoint problem, we proceed with the same state equation, however we

now impose a terminal condition on x.

dx(t)

dt
= γx(t) + u(t), x(0) = x0, x(1) = 10, γ > 0, 0 ≤ t ≤ 1.

We seek to maximise the same quadratic cost function J , as considered in Equation

(4.9). As such, we form the same Hamiltonian given in Equation (4.10) and derive the

same co-state, Equation (4.11), and expression for the control, Equation (4.12). Note

however that we do not prescribe a final time condition on the co-state equation via the

transversality condition; as the system already has two boundary conditions, doing so

would cause it to be overdetermined. Instead, we make two guesses for λ(1); for example,

λ(0)(1) = −10 and λ(1)(1) = 10. We proceed by applying the adapted FBSM outlined in

§4.2, using these guesses to initialise the secant method. Numerical results for the linear

fixed endpoint control problem are presented in Figure 4.5. Convergence of the adapted

FBSM is achieved after Σ = 177 iterations.

4.3.2 Multiple-variable nonlinear model

The AML model is a nonlinear coupled multi-species model describing the interactions

between progenitor blood cells, A(t), and leukaemic stem cells, L(t), that occupy the same

niche in the bone marrow; thereby competing for space and resources. Haematopoietic

stem cells, S(t), act as upstream production of A(t). These dynamics have been explored

in the literature both experimentally [149, 301], and through mathematical modelling

[82, 210]. We subject the model to a chemotherapy-like control, u(t), that acts as an

additional death term for L(t). The state can be expressed as x(t) = [S(t), A(t), L(t)]T .

As there are now three state equations, we require three co-state equations; λ(t) =

[λ1(t), λ2(t), λ3(t)]
T . We suppress the explicit time dependence of the state and co-state

variables and the control in the following equations for notational convenience:

dS

dt
= ρSS(1− S)︸ ︷︷ ︸

logistic growth

− δSS︸︷︷︸
differentiation

,

dA

dt
= δSS︸︷︷︸

upstream
production

+ ρAA(1− A− L)︸ ︷︷ ︸
logistic growth
with competition

− δAA︸︷︷︸
differentiation

,

dL

dt
= ρLL(1− A− L)︸ ︷︷ ︸

logistic growth
with competition

− δLL︸︷︷︸
differentiation

− αL

γ + L︸ ︷︷ ︸
immune
response

− uL︸︷︷︸
chemotherapy

control

. (4.15)
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(b) Converged result

Figure 4.5: Results are presented for the linear problem with specified terminal state
value, x(tN) = 10, solved using the adapted FBSM. Underlying FBSM problems are
solved with time-step dt = 3.91×10−3, over the interval 0 ≤ t ≤ 1, with pay-off weightings
of a = b = 1. In (a) the x(t) iterates of the adapted FBSM are presented. We annotate the
cumulative function evaluations after the first (N (1) = 59) and second (N (1)+N (2) = 119)
iterations of the adapted FBSM, based on initial guesses for λ(tN) of λ(tN) = −10 and
λ(tN) = 10. The total cumulative function evaluations required for convergence of the
adapted FBSM, Σ = N (1) + N (2) + N (3) = 177, is indicated. The converged result for
x(t), satisfying |x(tN)− 10| ≤ 1× 10−10 is presented in (b); this figure also includes the
optimal control, u∗(t).
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For each control problem associated with the AML model, we use initial conditions

that yield a coexisting steady state in absence of control (all three species non-zero);

S(0) = 1 − δS/ρS, A(0) = 0.3255, and L(0) = 0.3715. We solve the AML problems

numerically on the domain 0 ≤ t ≤ 10, with time-step dt = 4.88×10−4, giving N = 20481

time points. Model parameters are specified in Table 4.1.

Table 4.1: AML model parameters

Description Variable Value Dimension

Proliferation of S ρS 0.5 [T−1]
Proliferation of A ρA 0.43 [T−1]
Proliferation of L ρL 0.27 [T−1]
Differentiation of S into A δS 0.14 [T−1]
Differentiation of A δA 0.44 [T−1]
Differentiation of L δL 0.05 [T−1]
Characteristic rate of the immune response α 0.015 [T−1]
Half saturation constant of the immune response γ 0.1 [-]

Parameters correspond to those presented with the original model [82], with immune
response parameters introduced in subsequent work [290].

Continuous control

For the AML continuous control problem we seek to minimise a quadratic cost function

J , that accounts for both the cost of applying the control and the cost of the leukaemic

burden, subject to

J =

∫ 10

0

(a1u
2 + a2L

2)dt, a1 > 0, a2 > 0. (4.16)

We form the Hamiltonian and derive the co-state equation, transversality condition and

optimality condition. The Hamiltonian is given by

H = a1u
2 + a2L

2 + (ρSS(1− S)− δSS)λ1

+ (δSS + ρAA(1− A− L)− δAA)λ2

+ (ρLL(1− A− L)− δLL− αL

γ + L
− uL)λ3. (4.17)
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The co-state equations are

dλ1
dt

= −∂H
∂S

= −ρSλ1 + 2ρSλ1S + δSλ1 − δSλ2,

dλ2
dt

= −∂H
∂A

= −ρAλ2 + 2ρAλ2A+ ρAλ2L+ δAλ2 + ρLλ3L,

dλ3
dt

= −∂H
∂L

= −2a2L+ ρAλ2A− ρLλ3 + ρLλ3A+ 2ρLλ3L

+ δLλ3 +
αγλ3

(γ + L)2
+ λ3u, (4.18)

with transversality conditions λ1(10) = λ2(10) = λ3(10) = 0, obtained in the usual way.

In this case the optimality condition is

∂H

∂u
= 2a1u− λ3L = 0, (4.19)

such that the optimal control is given by

u∗(t) =
λ3L

2a1
. (4.20)

Numerical solutions for the AML continuous control problem are presented in Figure 4.6.

These solutions are obtained via the FBSM, requiring N = 38 iterations with ω = 0.55.

This choice of ω minimises N for the AML continuous control problem solved with the

FBSM without acceleration techniques. We discuss the choice of ω further in §4.5.

Bang-bang control

For the bang-bang AML problem we consider the same states as in Equation (4.15), and

incorporate bounds, 0 ≤ u ≤ 0.3, on the control. We seek to minimise a cost function J

that is linear in the control and the state variable L:

J =

∫ 10

0

(a1u+ a2L)dt, a1 > 0, a2 > 0. (4.21)

We form the Hamiltonian and derive the co-state equations, transversality conditions and

optimality condition. The Hamiltonian is given by

H = a1u+ a2L+ (ρSS(1− S)− δSS)λ1

+ (δSS + ρAA(1− A− L)− δAA)λ2

+ (ρLL(1− A− L)− δLL− αL

γ + L
− uL)λ3. (4.22)
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Figure 4.6: Solution to the AML continuous control problem. The optimal control, u∗(t),
is shown in black dash and the corresponding state equations for S(t), A(t) and L(t)
are shown in blue, red and yellow, respectively. This solution is produced with model
parameters given in Table 4.1, time-step dt = 4.88 × 10−4, over the interval 0 ≤ t ≤ 10,
with pay-off weightings of a1 = 1 for the control, and a2 = 2 for state variable L(t).

The co-state equations are

dλ1
dt

= −ρSλ1 + 2ρSλ1S + δSλ1 − δSλ2,

dλ2
dt

= −ρAλ2 + 2ρAλ2A+ ρAλ2L+ δAλ2 + ρLλ3L,

dλ3
dt

= −a2 + ρAλ2A− ρLλ3 + ρLλ3A+ 2ρLλ3L

+ δLλ3 +
αγλ3

(γ + L)2
+ λ3u, (4.23)

with transversality conditions λ1(10) = λ2(10) = λ3(10) = 0. In this case the switching

function is

ψ(t) =
∂H

∂u
= a1 − λ3L, (4.24)

such that the optimal control is given by

u∗(t) =

{
0, ψ(t) > 0,

0.3, ψ(t) < 0.
(4.25)

Note that the correspondence between the sign of ψ(t) and the chosen bound is reversed

in Equation (4.25) relative to Equation (4.14) as we are now performing minimisation

rather than maximisation. Numerical solutions for the AML bang-bang control problem
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are presented in Figure 4.7. These solutions are obtained via the FBSM, requiringN = 34

iterations with ω = 0.4. This choice of ω minimises N for the AML bang-bang control

problem solved with the FBSM without acceleration techniques. We discuss the choice

of ω further in §4.5.
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Figure 4.7: Solution to the AML bang-bang control problem. The optimal control, u∗(t),
is shown in black dash and the corresponding state equations for S(t), A(t) and L(t)
are shown in blue, red and yellow, respectively. This solution is produced with model
parameters given in Table 4.1, time-step dt = 4.88 × 10−4, over the interval 0 ≤ t ≤ 10,
with pay-off weightings of a1 = 1 for control, and a2 = 2 for the state variable L(t).

Continuous control with fixed endpoint

For the fixed endpoint problem, we proceed with the same state equations as for the

AML continuous control problem given in Equation (4.15), however we now impose a

terminal condition on the leukaemic population; L(10) = 0.05. We seek to minimise the

same quadratic cost function J , as considered in Equation ( 4.16). We form the same

Hamiltonian given in Equation (4.17) and derive the same co-state, Equation (4.18), and

expression for the control, Equation (4.20).

We obtain final time conditions, λ1(10) = λ2(10) = 0, via the transversality conditions

as usual, however we do not prescribe λ3(10). Instead, we make two guesses for λ3(10);

for instance, λ
(0)
3 (10) = 0 and λ

(1)
3 (10) = 10. We then proceed by applying the adapted

FBSM outlined in §4.2, using these guesses to initialise the secant method. Numerical

results for the AML fixed endpoint control problem are presented in Figure 4.8. These

results are produced using the adapted FBSM with ω = 0.55 in Σ = 434 iterations. This

choice of ω minimises Σ for the AML fixed endpoint control problem solved with the

FBSM without acceleration techniques. We discuss this further in §4.5.
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(b) Converged result

Figure 4.8: Results are presented for the AML problem with specified terminal state,
L(tN) = 0.05, solved using the adapted FBSM. Each underlying FBSM problem is solved
with model parameters given in Table 4.1, time-step dt = 4.88 × 10−4, over the interval
0 ≤ t ≤ 10, with pay-off weightings of a1 = 1 for the control, and a2 = 2 for the state
variable L(t). In (a) the L(t) iterates of the adapted FBSM are presented in grey; the
converged solution satisfying L(tN) = 0.05 is plotted in yellow. We annotate N for the
first (N (1) = 38) and second (N (1) +N (2) = 98) iterations of the adapted FBSM, based
on initial guesses for λ3(tN) of λ3(tN) = 0 and λ3(tN) = 10. Due to the close proximity,
subsequent iterations are not annotated. The cumulative function evaluations required
for convergence of the adapted FBSM (Σ = 434) is indicated. The converged result for
L(t), satisfying —L(tN)− 0.05| ≤ 1× 10−10, is presented in (b); this figure also includes
the optimal control, u∗(t) and trajectories for S(t) and A(t).
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4.4 Iterative accelerators

In this section we outline several techniques for acceleration of iterative schemes. Where

appropriate, we first present the univariate/scalar version of the method for familiarity,

then provide the multivariate/vector analogue of the method for use with accelerating the

FBSM. We attempt to use notation that aligns most closely with commonly used notation

in the literature, while maintaining internal consistency in this work. In the scalar case,

we consider the iterative process x(k+1) = f(x(k)), where x(k) is the kth iterate and f is

the iterating function. In the vector case we consider X(k+1) = F (X(k)), where X(k) =

[x
(k)
0 , x

(k)
1 , ...x

(k)
N ]T is the kth iterate, consisting of N + 1 values, and F = [f0, f1, ...fN ]

T

is the N + 1 dimensional operator of the iterative process. For clarity, we stress that in

the context of the acceleration algorithms applied to the FBSM, X(k) is the discretised

control in the kth iteration.

The acceleration methods considered in this work apply either to problems stated as

fixed point iterations (as above), or as root-finding problems. For acceleration via root-

finding algorithms, we can consider the complementary problems in the scalar and vector

setting, respectively; g(x) := x− f(x) = 0 and G(X) := X − F (X) = 0, where 0 is the

zero column vector of length N + 1.

We note that many of the methods presented here can be written in several different

forms. While some forms better facilitate analysis of aspects such as convergence speed

and numerical stability, others emphasise ease of understanding and implementation. In

this work we prioritise usability and present methods and algorithms in forms reflective

of their implementation where possible. For the purpose of this work, we feel it is suffi-

cient to present the methods and discuss their implementation without delving into their

derivation or rigorous theoretical convergence results. For readers interested in these

aspects, we suggest these articles [47,273], and numerical analysis texts [58,141].

4.4.1 Newton and Quasi-Newton methods

Newton’s method is one of the most prevalent root-finding algorithms, due to its relatively

straightforward implementation and potential for quadratic convergence [141]. For a

univariate function Newton’s method is given by

x(k+1) = x(k) − f(x(k))

f ′(x(k))
. (4.26)

We arrive at the scalar secant method by replacing the derivative term, f ′(x(k)), in

Equation (4.26) with a finite difference approximation:
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x(k+1) = x(k) − f(x(k))
x(k) − x(k−1)

f(x(k))− f(x(k−1))
.

Newton’s method for multivariate systems is

X(k+1) = X(k) +∆X(k),

where ∆X(k) is obtained by solving

Jk∆X
(k) = −F (X(k)).

Here, Jk is the Jacobian matrix of F evaluated at X(k) [141]. Setting aside the interpre-

tation of the Jacobian in the context of the FBSM; numerically approximating an N ×N
Jacobian matrix using finite differences requires O(N2) FBSM iterations at each Newton

step. A range of Quasi-Newton methods have been developed to minimise the computa-

tional expense associated with computing the Jacobian at each Newton step. It is not

immediately apparent how the secant method should be extended to multivariate systems,

but one such interpretation is the Quasi-Newton Broyden’s method. Broyden’s method

reduces the number of function evaluations required at each Newton step by forming the

full Jacobian only initially, then updating the Jacobian matrix via a rank-one update

based on the secant method [54, 58]. We later discuss the Wegstein method [334], which

is another interpretation of the secant method in multivariate settings.

In the context of accelerating the FBSM, techniques that require forming or approx-

imating a full Jacobian, even once, are not appropriate. We have an N + 1 dimensional

system, where N + 1 is the number of time points in the discretisation of the ODEs, so

we expect N to be large, relative to the number of iterations required for the FBSM to

converge without acceleration techniques, via Equation (4.6). As such, we restrict our

focus to Jacobian-free methods in the remainder of this section; in particular, we discuss

and implement the Wegstein and Aitken-Steffensen methods and Anderson acceleration.

We provide a broad overview alongside the key equations here, and provide complete

algorithms alongside notes for implementation in §4 of the supplementary material.

4.4.2 Wegstein method

Wegstein’s method can be thought of as an element-wise extension of the secant method to

multivariate systems [129]. Although Wegstein’s method appears less popular than other

methods considered in this work, it has found practical utility, particularly in chemical and

process engineering software [214, 303]. We include it here due to the striking similarity

it bares to the control update with relaxation presented in Equation (4.6). It is also one
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of the more straightforward techniques, both in conception and implementation:

x̂(k+1) = f(x(k)),

x(k+1) = q(k)x(k) + (1− q(k))x̂(k+1), (4.27)

where q(k) =
a(k)

a(k) − 1
, and a(k) =

f(x(k))− f(x(k−1))

x(k) − x(k−1)
. (4.28)

In implementation, from an initial value x0 it is necessary to perform two function

evaluations; i.e. x1 = f(x0), and f(x1), before it is possible to compute Equation (4.28)

for the Wegstein method [334]. In subsequent iterations only one new function evaluation

is required.

The extension of Wegstein’s method to multivariate systems follows exactly the pro-

cess outlined in Equations (4.27) and (4.28), as it is extended element-wise. While con-

vergence is guaranteed when using Wegstein’s method for a single nonlinear equation,

the uncoupling implied by the element-wise extension can lead to divergence [249].

In Equations (4.27) and (4.28) q(k) denotes q in the kth iteration, however, we note

that it is not necessarily most effective to update q every iteration. As such, in this

work we explore various updating regimes. There is also the option of applying bounds

on q. Bounds of −5 < qi < 0, ∀i, where i denotes the ith element of the system,

are frequently applied when implementing Wegstein’s method [21, 283]. This bounding

appears to work reasonably well for the small nonlinear test systems we consider in §5

of the supplementary material, although we were not able to identify a theoretical result

supporting this specific choice. For the control problems we consider, this bounding is not

effective, so we apply different bounds, discussed further in §4.5. The univariate Wegstein

method can be thought of as a modification of the Aitken method, which at the time the

Wegstein method was developed, was only understood for the univariate case [81].

4.4.3 Aitken-Steffensen method

Aitken’s ∆2 method, also referred to as Aitken’s delta-squared process or Aitken ex-

trapolation, was originally posed by Aitken in 1927 as a means of extending Bernoulli’s

method of approximating the largest root of an algebraic equation. This extension facili-

tates numerically approximating not only the largest root, but all roots of the equation [7].

Aitken’s method generates a new sequence, x̂, in parallel to the fixed point iteration.

x̂(k) = x(k) − (x(k+1) − x(k))2

x(k+2) − 2x(k+1) + x(k)
, or

x̂(k) = x(k) − (∆x(k))2

∆2x(k)
, (4.29)
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where ∆ is the difference operator; ∆x(k) = x(k+1) − x(k), and the higher order operator

is applied recursively; ∆2x(k) = ∆(∆x(k)) = ∆x(k+1) −∆x(k) [141]. From an initial value,

x(0), two function evaluations; iterations of the underlying fixed point process, must be

performed to obtain x(1) and x(2), before Equation (4.29) can be computed.

The derivation of Aitken’s method assumes an underlying linearly converging series of

iterates. The order of convergence of the resulting Aitken accelerated series is still linear,

however this series converges faster than the original series [58]. We discuss Aitken’s

∆2 method and Steffensen iteration together, as Steffensen iteration is a straightforward

extension of Aitken’s method, whereby the Aitken value, x̂(k), is used to continue the fixed

point iteration, i.e. x(k+1) = x̂(k). Despite the striking similarity, Steffensen’s method was

seemingly developed shortly after (1933) and without knowledge of Aitken’s method [306].

Steffensen iteration can achieve quadratic convergence [2, 141, 240]. Further theoretical

convergence results for the Steffensen method are established by Nievergelt [241] and in

a series of papers by Noda [242–244].

Aitken and Steffensen iteration can be extended to multivariate systems [141]. In the

following statements we outline the method for an N + 1 dimensional system; X(k) =

[x
(k)
0 , x

(k)
1 , ..., x

(k)
N ]T ∈ RN+1, as appropriate for use with the FBSM:

X̂(k) = X(k) −∆X (k)(∆2X (k))−1∆X(k), (4.30)

where ∆X(k) = X(k+1) −X(k), and X (k) is a matrix constructed with columns

(X(k), X(k+1), ..., X(k+N)), such that X (k) is a square matrix of dimension N + 1, with

∆X (k) = X (k+1) −X (k), and ∆2X (k) = ∆X (k+1) −∆X (k).

In the form given by Equation (4.30) there are glaring issues with using the Steffensen

method to accelerate convergence of the FBSM. Setting aside the question of whether

∆2X (k) is invertible, forming X (k) would require O(N) iterations of the FBSM to be

performed, and since N relates to the number of time points in the discretisation of the

ODEs in the FBSM, we expect N to be large, relative to the number of iterations required

for the FBSM to converge without acceleration.

We instead consider a modification of the Steffensen method, requiring fewer function

evaluations per iteration. Introduce m < N , and define ∆X(k) = X(k+1)−X(k) as before,

X (k) is now a rectangular matrix constructed with columns (X(k), X(k+1), ..., X(k+m+1)),

such that X (k) ∈ R(N+1)×(m+2), with ∆X (k) = X (k+1) − X (k), and ∆2X (k) = ∆X (k+1) −
∆X (k), both of dimension (N +1)×m. We now interpret the matrix inverse in Equation

(4.30) as the Moore-Penrose pseudoinverse [257], a generalisation of the matrix inverse

for singular and rectangular matrices; we discuss this further in §3 of the supplementary

material. This partial implementation requires only m + 1 function evaluations per it-

eration. For the remainder of this document when referring to the Steffensen method

we are specifically referring to this partial Steffensen implementation. We present the
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derivation of the multivariate Aitken-Steffensen method and outline where the partial

implementation differs, in §3 of the supplementary material.

4.4.4 Anderson Acceleration

Anderson Acceleration or Anderson Mixing, originally denoted as the extrapolation algo-

rithm by Anderson in the 1960s [16], is a technique developed for accelerating convergence

of fixed point iteration problems with slowly converging Picard iterations [18]. Anderson

Acceleration is of particular interest in this work, as it has recently been implemented to

accelerate the convergence of a regularised version of the FBSM [203]. In contrast to a

standard fixed point iteration; whereby the next iterate depends only on the immediately

preceding iterate, Anderson Acceleration has ‘memory’ through the inclusion of previous

iterates [102]. Unlike other methods considered in this work, Anderson Acceleration ex-

plicitly utilises the differences between residuals of subsequent iterates alongside iterates

and their differences in computing future iterates.

Anderson Acceleration involves solving a least-squares problem at each iteration. The

problem can be expressed in both constrained and unconstrained forms, with the updating

step dependent on the form [104,326]. We solve the following unconstrained least-squares

problem in each iteration of Anderson Acceleration:

γ = argmin
γ

(||G− γdG||), (4.31)

where argmin(·) returns the argument, γ, that minimises the expression in Equation

(4.31). The corresponding updating step is

X(k+1) = X(k) +G(k) − (dX(k−1) + dG(k−1))γ, (4.32)

where G(k) = F (X(k))−X(k) is the residual, dX(k) is a matrix with columns

(∆X(k−m),∆X(k−m+1), ...,∆X(k)), and dG(k) is a matrix with columns

(∆G(k−m),∆G(k−m+1), ...,∆G(k)), and m indicates the number of previous iterates that

are incorporated.

4.4.5 Acceleration methods applied to typical fixed point prob-

lems

As a precursor to implementing these acceleration methods for control problems, we apply

them to solve example nonlinear systems of dimension 2×2, 3×3, and 4×4. We provide

these systems and the results of the acceleration methods compared to standard fixed

point iteration in §5 of the supplementary material. We do not discuss these results in
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detail, although broad comparisons regarding the application of the acceleration methods

to these systems and to control problems are made in §4.6. We provide code on GitHub

for implementing the acceleration algorithms to solve systems of arbitrary size.

4.5 Acceleration results

In this section we discuss the results of applying the acceleration algorithms. When

discussing results we are solely focused on reducingN , the number of function evaluations

required for the control problems to reach convergence; as in all convergent cases we arrive

at the same optimal control results. We first discuss the aspects of each method that can

be tuned, then outline the results of the standard FBSM with the best choice of ω but

without acceleration methods applied, to establish a baseline against which to compare

the acceleration methods. A detailed suite of results for each control problem and each

acceleration method, for various combinations of tuning parameters, is provided in §6 of

the supplementary material.

4.5.1 Tuning

Each method we consider has parameters that can be tuned to improve performance

for a given problem. For the FBSM without acceleration, we can select ω ∈ [0, 1);

the parameter that weights the contribution of the control from the previous iteration,

and the newly calculated control, to the control used in the next iteration, as stated in

Equation (4.6). Control problems based on the linear model are able to converge via

direct updating, as given in Equation (4.5), equivalent to ω = 0. Increasing ω in this case

only serves to increase N , so we do not attempt to tune ω when considering the linear

model. Using the standard FBSM without acceleration the continuous linear problem

requires N = 57 while the bang-bang linear problem requires only N = 8.

In Figure 4.9 we plot N against ω ∈ [0, 1), for the continuous and bang-bang AML

problems. As expected, for small ω we find that the problem does not converge, and for

large ω, N increases. For the continuous AML problem we identify ω = 0.55 as the best

choice, with N = 38. For the bang-bang AML problem we find that ω = 0.4 is best, with

N = 34.

https://github.com/Jesse-Sharp/Sharp2021
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Figure 4.9: Here we plot N against ω ∈ [0, 1) in increments of 0.05, for the AML
continuous (in red) and bang-bang (in black) control problems, using FBSM with no
acceleration. Results correspond to model parameters given in Table 4.1, time-step dt =
4.88 × 10−4, over the interval 0 ≤ t ≤ 10. The continuous problem is solved with pay-
off weightings of a1 = 1 for control, and a2 = 2 for the state variable L(t), while the
bang-bang problem is solved with a1 = 1 and a2 = 3. Where an ω value does not have a
corresponding marker, this indicates that the procedure fails to converge within N = 200.

Recall that fixed endpoint problems are solved using the adapted FBSM; this entails

solving several control problems to convergence with the FBSM. Each of these control

problems can have a different optimal ω. In this instance, ω = 0.55 also happens to

be best for the AML fixed endpoint problem if holding ω constant, when considering

ω ∈ [0, 1) at increments of 0.05. These ω values will not coincide in general. When

applying the acceleration methods to the fixed endpoint problems, we employ the tuning

parameters that perform best for the continuous problem. This does not imply that we

are using the best tuning parameters for the acceleration methods in the context of the

fixed endpoint problem. Importantly, this demonstrates whether or not the techniques

can effectively reduce Σ, the cumulative function evaluations required for convergence of

the adapted FBSM for fixed endpoint problems, without requiring prohibitive tuning.

With the Wegstein method, we only select ω for the two FBSM iterations required

for initialisation, and specify n, such that we update q every nth iteration. We generate

results for n ∈ {1, 2, ..., 10}. We also bound q, however identifying suitable bounds is

challenging. In this work we select bounds that perform reasonably, but acknowledge

that we do not search for optimal bounds, nor do we think that attempting to do so is

realistic. This drawback of Wegstein’s method contributes to its inconsistent performance

relative to other methods. For the partial Aitken-Steffensen methods, we choose ω,

and the parameter m that specifies the dimension of the (N + 1) × m matrices in the

updating step, requiring m + 1 function evaluations per iteration. We generate results
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for m ∈ {1, 2, ..., 10}. Similarly, for Anderson Acceleration we select ω and M ; where

M determines the maximum number of previous iterations to retain when solving the

least squares problem and performing the updating step. We produce results for M ∈
{1, 2, ..., 10}.

4.5.2 Wegstein method

For the continuous linear problem, we apply bounds of −2 ≤ q ≤ 0. For the bang-bang

linear problem, we leave q unbounded. For both AML problems we apply bounds −1 ≤
q ≤ 1. We explore the effect of updating q every nth iteration, n ∈ {1, 2, ..., 10}. For the
continuous linear problem, n = 4 minimises N , although n ∈ {1, 2, ..., 5} all perform well.

For the linear bang-bang problem, the Wegstein method converges without bounding on

q, and varying n does not affect convergence. The Wegstein method outperforms other

acceleration methods for the linear bang-bang problem with N = 9, but does not improve

upon N = 8 for the FBSM without acceleration.

For the continuous AML problem, the performance of Wegstein’s method is incon-

sistent. With n = 6 and ω = 0.55, the Wegstein method achieves convergence with

N = 26, outperforming the FBSM; however, almost every other combination of tun-

ing parameters considered with ω ∈ [0, 1) and n ∈ {1, 2, ..., 10} require larger N than

the FBSM without acceleration. Generally, increasing n produces worse outcomes. We

do, however, observe that the Wegstein method can induce convergence for ω < 0.4,

where the standard FBSM does not converge. For the bang-bang AML problem, the

Wegstein method appears more robust; consistently outperforming the standard FBSM

across most of the tuning parameter space. The best result requires only N = 9, with

ω = 0 and n = 7, although several other combinations of tuning parameters are similarly

successful. For ω ≥ 0.4, corresponding to values that the underlying FBSM converges, we

find that moderate n ∈ {3, 4, ..., 7} produces the best results; while for smaller ω, larger

n ∈ {6, 7, ..., 10} consistently performs best. Once again we observe that convergence is

achieved for ω values where the underlying FBSM would not converge.

For the linear fixed endpoint problem the adapted FBSM with the Wegstein method

consistently generates a moderate reduction in Σ, compared to the adapted FBSM with-

out acceleration, for all n ∈ {1, 2, ..., 10}, −2 ≤ q ≤ 0. For the AML fixed endpoint

problem we do not observe improvement. Using the tuning parameters that perform best

for the continuous AML problem, we find that Σ for the adapted FBSM with Wegstein’s

method is more than double that of the adapted FBSM without acceleration. This results

from the inconsistency of Wegstein’s method with poor tuning. In §6 of the supplemen-

tary material it can be seen that some control problems within the adapted FBSM that

require N ≈ 50 without Wegstein’s method, require N ≈ 200 with the specified Wegstein

tuning parameters.
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4.5.3 Partial Aitken-Steffensen method

Both Aitken and Steffensen methods significantly and consistently outperform the FBSM

without acceleration for the continuous linear problem. The Aitken method performs

best for m ∈ {1, 2, 3}, requiring N = 12. Steffensen’s method performs best when

m = 6, requiring only N = 8. In the linear bang-bang case, both Aitken and Steffensen

methods perform marginally worse than the FBSM without acceleration, which requires

only N = 8. In the best cases, with m = 1 the Aitken method requires N = 10, and

with m = 7 the Steffensen method requires N = 9.

For the continuous AML problem, we observe a stark difference between the Aitken

and Steffensen methods; while the Steffensen method is able to achieve convergence for

values of ω where the underlying FBSM fails to converge; ω ≤ 0.35, particularly for

m ∈ {1, 2, 3, 4}, the Aitken method only converges to the optimal control for ω values

where the underlying FBSM converges. For ω ≤ 0.35 the Aitken method achieves appar-

ent convergence; the iterative procedure terminates as the convergence criteria is met.

However, explicitly calculating the pay-off associated with these controls via Equation

(4.16), and comparing this result to the pay-off associated with the control obtained

via the standard FBSM, indicates that the controls obtained via the Aitken method for

ω ≤ 0.35 are not optimal, as they fail to minimise J . The best result for the Aitken

method, with ω = 0.5 and m = 5, requires N = 30, marginally improving on the FBSM

without acceleration, requiring N = 38. Steffensen’s method produces more significant

improvements, requiring only N = 19 with ω = 0.5 andm = 5. In each case neighbouring

combinations of tuning parameters also yield equivalent or comparable improvement over

the standard FBSM. In the bang-bang AML problem, we observe similar behaviour; for

ω values that the underlying FBSM fails to converge, the Steffensen method consistently

converges. The Aitken method achieves apparent convergence for these values of ω; the

iterative procedure terminates as the convergence criteria is met, however the resulting

controls contain intermediate values between the lower and upper bounds. As such the

resulting controls are not bang-bang, so we treat these results as failing to converge. At

best, Aitken’s method requires N = 8, with ω = 0.5 and m = 1, while Steffensen’s

requires only N = 7, with ω = 0.5 and m = 5. The vast majority of tuning parameter

combinations yield improvements over the N = 34 of the standard FBSM.

Aitken and Steffensen methods consistently offer significant improvement over the

standard adapted FBSM for the linear fixed endpoint problem for m ∈ {1, 2, ..., 10}, with
the exception of m = 1 for the Steffensen method, which yields only marginal improve-

ment. Using the best performing tuning parameters for the continuous AML problem, we

find that both Aitken and Steffensen methods improve upon the standard adapted FBSM

for the AML fixed endpoint problem. Relative to Σ = 434 required without acceleration,

the Σ = 360 required with Aitken’s method reflects a modest improvement, while the
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Σ = 238 required with the Steffensen method is a significant improvement.

4.5.4 Anderson Acceleration

Anderson Acceleration performs exceptionally well on the continuous linear problem,

requiring only N = 7 for M ∈ {4, 5, ..., 10} compared to N = 57 for the standard FBSM.

For the linear bang-bang problem however, it is the worst performing acceleration method;

achieving at best N = 11, with M = 1.

Similarly to the Wegstein and Steffensen methods, Anderson Acceleration achieves

convergence in both the continuous and bang-bang AML problems for ω values where the

underlying FBSM fails to converge. Anderson Acceleration achieves the best individual

result for the continuous AML problem, requiring onlyN = 17, with ω = 0.85 andM = 6.

Again, we observe comparable improvement over a wide range of tuning parameters. For

the bang-bang AML problem Anderson Acceleration consistently outperforms FBSM

without acceleration, particularly for ω < 0.7, at best requiring N = 17, with ω = 0.35

and M ∈ {7, 8, 9, 10}, with other non-neighbouring tuning parameter combinations also

yielding N = 17.

For both the linear and AML fixed endpoint problems Anderson Acceleration produces

the most significant reduction in Σ, and improves upon the adapted FBSM over a wide

range of tuning parameters. In the linear case, Anderson Acceleration requires only

Σ = 24 for M ∈ {4, 5, ..., 10}. In the AML fixed endpoint problem, using the tuning

parameters that perform best for the continuous AML problem, Anderson Acceleration

converges in only Σ = 204; less than half as many as the standard adapted FBSM.

4.5.5 Method comparison with best tuning

Results presented in Figure 4.10 and Figure 4.11 provide comparison of the error, ε, as

each method approaches convergence, for the linear and AML problems, respectively.

Error is measured as the Euclidean norm of the difference between subsequent controls;

ε = ||F (X(k)) −X(k)||, with the exception of Aitken’s method, where error is measured

as the difference between subsequent values in the Aitken series; ε = ||X̂(k) − X̂(k−1)||.
Convergence is achieved when ε ≤ 1× 10−10, marked in black dash. In each case, we are

plotting the result that minimisesN for each method, over the space of tuning parameters

considered, including the best tuning of ω for the FBSM without acceleration. Error is

plotted on a logarithmic scale. For the linear bang-bang problem with the Wegstein

and Anderson methods, and the AML bang-bang problem with the Wegstein method,

the error after the final iteration is ε = 0, as two subsequent iterates for the control

are identical. This is represented on the logarithmic scale as a line that intersects the

horizontal axis.
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Figure 4.10: Convergence rates for the result that minimises N , for each acceleration
method, when applied to the linear control problems. Results in this plot are produced
with model parameter γ = 0.5, time-step dt = 3.91 × 10−3, over the interval 0 ≤ t ≤ 1,
with pay-off weighting a = b = 1 for the continuous control (a), and a = 1, b = 3 for
the bang-bang control (b). The tolerance of 1× 10−10 required for convergence is marked
in black dash. As the methods do not necessarily use the same number of function
evaluations per iteration, markers indicate each time ε is computed. Continuous control
results correspond to the FBSM with no acceleration, the partial Steffensen method with
m = 6, partial Aitken method with m = 1, Anderson Acceleration with M = 4 and
Wegstein with bounds −2 ≤ q ≤ 0, updating q every 4th iteration. Bang-bang results
correspond to the FBSM with no acceleration, the partial Steffensen method with m = 7,
partial Aitken method with m = 1, Anderson Acceleration with M = 1 and Wegstein
without bounds on q, updating q every iteration. The standard FBSM outperformed all
acceleration methods in solving the linear bang-bang control problem. We attribute this
to how few iterations were required (N = 8) for convergence without acceleration.
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Figure 4.11: Convergence rates for the converged result that minimises N , for each
acceleration method, when applied to the AML control problems. Results in this plot are
produced with model parameter γ = 0.5, time-step dt = 4.88 × 10−4, over the interval
0 ≤ t ≤ 1, with pay-off weighting a = b = 1 for the continuous control (a), and a = 1,
b = 3 for the bang-bang control (b). The tolerance of 1×10−10 required for convergence is
marked in black dash. As the methods do not necessarily use the same number of function
evaluations per iteration, markers indicate each time ε is computed. Continuous control
results correspond to the FBSM with no acceleration, ω = 0.55, the partial Steffensen
and partial Aitken methods with m = 5 and ω = 0.5, Anderson Acceleration withM = 6
and ω = 0.85, and Wegstein method with ω = 0.55, bounds −1 < q < 1, updating q
every 6th iteration. Bang-bang results correspond to the FBSM with no acceleration,
ω = 0.4, the partial Steffensen method with m = 5 and ω = 0.5, partial Aitken method
with m = 1 and ω = 0.5, Anderson Acceleration withM = 7 and ω = 0.35, and Wegstein
method with ω = 0, bounds −1 < q < 1, updating q on the 7th iteration.
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4.6 Discussion

Modelling processes in systems biology is complex; frequently involving large state sys-

tems consisting of several ODEs [39, 94, 304], including canonical examples such as the

mitogen-activated protein kinase (MAPK) cascade [147], Wnt/β-catenin signalling path-

way [230], early incarnations of whole-cell models [27, 161], and other cellular signalling,

metabolic and regulatory processes and mechanisms [186,300]. The acceleration methods

we implement act only on the control term; the number and form of state equations has

no bearing on the mathematical and computational complexity of the acceleration meth-

ods. As such, the methods scale excellently with system complexity. In this section we

discuss the results presented in §4.5, and draw insights into the convergence behaviour

of the FBSM when augmented with acceleration techniques. We highlight opportunities

for application of these methods, and outline several avenues for further investigation.

4.6.1 Acceleration outcomes

In evaluating the performance of each acceleration method, we are interested in: (1)

how significantly they are able to reduce N , (2) method robustness, and (3) method

accessibility. In this context we use robustness to refer to how consistently the method

outperforms the best tuned FBSM over the range of tuning parameters considered. We

judge the accessibility of each method based on implementation and conceptual complex-

ity. Overall, we find that the acceleration methods, particularly Anderson and Steffensen,

significantly and robustly reduce N . Anderson Acceleration appears most effective for

continuous control, while the Steffensen method appears best for bang-bang control. The

Aitken method occasionally outperforms Steffensen, but overwhelmingly the Steffensen

method appears to be the better option of the two for the range of parameters we con-

sider. Implementing the Anderson and Steffensen methods introduces challenge beyond

that of the underlying FBSM, although it is not prohibitively difficult; particularly with

reference to the code where we implement these methods, that we make available on

GitHub. Both methods introduce conceptual complexity, perhaps marginally less-so for

the Steffensen method due to the similarities it shares with the familiar Newton’s method.

We produce heatmaps to visualise the convergence behaviour of the acceleration meth-

ods across the range of tuning parameters considered. Figure 4.12 corresponds to the

AML continuous control problem, while Figure 4.13 corresponds to the AML bang-bang

control problem. Recall that with the tuning of ω that minimises N , the FBSM with

no acceleration requires N = 38 for the AML continuous control problem, and N = 34

for the AML bang-bang control problem. Tuning parameter combinations that reflect

a reduction in N relative to the these FBSM results are shaded in the green spectrum,

while worse performing combinations are shaded in the red spectrum. The midpoint of

the colour spectra, yellow, corresponds to the FBSM result with the best tuning, without

https://github.com/Jesse-Sharp/Sharp2021
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acceleration. Simulations are terminated when N exceeds 100; reflecting a combina-

tion of tuning parameters that do not yield convergence within this specified maximum.

Data supporting these heatmaps, and similar results for the linear control problems are

provided in §6 of the supplementary material.

In identifying tuning parameter combinations that yield significant reductions in N ,

we are looking for bright green areas in the heatmaps. We assess the robustness of each

method by considering whether we observe large contiguous areas in the green spectrum,

such as in Figure 4.12(c), indicating robustness, or patchy areas with both green spectrum

and red spectrum, such as Figure 4.13(d), suggesting a lack of robustness.

In Table 4.2 we provide our subjective but informed rating of the methods against

the criteria of reduction in N , robustness and accessibility. We consider the continu-

ous and bang-bang control cases separately in terms of reduction in N and robustness.

Table 4.2: Method comparison

Reduction in N Robustness Accessibility

Method Cts BB Cts BB Imp Complexity

FBSM ∼ ∼ ✓ ✓ ✓ ✓

Wegstein ∼ ✓✓ ✗ ✓ ✓ ∼
Aitken ✓ ✓ ∼ ✓ ∼ ∼

Steffensen ✓✓ ✓✓ ✓ ✓✓ ∼ ∼
Anderson ✓✓ ✓ ✓ ✓ ∼ ✗

We rate the methods considered in this work against key factors such as the reduction in
N that they deliver and how robustly they perform over the range of tuning parameters
considered, for both continuous (Cts) and bang-bang (BB) control problems. We also
consider how accessible the methods are from the standpoints of ease of implementation
(Imp) and conceptual complexity. Methods are rated as being either strongly positive
(✓✓), positive (✓), neutral (∼), negative (✗) against each aspect.

Despite its conceptual simplicity and straightforward implementation, Wegstein’s

method is significantly hampered by the difficulty in choosing bounds. If there were

a more informed approach for identifying suitable bounds, Wegstein’s method could be

particularly useful for bang-bang control problems. Due to the effect of ω, intermediate

control iterates of the FBSM do not appear bang-bang; as such the bulk of N are incurred

in refining the control about the switching points. Wegstein’s method can accelerate this

refinement by adaptively setting qi = 0 where appropriate.
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Figure 4.12: This heatmap provides insight into the convergence behaviour of the accel-
eration methods for the AML continuous control problem. Here we visualise N against
ω and the method specific tuning parameter; n for Wegstein (a), m for partial Aitken
(b) and partial Steffensen (c), and M for Anderson Acceleration (d). Tuning parameter
combinations requiring N = 38, equivalent to the best tuned FBSM without acceleration,
are shaded yellow. Colours in the green-yellow spectrum represent a reduction in N rel-
ative to FBSM without acceleration, while colours in the yellow-red spectrum represent
an increase in N .
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Figure 4.13: This heatmap provides insight into the convergence behaviour of the accel-
eration methods for the AML bang-bang control problem. Here we visualise N against ω
and the method specific tuning parameter; n for Wegstein (a), m for partial Aitken (b)
and partial Steffensen (c), M for Anderson Acceleration (d). Tuning parameter combi-
nations requiring N = 34, equivalent to the best tuned FBSM without acceleration, are
shaded yellow. Colours in the green-yellow spectrum represent a reduction in N relative
to FBSM without acceleration, while colours in the yellow-red spectrum represent an
increase in N .
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4.6.2 Convergence insights

As outlined in §4.5, the linear model control problems converge with ω = 0. It may at

first seem counter-intuitive that Wegstein’s method can improve upon this, given that

the computed q in Wegstein’s method acts as a stand-in for ω. There are two aspects

of distinction that enable Wegstein’s method to generate improvement in this case; first,

while ω is held constant both within the time discretisation and between iterations, the

element-wise nature of Wegstein’s method enables each element of the discretisation to

have a different value, qi, i ∈ {0, 1, ..., N}, and q can be updated between iterations;

secondly, observing the values of qi in Wegstein’s method indicates that q < 0 can be

appropriate. This suggests that ω < 0 could also be used to accelerate the standard

implementation of the FBSM. Preliminary investigation suggests that this is true for the

linear model, however we do not pursue this further as we expect it to be of limited

applicability beyond contrived problems.

We apply the acceleration methods to small nonlinear test systems in §5 of the sup-

plementary material. We know these systems have multiple fixed points; all methods

we consider aside from Aitken’s method, in some of our examples, reach different fixed

points to fixed point iteration. In contrast, when applied to accelerate control problems,

we observe only the Aitken method converging to a result other than the optimal control

obtained via the FBSM, as discussed in §4.5. This apparent convergence of the Aitken

method to controls that are not optimal is a significant deterrent to using the Aitken

method in situations where the optimal control is not known a priori. Outside of this is-

sue with the Aitken method, each acceleration method produces the same optimal control

for a given problem. However, they each approach the converged control differently. In

Figure 4.14 we plot the control as it converges for the FBSM and acceleration methods.

In the code we provide on GitHub, users can view the control iterates of each method as

they approach convergence. Visualising these methods as they converge gives insight into

how they may be able to arrive at different fixed points; under certain circumstances the

accelerated series of iterates may leave the basin of attraction for the fixed point found

via fixed point iteration.

https://github.com/Jesse-Sharp/Sharp2021
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(a) No acceleration (b) Wegstein

(c) Partial Steffensen (d) Anderson

Figure 4.14: Here we observe the iterates of the control in the AML continuous con-
trol problem as it converges, for (a) the FBSM with no acceleration, (b) the Wegstein
method, (c) the partial Steffensen method and (d) Anderson Acceleration. Initial iterates
are shown in light blue, while darker blue denotes later iterates. Results for the Aitken
method are not shown as they are visually similar to the Steffensen result. We present
the results corresponding to the tuning parameters that minimise N , outlined in §4.5.
Where it is visually distinguishable, we indicate the number of function evaluations cor-
responding to a particular iterate. While all methods produce the same eventual result
for u∗, they follow considerably different series of iterates. Note that the vertical scale in
(a) and (b) differs from that of (c) and (d).

4.6.3 Summary and outlook

In this work, we review the theory and implementation of the FBSM for solving TPB-

VPs that arise from application of PMP in solving optimal control problems. We study a

single-variable linear model and a multiple-variable nonlinear model and consider contin-

uous, bang-bang and fixed endpoint control problems. Conceptualising the FBSM as a

fixed point iteration, we leverage and adapt existing acceleration methods to significantly

and robustly increase the convergence rate of the FBSM for a range of optimal control
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problems. The Anderson and partial Steffensen methods appear to perform best, without

requiring prohibitive tuning.

Accelerating the convergence of the FBSM, and reducing the importance of appro-

priately selecting ω for a single control problem, is promising. That said, the real utility

of the robust acceleration methods in this work is in application to families of control

problems. We provide a glimpse of this benefit through considering fixed endpoint control

problems, though other excellent opportunities for application arise due to the uncertainty

prevalent in the life sciences. First, it is common for there to be uncertainty around model

parameters and structure [96,128]. In this case solving optimal control problems over sev-

eral model structures and sets of model parameters provides insight into the sensitivity of

the control strategy [45,134,236,278]. Secondly, when performing multi-objective optimi-

sation, a trade-off is made between objectives. For example, in Equation (4.21) we seek to

minimise the cumulative negative impact of leukaemia and of the control; parameters a1

and a2 weight the relative important of each objective. In practical applications, it is not

always clear how to determine these weightings. It can therefore be useful to generate a

family of optimal controls that are each optimal for their specific combination of pay-off

weighting parameters, akin to a Pareto frontier [10, 164, 204]. Producing these sets of

control results benefits significantly from acceleration techniques such as the Anderson

and Steffensen methods, where a consistent reduction in N is obtained without optimal

tuning.

In this work multi-objective optimisation is considered in the form of a control problem

with a single cost function comprising a scalar combination of state and control terms.

More generally, multi-objective optimisation can be formulated as a control problem with

a vector-valued cost function, with the goal of minimising each component simultaneously.

There are a range of strategies for handling multi-objective optimal control problems

formulated in this way, and we direct readers to [256] for a recent and extensive survey.

Here, we have only considered systems subject to a single control. While this is

reflective of the vast majority of applications featured in the control literature, there are

instances where we are interested in applying multiple controls simultaneously [31,61,291].

The FBSM can be readily applied to solve problems with multiple controls [291]; a logical

extension of this work is to adapt the acceleration methods or identify suitable alternative

methods for accelerating convergence of the FBSM for problems with multiple controls.

Over a range of tuning parameters the Wegstein, Steffensen, and Anderson methods

are able to induce convergence where the underlying FBSM fails to converge; such as in the

AML control problems with ω = 0. This behaviour has been documented for Anderson

acceleration [326] and Wegstein’s method [129] when applied to standard fixed point

iteration problems. This presents an opportunity for future exploration, in identifying

control problems that cannot be solved via the FBSM for any ω, and attempting to

produce solutions using these acceleration techniques.
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The examples we consider in this work include a variety of control problem formula-

tions that arise in systems biology. However, it is worth noting that the examples are

not exhaustive. Further challenges can be introduced; either through the formulation

of the control problem, or as a result of the behaviour of the underlying system. Ex-

amples of such challenges include control problems with singular arcs, path constraints,

multiple local solutions, discontinuous dynamics and sensitivity to the initial guess of the

control [319]. These challenges can introduce numerical difficulties, and complications

in terms of the optimal control theory; for example, control problems with singular arcs

typically require additional necessary conditions for optimality beyond those obtained

from the PMP [191]. A thorough assessment of the appropriateness of the FBSM as a

method for solving control problems with such complications is an avenue for further

investigation. We stress that the acceleration techniques that we develop and survey in

this work are able to accelerate convergence when compared to a naive FBSM implemen-

tation, and in some cases induce convergence where the naive FBSM fails to converge.

We anticipate that these trends will persist if these acceleration techniques are applied

to appropriately conceived implementations of the FBSM for the various complications

outlined here.
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Abstract

In this work we: (1) review likelihood-based inference for parameter estimation and the

construction of confidence regions; and, (2) explore the use of techniques from information

geometry, including geodesic curves and Riemann scalar curvature, to supplement typical

techniques for uncertainty quantification such as Bayesian methods, profile likelihood,

asymptotic analysis and bootstrapping. These techniques from information geometry

provide data-independent insights into uncertainty and identifiability, and can be used to

inform data collection decisions. All code used in this work to implement the inference

and information geometry techniques is available on GitHub.

https://arxiv.org/abs/2111.12201
https://github.com/Jesse-Sharp/Sharp2021b
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5.1 Introduction

Computational and mathematical models are versatile tools, providing valuable insight

into complex processes in the life sciences. Models can further our understanding of mech-

anisms and processes, facilitate development and testing of hypotheses, guide experimen-

tation and data collection and aid design of targeted interventions [52,235,291,327,331].

However, there are considerable challenges associated with calibrating these models to

data. For example, models need to be sufficiently sophisticated to adequately reflect the

behaviour of the underlying system, while ideally admitting identifiable parameters that

are interpretable, and that can be estimated from available or obtainable data [116,199].

Further, available data can be limited and often is not collected for the express purpose

of parameter estimation; data may be noisy, incomplete, or may not provide the level of

detail or sample size required to obtain precise parameter estimates [114,145,286,315,325].

Due to the challenges associated with parameter estimation, we are often interested

not only in point-estimates, but also the associated uncertainty [89,216,329]. Quantifying

and interpreting this uncertainty establishes a level of confidence in parameter estimates;

and by extension, in the insights derived from the model. Further, this uncertainty

quantification can give insights into identifiability : whether the information in a data

set can be used to infer unique or sufficiently precise parameter estimates for a given

model [299]. Often we are concerned with both structural identifiability and practical

identifiability [28, 144, 298, 323, 324]. Structural identifiability can be thought of as a

property of the underlying model structure and parameterisation; and refers to whether

it is theoretically possible to determine unique parameter values, given an infinite amount

of perfect noise-free data [50, 299, 340]. Structural identifiability requires that unique

parameter combinations precipitate distinct model outputs. Structural identifiability

occurs if and only if the Fisher information matrix, which we soon discuss, is of full

rank [172]. In contrast, practical identifiability is less well defined, and depends on the

quality and quantity of data available and existing knowledge of the parameters [50].

In the context of profile likelihood methods, practical non-identifiability can manifest as

contours of the log-likelihood function that do not admit closed levels; the log-likelihood

does not reach a predetermined statistical threshold within the physical parameter regime

[200]. If a model is not structurally identifiable, it cannot be practically identifiable.

Practical non-identifiability may be addressed either through improving data quantity

or data quality [50, 298]. Data quantity can be improved by increasing the number of

observations; such as by making additional observations at different time points. Data

quality may be improved through reducing the noise present in the data, for exam-

ple by obtaining a dataset with reduced measurement error or repeating measurements

across identically-prepared experiments [49, 276]. It is also possible to resolve practical

non-identifiability through incorporating existing knowledge about parameters, such as
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physical constraints or information established in previous studies; or specifically in the

Bayesian inferential framework, through informative priors [119]. Addressing structural

non-identifiability is more challenging, for example this may necessitate a change to the

underlying model structure [123,276,323].

Uncertainty quantification takes many forms, with common examples including Bayesian

methods, profile likelihood, asymptotic analysis and bootstrapping [114,118,231,325,330].

Bayesian methods are widely used for parameter estimation and uncertainty quantifica-

tion, with Bayesian computation being employed throughout the mathematical biology

and systems biology literature. Broadly, these methods involve repeated sampling of pa-

rameter values from a prior distribution and invoking Bayes theorem to approximate the

posterior distribution; the posterior distribution describes knowledge about the probabil-

ity of parameter combinations after taking into account the observed data and any prior

information [50, 330]. Well-known approaches include rejection sampling, Markov Chain

Monte Carlo (MCMC) and sequential Monte Carlo (SMC) or particle filtering. In rejec-

tion sampling, parameters drawn from a prior distribution are used to simulate the model;

simulated data is compared to the observed data based on some distance metric, and if

this metric is within a prescribed tolerance, the parameters are accepted as a sample from

the approximate posterior distribution, otherwise they are rejected [118, 183]. Rejection

sampling can be computationally expensive as the rejection rate can be significant with

an uninformative prior [197,268]. In MCMC the parameter space is sampled following a

Markov chain—a memoryless stochastic process where the probability of the next state

depends only on the previous state [255]—with a stationary distribution corresponding

to the posterior distribution. Samples are accepted or rejected based on the relative

likelihood between the current configuration and proposed sample [20,202,315,330]. For

SMC, rejection sampling can be used to produce an initial coarse approximation of the

posterior distribution. This coarse approximation informs further (sequential) sampling

efforts in the region of parameter space corresponding to high likelihood, reducing the

rejection rate when compared to rejection sampling alone [151, 197, 315]. MCMC and

SMC approaches can offer significantly improved efficiency in comparison to rejection

sampling [197, 330], but both involve specifying hyperparameters and these choices are

not always obvious.

In situations where the likelihood function is intractable or not easily evaluated,

Approximate Bayesian Computation (ABC) provides a range of related likelihood-free

methods for estimating posterior distributions [308]. Popular approaches include ABC

rejection sampling [151, 179, 268, 308, 336], ABC MCMC [217, 295, 302], and ABC SMC

[197, 315]; we do not focus on ABC methods here, as the approaches we explore in this

work are applied to problems with tractable likelihoods. We direct interested readers to

the wealth of information in the references provided.

For Bayesian inference methods, uncertainty can be quantified based on features such
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as the coefficient of variation and probability intervals of the posterior distribution [325].

There are a variety of approaches for uncertainty quantification for frequentist inference

methods. In profile likelihood, a parameter of interest is varied over a fixed set of val-

ues, while re-estimating the other parameters; providing insight into identifiability and

uncertainty [52]. In asymptotic analysis, confidence regions can be constructed based

on local information via a Taylor expansion of the Fisher information about the maxi-

mum likelihood estimate (MLE) [114,200]. In bootstrapping, data is repeatedly sampled

and parameter estimates are computed from the samples; these estimates are used to

construct confidence intervals [231].

Through the geometric approaches we review in this work, more akin to traditional

approaches for sensitivity analysis [216,229,344], we explore the curvature of the param-

eter space through an information metric induced by the likelihood function. Whereas

likelihood-based approximate confidence regions provide insight into specific level curves

of the likelihood function—the levels of which depend on an asymptotic large sample

argument [255]—this geometric approach provides insight into the shape and sensitivity

of the parameter space. For example, we compute geodesic curves that describe the ge-

ometric relationship between distributions with different parameters [228]; and explore

the scalar curvature throughout parameter spaces. We review ideas from information

geometry in the context of inference and uncertainty quantification; not with a view to

replacing established methods such as profile likelihood, asymptotic analysis, bootstrap-

ping and Bayesian methods [114, 231, 325, 330], but rather to supplement them where

additional insight may prove useful.

Information geometry is a branch of mathematics connecting aspects of information

theory including probability theory and statistics with concepts and techniques in differ-

ential geometry [11]. In this exposition we seek to outline only the key concepts required

to understand the information geometric analysis in this work. However, we note that

more thorough and rigorous treatments of the concepts introduced in this section, and

mathematical foundations of information geometry, can be found in texts and surveys

such as [11, 64, 239]. Central to the information geometry ideas explored in this work is

the concept of a statistical manifold ; an abstract geometric representation of a distribu-

tion space, or a Riemannian manifold consisting of points that correspond to probability

distributions, with properties that we later discuss. For example, the set of normal dis-

tributions parameterised by mean, µ, and standard deviation, σ > 0:

p(x;µ, σ) =
1

σ
√
2π

exp

[
−(x− µ)2

2σ2

]
, x ∈ R, (5.1)

can be thought of as a two-dimensional surface with coordinates (µ, σ) [64]. In this work

we will use θ to refer to the parameters of interest that we seek to estimate; i.e. θ = (µ, σ)

for the univariate normal distribution with unknown mean and standard deviation. In
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Section 5.3, we consider various combinations of components of θ; including model pa-

rameters, variability in observations characterised by a separate observation noise model,

and initial conditions associated with a differential equation-based process model. When

referring to all possible parameters, rather than solely the unknown parameters to be

estimated, we denote this Θ.

In applications where we consider multiple data sets, or different candidate models

or candidate parameter values, we are interested in methods of comparing distributions.

A well-known measure for comparing a probability distribution, P , to another, Q, is

the Kullback-Leibler (KL) divergence from P to Q, denoted DKL(P,Q) [99]. The KL

divergence, or relative entropy, can be computed as [99]:

DKL(P,Q) =

∫
p(x) log

p(x)

q(x)
dx = Ep

[
log

p(x)

q(x)

]
, (5.2)

where p(x) and q(x) are the respective probability density functions of P and Q. Consider

two sets of parameters, θ∗ and θ̂; let log(p(x)) = log(p(x|θ∗)) = ℓ(θ∗) and log(q(x)) =

log(p(x|θ̂)) = ℓ(θ̂), where ℓ(·) denotes the log-likelihood, discussed in detail in Section 5.2.

If p(x|θ∗) is the true distribution and p(x|θ̂) is our estimate, then (5.2) is the expected log-

likelihood ratio and the relationship between MLE and KL divergence becomes evident;

maximising the likelihood is equivalent to minimising KL divergence [234].

An issue with the KL divergence is asymmetry; DKL(P,Q) ̸= DKL(Q,P ). It is not

necessarily obvious in a given situation which orientation of the KL divergence will most

appropriately inform decisions such as model selection [288]. Due to the aforementioned

asymmetry, and its failure to satisfy the triangle inequality, the KL divergence is not

a metric—it is not a measure of distance in a differential geometric sense—on a given

manifold [64]. One means of addressing this asymmetry is through devising various

symmetrised forms of the KL divergence to inform model selection criteria [288]. Alter-

natively, we may approach the issue from a geometric perspective. It is natural to think

of geometry in terms of objects or shapes in Euclidean, or flat, space. Euclidean space is

characterised by orthonormal basis vectors; the standard basis in three-dimensions being

e1 = (1, 0, 0)T, e2 = (0, 1, 0)T, e3 = (0, 0, 1)T, where superscript T denotes the trans-

pose. In the n-dimensional orthonormal basis, we can compute the squared infinitesimal

distance between the points S and S + ds, where ds has components dsi, as [12]:

||ds||2 =
n∑

i=1

(dsi)
2. (5.3)

Differential geometry extends ideas from Euclidean geometry to manifolds. Manifolds

are topological spaces that resemble flat space about each individual point in the space;

they can be considered locally flat, but have a different topology globally. The sphere is



Chapter 5. Parameter estimation and uncertainty quantification using information
geometry 124

a classic example, whereby points on the surface are locally topologically equivalent to

two-dimensional Euclidean space, but globally the sphere is curved and has a compact

topology; it is bounded and closed [15]. In particular, we are interested in Riemannian

manifolds; differentiable manifolds—sufficiently locally smooth that our typical notions

of calculus remain valid—upon which we are able to measure geometric quantities such

as distance, through the existence of a Riemannian metric on the tangent space of the

manifold, that generalises the notion of an inner product from Euclidean geometry [189].

A Riemannian metric is a smooth covariant 2-tensor field; on a differentiable manifold

M , the Riemannian metric is given by an inner product on the tangent space of the

manifold, TpM , which depends smoothly on the base point p [156,189]. A tangent space

can be thought of as a multidimensional generalisation of a tangent plane to a three-

dimensional surface. Each point p on a manifold is associated with a distinct tangent

space. An n-dimensional manifold has infinitely many n-dimensional tangent spaces; the

collection of these tangent spaces is referred to as the tangent bundle of the manifold. On

a manifold each tangent space can have different basis vectors, in contrast to Euclidean

geometry where tangent vectors at any point have the same basis vectors. A consequence

of the distinct basis vectors of tangent spaces on manifolds is that tangent vectors at

different points on the manifold cannot be directly added or subtracted. Introducing an

affine connection on the manifold connects nearby tangent spaces, such that the manifold

looks infinitesimally like Euclidean space, facilitates differentiation of tangent vectors [13].

Formally, we introduce the unique, torsion free Levi-Civita connection, ∇; an affine

connection on the Riemannian manifold that yields isometric parallel transport, such

that inner products between tangent vectors, defined by the metric, are preserved [121].

The coefficients of this connection are the Christoffel symbols, which we discuss further

in Section 5.2. Readers are directed to [13, 23, 121] for further detail regarding the Levi-

Civita connection, and how it relates to other concepts discussed in this work. A manifold

equipped with such a connection and a Riemann metric is a Riemann manifold.

Metric tensors can be thought of as functions that facilitate computation of quantities

of interest such as distances on a manifold. A metric matrix with elements gij, G = [gij],

is positive definite and symmetric [189]. The metric matrix defines an inner product

between u and v as ⟨u, v⟩G = uTGv, and the length of u as ||u||G =
√
⟨u, u⟩G [80]. On

a Riemannian manifold we consider a generalisation of the square of the infinitesimal

distance element (5.3), appropriate for non-orthonormal bases [12], given by

||ds||2 =
n∑

i,j=1

gijdsidsj.

Foundational to information geometry is the notion that the Fisher information ma-

trix defines a Riemannian metric on a statistical manifold [274]. The Fisher information,
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denoted I(θ), describes the expected curvature of the log-likelihood and gives information

about the precision and variance of parameter estimates. Therefore, I(θ) can incorporate

information about both the curvature induced by the data through the observation pro-

cess, as well as the curvature induced by parameter sensitivities through a mathematical

model that links parameter estimates to data. In the examples we consider, determin-

istic model predictions are connected to the data through the probabilistic observation

process, yielding a general formula for the Fisher information [190]:

I(θ) = NJ(θ)T

Curvature induced
by data︷ ︸︸ ︷
O(m)J(θ)︸︷︷︸

Curvature induced
by parameter sensitivities

. (5.4)

Here, we denote O(m) the Fisher information matrix of the observation process, given

a model, m = m(θ), where J(θ) is the Jacobian of the model with respect to the

parameters. The number of independent, identically distributed (iid) observations in

the likelihood is given by N ; with statistical independence, the Fisher information is

additive [112].

Expression (5.4) highlights a link between sensitivity analysis, structural identifiability

and practical identifiability [209]. For sensitivity analysis and structural identifiability,

only the curvature of the model space is studied through J(θ). In practical identifiability

analysis, the sensitivity of the model is linked to the data through an observation process,

and the curvature of the parameter space is studied through, for example, I(θ).
In this review, we present and explore fundamental techniques in inference and in-

formation geometry, including confidence regions, geodesic curves, and scalar curvature.

Through application to standard distributions and canonical models in the life sciences,

including population growth processes and epidemic transmission, we demonstrate how

these techniques can be combined to provide additional insights into parameter estima-

tion and uncertainty quantification. Starting with parameter estimates inferred from real

data, we use mathematical models to generate synthetic data with different numbers of

observations and at varying points in time, to explore the impact that these aspects have

on the inference and information geometry results. Specifically, we consider univariate

and multivariate normally distributed observation processes; linear, exponential and lo-

gistic models of population growth; and the classical susceptible, infectious, recovered

(SIR) model of epidemic transmission [97, 166]. Although the examples considered in

this work are based on ODE process models drawn from the life sciences, the techniques

we consider are general and can be applied in the context of parameter estimation and

uncertainty quantification in any discipline and for other model formulations.

By considering standard distributions and canonical models we are able to explore

the inference and information geometry techniques through a series of examples with
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incremental increases in complexity. Through this approach, we consider the techniques

as applied to both linear and nonlinear ordinary differential equation (ODE) models,

coupled nonlinear ODE systems, and data with both one and many observed variables.

We consider cases where model parameters, initial conditions, and the standard deviation

of the data, are to be estimated from data. The inference and information geometry

techniques considered in this work are general, and can be applied far more widely than

the examples we consider here. To improve the accessibility of these methods, code used

to implement the inference and information geometry techniques applied in this work is

written in the open source Julia language [41]; and is available on GitHub.

In Section 5.2 we describe the inference and information geometry methods imple-

mented in this work, including maximum likelihood estimation, profile-likelihood based

approaches, geodesic curves and scalar curvature calculations. Results of applying these

techniques to univariate and multivariate normal distributions, linear, exponential and

logistic growth models and the SIR model, are presented in Section 5.3. We discuss the

utility of these techniques, and identify opportunities for extension and further consider-

ation in Section 5.4.

5.2 Methods

Here we describe the parameter inference and information geometry methods used to

produce results in this work. We also describe the numerical methods used to imple-

ment these techniques. The techniques we discuss in this section readily generalise to

parameter spaces with an arbitrary number of dimensions, so we discuss the techniques

here for arbitrary dimensions. However, for the sake of exploring the techniques through

visualisation in Section 5.3, we restrict ourselves to two-dimensional manifolds. In con-

text, this means we consider only two parameters to be inferred in any given example,

treating other parameters as known and fixed; for example, as if they are drawn from

prior knowledge or pre-estimated.

Although we consider deterministic mathematical models, data used to estimate pa-

rameters can exhibit significant variability. We follow a standard approach and assume

that the mathematical models describe the expected behaviour, and that our observa-

tions are normally distributed about this expected behaviour [144]. This allows us to

think about a statistical model, m(θ, t), in terms of its expected behaviour, µ and the

standard deviation of the observations, σ.

m(θ, t) = (µ(θ, t), σ(θ, t)).

We restrict the examples in this work to cases where σ is constant; setting σ(θ, t) = σ.

https://github.com/Jesse-Sharp/Sharp2021b
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In this work we focus on the most commonly employed additive noise model [144,276,298,

315,331]. Additive noise implies that the variance of the data is independent of the mean

behaviour. In cases where variance scales with mean behaviour, multiplicative noise may

be more appropriate. The information geometric methods presented here are applicable in

cases where the Fisher information can be obtained; including models with multiplicative

noise, and parameter or time dependent standard deviation. However, obtaining the

Fisher information is a separate challenge, and can be difficult when considering different

process and noise models.

5.2.1 Parameter inference

In this work, parameter estimates are inferred from data following a standard maximum

log-likelihood based approach. We make observations at L time-points, T = (t1, t2, ..., tL).

At each time-point we make N observations, X = (x1(T ),x2(T ), ...,xN(T )). With this

notation the log-likelihood function is

ℓ(θ;X ) =
L∑

j=1

N∑
i=1

log f
(
xi(tj);µ(θ, tj), σ

2
)
, (5.5)

where f(x;µ, σ2) is the probability density function associated with our observation pro-

cess. In this work we hold N constant across time-points, though non-constant N is

easily incorporated into Equation (5.5) as Nj. The likelihood function can be thought of

as the joint probability density of all the data for a given set of parameters. In examples

where σ is unknown, we treat σ as an element of θ, but note that the expected model

behaviour is independent of σ. The MLE is the point estimate, θ̂, that satisfies

θ̂ = argmax
θ

ℓ(θ;X ), (5.6)

where argmax(·) returns the argument, θ, that maximises ℓ(θ;X ) in (5.6). The associ-

ated maximum log-likelihood is ℓ(θ̂). MLEs of the parameters of interest are obtained

by solving (5.6) numerically as outlined later in Section 5.2. For an iid sample from a

univariate normal distribution, N (µ, σ2), maximising the likelihood function of µ is equiv-

alent to performing least-squares estimation [50], although having access to the likelihood

function facilitates uncertainty quantification.

Presenting confidence regions alongside MLEs enhances our interpretation of the like-

lihood function, while still acknowledging that the estimates carry uncertainty [255]. We

apply a probability-based log-likelihood approach when constructing confidence regions

for model parameters. From Wilks’ theorem [255], asymptotically as N → ∞, an ap-
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proximate α-level confidence region is given by{
θ : ℓ(θ) ≥ ℓ(θ̂)− ∆ν,α

2

}
, (5.7)

where ∆ν,α is the αth-quantile of the χ2(ν) distribution; with ν degrees of freedom [52].

In this work the degrees of freedom correspond to the number of parameters of interest,

i.e. ν = dim(θ). To enable comparison between different data sets and models in Section

5.3, we consider the normalised log-likelihood, ℓ̂(θ) = ℓ(θ) − ℓ(θ̂). This forms the basis

for log-likelihood ratio based hypothesis tests [255]. The normalised log-likelihood is zero

at the MLE: ℓ̂(θ̂) ≡ 0.

5.2.2 Information geometry

As outlined in Section 5.1, the Fisher information describes the curvature of the log-

likelihood function. It describes how much information a random variable, X, contains

about a parameter, θ. For unbiased estimators, the inverse of the Fisher information

provides a lower bound on the covariance matrix, via the Cramer-Rao inequality [333].

Formally, the Fisher information is the covariance of the score, where the score is defined

as the partial derivative of the log-likelihood with respect to θ [190, 255]. The Fisher

information matrix can be written as [163,255]:

[I(θ)]ij = EX

[(
∂

∂θi
log f(X;θ)

)(
∂

∂θj
log f(X;θ)

)]
. (5.8)

We can recover our expression for the Fisher information in Equation (5.4) from Equa-

tion (5.8), by considering how Equation (5.8) changes under reparameterisation, and via

application of the chain-rule for differentiation [190].

With observations at L unique times, T = (t1, t2, ..., tL), we can think of a model as

a mapping between the parameters and the outputs that we can observe:

m(θ) : θ →
((

µ1(θ, t1), σ
)
,
(
µ2(θ, t2), σ

)
, ...,

(
µL(θ, tL), σ

))
. (5.9)

We consider some examples where σ is unknown and is estimated as a part of the anal-

ysis; in these instances σ ∈ θ, however we express σ explicitly in the mapping presented

in (5.9) to emphasise that it behaves somewhat differently to a model parameter. The

expected behaviour of the model does not depend on σ, and variability in the data maps

directly to σ. In all the examples we consider, σ is constant. This could be extended to

incorporate variability dependent on the expected behaviour, for example logistic growth

with standard deviation that depends on the population density [53]. In the mapping,

this could be expressed as σ(µ(θ, t)).
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Following Equation (5.4), we can form the Fisher information as a combination of

the Fisher information matrix of the observation process, O(m), and the Jacobian of the

model with respect to the parameters, J(θ). From (5.9), with ν unknown parameters

(dim(θ) = ν), we can view the model Jacobian as

J(θ) =



∂µ1

∂θ1

∂µ1

∂θ2
. . . ∂µ1

∂θν
∂σ
∂θ1

∂σ
∂θ2

. . . ∂σ
∂θν

∂µ2

∂θ1

∂µ2

∂θ2
. . . ∂µ2

∂θν
∂σ
∂θ1

∂σ
∂θ2

. . . ∂σ
∂θν

...
...

...
∂µj

∂θ1

∂µj

∂θ2
. . .

∂µj

∂θν
∂σ
∂θ1

∂σ
∂θ2

. . . ∂σ
∂θν


. (5.10)

Noting that we are taking σ to be independent of model parameters, all of the partial

derivatives of σ in (5.10) are zero, except the case where θi = σ, for some i ∈ {1, 2, ..., ν},
whereby the corresponding partial derivative is unity. Given a set of N normally dis-

tributed observations at a single point in time, we have an observation process charac-

terised by a mean, µ, and standard deviation, σ. The Fisher information for such an

observation is given by

I(µ, σ) = N

σ2
D, where D = diag(1, 2). (5.11)

This can be verified by applying Equation (5.8) to (5.1). For data at L time-points

with N1, N2, ..., NL observations at each time, with constant standard deviation, the

Fisher information for the observation process is a 2L× 2L (block) diagonal matrix:

I(µ, σ) = diag

(
N1

σ2
D,

N2

σ2
D, ...,

NL

σ2
D

)
. (5.12)

Similarly, for a model with M species, where we have observations of all M species at

only one time-point we recover Fisher information in the form of (5.12). For observations

ofM species at L time-points we form a 2LM×2LM (block) diagonal matrix from (5.12).

Assuming a constant standard deviation, for the computations in this work we could more

simply express (5.12) as the diagonal matrix diag(N1/σ
2, N2/σ

2, ..., NL/σ
2, 2
∑
Ni/σ

2),

where
∑
Ni is the total number of observations contributing to our information regarding

the standard deviation, and the factor of two comes from (5.11). In this case, the model

Jacobian as presented in (5.10) is modified such that only the final row includes the

partial derivatives with respect to the standard deviation.

Before outlining specific techniques of information geometry, we present a conceptual

example to develop some intuition for information geometric concepts. Consider the

manifold corresponding to the family of univariate normal distributions parameterised
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by mean, µ, and standard deviation, σ > 0. Let P ∼ N (µ1, σ) and Q ∼ N (µ2, σ)

be two normal distributions. Geometrically speaking, increasing σ reduces the distance

between P and Q; this corresponds to a contraction of the space. Conversely, decreasing

the variance dilates the space; as σ → 0, the Fisher information, diag(1/σ2, 1/σ2), is

degenerate and the distance between P and Q tends to infinity.

Equipped with the Fisher information, we may begin to explain some foundational

ideas from information geometry; including geodesic curves, geodesic distances between

distributions for statistical models, and scalar curvature [11]. We denote the elements

of the Fisher information as I(θ) = [gij(θ)], and its inverse I(θ)−1 = [gij(θ)], where

θ = (θ1, θ2, ..., θν) are the coordinates of the manifold. While uncertainty in estimates

is typically characterised by the Fisher information at only a single point, based on

the Cramer-Rao inequality [333], information geometry utilises the Fisher information

throughout the parameter space. A Riemann geodesic is a curve forming the shortest

path between two points in a Riemannian manifold [14]. The length of this shortest

curve is referred to as the Fisher or Fisher-Rao distance [259]. We soon discuss a rela-

tionship between confidence regions and the length of geodesic curves. Informally, with

greater information supporting a MLE, coinciding with an increase in its relative likeli-

hood, confidence regions tighten. This also corresponds to a dilation of the parameter

manifold; thereby increasing the geodesic distance between the MLE and other parameter

combinations, reflecting their relatively reduced likelihood.

A curve z(s), parameterised by s, connecting the points z1 = z(s1) and z2 = z(s2) on

a Riemannian manifold, has length [156]:

L(z) =

∫ s2

s1

√√√√ n∑
i,j=1

(
gij(θ(z(s)))

dθi(z(s))

ds

dθj(z(s))

ds

)
ds. (5.13)

A Riemann geodesic is a curve that minimises L(z) (5.13), such that the distance

between two points on a Riemannian manifold is given by the curve that satisfies

d(z1, z2) = min{L(z) : z(s1) = z1, z(s2) = z2}.

For Gaussian likelihoods, there is an asymptotic relationship between the geodesic

distance between the MLE, θ̂, and a point θα that corresponds to an α-level confidence

region on the manifold [22]. The geodesic distance between θ̂ and θα: d(θ̂,θα); can be

written in terms of the αth-quantile of the χ2(ν) distribution

d(θ̂,θα) =
√
∆ν,α. (5.14)

Pairing Equations (5.7) and (5.14) yields an asymptotic relationship between confi-
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dence regions and geodesic length [22]:

2
(
ℓ(θ̂)− ℓ(θ)

)
∼ d(θ̂,θα)

2 as N → ∞. (5.15)

In Section 5.3 we present likelihood-based confidence regions alongside geodesic curves

of the corresponding length, as characterised by (5.14), and comment on the validity of

Equation (5.15) in a range of scenarios.

Geodesic curves satisfy the following system of differential equations in n dimensions

[260]:

d2θm
ds2

+
n∑

i,j=1

Γm
ij

dθi
ds

dθj
ds

= 0, m = 1, ..., n, (5.16)

where s is the parameterisation of the geodesic curve, in accordance with Equation (5.13),

and Γm
ij are the Christoffel symbols of the second kind [64], defined as

Γm
ij =

1

2

n∑
l=1

gml

(
∂glj
∂θi

+
∂gli
∂θj

− ∂gij
∂θl

)
. (5.17)

We can convert from Christoffel symbols of the second kind to Christoffel symbols

of the first kind by lowering the contravariant (upper) index through multiplication by

the metric: Γkij = gkmΓ
m
ij [140]. Here, repeated indices, in this case m, imply a sum-

mation is to be performed over the repeated index, following the Einstein summation

convention [15]. Conversely, we can recover Christoffel symbols of the first kind from

Christoffel symbols of the second kind via the inverse metric: gkmΓkij = Γm
ij . Christoffel

symbols of the second kind are the connection coefficients of the Levi-Civita connection;

the Christoffel symbols are symmetric in the covariant (lower) indices [121]. On an n-

dimensional manifold, the Christoffel symbol is of dimension n × n × n. Geodesics can

be used to construct theoretical confidence regions, to measure the geometric distance

between probability distributions, and to perform hypothesis testing, for example to test

equality of parameters [162,228,239].

Under certain conditions, analytical expressions can be obtained for the solutions

of the geodesic equations, and the corresponding Fisher-Rao distances, for example in

the case of the univariate (5.1) and multivariate (5.25) normal distributions [65, 259].

However, we solve Equation (5.16) numerically, after converting the second order ODE

to a first order system of ODEs using standard techniques.

We are also interested in exploring the scalar curvature, also known as the Ricci

scalar, of our manifolds. To compute the scalar curvature, we must first construct the

Riemann tensor, and subsequently the Ricci tensor. As we only require these tensors

for computation of the scalar curvature, and do not attempt to interpret these tensors
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directly in this work, we provide only a limited outline of their interpretation. The

Riemann curvature tensor is constructed from the Christoffel symbols and their first

partial derivatives. Here, it is convenient to think about these partial derivatives as being

with respect to the parameters of interest. Due to the possibility of raising or lowering

indices of Christoffel symbols and tensors via the metric, there are several equivalent

expressions for computing the Riemann curvature tensor [140]. The elements of the

Riemann tensor of the first kind can be written as

Rijkl =
∂Γjli

∂k
− ∂Γjki

∂l
+ ΓilrΓ

r
jk − ΓikrΓ

r
jl. (5.18)

The Riemann tensor of the first kind is a (0,4) tensor (with no contravariant indices and

four covariant indices), and can be converted to the (1,3) Riemann tensor of the second

kind via the inverse of the metric: gimRijkl = Rm
jkl. On an n-dimensional manifold, the

Riemann tensor is of dimension n×n×n×n; due to various symmetries however, there are

far fewer independent elements [208]. The Riemann tensor provides information about

the intrinsic curvature of the manifold. A geometric interpretation is that a vector from

a point on the manifold, parallel transported around a parallelogram, will be identical to

its original value when it returns to its starting point if the manifold is flat. In this case,

the Riemann tensor vanishes. If the manifold is not flat, the Riemann tensor can be used

to quantify how the vector differs following this parallel transport [206].

From the Riemann tensor of the second kind, we can compute the Ricci tensor of the

first kind. The Ricci tensor, Rij, is obtained by contracting the contravariant index with

the third covariant index of the Riemann tensor of the second kind; that is,

Rij = Rm
ijm. (5.19)

On an n-dimensional manifold, the Ricci tensor is of dimension n× n, and is symmetric

[206]. The Ricci tensor can quantify the changes to a volume element as it moves through

the manifold, relative to Euclidean space [206].

The scalar curvature, Sc, can be obtained as a contraction of the Ricci tensor

Sc = gijRij. (5.20)

The scalar curvature is invariant; it does not change under a change of coordinates (re-

parameterisation). For Gaussian likelihoods, the corresponding manifold is flat; char-

acterised by zero scalar curvature everywhere. As such, the scalar curvature provides

a measure of how the likelihood of the underlying statistical model deviates from being

Gaussian—often referred to as non-Gaussianity in the physics and cosmology literature—

irrespective of the parameterisation [121]. As we will explore in Section 5.3, it can also

provide insights into parameter identifiability.
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5.2.3 Hypothesis testing

Here we outline the approach for performing likelihood-ratio-based hypothesis tests, and

hypothesis tests based on geodesic distance. As we consider synthetic data in this work,

we know the true parameter values, θt. In practical applications this is not the case. As

such, we may seek to test whether some previously held notion about the true parameters,

θt = θ0, is supported by the data, based on the computed MLE. This could be investigated

via the following hypothesis test: {
H0 : θt = θ0,

H1 : θt ̸= θ0.
(5.21)

From Equation (5.7) the test statistic for such a likelihood-rato-based hypothesis test can

be expressed as

λLR = −2(ℓ(θ0)− ℓ(θ̂)), (5.22)

where asymptotically as N → ∞, λLR ∼ χ2(ν), following Wilk’s theorem [255]. From

the asymptotic relationship given in Equation (5.15), it follows that under the same

asymptotic relationship the test statistic for a hypothesis test based on geodesic distance

is [162]:

λGD = d(θ0, θ̂)
2. (5.23)

The likelihood values required to compute Equation (5.22) can be obtained directly by

evaluating Equation (5.5). To compute the geodesic distance between two specific points

in parameter space, as required by Equation (5.23), it is necessary to solve a boundary

value problem to obtain the geodesic curve between θ0 and θ̂. Approximate p-values can

be computed from these test statistics as 1−Fχ2(ν)(λLR) and 1−Fχ2(ν)(λGD), respectively,

where Fχ2(ν) is the cumulative distribution function of χ2(ν) [52]. We provide practical

examples of each of these approaches to hypothesis testing in Section 5.3.

5.2.4 Numerical implementation

All numerical techniques used to produce the results in this work are implemented in

the open source Julia language [41]; we use a combination of existing Julia packages and

bespoke implementations. There are several aspects of numerical computation in this

work, including approximate solutions to systems of ODEs, differentiation with both fi-

nite differences and forward mode automatic differentiation, likelihood computation and

nonlinear optimisation. Nonlinear optimisation for obtaining MLEs and parameter com-

binations corresponding to particular confidence levels is performed with the Julia pack-
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age NLopt.jl, using the Bound Optimisation by Quadratic Approximation (BOBYQA)

algorithm. BOBYQA is a derivative-free algorithm for solving bound constrained opti-

misation problems [266]. Approximate solutions to ODEs are obtained using the Julia

package DifferentialEquations.jl [272]. The second order Heun’s method [91]; a two-stage

Runge-Kutta method, is used for obtaining contours of the log-likelihood function to form

approximate likelihood-based confidence regions [52]. Heun’s method is implemented as

Heun() in DifferentialEquations.jl. Approximate solutions to geodesic differential equa-

tions are obtained using the Tsitouras implementation of the Runge–Kutta method, that

employs Runge–Kutta pairs of orders 5 and 4 [320], implemented as Tsit5() in Dif-

ferentialEquations.jl. Boundary value problems for geodesic-distance-based hypothesis

tests are solved using the DifferentialEquations.jl implementation of a shooting method,

utilising Tsit5(). Code for reproducing all examples in this work is available on GitHub.

5.3 Results

In this section we present results combining likelihood based parameter inference and un-

certainty quantification with ideas from information geometry, including geodesic curves

and scalar curvature. We apply these techniques to univariate and multivariate nor-

mal distributions, linear, exponential and logistic population growth models and the SIR

model. Through these canonical examples, we explore pedagogically differences in the in-

ference and information geometry results that arise as we consider parameter estimation

and uncertainty for increasingly complex systems.

Synthetic data for the univariate and multivariate normal distributions are generated

by sampling from the respective distributions given in Equation (5.24). For simplicity,

in this work we consider synthetic data from uncorrelated observation processes with

constant standard deviation in both time and parameter space. However, we note that

the techniques presented in this work can be generalised to handle data with non-constant

variance and for other distributions where the Fisher information is available [53].

Univariate : xi ∼ N (µ, σ2), Multivariate : xi ∼ MVN(µ,Σ), (5.24)

where Σ = diag(σ2) is the covariance matrix. For the population growth and SIR models

considered in this work, synthetic data is generated by drawing from a normal distri-

bution with mean described by the model solution and a prescribed standard deviation;

effectively substituting µ = µ(θ, t) in Equation (5.24) for observation processes with a

single variable, and µ = µ(θ, t) for observation processes with several variables. When σ

is one of the parameters to be estimated, σ ∈ θ, but µ does not depend on σ. Parameter

values that we use to generate synthetic data correspond to parameter estimates inferred

from field data in the literature [235,299].

https://github.com/Jesse-Sharp/Sharp2021b
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We present a series of figures in this section visualising the normalised log-likelihood,

ℓ̂, and scalar curvature, Sc, as heatmaps, with likelihood-based 95% confidence regions

and geodesics with a length corresponding to a 95% confidence distance superimposed.

All results are computed numerically, as outlined in Section 5.2, with code available on

GitHub. Unless otherwise indicated, each set of geodesics includes 20 geodesics with

initial velocities corresponding to equidistant points uniformly distributed on the circum-

ference of a unit circle. As such, the apparent clustering of geodesics in some examples

highlights differences in the scaling and stretching of parameter spaces. Each scalar

curvature and log-likelihood heatmap is computed on a uniformly discretised 100 × 100

grid.

5.3.1 Normal distributions

We first consider parameter inference and information geometry techniques applied to

observations drawn directly from univariate and bivariate normal distributions, with no

underlying process model. In Figure 5.1 we present results for the univariate normal

distribution (5.1), estimating θ = (µ, σ). The true mean and standard deviation used

to generate data are (µ, σ) = (0.7, 0.5). Estimates are obtained via maximum likelihood

estimation. MLEs of normal variance are known to provide biased underestimates [255],

and the derivation of the Fisher information assumes an unbiased estimator [113]. This

may partially explain the particular differences observed between the likelihood-based

confidence region and the endpoints of the geodesics in Figure 5.1, wherein the geodesics

appear not only to suggest a tighter confidence region, but also appear to be biased

towards parameter space with smaller standard deviation. As the number of observations

increases from N = 10 to N = 100, we observe not only that the MLE more precisely

estimates the true parameter values, but also the endpoints of the geodesic curves more

closely correspond to the likelihood-based confidence regions. This is consistent with

both the theoretical asymptotic relationship between geodesic length and likelihood-based

confidence regions given in Equation (5.15), and also the bias of the MLE for standard

deviation decreasing, as N increases.

The manifold representing the family of normal distributions parameterised by θ =

(µ, σ) has constant scalar curvature Sc = −1. Due to the additive nature of the Fisher

information, having N observations results in a constant scalar curvature of Sc = −1/N ,

as presented in Figure 5.1(c,d). It is straightforward, although tedious, to verify this

result through combining Equations (5.4), (5.17), (5.18), (5.19) and (5.20).

https://github.com/Jesse-Sharp/Sharp2021b
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Figure 5.1: Univariate normal distribution with inferred mean, µ, and standard deviation,
σ. Heatmaps visualise the normalised log-likelihood, ℓ̂, (a,b) and the scalar curvature,
Sc, (c,d). True parameter values, (µ, σ) = (0.7, 0.5), are marked with green discs, with
the MLEs indicated using red discs. Magenta curves correspond to likelihood-based 95%
confidence regions. Black lines are geodesic curves emanating from the MLEs, with a
geodesic length corresponding to a theoretical 95% confidence region. Increasing the
number of data points, N , tightens the confidence regions, improves the correspondence
between geodesic curves and likelihood-based confidence regions, and reduces the scalar
curvature.
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The probability density function for the multivariate normal distribution with two

independent variables; x, y ∈ R, with constant standard deviation σ is

p(x, y;µ1, µ2, σ) =
1

2πσ2
exp

(
−
(
(x− µ1)

2 + (y − µ2)
2

2σ2

))
. (5.25)

In Equation (5.25) there are 3 parameters that we could estimate from data; Θ =

(µ1, µ2, σ). As we estimated the mean and standard deviation for the univariate nor-

mal distribution in Figure 5.1, we consider inference of both means for the multivariate

normal; θ = (µ1, µ2). Results are presented in Figure 5.2. Even with a small number

of observations (N = 10), we observe an excellent match between the likelihood-based

confidence regions and geodesics when only estimating means. As expected, increasing

N results in a MLE closer to the true values, and tighter confidence regions. We also

observe that the confidence regions are symmetric with respect to each mean parameter.

When estimating only the mean parameters of the multivariate normal distribution, we

see that the scalar curvature is zero everywhere. This is to be expected, as the Fisher in-

formation for normally distributed observation processes, Equation (5.11), depends only

on the standard deviation and not the mean. As such all of the partial derivatives used to

construct the Christoffel symbols, (5.17), are zero; this vanishing of the Christoffel sym-

bols translates to zero scalar curvature through Equations (5.18), (5.19) and (5.20). We

also observe that, in contrast to the evident curvature of the geodesics for the univariate

normal case presented in Figure 5.1, the geodesic curves in Figure 5.2 appear perfectly

straight when plotted in Euclidean geometry. The Riemann tensor (5.18) is zero ev-

erywhere when inferring multivariate normal means. This suggests that the manifold is

flat.

Results presented in this work predominantly feature 95% confidence regions. We

note that although this choice is common [108], it is also arbitrary, and equivalent anal-

ysis could be performed at different confidence levels. In examples where the geodesic

endpoints approximately align with the likelihood-based confidence regions at the 95%

level, we expect intermediate points along the geodesics to also approximately align with

corresponding likelihood contours, in accordance with Equation (5.15). However, in ex-

amples where we observe a mismatch between geodesic endpoints and likelihood-based

confidence intervals at the 95% level, we do not expect intermediate points along geodesics

to correspond to likelihood contours. This is demonstrated in Figure 5.3.

Having considered the techniques as applied directly to distributions, we now incor-

porate ODE-based process models, such that our observations are normally distributed

about the solution of a mathematical model.
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Figure 5.2: Multivariate normal distribution with inferred means, µ1, and µ2, with known
constant standard deviation, σ = 0.3. Heatmaps visualise the normalised log-likelihood,
ℓ̂, (a,b) and the scalar curvature, Sc, (c,d). True parameter values, (µ1, µ2) = (0.8, 1.2),
are marked with green discs, with the MLEs indicated using red discs. Magenta curves
correspond to likelihood-based 95% confidence regions. Black lines are geodesic curves
emanating from the MLEs, with geodesic lengths corresponding to a theoretical 95%
confidence region. Increasing the number of data points, N , tightens the confidence
regions. In contrast to the univariate case where we infer standard deviation in Figure
5.1, when only inferring the mean parameters of the multivariate normal distribution,
we see that even with few observations, N = 10, the geodesics and likelihood-based
confidence regions match closely. As we are estimating means only, and there is no
model-induced curvature, the scalar curvature is zero everywhere.
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Figure 5.3: Comparison of confidence regions at intermediate likelihood values and
geodesic distances. Results correspond to (a) univariate normal distribution with inferred
mean, µ, and standard deviation, σ, as considered in Figure 5.1a, and (b) multivariate
normal distribution with inferred means, µ1, and µ2, as considered in Figure 5.2a. MLEs
are indicated using red discs. Dashed curves correspond to likelihood-based 50% (green),
90% (blue), and 95% (orange) confidence regions. Solid lines are geodesic curves emanat-
ing from the MLEs, with geodesic lengths within a theoretical 50% (green), 90% (blue),
and 95% (orange) confidence distance.
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5.3.2 Population growth models

The canonical logistic growth model, alongside generalisations and related sigmoid models

such as Gompertz and Richards’ models, have been extensively applied to study popula-

tion growth dynamics in the life sciences [252,299]. In Figure 5.4 we present data from the

literature describing the area covered by hard corals in a region as they regrow following

an adverse event. This can be modelled as a logistic growth process [299]. Logistic growth

of a population with density, C(t), is characterised by a growth rate, r > 0, initial condi-

tion, C(0) > 0, and carrying capacity, K > 0. Treating parameters values (r,C(0),K) =

(0.9131 [year−1], 0.7237%, 79.74%), and standard deviation σ = 2.301%, inferred in the

literature from this field data as the true values, we generate various synthetic data sets

with multiple observations at various time-points.

The logistic growth model is well approximated by the exponential growth model

when C(t) ≪ K [321], and early time exponential growth is approximately linear. Before

considering the inference and information geometry techniques as applied to the logistic

model, we first consider the more fundamental linear and exponential growth models.

In Figure 5.5 we present example synthetic linear and exponential data, and in Figure

5.6 synthetic logistic data. In the context of population growth models, the presence of

variability in observations at a single time-point could reflect, for example; measurement

error, variability in population estimates, or expert judgement [106].
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Figure 5.4: Markers correspond to data from field studies, representing the % of area in a
region covered by hard corals, as the coral population regrows following depletion by an
external event [299]. Data originally extracted from the Australian Institute of Marine
Science (AIMS) Long TermMonitoring Program (LTMP) eAtlas (eatlas.org.au/gbr/ltmp-
data). A logistic model is fit to the data in [299], with inferred parameters: r = 0.9131
[year−1], C(0) = 0.7237%, K = 79.74% and standard deviation σ = 2.301; this is repro-
duced here as the green curve.



Chapter 5. Parameter estimation and uncertainty quantification using information
geometry 142

0.0 0.1 0.2 0.3 0.4 0.5
Time (years)

0.0

0.5

1.0

1.5

P
op

ul
at

io
n 

de
ns

ity
 (

%
)

Linear — inferring a, C(0)

Model fit
Data
True model(a)

0.0 0.1 0.2 0.3 0.4 0.5
Time (years)

0.0

0.5

1.0

1.5

P
op

ul
at

io
n 

de
ns

ity
 (

%
)

Exponential — inferring a, C(0)

Model fit
Data
True model(b)

Figure 5.5: Example synthetic data generated from the linear and exponential models
with comparison of early time linear and exponential model fits, inferring a and C(0).
N = 10 observations per time-point, with time-points T = (0.1, 0.25, 0.5). True param-
eter values are a = 0.9131, C(0) = 0.7237, with known standard deviation, σ = 0.2301.
For generating synthetic early time linear and exponential data, we reduce the standard
deviation relative to the σ = 2.301 computed from the logistic model, as early time data
produced with C(0) = 0.7237 and σ = 2.301 produces negative population density ob-

servations. Inference produces MLEs of (â, ˆC(0)) = (0.8988, 0.6642) for the linear model,

and (â, ˆC(0)) = (0.9412, 0.6695) for the exponential model.
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Figure 5.6: Example synthetic data generated from the logistic growth model. The logistic
model is fit to the synthetic data, inferring pairwise combinations of r with C(0), K and
σ. Observations are made at T = (2.74, 6.84, 10.95) years, with N = 10 observations
per time-point. True parameter values are r = 0.9131, C(0) = 0.7237, K = 79.74 and
σ = 2.301.
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Linear growth

Linear growth describes growth at a constant rate, independent of the population density.

The linear growth model and solution are given by

dC

dt
= a, C(t) = at+ C(0).

With parameters Θ = (a, C(0), σ), µ(Θ, t) = at+C(0) describes the expected model

behaviour. In Figure 5.7(a-f) we present inference results for the linear model for all

pairwise combinations of Θ. The partial derivatives of the linear model with respect to

the parameters a and C(0), required to form the Jacobians, J(θ), are

∂µ(Θ, t)

∂a
= t,

∂µ(Θ, t)

∂C(0)
= 1.

Recall from Equation (5.10) that we only require the partial derivatives correspond-

ing to unknown parameters in any given example. When estimating θ = (a, C(0)) we

find that, similar to the multivariate normal case where we estimate means, the scalar

curvature is zero everywhere. We also observe that the end-points of the geodesics align

with the likelihood-based confidence region. We stress that this arises through the rela-

tionship in Equation (5.15), and is not forced to occur via termination of the numerical

solution of the ODE once it reaches the likelihood-based confidence region. However, due

to the relationship between a and C(0), we find that the confidence regions in this case

are not symmetric about the MLE with respect to each parameter. Rather, we see that

for a given normalised log-likelihood value a larger growth rate corresponds to a smaller

initial condition, and vice versa. This aligns with our intuition when considering fitting

a straight line through data, as presented in Figure 5.5a; lines with a greater slope (a)

must start lower (C(0)) to fit the data.

When one of the parameters to be estimated is σ, we observe similar results to the

univariate normal case; geodesic endpoints are offset in the direction of decreasing σ

relative to the likelihood-based confidence regions, and there is constant scalar curvature

of Sc = −1/N . The geodesics and confidence regions appear symmetric with respect to

the model parameter, about the MLE.

Exponential growth

Exponential growth describes growth at a rate proportional to the size of the population.

The exponential growth model and solution are
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dC

dt
= aC, C(t) = C(0) exp(at).

With parameters Θ = (a, C(0), σ), µ(Θ, t) = C(0) exp(at) describes the expected

model behaviour. The partial derivatives of the exponential model with respect to the

parameters a and C(0), required to form the Jacobians, J(θ), are

∂µ(Θ, t)

∂a
= tC(0) exp(at),

∂µ(Θ, t)

∂C(0)
= exp(at).

By construction, as detailed in Figure 5.5, the linear and exponential models with

identical parameters and initial conditions produce very similar behaviours over a suf-

ficiently small time-scale. This is seen when comparing the inference results for the

exponential model, presented in Figure 5.7(g-l), to the corresponding linear results in

Figure 5.7(a-f). When inferring θ = (a, σ), deviations from the corresponding linear

results are minimal. The likelihood-based confidence region and corresponding geodesic

endpoints for θ = (a, C(0)) are marginally tighter and less elliptical. When inferring

θ = (C(0), σ), we find that the confidence region for the exponential model is narrower

with respect to C(0) than that of the linear model, though near-identical with respect to

σ. As for the linear case, the scalar curvature is Sc = −1/N everywhere when σ is one

of the unknown parameters, and zero everywhere otherwise.
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Figure 5.7: Linear (a-f) and exponential (g-l) models with inferred pairwise combinations
of growth rate, a, initial condition, C(0), and standard deviation, σ. Heatmaps visualise
the normalised log-likelihood, ℓ̂, (a-c,g-i); and the scalar curvature, Sc, (d-f,j-l). Observa-
tions are made at T = (0.1, 0.25, 0.5), with 10 observations per time-point; corresponding
to the example data presented in Figure 5.5. The true parameter values are marked with
green discs, with the MLEs indicated using red discs. Magenta curves correspond to
likelihood-based 95% confidence regions. Black lines are geodesic curves emanating from
the MLEs, with lengths corresponding to a theoretical 95% confidence distance. True
values of model parameters correspond to the logistic growth parameters; a = 0.9131,
C(0) = 0.7237, with reduced standard deviation σ = 0.2301.
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Logistic growth

Logistic growth describes growth at a rate dependent on the size of the population, with

growth ceasing once the population reaches a carrying capacity. For sufficiently small

populations relative to the carrying capacity, logistic growth is approximately exponential

[321]. As the population approaches the carrying capacity, the rate of growth slows. The

logistic growth model is

dC(t)

dt
= rC(t)

(
1− C(t)

K

)
,

with solution

C(t) =
C(0)K

C(0) + (K − C(0)) exp (−rt)
. (5.26)

The long-time limit of Equation (5.26) is lim
t→∞

C(t) = K. The behaviour of the logistic

model can be described by the three model parameters and standard deviation: Θ =

(r, C(0), K, σ). We can compute the partial derivatives required to form the Jacobian

matrices, J(θ), analytically:

µ(Θ, t) = C(r, C(0), K, t) =
C(0)K

C(0) + (K − C(0)) exp (−rt)
,

∂µ(Θ, t)

∂r
=

C(0)Kt(K − C(0)) exp (−rt)
((K − C(0)) exp (−rt) + C(0))2

,

∂µ(Θ, t)

∂C(0)
=

K2 exp (rt)

(C(0)(exp (rt)− 1) +K)2
,

∂µ(Θ, t)

∂K
=
C(0)2 exp (rt) (exp (rt)− 1)

(C(0)(exp (rt)− 1) +K)2
. (5.27)

Recall that θ includes only the unknown parameters to be estimated, so the compo-

nents required from Equation (5.27) to form J(θ) depend on the specific example.

Example synthetic logistic data is presented in Figure 5.6, demonstrating the model

fits for θ = (r, C(0)), θ = (r,K) and θ = (r, σ). With data at early, mid and late time,

T = (t1, t2, t3) = (2.74, 6.84, 10.95) years, we observe an excellent model fit in all cases.

The fit is best when θ = (r, σ), as only one model parameter is unknown. Comparing

θ = (r, C(0)) and θ = (r,K) we observe a marginally better fit at late time when K is

known, and at early time when C is known, as expected.

We present inference results for the logistic model for θ = (r, C(0)) in Figure 5.8(a-f)

and for θ = (r,K) in Figure 5.8(g-l). We do not present further results of inferring σ

for the logistic model, as little insight is gained beyond what we glean from the linear

and exponential growth results. For θ = (r, C(0)), the normalised log-likelihood reflects

the same relationship between growth rate and initial condition as for the linear and
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exponential case. With early-mid time data and early-mid-late time data, we are able

to infer θ = (r, C(0)). With only mid-late time data, we find that the parameters

are not practically identifiable. This can be seen from Figure 5.8(c); the normalised

log-likelihood remains above the threshold prescribed in Equation (5.7), and a closed

likelihood-based 95% confidence region cannot be constructed based on Wilks’ theorem.

This is also reflected in Figure 5.8(f) alongside zero scalar curvature; such that the plot

appears empty. Comparing Figure 5.8(a,b), and noting that they each rely on the same

total number of observations, the importance of early and mid time data when inferring

θ = (r, C(0)) is reinforced. The confidence region is tighter with only early-mid data,

than with the same amount of data spread across early, mid and late times.

Inferring θ = (r,K) reflects similar behaviour. In Figure 5.8(j) and associated

zoomed-in view (Figure 5.8g), inferring the carrying capacity from only early-mid time

data results in an extremely wide confidence region, though the parameters remain iden-

tifiable. The geodesics emanating from the MLE match the likelihood-based confidence

region very well in directions where the normalised log-likelihood is steep, however they

do not quite reach the true parameter value in the direction where the normalised log-

likelihood is relatively flat. Comparing Figure 5.8(g,j) to Figure 5.8(h,i), the MLE for

θ = (r,K) appears to be relatively poor when only early-mid time data is used.

When considering θ = (r, C(0)), we see that with early-mid time data and mid-late

time data, the scalar curvature is zero everywhere. However, introducing a third time-

point (early-mid-late data) results in a non-constant negative scalar curvature. We expect

that this relates to the relationships between the parameters, and the difference between

a mapping (where we have two pieces of information and two parameters to estimate),

and a fit (where we have three pieces of information and two parameters to estimate). We

do not observe similar behaviour for θ = (r,K) with data at three time-points; the scalar

curvature still appears to be zero everywhere. One explanation for this is that data at t1,

where C(t) ≪ K, may be effectively independent of K; providing no information about

K [329]. This may effectively reduce the problem to a mapping. Given that the scalar

curvature is a feature of the manifold rather than the data, it is of interest to investigate

what would happen, were the true parameters to lie within this region of non-constant

scalar curvature.

To address this, we generate an alternate set of synthetic logistic growth data using

parameter values from within the high curvature region;

(r, C(0)) = (0.9, 0.2), with (K, σ) = (79.74, 2.301) as before. Inference results are pre-

sented in Figure 5.9. We still observe correspondence between the endpoints of the

geodesics and the likelihood-based confidence region, however the confidence region is

now significantly narrower and reflects a more hyperbolic shaped relationship between r

and C(0) in terms of the normalised log-likelihood. Increasing the number of observa-

tions, as depicted in Figure 5.9c, has the expected effects of tightening the confidence
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Figure 5.8: Logistic growth model with inferred growth rate, r, and initial condition,
C(0), (a-f); and with inferred growth rate, r, and carrying capacity, K, (g-l). True pa-
rameters are as noted in Figure 5.6, with known standard deviation, σ = 2.301. Heatmaps
visualise the normalised log-likelihood (a-c,g-j) and the scalar curvature (d-f,k-l). The
true parameter values are marked with green discs, with the MLEs indicated using red
discs. Magenta curves correspond to likelihood-based 95% confidence regions. Black lines
are geodesic curves emanating from the MLEs, with lengths corresponding to a theoret-
ical 95% confidence distance. Columns of the figure correspond to observations from
early-mid time (T = (t1, t2)), early-mid-late time (T = (t1, t2, t3)), and mid-late time
(T = (t2, t3)), where (t1, t2, t3) = (2.74, 6.84, 10.95) years. Each plot reflects a total of 30
observations, distributed equally between the specified time-points. The red outline in
(j) corresponds to the (zoomed in) region (g), also outlined in red. In (g,j) we plot 1000
geodesics to observe the geodesic near the true parameter values. We do not present Sc
corresponding to (g,j), however it is zero everywhere.



Chapter 5. Parameter estimation and uncertainty quantification using information
geometry 150

region and reducing the scalar curvature. This reduces the apparent curvature of the

confidence region.
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Figure 5.9: Logistic growth model with inferred growth rate, r, and initial condition,
C(0), with known standard deviation, σ = 2.301 and carrying capacity, K = 79.74.
Heatmaps visualise the normalised log-likelihood (a) and the scalar curvature (b-c). Data
is observed at T = (2.74, 6.84, 10.95), with 10 (a-b) and 50 (c) observations per time-point.
The true parameter values are marked with green discs, with MLEs indicated using red
discs. Magenta curves correspond to likelihood-based 95% confidence regions. Black
lines are 100 geodesic curves emanating from the MLEs, with lengths corresponding to a
theoretical 95% confidence distance.
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5.3.3 SIR epidemic model

The SIR model describes the dynamics of epidemic transmission through a population

[235]. Populations are assumed to be comprised of susceptible, s(t), infected, i(t), and

recovered, r(t), individuals. The total population, N , is held constant. When analysing

the SIR model in this work, we consider each population as a proportion of the total

population, such that S(t) = s(t)/N , I(t) = i(t)/N , and R(t) = r(t)/N . Quantities

N , s(t), i(t) and r(t) are dimensional with dimensions of number of individuals, whereas

S(t) ∈ [0, 1], I(t) ∈ [0, 1] and R(t) ∈ [0, 1] are dimensionless quantities with the property

that S(t)+I(t)+R(t) = 1. While the coral re-growth process considered in the population

model examples takes place over many years, epidemic occur over a timescale of days or

weeks. As such, we now take t to represent time as measured in days, rather than years.

The parameters of the SIR model are the infection rate, β [day−1], and the rate at which

infected individuals are removed, γ [day−1], for example, via recovery from the infection:

dS

dt
= −βSI,

dI

dt
= βSI − γI,

dR

dt
= γI. (5.28)

Alongside β and γ we could also treat the initial conditions; S(0), I(0) and R(0), as

unknown parameters to be estimated. The standard SIR model presented in Equation

(5.28) is sufficient for our purposes in this work, however numerous extensions to the

SIR model are considered in the literature. These extensions incorporate factors such

as age structure, birth and death, exposed but not yet infected individuals, seasonal-

ity, competition between infectious strains, waning immunity, vaccination and spatial

structure [70,235,253,281].

Data pertaining to the proportion of a population infected during an influenza out-

break in a boarding school is presented in Figure 5.10. Observations in the original data

record the number of infected individuals over a 14 day period [235], in a population of

N = 763, with initial populations (s(0), i(0), r(0)) = (762, 1, 0). This data is used in [235]

to estimate parameters for the SIR model, which, after scaling such that S + I +R = 1,

are β = 1.6633 and γ = 0.44036. We treat these values as the true parameters when

generating synthetic data; examples of which are presented in Figure 5.11. In the context

of an SIR model, the presence of multiple observations at a single time-point could reflect,

for example; reporting errors, uncertainty in test accuracy or expert judgement [137,347].

In the boarding school data considered in [235], observations pertain only to the number

of infected individuals. Given that the SIR model features multiple populations, data

could in theory contain observations of the other populations also. Example synthetic



Chapter 5. Parameter estimation and uncertainty quantification using information
geometry 152

0 2 4 6 8 10 12 14
Time (days)

0.00

0.25

0.50

0.75

1.00

P
op

ul
at

io
n 

pr
op

or
tio

n

Data
S
I
R

Figure 5.10: Data marked with red discs represents number of infected individuals during
an influenza outbreak in a boarding school [235]. Susceptible, S(t), infected, I(t), and
recovered, R(t) populations are modelled according to Equation (5.28) based on param-
eters inferred in [235], β = 1.6633, γ = 0.44036; which we treat as the true parameters
when generating synthetic data. Initial population proportions are S(0) = 762/763,
I(0) = 1/763 and R(0) = 0.
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data with observations on all three populations is presented in Figure 5.11b.
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Figure 5.11: Example synthetic data generated from the SIR model under the scenarios
where: (a) only the number of infected individuals is observed, and; (b) where we have
observations pertaining to all three populations. Observations are marked with discs.
Populations are modelled according to Equation (5.28) based on parameters inferred
in [235]. Initial population proportions are S(0) = 762/763, I(0) = 1/763 and R(0) = 0.
In (a) there are N = 10 observations at each time-point, and we prescribe σ = 0.05; in
(b) there are three observations per time-point, per population, with prescribed σ = 0.03.
The choices of σ are sufficiently small that the data generated consists only of positive
observed population proportions.

The SIR model as described in Equation (5.28) does not admit a closed form analytical

solution, so we apply numerical techniques to solve the system. This becomes somewhat

computationally expensive, as the Fisher information computations rely on partial deriva-

tives of the model solution with respect to the parameters to form the model Jacobian,

and the information geometry computations require partial derivatives of the Fisher in-

formation up to second order. Approximating these partial derivatives using numerical

techniques entails solving the system of ODEs several times. Some computational cost

may be spared through taking advantage of the known relationship that S + I +R = 1.

For brevity, we restrict our investigation of the SIR model to the cases where θ = (β, γ)

and θ = (β, σ). Results in Figure 5.12 correspond to the case where observations pertain

only to the number of infected individuals, while those in Figure 5.13 are produced

from data containing observations of all three populations. In both cases the results for

θ = (β, σ) align with that observed in previous results; the geodesics appear to define a

marginally smaller area and are offset from the likelihood-based confidence regions in the

direction of decreasing σ, and the scalar curvature is the constant Sc = −1/N .

Regardless of whether we observe only the infected population or all populations,

inferring θ = (β, γ) produces a non-constant positive scalar curvature. In Figure 5.12b,

where only I is observed, we see that the geodesics emanating from the MLE extend

beyond the likelihood-based confidence region. This also occurs in Figure 5.13b, where

all three populations are observed, however it is difficult to perceive at this scale. Based
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Figure 5.12: Inferring θ = (β, γ) in (a,b) and θ = (β, σ) in (c,d), for the SIR model with
observations only on the number of infected individuals. Observations in the synthetic
data occur at T = (4, 7, 10), with N = 10 observations per time-point. True parameters,
(β, γ, σ) = (1.66334, 0.44036, 0.05), are marked with green discs, with MLEs indicated
using red discs. Magenta curves correspond to likelihood-based 95% confidence regions.
Black lines are geodesic curves emanating from the MLEs, with lengths corresponding
to a theoretical 95% confidence distance. Initial populations are as described in Figure
5.11.

on this result, and the observations involving negative scalar curvature when inferring

σ, it might seem that positive scalar curvature produces geodesics that extend beyond

corresponding likelihood-based confidence regions, whereas negative scalar curvature has

the opposite effect. However, repeating the analysis with different synthetic data sets—

generated from a different random seed—suggests that in some cases the geodesics will

extend beyond the likelihood-based confidence regions, and in some cases they will fall

short, however the scalar curvature remains positive in all cases.
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Figure 5.13: Inferring θ = (β, γ) in (a,b) and θ = (β, σ) in (c,d), with observations
on all three variables, S, I and R. Observations in the synthetic data occur at T =
(4, 7, 10), with three observations of each population at each time-point; 27 observations
in total, as depicted in Figure 5.11b. True parameters, (β, γ, σ) = (1.66334, 0.44036, 0.03),
are marked with green discs, with MLEs indicated using red discs. Magenta curves
correspond to likelihood-based 95% confidence regions. Black lines are geodesic curves
emanating from the MLEs, with lengths corresponding to a theoretical 95% confidence
distance. Initial populations as described in Figure 5.11.
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5.3.4 Hypothesis testing

In Figure 5.14 we present several example hypothesis tests, using both likelihood-ratio-

based and geodesic-distance-based approaches, as outlined in Section 5.2. Test statistics

and corresponding p-values for each hypothesis test are provided in Table 1. For the

multivariate normal distribution, where we observe that the endpoints of geodesics corre-

sponding to a theoretical 95% confidence distance align closely with the likelihood-based

95% confidence regions, we find that the results of the hypothesis tests are near-identical.

Further, the hypothesis test results are consistent with our interpretation of the 95%

confidence regions; test points within the confidence regions have p-values greater than

0.05, while test points outside the confidence regions have p-values less than 0.05.

We also perform hypothesis tests for the logistic model in the high curvature region of

parameter space. Like before, results are comparable for different numbers of observations

at each time point; N = (10, 10, 10) and N = (50, 50, 50), as considered in Figure 5.9.

Even in this high curvature region, we find that the endpoints of geodesics corresponding

to a theoretical 95% confidence distance very closely match the likelihood-based 95%

confidence regions. This is again reflected in the results of the hypothesis tests, where

very similar results are obtained from the likelihood-ratio-based hypothesis tests and the

geodesic-distance-based hypothesis tests, even for relatively extreme θ0. As the number

of observations increases, we observe for each θ0 considered, that in accordance with

the confidence regions tightening, the test statistics increase and accordingly p-values

decrease.

Table 5.1: Hypothesis test results
Model θ0 λLR λGD pLR pGD

Multivariate (0.8,1.0) 3.3737 3.3737 0.1851 0.1851
Normal (0.9,1.4) 10.9297 10.9297 0.0042 0.0042
Univariate (0.6,0.3) 7.5051 5.1954 0.0235 0.0744
Normal (0.6,0.6) 1.0460 1.2201 0.5927 0.5433

(0.6,0.85) 4.6134 6.5226 0.0996 0.0383
(0.6,1.0) 6.9271 10.6665 0.0313 0.0048

Logistic (1.0,0.095) 2.7086 2.5798 0.2581 0.2753
(10, 10, 10) (0.87,0.25) 1.6387 1.5626 0.4407 0.4578

(0.92,0.21) 30.0130 29.9821 3.0391×10−7 3.0865×10−7

(0.9,0.15) 56.2776 56.5328 6.0185×10−13 5.2969×10−13

Logistic (1.0,0.095) 31.3038 31.0222 1.5939×10−7 1.8349×10−7

(50, 50, 50) (0.87,0.25) 4.2062 4.2276 0.1221 0.1208
(0.92,0.21) 97.6247 97.5164 < 10−16 < 10−16

(0.9,0.15) 368.1479 368.7335 < 10−16 < 10−16

As we are using synthetic data and know the true parameters, we can use hypothesis

testing to pedagogically investigate Wilks’ theorem [255] and the asymptotic relationship

given in (5.15). We generate 1000 synthetic datasets and for each dataset perform a hy-
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Figure 5.14: Example hypothesis tests for the: (a) univariate normal distribution, with
θ = (µ, σ), θ̂ = (0.5050, 0.4846); (b) multivariate normal distribution, with θ = (µ1, µ2),
θ̂ = (0.7109, 1.1498); logistic model with θ = (r, C(0)) in the high curvature region
as considered in Figure 5.9, with (c) N = (10, 10, 10), θ̂ = (0.9195, 0.1723), and (d)
N = (50, 50, 50), θ̂ = (0.9287, 0.1682). In each case, we test several example hypotheses,
θ0, marked by coloured discs. Geodesics between the MLEs (red discs) and each θ0 are
shown in red. Magenta curves correspond to likelihood-based 95% confidence regions.
Black lines are geodesic curves emanating from the MLEs, with lengths corresponding to
a theoretical 95% confidence distance.

pothesis test for the true parameters. This is repeated for the univariate and multivariate

normal distributions with N = 10 and N = 1000 observations. In Figure 5.15 we present

densities for both the likelihood-ratio-based and geodesic-distance-based test statistics,

alongside the probability density of χ2(2). For the multivariate normal distribution with

θ = (µ1, µ2), the density profiles for λLR and λGD are near-identical; as expected follow-

ing the results in Figure 5.14 and Table 1. We also observe a good match between these

profiles and χ2(2), even with just N = 10. For the univariate normal distribution with

θ = (µ, σ), when N = 10 we observe differences between λLR and λGD. Both profiles are

similar to χ2(2), though there appears to be a higher density in the tails of the distri-

butions of the test statistics. As the number of observations increases to N = 1000, the

difference between λLR and λGD reduces significantly, and both closely match χ2(2).
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From Wilks’ theorem [255] and (5.15), asymptotically 95% of the 95% confidence re-

gions we construct should contain the true parameter values. We can determine what

proportion of the likelihood-based and geodesic-distance-based 95% confidence regions

that we construct contain the true parameter values using the information presented in

Figure 5.15. This is done by comparing the test statistics to the critical value; ∆2,0.05,

from (5.7). For the multivariate normal distribution with N = 10 we find that 95.7%

of the likelihood-based and geodesic-distance-based confidence regions contain the true

parameter values. With N = 1000 we find that 94.8% contain the true parameters, ap-

proaching the theoretical 95%. For the univariate normal distribution with N = 10 we

find that 93.2% of the likelihood-based confidence regions contain the true parameter,

while only 88.0% of the geodesic-distance-based confidence regions contain the true pa-

rameters. With N = 1000, we find that 95.2% of the likelihood-based confidence regions

and 95.1% of the geodesic confidence regions contain the true parameters.
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Figure 5.15: Step histograms show the density of the distribution of test statistics for each
hypothesis testing approach, for (a,b): the univariate normal distribution with θ = (µ, σ),
and (c,d): the multivariate normal distributions with θ = (µ1, µ2). Test statistics are
computed from the true parameter values and the MLE, for 1000 sets of synthetic data.
Datasets represented in (a,c) contain N = 10 observations, while in (b,d) N = 1000.
Purple curves correspond to the density of the χ2(2) distribution, while blue dotted lines
represent the likelihood-ratio-based test statistics and orange dashed lines represent the
geodesic-distance-based test statistics.
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5.4 Discussion

Parameter estimation is wrought with challenges relating to the availability and quality

of experimental or field data [114, 145, 315, 325]. This prompts a strong consideration

of uncertainty quantification to support point-estimation of model parameters [89]. In

this section, we discuss the results presented in Section 5.3. We highlight opportunities

for application of information geometry techniques, including geodesic curves and scalar

curvature; to supplement traditional maximum likelihood based parameter inference and

uncertainty quantification. We conclude by outlining areas for further investigation.

Even for relatively small sample sizes, we observe good correspondence between the

likelihood-based 95% confidence regions and the end-points of geodesic curves corre-

sponding to a theoretical 95% confidence distance, in accordance with the asymptotic

relationship described in Equation (5.15); particularly when estimating model parame-

ters. When estimating standard deviation, as outlined in Section 5.3, geodesics appear

to suggest a tighter confidence region, and appear to be biased towards parameter space

with smaller standard deviation. We observe this effect decreasing as the number of ob-

servations increases; in line with the known underestimation bias of minimum likelihood

estimates of variance [255]. The misalignment of likelihood-based confidence regions and

geodesic endpoints appears to occur more frequently in examples with non-zero scalar

curvature, although we observe a good match in Figure 5.9 despite the non-constant

scalar curvature.

Visualising the scalar curvature throughout a parameter space can indicate areas

where there may be issues with identifiability. Areas with significant non-constant scalar

curvature can suggest a complicated relationship between parameters in terms of the

normalised log-likelihood, such as the hyperbolic confidence region observed in Figure

5.9. However, it is possible to produce examples, such as Figure 5.8(c,f), where there

is practical non-identifiability despite zero scalar curvature everywhere. Although we

do not show it here, for the logistic model with θ = (r,K) in the region of parameter

space where C(0) ≈ K, computation of the scalar curvature breaks down as the Fisher

information matrix becomes singular. Here, it may be obvious that we can not identify

the growth rate, r, from a process that is initialised at its steady state (C(0) = K).

However, observing this behaviour in general may help to detect issues with identifiability,

particularly for models without analytical solutions.

The information geometry techniques we discuss are primarily implemented numeri-

cally; as such there is a computational cost to consider. For the normal distributions and

population growth models in this work, where analytical solutions are available, the infor-

mation geometry techniques are not disproportionately more computationally expensive

than the traditional likelihood-based inference and confidence regions. Examples such as

the SIR model, where no analytical solution is available, represent a significantly greater
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computational burden. However, this impacts both the likelihood based inference and

information geometry techniques as the underlying system of ODEs, for example Equa-

tion (5.28), must be solved numerous times. The computational cost associated with the

information geometry techniques depends significantly on the desired resolution for the

scalar curvature surface, and on the number of geodesic curves. A suitable approach may

be to first compute the scalar curvature on a coarse grid to identify areas of interest to

investigate with a refined grid. Further, the geodesic curves and scalar curvature compu-

tations are highly amenable to parallelisation, which can significantly reduce computation

time.

This computational cost will generally pale in comparison to the costs associated

with collecting experimental or field data, and may be easily justified if the information

geometry techniques are used to guide data collection. If information geometric analy-

sis identifies a region of parameter space with significant non-constant scalar curvature

for a model, such as in Figure 5.9, and practitioners have a prior expectation that the

true parameter values fall somewhere within this region, this may indicate that a greater

quantity or quality of data is needed to improve identifiability for that particular model.

Alternatively, such analysis may guide practitioners in choosing favourable experimen-

tal conditions; for example in cell culture experiments, where it is possible to vary the

initial cell seeding density [52]. Experimental design is a process wherein experiments

are performed or simulated iteratively with perturbations, such that some measure of

information is maximised. Through this process the most informative experiments are

identified, facilitating design of optimal experimental protocols [133, 198, 280]. Common

to these approaches is the importance of quantifying and comparing information. While

we do not consider optimal experimental design in this work, there is potential to incor-

porate information geometric techniques in the experimental design process as a means of

comparing information between experimental perturbations. This is an area for further

investigation.

Although we focus on how information geometry can supplement traditional maxi-

mum likelihood based inference and uncertainty quantification, primarily through visu-

alisation, it should be noted that concepts from information geometry have also found

application in the inference context from a computational efficiency standpoint. For

example in Bayesian inference, by defining Monte Carlo sampling methods on a Rie-

mann manifold, the geometric structure of the parameter space can be exploited [122].

Simulated paths across the manifold automatically adapt to local structure, facilitating

efficient convergence, even in higher dimensions and in the presence of strong correla-

tion [122, 146]. Concepts from information geometry, including geodesic curves, are also

implemented in methods for model reduction [316]. These applications of information

geometry techniques to improve computational algorithms highlight further utility of ge-

ometric concepts for inference in higher dimensions, beyond that which we demonstrate
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through visualisation in this work.

Geodesics can be used to measure the distance between probability distributions. As

demonstrated in Section 5.3, it is possible to perform hypothesis tests based on geodesic

distance [162,228,239]. The approach for performing a hypothesis test is to solve a bound-

ary value problem to find the geodesic connecting two points in parameter space, and

use the corresponding geodesic distance to compute a test statistic. For the examples

considered in this work, such boundary value problems are readily solved numerically

using standard techniques, such as those included in the Julia package DifferentialEqua-

tions.jl [272]. Careful numerical handling may be required for geodesic curves close to

boundaries of parameter space. For more complicated examples, particularly those in

high-dimensional manifolds, achieving converging solutions to geodesic boundary value

problems can prove challenging. There is scope for a review of the different numerical

methods for solving boundary value problems, with a particular focus on their applicabil-

ity to solving geodesic boundary value problems for hypothesis testing in high-dimensional

manifolds.

In this work we only consider models that admit unimodal likelihoods. In cases where

the likelihood is multimodal; provided that we are able to obtain the Fisher information

required to compute the Christoffel symbols, we are still able to compute the scalar cur-

vature and perform hypothesis tests based on geodesic distance. With multimodal likeli-

hoods, it would not be possible to construct confidence regions from geodesics emanating

from the MLE. Although, we note that constructing confidence regions for multimodal

likelihoods is also problematic with traditional likelihood-based inference methods.

There are several avenues for future research in this area. Here, we consider two-

dimensional manifolds to facilitate convenient visualisation, however the inference and

information geometry techniques are general, and can be readily applied to higher di-

mensional manifolds [13, 255]; albeit with increased computational cost. Extending this

analysis to three dimensions would enable consideration of situations where there is scalar

curvature associated both with the variability of the observation process, σ, and also with

interactions between model parameters; for example, it may be insightful to consider

θ = (β, γ, σ) for the SIR model, where we associate a constant negative scalar curvature

with σ and non-constant positive scalar curvature due to interactions between β and

γ. In three dimensions, likelihood-based confidence regions can be visualised as a series

of two-dimensional slices oriented in three-dimensional space [52]; this technique could

be applied to visualise slices of the scalar curvature in three-dimensions. One approach

for visualisation in higher dimensions is to produce an ensemble of these two- or three-

dimensional confidence regions for various combinations of parameters of interest, with

other parameters fixed at their MLEs. Alternatively, in higher dimensions it may be more

appropriate to use non-visual techniques, such as hypothesis testing.

While we have considered ODE models, there is appetite in the literature for pa-
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rameter estimation, uncertainty quantification and identifiability analysis for more com-

plicated models; including partial differential equations, stochastic differential equa-

tions (SDEs), delay differential equations [42, 227, 298]. This appetite extends to non-

differential-equation-based models, including agent-based models [182] and network mod-

els [138]. A natural extension of this work is to present examples demonstrating how the

information geometry techniques can be applied to these more complicated models. This

will introduce new challenges, though it may be possible to leverage existing techniques;

for example, linear noise approximation may be used to obtain a representation of the

Fisher information matrix for SDEs [172]. Further, we fix σ across observation times,

model parameters and populations. However, the techniques presented in this work can be

generalised to handle data with non-constant variance [53]; the expression for the Fisher

information matrix given in Equation (5.4) can be extended to account for a parameter-

dependent covariance matrix [212]. Investigation of examples paralleling those in Section

5.3, but with non-constant standard deviation, may prove insightful.

Here, the Fisher information defines a Riemann metric on the statistical manifold. For

some inference problems it is not practical to obtain the Fisher information. Where the

Fisher information is not available, the sample-based observed information—computed

as negative the Hessian of the log-likelihood function, or via Monte Carlo methods—

may be available [98, 267]. The observed information has been demonstrated to equip a

manifold with an observed geometric structure akin to the expected geometric structure

associated with the Fisher information [34]. Further work could identify the viability

of the techniques presented here in situations where only the observed information is

available, particularly for local approximation about the MLE.
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Chapter 6

Conclusions and future work

In this chapter we recapitulate the key outcomes of this thesis. We highlight the novel

and significant contributions to the literature, and identify avenues for future research.

6.1 Summary and contribution

This thesis concerns numerical methods frequently applied in the life sciences, with a

particular focus on techniques for optimal control, and parameter estimation and un-

certainty quantification. We discuss in great practical detail the implementation of the

forward-backward sweep method for solving two-point boundary value problems arising

from application of the Pontryagin maximum principle in optimal control. Initially, we

apply the FBSM to study the optimal chemotherapy treatment for a model of acute

myeloid leukaemia [82], and investigate the convergence behaviour [290]. Motivated by

combination therapies observed in cancer treatment [59], we consider the application of

multiple optimal controls simultaneously [291]. Finally, we discuss numerical techniques

to improve and accelerate the convergence of the FBSM [292]. Connecting models with

data poses significant challenges, particularly in the life sciences; where data is often lim-

ited, noisy or incomplete [145]. As such, we are interested not only in point-estimates of

parameters but also information characterising the associated uncertainty [325]. In the

second part of this thesis we explore techniques from information geometry to supplement

traditional likelihood-based uncertainty quantification for parameter inference.

In this thesis, we have addressed the following objectives:

(1) Modify a stem cell model for AML to incorporate an immune response, and use

optimal control techniques to investigate optimal chemotherapy treatment regimes.

(2) Extend the work with the model of AML from Objective 1 to investigate the ap-

plication of multiple optimal controls to interacting species.

165
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(3) Unify disparate parts of the optimal control and numerical methods literature and

improve accessibility of optimal control techniques.

(4) Develop novel improvements to the FBSM for optimal control, to achieve faster and

more reliable convergence.

(5) Demonstrate the insights that can be attained by supplementing likelihood-based

parameter inference with information geometry techniques.

(6) Improve the accessibility of information geometry techniques to practitioners in the

life sciences.

Here, we provide a brief summary of each chapter. In Chapter 2 we introduce a biolog-

ically appropriate and mathematically convenient immune response into a haematopoietic

stem cell model of AML [82, 290]; such that the model admits a stable healthy steady

state, where leukaemic cells are eradicated. We demonstrate the application of continu-

ous and bang-bang controls to the modified model under various parameter regimes, and

show how the optimal controls can steer the system from an unhealthy steady state with

coexistence of healthy and leukaemic cells; to a healthy steady state free from leukaemic

cells. We demonstrate that the convergence behaviour of the FBSM depends both on the

control update weighting parameter, ω, and the weighting parameters in the pay-off that

determine the relative importance of minimising the leukaemic cell population and min-

imising the negative impact from the chemotherapy. We also consider how the optimal

control strategies differ in the situation where the negative impact of the chemotherapy is

modelled explicitly; as additional death of healthy cells. This chapter provides method-

ological insights that motivate Chapter 3, as it demonstrates that the optimal control

techniques can be applied to situations where the control impacts multiple interacting

species. Chapter 2 addresses Objective 1, and corresponds to Paper 1: Optimal control

of acute myeloid leukaemia, published 2019 in the Journal of Theoretical Biology [290].

We provide clear and well-documented code for this chapter on GitHub.

In Chapter 3 we extend our investigation of the AML model from Chapter 2, to con-

sider multiple interacting species within an ecological niche. We consider the application

of multiple optimal controls to interacting populations with resource competition; where

abundance of one species is desirable and the other is undesirable. We produce results

for a range of pay-off forms and weightings, corresponding to both controls being con-

tinuous, both controls being bang-bang, and a combination of continuous and bang-bang

controls. We show that varying the parameters governing interaction between species can

elicit a highly nonlinear response from the optimal control strategies. We demonstrate

that interspecies interactions introduce complexity when designing optimal interventions;

however, they also provide opportunities for exploitation if the controls can be designed

https://github.com/Jesse-Sharp/Sharp2019
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to take advantage of the particular interspecies interactions. Chapter 3 addresses Ob-

jective 2, and corresponds to Paper 2: Designing combination therapies using multiple

optimal controls, published 2020 in the Journal of Theoretical Biology [291]. We provide

clear and well-documented code for this chapter on GitHub.

In Chapter 4 we comprehensively review the theory of optimal control, and numer-

ical methods for solving control problems. We focus on the PMP approach to optimal

control, and the implementation of the FBSM. Prior to completing this review, we find

the literature to be fragmented and sparse in terms of practical guidance for implementa-

tion of the numerical methods for optimal control. To address this gap in the literature,

we take a pedagogical approach and apply optimal control techniques to solve contin-

uous, bang-bang, and fixed endpoint control problems for both a single-variable linear

model, and a multi-variable nonlinear model. We provide detailed discussion regard-

ing practical considerations for numerical implementation of the FBSM and analyse the

convergence behaviour. We propose novel augmentations to improve and accelerate the

convergence behaviour of the FBSM; including the Wegstein method, Aitken and Stef-

fensen methods and Anderson acceleration. We demonstrate that we are able to not only

accelerate convergence of the FBSM; but also improve its robustness—in some instances

inducing convergence where the underlying FBSM fails to converge—without requiring

prohibitively costly tuning of the acceleration techniques. We highlight that the most

promising application of the acceleration techniques is not necessarily for solving individ-

ual control problems, but rather for solving families of related control problems; such as

those that arise in fixed endpoint control problems, or from producing a Pareto frontier

of optimal controls when facing uncertainty in pay-off weightings [10, 164, 204]. Chapter

4 addresses Objective 3 and Objective 4, and corresponds to Paper 3: Implementation

and acceleration of optimal control for systems biology, published 2021 in the Journal of

the Royal Society Interface [292]. We provide clear and well-documented code for this

chapter on GitHub.

In Chapter 5 we review fundamental concepts in inference and information geome-

try. We demonstrate how information geometry techniques can supplement traditional

likelihood-based parameter estimation and uncertainty quantification, through applica-

tion to pedagogical examples in the life sciences. We implement the techniques for linear

and nonlinear ODE models, and systems of coupled nonlinear ODEs, with observational

data that includes examples where single and multiple observations are recorded. We con-

sider cases where combinations of model parameters, initial conditions, and the variability

of observations are estimated. We demonstrate that the information geometry techniques

can provide insight into uncertainty quantification and identifiability, and guide data col-

lection. In unifying inference and information geometry concepts and improving their

accessibility, we focus heavily on practical implementation and interpretation; and do not

assume any prior knowledge of inference or differential geometry. Chapter 5 addresses

https://github.com/Jesse-Sharp/Sharp2020
https://github.com/Jesse-Sharp/Sharp2021
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Objective 5 and Objective 6, and corresponds to Paper 4: Parameter estimation and

uncertainty quantification using information geometry, accepted for publication in 2022

and currently in press at the Journal of the Royal Society Interface [293]. We provide

clear and well-documented code for this chapter on GitHub.

6.2 Future work

The numerical techniques and examples explored in this thesis lay a sound foundation

with broad opportunity for future development. Here, we discuss some of the most

promising avenues for extending the ideas explored in this work.

6.2.1 Optimal control

Biological fidelity

In Chapter 2, we model a chemotherapy control for acute myeloid leukaemia via a sim-

ple and fairly abstract mechanism; a direct increase in the death rate of the leukaemic

population. We extend this in the supplementary material to Chapter 2 by considering

a chemotherapy control that also directly kills healthy cells. Another approach for in-

corporating additional biological fidelity to this process is to introduce pharmacokinetic

processes such as drug absorption and metabolism, such that the control determines the

supply of the chemotherapeutic agent, but its effect is captured through mechanisms

explicitly incorporated in the model. In clinical settings it has been observed that cell

production may not occur for several weeks following a stem cell transplant [69]. This

effect could be incorporated into the model as a delay to the impact of the stem cell

transplant on the system; potentially via delay differential equations, for which the PMP

has been extended [43]. Incorporating additional biological fidelity comes at the cost of

increasing the number of unknown, and possibly unmeasurable parameters; as we dis-

cuss in the inference and uncertainty quantification component of this thesis. We could

also reformulate the control problems presented in Chapter 2 and Chapter 3 as fixed

final state problems—where the treatment continues until the leukaemic population falls

below a prescribed threshold—leaving the final time free to vary. This more accurately

reflects cancer treatment in a clinical setting.

With the introduction of an immune mechanism to the model of acute myeloid

leukaemia in Chapter 2, it is possible to consider an immunotherapy control; we explore

this in Chapter 3. However, the immune response that we introduce is phenomenolog-

ical rather than mechanistic. Introducing a mechanistic immune response, for example

through modelling the various populations of immune cells [3], may facilitate a more

in-depth consideration of immunotherapeutic controls.

https://github.com/Jesse-Sharp/Sharp2021b


169 6.2. Future work

We have studied models of AML through systems of time-dependent ODEs. While

informative, this approach does not allow for incorporation any spatial heterogeneity of

tumours or drug concentrations, or spatially dependent cell behaviours. Recent stud-

ies suggest that spatial heterogeneity in the tumour microenvironment can significantly

impact cancer development and evolution [343], and therefore may impact the optimal

treatment protocol. Mathematical modelling suggests that heterogeneity of chemotherapy

drugs within the tumour microenvironment and across metastases may also contribute

to the emergence of drug resistance [115]. Incorporating spatial effects through a PDE

model of AML and the associated optimal control could yield interesting insights.

Clinically motivated optimal controls

In Chapter 3 we discuss the application of multiple controls simultaneously, as moti-

vated by observing combination therapies for treatment of acute myeloid leukaemia. In

combination therapies for cancer treatment, patients receive two or more treatments con-

currently; including chemotherapy, stem cell therapy and radiotherapy [59]. This is only

one of many clinically motivated control scenarios that could be considered. A recent

idea gaining traction in clinical cancer treatment settings is the introduction of an in-

terval of time during the course of treatment where no chemotherapy is applied. This

on-off style of intervention parallels bang-bang control, and is referred to in the literature

as a drug holiday [313]. One motivation for pursuing the drug holiday line of treat-

ment is evidence suggesting that drug resistance of tumour cells may wane, such that

following a drug holiday, the patient may respond more promisingly to chemotherapy

treatment [174,180,287]. Investigating the requirements of the mathematical model and

control formulation that yields a treatment regime featuring drug holidays may provide

valuable insights into clinical applicability and design of such approaches.

An emerging trend in diagnosis and treatment of acute myeloid leukaemia, and in

clinical practice generally, is that of personalised or individualised medicine [132]. As

technology improves, we are better equipped to measure a diverse range of biological

and molecular signals (biomarkers) in patients, on a case-by-case basis. Tools could be

developed to interpret these biomarkers, possibly integrated with techniques we discuss

in Chapter 5, with a view to informing patient-specific model parameterisation. Opti-

mal control strategies calibrated to models with patient-specific parameters represent a

significant opportunity in personalised medicine.

Numerical methods

Throughout this thesis we have considered a broad range of control problem formulations,

though the examples are not exhaustive. Further challenges can be introduced; either

through the formulation of the control problem, or the behaviour of the underlying system.
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Examples of such challenges include control problems with singular arcs, path constraints,

multiple local solutions, discontinuous dynamics and sensitivity to the initial guess of

the control [319]. Each of these challenges introduces numerical difficulties, and can

introduce complications in the optimal control theory. For example, for control problems

that admit solutions with singular arcs, the conditions derived from the PMP may fail

to characterise optimality; as the Hamiltonian is independent of the control over the

singular interval [55,191]. A comprehensive assessment of the applicability of the FBSM

for solving control problems with such complications, and any modifications required, is

an avenue for further investigation.

An interesting observation in Chapter 4 is that the acceleration methods can induce

convergence where the underlying FBSM does not converge; for example in the AML

control problems with ω = 0. It should be noted that the FBSM does converge for the

particular examples considered for appropriately chosen ω. An interesting avenue for

further research is to identify control problems that cannot be solved via the FBSM for

any ω, to investigate whether the acceleration methods can induce convergence in these

cases.

Inverse optimal control

In this thesis, we focus on the forward problem; given a particular model and pay-off

functional or specified objectives, what is the optimal control. More recently, however,

optimal control techniques have been applied in a systems biology context to further our

understanding of the underlying mechanisms or processes involved in a given system. In

the inverse problem, commonly referred to as inverse optimal control or inverse reinforce-

ment learning, exhibited behaviour is investigated in an attempt to elicit the optimality

principles that guide the underlying system [318]. Recent insights in systems biology

obtained through this process include rationalisation for experimentally and numerically

observed sequential activation of metabolic pathways [251]; and prediction of enzyme

activation times and metabolite concentrations [319]. At a high level, inverse optimal

control relates to the second part of this thesis; whereby mathematical models and in-

ference techniques can develop our understanding—in the form of parameter values—of

complex biological processes

6.2.2 Inference and uncertainty quantification

There are several avenues for future research into information geometry techniques in the

context of parameter inference and uncertainty quantification. So far, we have limited our-

selves to two-dimensional manifolds for ease of visualisation, however the techniques are

general, and readily apply to problems concerning high-dimensional manifolds [13, 255];

albeit with increased computational cost. There is opportunity to explore this further,
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with a particular focus on the performance of numerical methods in high-dimensional

manifolds; and an aim to develop efficient algorithms and implementations, alongside

guidance for interpretation of the results in higher dimensions.

A natural extension to the work in Chapter 5 is to consider how the information ge-

ometry techniques can be applied to more complicated models including delay differential

equations, stochastic differential equations and partial differential equations. Further, the

techniques we implement can be generalised to handle data with non-constant variance;

investigating how this manifests—through a series of examples with increasing complex-

ity, as we present in Chapter 5—may prove insightful.

Geodesics can be used to measure the distance between probability distributions; we

can perform hypothesis tests based on this geodesic distance [162, 228, 239]. Performing

hypothesis tests based on geodesic distance involves solving a boundary value problem

to find the geodesic connecting two distributions. In few dimensions such as we consider

in Chapter 5, these boundary value problems are readily solved via standard numerical

techniques, and without significant computational expense. For more complicated exam-

ples, particularly those in high-dimensional manifolds, achieving converging solutions to

geodesic boundary value problems can prove challenging. There is scope for a review of

the different numerical methods for solving boundary value problems, with a particular

focus on their applicability to solving geodesic boundary value problems for hypothesis

testing in high-dimensional manifolds.

6.3 Final remarks

In the words of Frank Herbert’s Dune, “Science is made up of so many things that

appear obvious after they are explained”. In this thesis we discuss, implement, and

improve numerical methods frequently applied in the life sciences. We do this with

a view to demystifying and unifying disparate and often sparsely explained areas of the

literature; increasing the accessibility of the methods to a broad audience. At all stages we

provide clear and detailed algorithms, with practical guidance related to implementation.

We further support this by making code available for reproducing all examples in the

thesis. We posit that this thesis serves not only as a vessel for novel ideas, but also as a

pedagogical tool.



Chapter 6. Conclusions and future work 172



Chapter 2A

Supplementary material to Chapter

2

2A.1 Arbitrary initial conditions

Optimal control results in the Main paper are produced with an initial condition cor-

responding to a stable steady state of the system. In Figure 2A.1 we present results

demonstrating that the optimal control techniques do not require such an initial condi-

tion. To produce these results we choose an arbitrary initial condition, solve the system

numerically up to some transient time without control, u ≡ 0, then apply the FBSM

from that transient time to the final time to determine the optimal control.

These results adhere to our intuitive expectations; with a larger initial leukaemic

population, a greater amount of control is applied, for example compare Figure 2A.1d

and Figure 2A.1e. Similarly, if there is a larger initial haematopoietic stem cell population,

a smaller amount of control is required, for example compare Figure 2A.1a and Figure

2A.1c.
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Figure 2A.1: Results are produced for a range of arbitrary initial conditions subject to a
transient growth phase prior to application of a control. Columns from left to right cor-
respond to initial conditions of [0.1, 0.1, 0, 0.1, 0], [0.1, 0.1, 0, 0.5, 0] and [0.5, 0.1, 0, 0.1, 0].
Control is applied from t = 5 in Figures (a-f) and from t = 10 in Figures (g-l). The first
and third rows correspond to the continuous control case, while the second and fourth
rows show the corresponding bang-bang case with an upper control bound of u = 0.5.
For all results in this figure, a1 = a2 = 1.



175 2A.2. Control affects all proliferative cells

2A.2 Control affects all proliferative cells

In reality, typical chemotherapy treatment of AML uses cytotoxic drugs that affect not

only leukaemic cells but all proliferative cells [233]. In this section we demonstrate that

our analysis can be extended to consider the case where the control also impacts the

proliferative healthy cells; S and A. We extend our state equations (Equation 12, Main

paper) by introducing terms with parameters r1 and r2 describing the rates at which the

control, u, affects the S and A populations relative to its effect on the L population:

dS

dt
= ρSS(K1 − Z1)− δSS − r1uS,

dA

dt
= δSS + ρAA(K2 − Z2)− δAA− r2uA,

dD

dt
= δAA− µDD,

dL

dt
= ρLL(K2 − Z2)− δLL− αL

γ + L
− uL,

dT

dt
= δLL− µTT. (2A.1)

We define a pay-off function to minimise, such as

J =

∫ tf

0

(
a1u

2 + a2L
2
)
dt, (2A.2)

for the continuous control case, or

J =

∫ tf

0

(a1u+ a2L) dt, (2A.3)

for the bang-bang control case. Recalling that a1 weights the relative importance placed

on the negative impact of the control, we could at this point consider reducing a1 relative

to a2, as we have now explicitly accounted for the direct negative effect of the control on

the healthy cells. We could also explicitly include S and A in the pay-off. The motivation

for this becomes apparent when considering a control that affects S and A more than L;

r1, r2 > 1, as in Figure 2A.2g-l, as we see the healthy cell counts become very low during

the treatment period, which may be clinically undesirable. These terms would need to

be weighted negatively, as the pay-off is a quantity to be minimised.

Following the procedure in the Main paper we construct the Hamiltonian and find the

optimal control by setting ∂H/∂u = 0, or define a switching function in the bang-bang

control case. Co-state equations for λ are found by setting dλ/dt = −∂H/∂x, giving
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dλ1
dt

= 2Sλ1ρS + δSλ1 − δSλ2 − λ1ρS + λ1r1u,

dλ2
dt

= 2Aλ2ρA + Lλ2ρA + Lλ4ρL + δAλ2 − δAλ3 − λ2ρA + λ2r2u,

dλ3
dt

= µDλ3,

dλ4
dt

= −2a2L+ ρAAλ2 + λ4ρLA+ 2ρLLλ4 − λ4ρL

+ λ4δL +
αγλ4

(γ + L)2
+ λ4u− δLλ5,

dλ5
dt

= µTλ5, (2A.4)

in the continuous control case. The corresponding co-state equations for the bang-bang

control case are subtly different to Equation (2A.4), as the first term of the fourth line

of Equation (2A.4) is the constant −a2, and no longer depends on L. The transversality

condition again provides the final time conditions on the co-state,

[λ1(tf ), λ2(tf ), λ3(tf ), λ4(tf ), λ5(tf )] = [0, 0, 0, 0, 0]. Given an initial state;

[S(0), A(0), D(0), L(0), T (0)], we can solve the resulting two-point BVP using the FBSM,

as detailed in the Main paper. Results are provided in Figure 2A.2 corresponding to

various parameter combinations.
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Figure 2A.2: Results are produced for a variety of parameters in the pay-off and rates
that the control affects healthy cells. The continuous control case is presented in the first
and third rows, while the second and fourth rows show the corresponding bang-bang case
with an upper control bound of u = 0.5.
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Chapter 3A

Supplementary material to Chapter

3

3A.1 Supplementary results

Key results are presented in the main document to highlight interesting dynamics and

identify important parameters. In this section we present a broad suite of results cor-

responding to a wider range of parameter values. This section is divided into four sub-

sections, with each subsection corresponding to one of the four possible combinations of

control dynamics (continuous and/or bang-bang). Within each subsection, two sets of

results are presented; the leukaemic term is included in the pay-off quadratically in the

first set and linearly in the second set. To enable comparison, the form of the leukaemic

term in the pay-off is the only difference between the central columns (sub-figures (b),

(e), (h) and (k)) of figures within a subsection. Rows in each figure correspond to a

different combination of pay-off weighting parameters (a1,a2,a3). We explore the impact

of varying a specified parameter across the rows of each figure.

3A.1.1 Continuous chemotherapy, continuous stem cell trans-

plant controls

This Subsection contains results for pay-offs presented in Equation (3A.1) and Equation

(3A.2), where both controls are continuous. These pay-offs correspond to results in Figure

3A.1 and Figure 3A.2, respectively. The pay-off functions are given by:

J =

∫ tf

0

(a1u(t)
2 + a2v(t)

2 + a3L(t)
2) dt, (3A.1)

J =

∫ tf

0

(a1u(t)
2 + a2v(t)

2 + a3L(t)) dt. (3A.2)

There are a number of intuitive results that we generally observe across all control
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problems considered in this document. For continuous controls, increasing the pay-off

weighting of a control reduces the amount of that control applied, and typically increases

the amount of the other control applied. Increasing the weighting of leukaemia in the

pay-off typically leads to a greater amount of both controls applied. With bang-bang

controls the upper bound or maximum dose is fixed, so increasing the pay-off weight-

ing causes the control to be applied for a shorter duration, or not at all. Increasing

the weighting on leukaemia in the pay-off will typically increase the duration over which

the bang-bang controls are applied. Incorporating leukaemia in the pay-off quadratically

results in a higher level of leukaemia remaining at the terminal time. This is because

linear pay-off terms are proportionally more penalising than quadratic terms; making

a greater contribution to the pay-off that we are minimising (L > L2 for L ∈ (0, 1)).

Broadly, the nature of interactions between the controls and the state variables results in

the chemotherapy control being applied to reduce the leukaemic population, and compe-

tition between progenitor blood cells, bolstered by the stem cell transplant control, and

leukaemic cells prevents the leukaemic population from resurging as the chemotherapy

control is reduced.

Results in Figure 3A.1 explore the impact of κ, the parameter that determines the

effectiveness of the chemotherapy at killing the progenitor blood cells relative to leukaemic

cells. Comparing Figure 3A.1(a) with Figure 3A.1(c), we see that κ does not appear to

have a significant impact on the control dynamics. Despite the early-time decline of

progenitor blood cells we observe in Figure 3A.1(c) in response to the chemotherapy

control, at terminal time the remaining progenitor blood cell and leukaemic populations

are not significantly different than in Figure 3A.1(a). These results are consistent for

the alternative pay-off weightings considered. When leukaemia is weighted more heavily

in the pay-off as in Figure 3A.1(j-l), a higher level of chemotherapy control is applied

initially, although the state at terminal time does not vary significantly with κ.
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Figure 3A.1: Results are presented where both controls are applied continuously, under
a range of pay-off weightings (a1, a2, a3 ∈ {1, 2}) and where the chemotherapy control u
affects the progenitor blood cell population less, equally and more than the leukaemic
cell population; κ ∈ {0.5, 1, 2}, respectively. This figure corresponds to the pay-off given
by Equation (3A.1), where the leukaemic term enters the pay-off quadratically. This
corresponds to Equation (4) with p = 2, q = 2, r = 2.
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In Figure 3A.2 we consider the pay-off given by Equation (3A.2), with the leukaemic

term entering the pay-off linearly. Each column corresponds to a different terminal time,

to investigate how this impacts the state and control dynamics. Although the results for

different terminal times are not a direct scaling of one another, the dynamics are very

similar. The results with larger terminal times exhibit a marginally higher initial level of

control applied. We also observe a reduced leukaemic population at terminal time when

the terminal time is increased. Since the pay-off considers the cumulative leukaemic

burden, increasing the terminal time increases the interval over which the leukaemic

population contributes to the pay-off, providing a stronger impetus to reduce it.

Comparing Figure 3A.2(b,e,h,k) with Figure 3A.1(b,e,h,k), respectively, we can inves-

tigate the impact of incorporating leukaemia in the pay-off linearly rather than quadrat-

ically. With linear weighting, leukaemia makes a greater contribution to the pay-off

and motivates increased application of control. As such, a significantly higher dose of

chemotherapy is applied, to more rapidly reduce the leukaemic population. As a corollary

to this, a linear leukaemic term results in a lower leukaemic population at terminal time.

A modest increase in the stem cell transplant control is also observed.
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Figure 3A.2: Results are presented where both controls applied continuously, under a
range of pay-off weightings (a1, a2, a3 ∈ {1, 2}) and where each column of the figure
corresponds to a different terminal time; tf ∈ {10, 20, 30}. This figure corresponds to the
pay-off given by Equation (3A.2), where the leukaemic term enters the pay-off linearly.
This corresponds to Equation (4) with p = 2, q = 2, r = 1.
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3A.1.2 Continuous chemotherapy, bang-bang stem cell trans-

plant controls

This Subsection contains results for pay-offs presented in Equation (3A.3) and Equation

(3A.4), where the chemotherapy control is continuous and the stem cell transplant control

is bang-bang. We also apply bounds to the continuous chemotherapy control. These pay-

offs correspond to results in Figure 3A.3 and Figure 3A.4, respectively. The pay-off

functions are given by:

J =

∫ tf

0

(a1u(t)
2 + a2v(t) + a3L(t)

2) dt, 0 ≤ u(t) ≤ ub, 0 ≤ v(t) ≤ vb, (3A.3)

J =

∫ tf

0

(a1u(t)
2 + a2v(t) + a3L(t)) dt, 0 ≤ u(t) ≤ ub, 0 ≤ v(t) ≤ vb. (3A.4)

When the stem cell control is bang-bang, we only observe it switching on when its

weighting in the pay-off is significantly lower than the weightings for the chemotherapy

control and the leukaemia. Primarily, this is because the pay-off only considers the

leukaemic population (and not the progenitor blood cell population), and the stem cell

control is not as effective at reducing the leukaemic population as it can only achieve this

indirectly through the competition between progenitor blood and leukaemia. In addition,

since the bang-bang control arises from a linear term in the pay-off, it is more costly than

an equivalently weighted quadratic component applied at the same level.

Bounded continuous controls allow us to incorporate physical constraints such as a

maximum tolerable dose. In Figure 3A.3 an upper bound of ub = 0.3 is placed on the

continuous control. This leads to interesting results, particularly in combination with

order of magnitude variations in κ. When all pay-off terms are weighted equally, as in

Figure 3A.3(a-c), increasing κ increases the duration of the interval where chemotherapy

is applied at its upper bound. Though initially counter-intuitive, this can be explained

by the competition between leukaemia and progenitor blood cells; as κ is increased the

progenitor population is further reduced and therefore presents weaker competition to

the leukaemia.

With large κ and a low weighting on leukaemia in the pay-off relative to the controls, as

in Figure 3A.4(l), we observe that only a small amount of chemotherapy control is applied,

near the terminal time. This is due to a combination of not incorporating progenitor cells

directly in the pay-off and having a fixed terminal time. As the chemotherapy control

is quadratic in the pay-off, the small amount of chemotherapy control applied would

contribute very little to the pay-off, such that the resulting minor reduction in leukaemia

is worthwhile. However, this is only worthwhile near the end of the time interval. The

chemotherapy control is not applied earlier in the interval as the cumulative effect of
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reduced competition due to decreased progenitor population would outweigh the benefit

of applying the chemotherapy. Similar behaviour appears in Figure 3A.4(i), corresponding

to large κ and a low weighting on the stem cell transplant control in the pay-off.
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Figure 3A.3: Results are presented for a bounded continuous chemotherapy control (ub =
0.3), and bang-bang stem cell transplant control (vb = 0.2). Results correspond to a range
of pay-off weightings (a1, a2, a3 ∈ {0.1, 1}) and examine a more extreme variation of κ
than in Figure 3A.1. This figure corresponds to the pay-off given by Equation (3A.3),
where the leukaemic term enters the pay-off quadratically. This corresponds to Equation
(4) with p = 2, q = 1, r = 2.

We investigate the impact of varying the upper bound on the continuous control in

Figure 3A.4. As the upper bound is increased, the interval over which the continuous

control is applied at its upper bound is reduced. Adjusting the upper bound produces a

different response from the state, and therefore also alters the control dynamics over the
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Figure 3A.4: Results are presented for a bounded continuous chemotherapy control, and
bang-bang stem cell transplant control (vb = 0.2). The upper bound on the continuous
chemotherapy control is varied; ub ∈ {0.2, 0.3, 0.4}, under a range of pay-off weightings
(a1, a2, a3 ∈ {0.1, 1}). This figure corresponds to the pay-off given by Equation (3A.4),
where the leukaemic term enters the pay-off linearly. This corresponds to Equation (4)
with p = 2, q = 1, r = 1.

intervals where the control is applied at a lower level than the upper bound. It follows

that when the control is never applied at the upper bound (Figure 3A.4(j,k,l)), changing

the upper bound does not impact the dynamics of the system.

Comparing Figure 3A.4(h) with Figure 3A.3(h), we see that incorporating leukaemia

in the pay-off linearly rather than quadratically increases the interval over which the

bounded continuous chemotherapy control is applied at its upper bound. The bang-bang

stem cell transplant control is applied for longer.
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3A.1.3 Bang-bang chemotherapy, continuous stem cell trans-

plant controls

This Subsection contains results for pay-offs presented in Equation (3A.5) and Equation

(3A.6), where the chemotherapy control is bang-bang and the stem cell transplant control

is continuous. These pay-offs correspond to results in Figure 3A.5 and Figure 3A.6,

respectively. The pay-off functions are given by:

J =

∫ tf

0

(a1u(t) + a2v(t)
2 + a3L(t)

2) dt, 0 ≤ u(t) ≤ ub, (3A.5)

J =

∫ tf

0

(a1u(t) + a2v(t)
2 + a3L(t)) dt. 0 ≤ u(t) ≤ ub. (3A.6)

We revisit varying the terminal time in Figure 3A.5 to investigate its impact on the

dynamics of bang-bang controls. The dynamics are again similar with different terminal

times, but are not direct scalings. As the terminal time increases, the bang-bang control

is applied over a longer interval, although this interval does not necessarily increase

proportionally with the terminal time. This is clear in the second row of Figure 3A.5;

where the bang-bang control switches off around t = 8 when tf = 10, and switches off

around t = 15 when tf = 30.

When the continuous stem cell transplant control is weighted much lower than the

other terms in the pay-off, it is applied liberally (3A.5(g,h,i)). In this situation the bang-

bang chemotherapy control is not switched on, as the leukaemic population is reduced

through the competition between A and L. We note that this level of stem cell transplant

control is not physically realistic, as it increases the progenitor population well above

the carrying capacity of the model, resulting in a significant decline in the progenitor

population as the support from the stem cell transplant control is reduced. These kind

of results can provide insight regarding the quality of the model and/or the pay-off form

and weightings. If we believe the model to be sufficiently realistic, then obtaining non-

physical control results suggests that the pay-off form or weightings must not be realistic;

in this case it would appear that applying the stem cell transplant control is not costly

enough.

In Figure 3A.6, we present results exploring the continuous stem cell control and

bang-bang chemotherapy control dynamics with leukaemia entering the pay-off linearly.

We consider the case where the continuous stem cell transplant control is unbounded,

and also consider imposing upper bounds of vb = 0.1 and vb = 0.3. When the stem cell

transplant control is weighted lower in the pay-off, similarly to Figure 3A.5(g,h,i), the

continuous stem cell transplant control is applied too liberally. This is partially mitigated

through imposing the upper bounds, as in Figure 3A.6(g,i), although we still see a sharp
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decline in the progenitor cell population once the support from the control is removed.

This highlights a challenge in determining appropriate weightings of multiple controls

with different forms; the form of the control terms in the pay-off (linear, quadratic)

directly impacts their contribution to the pay-off. Pay-off terms are equally weighted in

Figure 3A.6(a), and the continuous stem cell control is applied at the upper bound of

vb = 0.1, matching the bound of the chemotherapy control at ub = 0.1. The contribution

of the chemotherapy control to the pay-off is an order of magnitude greater than that of

the stem cell control.
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Figure 3A.5: Results are presented for a bang-bang chemotherapy control and continuous
stem cell transplant control, with an upper control bound of 0.1 on the bang-bang control.
Each column of the figure corresponds to a different terminal time; (tf ∈ {10, 20, 30}).
This figure corresponds to the pay-off given by Equation (3A.5), where the leukaemic
term enters the pay-off quadratically. This corresponds to Equation (4) with p = 1,
q = 2, r = 2.
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Figure 3A.6: Results are presented for a bang-bang chemotherapy control (ub = 0.1) and
continuous stem cell transplant control, under a range of pay-off weightings (a1, a2, a3 ∈
{0.1, 1}). The continuous stem cell transplant control is not constrained by an upper
bound in the central column, with an upper bound of vb = 0.1 in the left column and vb =
0.3 in the right column. This figure corresponds to the pay-off given by Equation (3A.6),
where the leukaemic term enters the pay-off linearly. This corresponds to Equation (4)
with p = 1, q = 2, r = 1.
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3A.1.4 Bang-bang chemotherapy, bang-bang stem cell trans-

plant controls

This Subsection contains results for pay-offs presented in Equation (3A.7) and Equation

(3A.8), where both controls are bang-bang. These pay-offs correspond to results in Figure

3A.7 and Figure 3A.8, respectively. The pay-off functions are given by:

J =

∫ tf

0

(a1u(t) + a2v(t) + a3L(t)
2) dt, 0 ≤ u(t) ≤ ub, 0 ≤ v(t) ≤ vb, (3A.7)

J =

∫ tf

0

(a1u(t) + a2v(t) + a3L(t)) dt, 0 ≤ u(t) ≤ ub, 0 ≤ v(t) ≤ vb. (3A.8)

The intuitive results that we observe in previous subsections are reflected in Figure

3A.7 with both controls bang-bang. In the central column we consider bang-bang controls

with equal upper bounds: ub = vb = 0.1. In the left column, we increase the upper bound

on the stem cell transplant control to vb = 0.2 and in the right column we increase the

upper bound on the chemotherapy control to ub = 0.2. This enables us to investigate the

impact of control strength. As the upper bound on the controls increase, the duration

that they are switched on decreases. When all pay-off terms are equally weighed, only

the chemotherapy control is applied, as it is more effective at reducing the leukaemic

population. When the pay-off weighting of a bang-bang control is reduced, it is applied

for longer. Increasing the upper bound on one control can reduce the duration that the

other control is required, for example compare Figure 3A.7(h) with Figure 3A.7(i). With

both controls bang-bang and all terms weighed equally, the final populations indicate

that the leukaemia will return to its coexisting steady state; such a result suggests that

the leukaemia may not be sufficiently weighted in the pay-off.

In Figure 3A.8 we investigate the impact of varying κ when the controls are bang-bang,

and when leukaemia enters the pay-off linearly. For the small variations considered in this

case (κ ∈ 0.5, 1, 2) we notice changes in the state response, particularly of the progenitor

population, but change to the control dynamics is marginal. As κ is increased, leading

to a greater reduction in the progenitor population; the stem cell transplant control is

applied for longer, and the chemotherapy control is applied for less time.
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Figure 3A.7: Results are presented where both controls are bang-bang, under a range
of pay-off weightings (a1, a2, a3 ∈ {0.1, 1}). In the central column we consider equal
control bounds; ub = vb = 0.1. In the left column the upper bound on the stem cell
transplant control is increased (vb = 0.2), and in the right column the upper bound on
the chemotherapy control is increased (ub = 0.2). This figure corresponds to pay-off
given by Equation (3A.7), where the leukaemic term enters the pay-off quadratically.
This corresponds to Equation (4) with p = 1, q = 1, r = 2.
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Figure 3A.8: Results are presented where both controls are bang-bang, under a range
of pay-off weightings (a1, a2, a3 ∈ {0.1, 1}) and for upper control bounds ub = vb = 0.1.
We investigate how κ, the rate that chemotherapy kills progenitor blood cells relative
to leukaemic cells, impacts the dynamics of bang-bang controls. This figure corresponds
to the pay-off given by Equation (3A.8), where the leukaemic term enters the pay-off
linearly. This corresponds to Equation (4) with p = 1, q = 1, r = 1.
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3A.2 Steady state behaviour

The steady state behaviour of Equation (3), with no control applied (u = v = 0), is

presented in Figure 3A.9. This phase portrait corresponds to the parameter values in

Table 1. The steady state behaviour of the underlying model is discussed thoroughly in

the literature, both with [290], and without [82], the immune response. We observe that

there is a stable coexisting steady state with neither A nor L zero, and a stable healthy

steady state (no leukaemia cells, L = 0). Solutions in this work are initialised at the

coexisting steady state values for A and L unless otherwise specified.

0 0.5 1

A

0

0.2

0.4

0.6

0.8

1

L

A-nullcline

L-nullcline 1

L-nullcline 2

state flow

Figure 3A.9: Fixed points within the region of interest (0 ≤ A + L ≤ 1), are marked
with black discs. Closed discs mark the stable fixed points and the open disc marks the
unstable fixed point.

3A.3 Sensitivity

Due to the interconnected nature of optimal control; the particular aspects of the optimal

control regimes that are sensitive, and the degree of sensitivity; to initial conditions,

model parameters, and assumptions, depends on the pay-off that is being considered.

The question of performing a sensitivity analysis for an optimal control problem is not as
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straightforward as considering a sensitivity analysis for a regular uncontrolled model. As

we will show, it is always straightforward to analyse the optimal solution as one of more

features of the model, such as a particular parameter value, is varied. However, when

we vary some features in the optimal control problem, such as weighting parameters

in the pay-off, the characterisation of optimality and the associated optimal solution

changes, as does the value of the pay-off. Therefore, we ought to remember that it is

not straightforward to compare optimal solutions in a sensitivity analysis because each

change in a control parameter value leads to a different optimal solution. In this section

we explore the sensitivity of the optimal control results to the initial conditions, model

parameters and the haematopoietic stem cell steady state assumption. We present a

variety of sensitivity results corresponding to the pay-off in Equation (3A.4), with a1 = 1,

a2 = 0.1, a3 = 1, κ = 1 and control bounds 0 ≤ u(t) ≤ 0.3 and 0 ≤ v(t) ≤ 0.2. This

corresponds to the optimal control problem solved to obtain Figure 3A.4(h).

We find that the optimal control regimes are relatively robust, in that a small change

in the initial conditions, model parameters or steady state values leads to a small change

in the optimal solution trajectories. However, we caveat this by noting that the pay-off

weighting parameters also impact the sensitivity of the optimal control regimes to model

parameters, and the optimal control regimes will be more sensitive under some pay-off

weighting regimes than others. We explore this sensitivity at the end of this section.

3A.3.1 Initial conditions

Optimal control results presented in this work correspond to systems initialised at the

coexisting steady state values forA and L. In Figure 3A.10 we demonstrate that this is not

a requirement of the techniques, and that the optimal control strategies are not sensitive

to moderate changes in the initial conditions. The subtle differences that do emerge

between the optimal control strategies are intuitive. As L(0) increases, the application

of both controls increases. As A(0) increases, both controls are slightly reduced. The

minimum achievable pay-off, J , is marginally worse when L(0) is increased or when A(0)

is decreased. This is to be expected, as these cases represent a less favourable initial

situation.

3A.3.2 Model parameters

The parameters presented in Table 1 are used throughout this work. As outlined in

Section 3, acute myeloid leukaemia (AML) is a highly heterogeneous disease, and accurate

measurement and estimation of parameters is likely to change significantly from patient

to patient. As such, we investigate the sensitivity of the control strategies to the model

parameters in Table 1 by independently varying each parameter ±10% and recomputing

the optimal controls and corresponding state trajectories. We perform this parameter
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Decrease L(0) 10% Increase L(0) 10%

Figure 3A.10: Results are presented to explore the effect of moderate increases and
decreases in the initial conditions, A(0) and L(0). Results correspond to the pay-off given
by Equation (3A.4), where the chemotherapy control is bounded and continuous, and the
stem cell transplant control is bang-bang. Control weighting parameters are a1 = 1,
a2 = 0.1, a3 = 1, with bounds 0 ≤ u(t) ≤ 0.3 and 0 ≤ v(t) ≤ 0.2. Figure 3A.4(h) is
the corresponding optimal control regime for a system initialised at the coexisting steady
state values for A and L. In (a), [A(0), L(0)] = [0.2930, 0.3715], with pay-off J = 2.1626;
in (b), [A(0), L(0)] = [0.3581, 0.3715], with pay-off J = 2.1369; in (c) [A(0), L(0)] =
[0.3255, 0.3343], with pay-off J = 2.0049; and in (d) [A(0), L(0)] = [0.3255, 0.4087], with
pay-off J = 2.2888.

variation for the optimal control problem described in Equation (3A.4), with pay-off

weightings a1 = 1, a2 = 0.1 and a3 = 1. We find that the optimal control regimes

are qualitatively robust to these moderate parameter variations. The variations that

have the most noticeable impact are of the proliferation parameters, presented in Figure

3A.11; particularly that of the leukaemic population, ρL. Increasing ρL leads to a modest

increase in the optimal duration of the stem cell transplant control. However, we note

that in this case, it is not surprising that the stem cell transplant control is the most

sensitive element, as its reduced weighting in the pay-off (a2 < a1, a3), makes it the least

costly means of compensating for the increased proliferation of leukaemia. It is fair to

expect that the chemotherapy control would be more sensitive to this parameter variation

if a1 were to be reduced relative to a2 and a3. Similarly, we also find that find that the
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control regimes are insensitive to the other parameters in Table 1 (not shown).
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Figure 3A.11: Proliferation rates ρS, ρA and ρL are varied independently by ±10% to
gain insight into the sensitivity of the control regimes to these parameters. Results in
this figure are for the control problem given by Equation (3A.4) with bounded continuous
chemotherapy control, 0 ≤ u(t) ≤ 0.3, bang-bang stem cell transplant control, 0 ≤
v(t) ≤ 0.2, and pay-off weightings a1 = 1, a2 = 0.1, a3 = 1. The control regime and
state trajectories for this pay-off with the original (unvaried) parameters are presented
in Figure S4(h). The control regimes and state trajectories are qualitatively similar. The
most noticeable deviation arises from variations of ρL; we see that the duration over
which the stem cell transplant control is applied is increased between (e) and (f).
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3A.3.3 Steady state assumption

In the original model, Equation (2), a population of haematopoietic stem cells, S, grows

endogenously to a steady state, and serves as a source of A. In the control results in this

work we make the simplifying assumption that S is held constant at this steady state.

As the haematopoietic stem cells do not face competition, they grow to this steady state

quickly, even from a significantly depressed initial value. As such, provided that S(0)

is of a similar scale to A(0) and L(0) this assumption does not significantly impact the

optimal control regimes. Further, this assumption permits us to focus on the interaction

dynamics of A and L.

The Pontryagin Maximum Principle (PMP) and Forward-Backward Sweep Method

(FBSM) both readily generalise to higher dimensional systems without prohibitive in-

creases to the computational cost, so there would be minimal technical challenge associ-

ated with relaxing this assumption. When including S dynamically, prior to S reaching

steady state, the production of A from S is proportionally reduced, resulting in less com-

petitive pressure exerted on L by A, promoting an increased application of control. This

is illustrated in Figure 3A.12.
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Figure 3A.12: Results are presented for various values of S(0), the initial haematopoietic
stem cell population, relaxing the assumption that S(t) ≡ S̄. We relax this assumption by
modelling S(t) using the dynamics given in Equation (2). We present the dynamics with
S(0) = S̄ in (a), then we explore what happens as we relax this assumption and reduce
S(0). Even for the relatively small S(0) = 0.2 in (d), the optimal control regimes are
qualitatively similar. The early-time growth of A is slowed as S(0) is reduced, however
this does not significantly impact the optimal control dynamics.
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3A.3.4 Control parameters impact sensitivity

The sensitivity of the optimal control regimes depends on the pay-off weighting param-

eters. We present summary figures to demonstrate this behaviour. Results in Figures

3A.13 - 3A.15 correspond to the control problem given by Equation (3A.4) with bounded

continuous chemotherapy control, 0 ≤ u(t) ≤ 0.3, and bang-bang stem cell transplant

control, 0 ≤ v(t) ≤ 0.2. Figure 3A.13 has pay-off weighting parameters a1 = 1, a2 = 0.1,

a3 = 1, Figure 3A.14 has pay-off weighting parameters a1 = 0.5, a2 = 0.1, a3 = 1, and

Figure 3A.15 has pay-off weighting parameters a1 = 1, a2 = 0.1, a3 = 0.5. In each case

we vary κ ∈ [0, 2] to observe the sensitivity of the optimal control regimes under different

pay-off weighting parameters.

As the weighting parameter of an element in the pay-off decreases, we generally observe

that it becomes more sensitive to changes in model parameters such as κ. As a corollary

to this, we notice in each case that A is the most sensitive to changes in κ, partly because

κ directly corresponds to an additional killing rate of A, and partly because A is not

explicitly included in the pay-off.

A(t) L(t)

u(t) v(t)

Figure 3A.13: Sets of solutions are presented for A, L, u and v as we vary κ ∈ [0, 2] with
pay-off weightings a1 = 1, a2 = 0.1, a3 = 1. As κ increases, such that the chemotherapy
control is effectively becoming more toxic to progenitor blood cells, we observe little
change in L and u. However, we observe increasing application of the stem cell transplant
control, as it mitigates the effect of the increasing toxicity on A.
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A(t) L(t)

u(t) v(t)

Figure 3A.14: Sets of solutions are presented for A, L, u and v as we vary κ ∈ [0, 2]
with pay-off weightings a1 = 0.5, a2 = 0.1, a3 = 1. This represents a reduced cost of
applying chemotherapy control relative to Figure 3A.13. As κ increases, we still observe
little change in L, however u increases with κ. Relative to Figure 3A.13 we also note that
the duration of the stem cell transplant control is reduced. It is also evident that the
duration of the stem cell transplant control increases non-linearly with κ, at a decreasing
rate.
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A(t) L(t)

u(t) v(t)

Figure 3A.15: Sets of solutions are presented for A, L, u and v as we vary κ ∈ [0, 2] with
pay-off weightings a1 = 1, a2 = 0.1, a3 = 0.5. This represents a reduced cost of leukaemia
relative to Figure 3A.13. As κ increases, we observe that u increases only marginally with
κ, and is applied less relative to Figure 3A.13. In response to this, L is reduced more
gradually over time, and the final time population of L noticeable increases with κ.
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3A.4 Supporting code

Code for implementation of the optimal control algorithms in this work is made freely

available on GitHub.

3A.5 Forward-backward sweep method

In Algorithm 1 we present a concise algorithm for the FBSM with multiple controls [290].

We denote the system state as x(t), the co-state as λ(t), and the controls as u(t). For

the two control model considered in this work, x(t) = [A(t), L(t)]T, u(t) = [u(t), v(t)]T,

and λ(t) = [λ1(t), λ2(t)]
T; where λ1(t) and λ2(t) are the co-state equations derived from

the Hamiltonian [290].

Algorithm 1: FBSM for multiple controls

i. Make an initial guess of u(t).

For all problems considered in this work, u(t) ≡ v(t) ≡ 0 is sufficient.

ii. Using the initial condition x(0) = x0, solve for x(t) forward in time using the

initial guess of u(t).

iii. Using the transversality condition λ(tf ), solve for λ(t) backwards in time, using

the values for u(t) and x(t).

iv. Calculate unew(t) by evaluating the expression for the optimal control u∗(t) using

the updated x(t) and λ(t) values.

v. Update u(t) based on a combination of unew(t) and the previous u(t).

vi. Check for convergence.

If x(t), λ(t) and u(t) meet a specified tolerance, accept x(t), λ(t) and u(t),

otherwise return to Step ii. using the updated u(t).

https://github.com/Jesse-Sharp/Sharp2019
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Supplementary material to Chapter

4

Supporting code

Code for implementing the algorithms presented in this work is freely available on GitHub.

4A.1 Forward-backward sweep method algorithm

The algorithm for the forward-backward sweep method (FBSM) is adapted from [191,

290]. Recall that in the standard control notation we represent the control as u(t), the

state variables as x(t), and the co-state variables as λ(t).

Algorithm 1: Forward-backward sweep

i. Make an initial guess, u(0)(t).

ii. Iterate for k = 0, 1, ..., until converged or iteration limit met:

iii. Solve for x(k)(t) forward in time using initial values x(0), and u(k)(t).

iv. Solve for λ(k)(t) backwards in time from the transversality condition λ(tN), using

u(k)(t) and x(k)(t).

v. Compute temporary update, û(k+1)(t), using x(k)(t), λ(k)(t), and the optimality

condition derived from minimising the Hamiltonian.

vi. Update u(k+1)(t) = ωu(k)(t) + (1− ω)û(k+1)(t).

vii. Check for convergence. If not converged, return to Step ii.

205

https://github.com/Jesse-Sharp/Sharp2021
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In Step i., an initial guess of u(0)(t) ≡ 0 is often sufficient, though an initial guess closer

to the optimal control can improve convergence. The choice of ω ∈ [0, 1) in Step vi. can

significantly impact the rate of convergence, and whether or not the process converges at

all [191, 290]. We do not prescribe a specific convergence criterion in Step vii., as there

are several valid choices. A general approach is to check if x(k)(t), λ(k)(t), and u(k)(t)

are within a specified absolute or relative tolerance of their previous iteration values. For

well-behaved systems, convergence of the control terms generally implies convergence of

the associated state and co-state variables.

4A.2 Single-variable linear continuous control ana-

lytical solution

Consider the linear continuous control problem posed in the main document, repeated

here as Equation (4A.1).

dx(t)

dt
= γx(t) + u(t), x(0) = x0, γ > 0, 0 ≤ t ≤ 1. (4A.1)

The co-state equation is

dλ(t)

dt
= −2ax(t)− λ(t)γ, (4A.2)

with transversality condition λ(1) = 0, and optimal control characterised by

u∗(t) =
λ(t)

2b
. (4A.3)

We set model parameter γ = 0.5 and pay-off weightings a = b = 1, with initial

condition x0 = 1. In this case, we are able to solve the control problem analytically.

Substituting Equation (4A.3) into Equation (4A.1) we can combine with Equation (4A.2)

to form the following system:

[
dx(t)
dt

dλ(t)
dt

]
=

[ 1
2

1
2

−2 −1
2

] [
x(t)
λ(t)

]
. (4A.4)

This system has complex eigenvalues e1 = (
√
3/2)i, e2 = (−

√
3/2)i and corresponding

eigenvectors v1 = [(
√
3i − 1)−1, 1]T , v2 = [(−

√
3i − 1)−1, 1]T . Following the standard

approach for systems with complex eigenvalues [160], and noting that v1 = [−1/4 −√
3i/4, 1]T we are able to produce a general solution of the form
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[
x(t)
λ(t)

]
= C1

([
−1

4
1

]
cos

(√
3t

2

)
+

[√
3
4
0

]
sin

(√
3t

2

))

+ C2

(
−
[√

3
4
0

]
cos

(√
3t

2

)
+

[
−1

4
1

]
sin

(√
3t

2

))
. (4A.5)

Evaluating Equation (4A.5) with the initial condition x(0) = 1, and transversality

condition λ(1) = 0, we can solve for the coefficients C1 and C2.

C1 = −4−
√
3C2, where

C2 =
4 cos

(√
3
2

)
sin
(√

3
2

)
−
√
3 cos

(√
3
2

) .

We can then form the complete analytical solution for the optimal state and co-state:

[
x(t)
λ(t)

]
=

 4 cos
(√

3
2

)
sin
(√

3
2

)
−

√
3 cos

(√
3
2

)
([ 0

−
√
3

]
cos

(√
3t

2

)
+

[
−1
1

]
sin

(√
3t

2

))

+

([
1
−4

]
cos

(√
3t

2

)
+

[
−
√
3

0

]
sin

(√
3t

2

))
. (4A.6)

From Equation (4A.3), recalling that b = 1 we can also obtain an analytical expression

for the optimal control that depends only on t.

u∗(t) =

 2 cos
(√

3
2

)
sin
(√

3
2

)
−

√
3 cos

(√
3
2

)
(−√

3 cos

(√
3t

2

)
+ sin

(√
3t

2

))

− 2 cos

(√
3t

2

)
. (4A.7)

In Figure 4A.1 we plot the exact solutions against the optimal state and control

obtained from the FBSM to demonstrate excellent agreement.
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Figure 4A.1: We observe excellent agreement between the analytical and numerical solu-
tions to the linear continuous control problem. The analytical optimal control is shown in
black, with the optimal control obtained via the FBSM shown in red dash. The analytical
solution for the state is plotted in blue, with the numerical solution overlaid in cyan dash.
These solutions are produced with model parameter γ = 0.5, time-step dt = 3.91× 10−3,
over the interval 0 ≤ t ≤ 1. The contributions of the state and the control to the pay-off
are equally weighted, with a = b = 1.
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4A.3 Steffensen derivation

In this section, we present the derivation of the multivariate Steffensen method, adapted

from the two-variable derivation presented in [141], and then outline the proposed mod-

ification for use with accelerating convergence of the FBSM for an iterative process,

X(k+1) = F (X(k)), where X(k) = [x
(k)
0 , x

(k)
1 , ..., x

(k)
N ]T ∈ RN+1 and F = [f0, f1, ..., fN ]

T.

Suppose S = [s0, s1, ..., sN ]
T is a solution, such that S = F (S). Denote the error in the

kth iterations as E(k) = [e
(k)
0 , e

(k)
1 , ..., e

(k)
N ]T where E(k) = X(K) − S, such that

e
(k)
i = x

(k)
i − si, i = 0, ..., N.

Considering the first error term, and performing a Taylor expansion about s0 we have

e
(k+1)
0 = x

(k+1)
0 − s0,

= f0(x
(k)
0 , x

(k)
1 , ..., x

(k)
N )− f0(s0.s1, ..., sN),

= f0(s0 + e
(k)
0 , s1 + e

(k)
1 , ..., sN + e

(k)
N )− f0(s0.s1, ..., sN),

=
∂f0(s0, s1, ..., sN)

∂x0
e
(k)
0 +

∂f0(s0, s1, ..., sN)

∂x1
e
(k)
1 + ...

+
∂f0(s0, s1, ..., sN)

∂xN
e
(k)
N +O(||E||2). (4A.8)

Similarly for the jth element of E, with j = 1, 2, ..., N we have

e
(k+1)
j =

∂fj(s0, s1, ..., sN)

∂x0
e
(k)
0 +

∂fj(s0, s1, ..., sN)

∂x1
e
(k)
1 + ...

+
∂fj(s0, s1, ..., sN)

∂xN
e
(k)
N +O(||E||2). (4A.9)

Recalling the definition of the Jacobian, evaluated at the solution S; JS,

JS =


∂f0
x0

∂f0
x1

. . . ∂f0
xN

∂f1
x0

∂f1
x1

. . . ∂f1
xN

...
...

. . .
...

∂fN
x0

∂fN
x1

. . . ∂fN
xN

 , (4A.10)

we can express Equations (4A.8-4A.9) in matrix form:

E(k+1) = JSE
(k) +O(||E(k)||2). (4A.11)
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In line with the approach for deriving Aitken’s formula for a single variable [141], we

proceed by assuming that Equation (4A.11) is true when neglecting the O(||E(k)||2) term.

Then we have

X(k+1) − S = JS(X
(k) − S), k = 0, 1, 2.... (4A.12)

We want to determine S, however we do not know JS. Subtracting two consecutive

terms of Equation (4A.12), and denoting ∆X(k) = X(k+1) −X(k) gives

∆X(k+1) = JS∆X
(k), k = 0, 1, 2... (4A.13)

Defining X (k) as a matrix constructed with columns (X(k), X(k+1), ..., X(k+N)), such

that X (k) ∈ RN+1×N+1;

X (k) =


x
(k)
0 x

(k+1)
0 . . . x

(k+N)
0

x
(k)
1 x

(k+1)
1 . . . x

(k+N)
1

...
...

. . .
...

x
(k)
N x

(k+1)
N . . . x

(k+N)
N

 , (4A.14)

and ∆X (k) = X (k+1) −X (k), then we can use Equation (4A.13) to obtain

JS∆X (k) = ∆X (k+1), k = 0, 1, 2..., and hence: (4A.15)

JS = ∆X (k+1)(∆X (k))−1. (4A.16)

Rearranging Equation (4A.12) to solve for S, and assuming (I − JS) is non-singular,

where I is the N + 1×N + 1 identity matrix, we have

(I − JS)S = X(k+1) − JSX
(k),

(I − JS)S = (I − JS)X
(k) +∆X(k),

S = X(k) + (I − JS)
−1∆X(k). (4A.17)

Combining Equation (4A.17) with Equation (4A.16), and noting that (AB)−1 =

B−1A−1 then
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S = X(k) −∆X (k)(∆2X (k))−1∆X(k). (4A.18)

To arrive at this expression for the true solution, S, we have assumed that Equation

(4A.11) holds when neglecting the O(||E(k)||2) term. Though this may not be true, we

assume that

X̂(k) = X(k) −∆X (k)(∆2X (k))−1∆X(k) (4A.19)

is closer to S than X(k), provided that ∆2(X (k))−1 is non-singular. This is the form of

Steffensen acceleration for multivariate systems. In the context of accelerating the FBSM,

the number of iterations required to construct the X (k) matrix in Equation (4A.14) is

O(N). As outlined in the main document, we expect the number of iterations required

for the FBSM to converge without acceleration to be fewer than O(N).

Suppose instead that we chose a number, m < N + 1, such that when we would

form X (k) in Equation (4A.14), we instead form a rectangular matrix, Y(k) of dimension

N + 1×m+ 2:

Y(k) =


x
(k)
0 x

(k+1)
0 . . . x

(k+m+1)
0

x
(k)
1 x

(k+1)
1 . . . x

(k+m+1)
1

...
...

. . .
...

x
(k)
N x

(k+1)
N . . . x

(k+m+1)
N

 , (4A.20)

We can no longer follow the standard derivation, as Equation (4A.13) now gives a

relationship between rectangular matrices, from which we can no longer isolate JS via

matrix inversion.

JS∆Y(k) = ∆Y(k+1), k = 0, 1, 2... (4A.21)

Instead, we suppose that X (k)(∆2X (k))−1∆X(k) in Equation (4A.19) can be approxi-

mated by ∆Y (k)(∆2Y(k))+∆X(k), such that we obtain

X̂(k) = X(k) −∆Y(k)(∆2Y(k))+∆X(k), (4A.22)

where (∆2Y(k))+ is the Moore-Penrose pseudoinverse [257]. We will refer to this as the

partial Steffensen method.
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The Moore-Penrose pseudoinverse is a generalisation of the matrix inverse for singular

or non-square matrices. The matrix A+ is the (unique) Moore-Penrose pseudoinverse of

A if it satisfies these conditions [257]:

1. AA+A = A,

2. A+AA+ = A+,

3. (AA+)∗ = AA+,

4. (A+A)∗ = A+A.

Here, (·)∗ denotes the conjugate transpose. If A is an invertible square matrix, then

A+ = A−1. It can be shown that X = A+B is the least squares solution to AX = B, in

that it minimises the Frobenius norm; ||A(A+B) − B||F ≤ ||AX − B||F , for any choice

of X where AX is defined [258,261].

Suppose an m× n matrix A is expressed in the singular value decomposition (SVD)

form, A = V ∗SU , where V and U are unitary matrices of dimension m ×m and n × n,

respectively. The m×n matrix S = diag(σ1, ..., σp), where σi are the singular values of A,

p = min(m,n), and σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0 [126]. The matrix A+ can then be obtained

via A+ = U∗S+V , where S+ is formed by taking the reciprocal of the non-zero diagonal

elements of S then transposing the resulting matrix [258].

For numerical implementation of Equation (4A.22), many popular options for matrix

computation such as MATLAB, Julia and Python’s NumPy library have built in pinv()

commands that compute the Moore-Penrose pseudoinverse using SVD [157, 221, 271].

Further, it may be more efficient to instead use in-built least-squares routines, such as

lsqminnorm() in MATLAB [221].



213 4A.4. Acceleration algorithms

4A.4 Acceleration algorithms

In this section we present algorithms for the iterative acceleration methods used in this

work. We present algorithms for the Wegstein, Aitken-Steffensen and Anderson methods

as applied to systems. In accordance with notation used in the main document, we

consider accelerating a fixed point iterative process, X(k+1) = F (X(k)), where X(k) =

[x
(k)
0 , x

(k)
1 , ...x

(k)
N ]T is the kth iterate for the control, consisting of N + 1 values, and F =

[f0, f1, ...fN ]
T is the N + 1 dimensional operator. We refer to evaluation of F (X) as one

function evaluation, as this is analogous to the number of iterations in a FBSM process

and this is what we seek to reduce. We denote the total number of function evaluations

required to achieve convergence as N .

4A.4.1 Wegstein method

The algorithm for the Wegstein method is adapted from [129,334]. This method requires

element-wise computations; with elements denoted by subscript i. The element-wise com-

putations are performed on every element, and there is no interaction between elements,

such that i = 1, ..., N + 1, always. This range is not explicitly mentioned in Algorithm 3

as there is no ambiguity.

Algorithm 3: Wegstein method

i. From X(0), generate X(1) = F (X(0)) and X(2) = F (X(1)).

ii. Compute A
(1)
i and q

(1)
i element-wise; A

(1)
i =

x
(2)
i −x

(1)
i

x
(1)
i −x

(0)
i

, q
(1)
i =

A
(1)
i

A
(1)
i −1

, bound qi if

desired.

iii. Update X(2) element-wise; x
(2)
i = q

(1)
i x

(1)
i + (1− q

(1)
i )fi(x

(1)
i ).

iv. Iterate for k = 2, 3, ..., until converged or iteration limit met:

v. Compute A
(k)
i and q

(k)
i element-wise; A

(k)
i =

fi(x
(k)
i )−fi(x

(k−1)
i )

x
(k)
i −x

(k−1)
i

,

q
(k)
i =

A
(k)
i

A
(k)
i −1

, bound qi if desired.

vi. Update X(k+1) element-wise; x
(k+1)
i = q

(k)
i x

(k)
i + (1− q

(k)
i )fi(x

(k)
i ).

vii. Check for convergence. If not converged, return to Step iv.

The Wegstein method requires two evaluations of F initially, then one more evalua-

tion of F to update X(2). From Step iv. onward, only one evaluation of F is required per

iteration, as the elements fi(x
(k−1)
i ) used to obtain A

(k)
i can be stored from the previous

iteration. If Ai = 1 in Step ii. or Step v., prescribe a value of qi to avoid division by
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zero, for example qi = 0. Aside from the choice of bounds on the qi, variations to the

Wegstein method arise by altering how frequently q is updated. In the simplest case, q

is determined only once, and not updated in subsequent iterations. Updating q every

nth iteration can be effective for appropriately chosen n, however the choice of n that

minimises N appears to be highly problem dependent and must be empirically deter-

mined [283]. As the Wegstein method is implemented element-wise, no expensive matrix

operations are performed. However, these element-wise computations ignore interactions

between variables and can result in instability for some problems [249].

4A.4.2 Aitken-Steffensen method

The algorithm for the Steffensen method is adapted from [58, 141]. Recall that X(k) =

[x
(k)
0 , x

(k)
1 , ...x

(k)
N ]T is the kth iterate, consisting of N+1 elements, and F = [f0, f1, ...fN ]

T is

the N +1 dimensional operator of the iterative process. Further, ∆X(k) = X(k+1)−X(k),

X (k) is a matrix constructed with columns (X(k), X(k+1), ..., X(k+N)), such that X (k) is

a square matrix of dimension N + 1, with ∆X (k) = X (k+1) − X (k), and ∆2X (k) =

∆X (k+1) −∆X (k).

Algorithm 2a: Steffensen method

i. Iterate for k = 0, 1, ..., until converged or iteration limit met:

ii. From X(k), generate X(k+1) = F (X(k)), X(k+2) = F (X(k+1)), ...,

X(k+N+2) = F (X(k+N+1)).

iii. Define ∆X(k) = X(k+1) −X(k), ∆X(k+1) = X(k+2) −X(k+1), ...,

∆X(k+N+1) = X(k+N+2) −X(k+N+1).

iv. Append results from Step iii. to construct N + 1 × N + 1 matrices ∆X (k) =

(∆X(k),∆X(k+1), ...,∆X(k+N)), and

∆X (k+1) = (∆X(k+1),∆X(k+2), ...,∆X(k+N+1)).

v. Define ∆2X (k) = ∆X (k+1) −∆X (k).

vi. Compute X̂(k+1) = X(k) −∆X (k)(∆2X (k))−1∆X(k).

vii. Check for convergence. If not converged, return to Step ii. starting with X(k) =

X̂(k+1).

For efficient numerical implementation, the inverse matrix is not formed in Step vi.

Rather, we compute X̂(k+1) = X(k) −∆X (k)P , where P is obtained by solving the linear

system (∆2X (k))P = ∆X(k). To recover the Aitken method, continue to compute X̂(k),
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k = 1, 2, ..., and check for convergence in the X̂ series, but do not set X(k) = X̂(k+1) in

Step vii; instead use X(k+N+2), the most recently computed X from Step ii.

As noted in §4A.3, we expect the number of iterations required for the FBSM to

converge without acceleration to be fewer than the number of FBSM iterations required

to construct X (k). As such, we also present the algorithm for a partial Aitken-Steffensen

method outlined in §4A.3, requiring m+ 1 ≪ N function evaluations per iteration.

Algorithm 2b: Partial Steffensen method

i. Choose a value m such that 1 ≤ m < N + 1.

ii. Iterate for k = 0, 1, ..., until converged or iteration limit met:

iii. From X(k), generate X(k+1) = F (X(k)), X(k+2) = F (X(k+1)), ...,

X(k+m+1) = F (X(k+m)).

iv. Define ∆X(k) = X(k+1) −X(k), ∆X(k+1) = X(k+2) −X(k+1), ...,

∆X(k+m) = X(k+m+1) −X(k+m).

v. Append results from Step iv. to construct N + 1×m matrices

∆Y(k) = (∆X(k),∆X(k+1), ...,∆X(k+m−1)), and

∆Y(k+1) = (∆X(k+1),∆X(k+2), ...,∆X(k+m)).

vi. Define ∆2Y(k) = ∆Y(k+1) −∆Y(k).

vii. Compute X̂(k+1) = X(k)−∆Y(k)(∆2Y(k))+∆X(k), where (∆2Y(k))+ is the Moore-

Penrose pseudoinverse.

viii. Check for convergence. If not converged, return to Step ii. starting with X(k) =

X̂(k+1).

As noted in §4A.3, for numerical implementation of Step vii. it may be more efficient

to use in-built least-squares routines, such as lsqminnorm() in MATLAB [221], rather

than computing the Moore-Penrose pseudoinverse explicitly via SVD or other means. To

recover the partial Aitken method, continue to compute X̂(k), k = 1, 2, ..., and check

for convergence in the X̂ series, but do not set X(k) = X̂(k+1) in Step vii.; instead use

X(k+m+1), the most recently computed X from Step iii.

4A.4.3 Anderson Acceleration
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Algorithm 4: Anderson acceleration

i. Choose a value M ≥ 1, let m = 1.

ii. From X(0), generate X(1) = F (X(0)) and X(2) = F (X(1)).

iii. Define ∆X(0) = X(1) −X(0), ∆X(1) = X(2) −X(1), append

to form the N + 1 × 2 matrix G = (∆X(0),∆X(1)) = (G(0), G(1)), and compute

∆G(0) = ∆X(1) − ∆X(0). Note that X(2) and ∆X(1) in this initialisation are

overwritten in Step vi. when k = 1, by their Anderson algorithm generated

counterparts.

iv. Iterate for k = 1, 2, ... until converged or iteration limit met:

v. Solve the least squares problem γ = argminγ ||G(k) − γdG(k−1)||.

vi. Compute X(k+1) = X(k) +G(k) − (dX(k−1) + dG(k−1))γ,

∆X(k) = X(k+1)−X(k), G(k+1) = F (X(k+1))−X(k+1), and ∆G(k) = G(k+1)−G(k).

vii. if m < M

Update G,dX and dG by appending the results from Step vi. as the right-most

column. Increment m = m+ 1.

else

Update G, dX ad dG by removing the left-most column then appending the

results from Step vi. as the right-most column.

viii. Check the condition number of the matrix dG; if it exceeds some prescribed

tolerance, update G, dX and dG by removing the left-most column. Decrement

m = m−1. Repeat Step viii. until the condition number falls below the tolerance

or m = 1.

ix. Check for convergence. If not converged, return to Step iv.

The algorithm for Anderson Acceleration is adapted from [104, 326]. Recall that for

a fixed point process where we seek X = F (X), we can define a corresponding root

finding problem; G(X) := F (X) − X = 0, where 0 is the zero column vector of length

N + 1. For convenience of notation in the algorithm, we denote the difference between

iterates; ∆X(k) = X(k+1)−X(k), residuals; G(k) = F (X(k))−X(k), and difference between

residuals ∆G(k) = G(k+1) − G(k). Further, G(k) is a matrix constructed with columns

(G(k−m), G(k−m+1), ..., G(k)), dX(k) is a matrix with columns

(∆X(k−m),∆X(k−m+1), ...,∆X(k−1)), and dG(k) is a matrix with columns

(∆G(k−m),∆G(k−m+1), ...,∆G(k−1)).
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The algorithms for Anderson acceleration presented in the literature can vary sig-

nificantly between sources depending on how the least squares problem is handled, and

which commodities are stored and accessed at what stage of the process. The algorithm

we present here, along with the associated MATLAB implementation, is one of many

approaches, and we recommend resources such as [18, 104, 326] for a more thorough ex-

planation and further efficiency improvements. We attempt to strike a balance between

understandable implementation, efficiency and effectiveness. As we are focussed on using

these acceleration techniques to reduce N , we include Step viii. to check the condition-

ing of dG, which is straightforward to implement and can reduce N . However, we do

not incorporate the approach of performing QR decomposition on dG, that enables more

computationally efficient updating and solutions to the least squares problems [326]; as

this adds significant complexity to the algorithm and does not further our particular goal

in this work of reducing N . For clarity, in Step iii. ∆X(0) = G(0) and ∆X(1) = G(1), how-

ever this is only true for the initialisation. When the next iterations of these values are

calculated in Step vi., X (and hence ∆X) values are updated via the Anderson formula

X(k) + G(k) − (dX(k−1) + dG(k−1))γ, whereas G values are updated based on a function

evaluation of the most recently computed X.

4A.5 Test nonlinear systems

We test each iterative acceleration technique on three nonlinear systems, before applying

the techniques to FBSM problems. Equation (4A.23) is a 2 × 2 system used in [244] to

test the Steffensen method. Equations (4A.24) and (4A.25) are arbitrarily constructed

systems of dimension 3 × 3 and 4 × 4, respectively. These systems all have at least

one real root that can be obtained via fixed point iteration, to use as a benchmark for

the effectiveness of each acceleration algorithm. We also present approximate numerical

solutions for the other real roots, obtained using vpasolve() in MATLAB [222].

The 2× 2 system is:(
x1
x2

)
=

( 1
60
(3x31 − 3x21 x2 + 6x1 x

2
2 + 61.488)

1
50
(−x31 + 6x21x2 + 3x32 − 32.496)

)
. (4A.23)

The approximate real solutions to Equation (4A.23) are:(
x1
x2

)
=

(
1.4
−1

)
,

(
−5.2024
−0.9414

)
,

(
−2.2912
−2.9166

)
,

(
−1.0562
4.1194

)
,(

1.5442
−1.1372

)
,

(
3.2302
2.3117

)
,

(
3.9247
1.7874

)
.
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The 3× 3 system is: ( x1
x2
x3

)
=

 x1 − 1
4
(x21 + x22 − 5)

x2 − 1
2
(x1x2 − 2)

1
3
(x2 − x1x3)

 . (4A.24)

The approximate real solutions to Equation (4A.24) are:( x1
x2
x3

)
=

( 1
2
0.5

)
,

( −1
−2
−1

)
,

( −2
−1
−1

)
,

( 2
1
0.2

)
.

The 4× 4 system is: 
x1
x2
x3
x4

 =


√

4x1x4 − x22 + 5
2
x1
(1− x2x4) +

x3

10
1
3
(x2 − x1) +

1
x3

1
50
(x1x3 − 3

2
x2x4)

 . (4A.25)

The approximate real solutions to Equation (4A.25) are:
x1
x2
x3
x4

 =


1.9325
0.9613
−1.1749
−0.0441

 ,


0.9965
1.9858
−0.8486
−0.0160

 ,


1.0039
2.0205
1.1837
0.0224

 ,


2.0566
1.0233
0.8425
0.0336

 .

4A.5.1 Results

Tables in this section contain the number of function evaluations required for convergence

for each system, using each of the acceleration algorithms and for various initial guesses.

Recall that we use N to refer to the number of times the right hand side of the system

is evaluated for the iterative procedure to converge. The convergence criteria for all

schemes except for Aitken’s method is ||F (X)−X|| < 1×10−10. Where the method fails

to converge within 1000 function evaluations, we note DNC in the table. For Aitken’s

method, convergence is determined based on the difference between subsequent results in

the Aitken series; ||X̂(k+1) − X̂(k)|| < 1× 10−10.

Wegstein method

For the Wegstein method, results are presented for a static value of q, and for updating

q every nth iteration, n ∈ {1, 2, ..., 6}. We consider the standard bounds of −5 ≤ q ≤ 0

[21, 283], and the unbounded case. The effectiveness varies, with some combinations

significantly outperforming fixed point iteration and other combinations requiring far

more function evaluations for convergence, or not converging at all. In several cases the

Wegstein method converges to a different root to the fixed point iteration, as the Wegstein

updating step can cause the iterates to leave the basin of attraction of the solution found

via fixed point iteration. Though we are seeking real solutions, the square root term in

Equation (4A.25) can introduce complex values during the iterative process. This creates
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a challenge when implementing bounds, as C is not ordered. We handle this by bounding

the magnitude of the complex number while maintaining its angle in the complex plane.

Code implementing this step is provided on GitHub, though we do not discuss it in detail

in this work as it does not impact the acceleration of the FBSM for optimal control

problems.

Fixed Point Update Wegstein q every nth iteration,

bounded −5 ≤ q ≤ 0

Eq. X(0) Solution N Static 1 2 3 4 5 6

4A.23 [0; 0] [1.4;−1] 167 141 87 74 60 46 42 44
[1; 2] [1.4;−1] 167 135 105 55 50 46 53 DNC
[1; 1] [1.4;−1] 167 131 81 66 64 58 67 56
[-1; -1] [1.4;−1] 167 144 91 79 DNC 50 47 44

Fixed Point Update Wegstein q every nth iteration,

unbounded

Eq. X(0) Solution N Static 1 2 3 4 5 6

4A.23 [0; 0] [1.4;−1] 167 141 247 32 26 26 27 27
[1; 2] [1.4;−1] 167 200 242 26 20 58 DNC 56*
[1; 1] [1.4;−1] 167 131 247 26 DNC 58* DNC DNC
[-1; -1] [1.4;−1] 167 144 251 28 20 22 22 26

* indicates that the procedure converged to another root; [3.9247; 1.7874].

Fixed Point Update Wegstein q every nth iteration,

bounded −5 ≤ q ≤ 0

Eq. X(0) Solution N Static 1 2 3 4 5 6

4A.24 [0; 0; 0] [2; 1; 0.2] 56 DNC 62 62 60 64 64 71
[1; 2; 3] [1; 2; 0.5] 23 25 25 25 25 25 25 25
[1; 1; 1] [2; 1; 0.2] 57 59 61 59 59 59 59 59
[-1; -1; -1] [2; 1; 0.2] 57 59 DNC 60 DNC 61 59 59

Fixed Point Update Wegstein q every nth iteration,

unbounded

Eq. X(0) Solution N Static 1 2 3 4 5 6

4A.24 [0; 0; 0] [2; 1; 0.2] 56 DNC 90 21 20 22 24 32
[1; 2; 3] [1; 2; 0.5] 23 3 3 3 3 3 3 3
[1; 1; 1] [2; 1; 0.2] 57 53 84 22 71* 50 28 26
[-1; -1; -1] [2; 1; 0.2] 57 DNC 93* 22* 49 22* 27* 26*

* indicates that the procedure converged to another root; [−2;−1;−1].

Fixed Point Update Wegstein q every nth iteration,

bounded −5 ≤ q ≤ 0

Eq. X(0) Solution N Static 1 2 3 4 5 6

4A.25 [1; 2; 3; 4] [1.9325;

0.9613;

-1.1749;

-0.0441]

99 DNC 80 74 98 126 DNC DNC
[1; 1; 1; 1] 100 102 92 102 110 102 DNC 103
[-1; -1; -1; -1] 96 DNC 62 71 86 117 206 DNC

https://github.com/Jesse-Sharp/Sharp2021
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Results for Equation (4A.25) exclude the initial condition [0; 0; 0; 0] as the system is not

defined for x1 = 0 or x3 = 0. The solution is presented once only for each table concerning

Equation (4A.25), corresponding to all initial values considered.

Fixed Point Update Wegstein q every nth iteration,

unbounded

Eq. X(0) Solution N Static 1 2 3 4 5 6

4A.25 [1; 2; 3; 4] [1.9325;

0.9613;

-1.1749;

-0.0441]

99 DNC 74 74 89 DNC DNC DNC
[1; 1; 1; 1] 100 99 99* 70* 62* DNC DNC DNC
[-1; -1; -1; -1] 96 DNC 59 70 91 360 DNC DNC

*indicates that the procedure converged to another root, [2.0566; 1.0233; 0.8425; 0.0336].

Aitken-Steffensen methods

For the partial Aitken and partial Steffensen methods we produce results form = 1, 2, ...N

where N is the size of the system and m < N corresponds to the partial implementation

outlined in §4A.4. The Steffensen method required fewer function evaluations than the

Aitken method in most cases, though the Aitken method converged for all cases while

the Steffensen method did not. In one instance the partial Steffensen method converged

to a different root to the fixed point iteration. All implementations of the Aitken and

Steffensen methods that converged, did so with fewer function evaluations than the fixed

point iteration.

Fixed Point Aitken Steffensen

Eq. X(0) Solution N m = 1 m = 2 m = 1 m = 2

4A.23 [0; 0] [1.4;−1] 167 92 66 61 16
[1; 2] [1.4;−1] 167 92 63 55 19
[1; 1] [1.4;−1] 167 92 69 71 19
[-1; -1] [1.4;−1] 167 92 66 59 19

Fixed Point Aitken, m = Steffensen, m =

Eq. X(0) Solution N 1 2 3 1 2 3

4A.24 [0; 0; 0] [2; 1; 0.2] 56 38 39 28 47 22 17
[1; 2; 3] [1; 2; 0.5] 23 4 6 8 3 4 5
[1; 1; 1] [2; 1; 0.2] 57 38 36 28 43 25 17
[-1; -1; -1] [2; 1; 0.2] 57 38 39 28 DNC DNC DNC

Fixed Point Aitken, m = Steffensen, m =

Eq. X(0) Solution N 1 2 3 4 1 2 3 4

4A.25 [1; 2; 3; 4] [1.9325;

0.9613;

-1.1749;

-0.0441]

99 50 48 40 35 73 76 53 21
[1; 1; 1; 1] 100 50 45 40 35 DNC 79* 61 36
[-1; -1; -1; -1] 96 46 42 36 30 72 57 32 15

* indicates that the procedure converged to another root, [2.0566; 1.0233; 0.8425; 0.0336].
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Anderson Acceleration

For Anderson acceleration we produce results for M ∈ {1, 2, ..., 5}, with a tolerance of

1× 1010 when checking the conditioning of the matrix. Convergence was achieved in all

implementations of Anderson acceleration, though several cases converged to a different

root to the fixed point iteration. Of all the methods considered, Anderson acceleration

produced the most consistent reduction in function evaluations relative to the fixed point

iteration when applied to these test nonlinear systems.
Fixed Point Anderson

Eq. X(0) Solution N M = 1 M = 2 M = 3 M = 4 M = 5

4A.23 [0; 0] [1.4;−1] 167 11 15 13 15 16
[1; 2] [1.4;−1] 167 13 12 13 16 17
[1; 1] [1.4;−1] 167 12 12 14 16 17
[-1; -1] [1.4;−1] 167 12 12 14 16 19

Fixed Point Anderson

Eq. X(0) Solution N M = 1 M = 2 M = 3 M = 4 M = 5

4A.24 [0; 0; 0] [2; 1; 0.2] 56 28 18 12 14 14
[1; 2; 3] [1; 2; 0.5] 23 3 3 3 3 3
[1; 1; 1] [2; 1; 0.2] 57 24 14 12 12 13
[-1; -1; -1] [2; 1; 0.2] 57 53* 30* 22 35* 27*

* indicates that the procedure converged to another root, [-1;-2;-1].

Fixed Point Anderson

Eq. X(0) Solution N M = 1 M = 2 M = 3 M = 4 M = 5

4A.25 [1; 2; 3; 4] [1.9325;

0.9613;

-1.1749;

-0.0441]

99 32 29 21 22 27
[1; 1; 1; 1] 100 37* 27* 14* 14* 16*
[-1; -1; -1; -1] 96 25 19 12 13 13

* indicates that the procedure converged to another root, [2.0566; 1.0233; 0.8425; 0.0336].
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4A.6 Control results

In this section we present results for the acceleration algorithms applied to control prob-

lems, for a wide range of tuning parameters. For Wegstein’s method we vary ω and the

frequency with which q is updated. For each problem we select a bounding on q that

works reasonably, though we do not attempt to find the optimal bounds. For the Aitken

and Steffensen methods we vary ω and m. For Anderson acceleration we vary ω and M ,

with a tolerance of 1 × 1010 when checking the conditioning of the matrix. We do not

vary or attempt to optimise this tolerance. Each value in the tables correspond to N ,

the number of function evaluations required for convergence. Simulations are terminated

when N reaches 100; any value in the tables that is 100 or greater corresponds to a

combination of tuning parameters that did not yield convergence within this specified

maximum. This does not necessarily imply that this combination would not have con-

verged if additional function evaluations were performed. For the linear problems, we do

not vary ω as the FBSM with no acceleration converges with minimum N when ω = 0.

A heatmap is applied to each table, with colours scaled relative to the result from the

FBSM with the best tuning but without acceleration. Recall that with the tuning that

minimises N , the FBSM with no acceleration requires N = 57 for the linear continuous

control problem, N = 8 for the linear bang-bang control problem, N = 38 for the

AML continuous control problem, and N = 34 for the AML bang-bang control problem.

Acceleration results that reflect a reduction in N relative to the these FBSM results are

shaded in the green spectrum, while worse performance is shaded in the red spectrum.

The midpoint of the colour spectra, yellow, corresponds to the FBSM result with the

best tuning, without acceleration. In the main document we use robustness to refer to

the ability of a method to reduce N over a range of tuning parameters. Visually, tables

with large groups of green shaded cells indicate robustness, while isolated green cells

surrounded by orange-red cells suggest a lack of robustness.

For the AML bang-bang control problem with the Aitken method, for values of ω ≤
0.35, we observe apparent convergence to controls that are not bang-bang. The iterative

procedure terminates as the convergence criteria is met; however the resulting controls

contain intermediate values between the lower and upper bounds. Similarly for the AML

continuous control problem with the Aitken method, for values of ω ≤ 0.35, we observe

apparent convergence. However, explicitly calculating the pay-off associated with these

controls, and comparing it to the pay-off associated with the control obtained via the

standard FBSM, indicates that the controls obtained via the Aitken method for ω ≤ 0.35

are not optimal. These sections of the partial Aitken method tables have been denoted

as N = 100, to indicate a failure to converge to the optimal control; regardless of the

number of iterations taken to achieve the apparent convergence to controls that are not

optimal.
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We note that implementation of Anderson Acceleration involves computing condition

numbers of matrices. Matrices that are ill-conditioned (indicated by a large condition

number), are close to singular, such that significant numerical error can arise when com-

puting the inverse, or obtaining the solution of a corresponding linear system of equa-

tions [142]. It is known that for ill-conditioned matrices, computation of the condition

number can itself be highly sensitive [142]. Computing condition numbers is commonly

impacted by underflow and overflow, or rounding errors [88, 142]. For this reason, users

attempting to reproduce results of the Anderson Acceleration method using different soft-

ware or hardware may find that in some instances convergence is achieved with a different

N to what is indicated in the tables, depending on whether the estimated condition num-

ber at each iteration suggests that the matrix is ill-conditioned. For a thorough discussion

of condition numbers and issues arising from floating point arithmetic we direct readers

to [143].
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4A.6.1 Linear continuous control problem

Wegstein, updating q every nth iteration, −2 ≤ q ≤ 0
ω n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

0 24 32 26 23 27 38 44 42 47 62

Partial Aitken
ω m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

0 12 12 12 15 18 14 16 18 20 22

Partial Steffensen
ω m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

0 31 16 13 11 13 8 9 10 11 12

Anderson
ω M=1 M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9 M=10

0 12 9 8 7 7 7 7 7 7 7

4A.6.2 Linear bang-bang control problem

Wegstein, unbounded
ω n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

0 9 9 9 9 9 9 9 9 9 9

Partial Aitken
ω m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

0 10 12 12 15 18 21 16 18 20 22

Partial Steffensen
ω m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

0 29 19 17 16 13 15 9 10 11 12

Anderson
ω M=1 M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9 M=10

0 11 14 17 19 21 22 21 24 26 28



225 4A.6. Control results

4A.6.3 AML continuous control problem with the Wegstein

method

Wegstein, updating q every nth iteration, −1 ≤ q ≤ 1
ω n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

0.95 68 60 62 87 100 100 100 100 100 100

0.90 61 54 67 54 57 100 100 100 100 100

0.85 61 52 62 83 72 77 100 100 100 100

0.80 62 56 59 73 68 100 100 100 100 100

0.75 68 56 53 89 62 100 95 100 100 100

0.70 57 54 71 62 72 92 70 100 100 74

0.65 57 53 55 61 62 90 65 100 56 100

0.60 57 53 56 65 67 36 100 100 100 100

0.55 63 58 50 62 42 26 59 66 100 100

0.50 64 58 53 88 47 47 79 100 100 92

0.45 68 59 41 78 74 74 90 100 100 63

0.40 54 64 50 90 72 100 100 100 76 100

0.35 72 63 48 77 67 66 93 100 100 100

0.30 62 68 67 55 72 86 100 45 100 100

0.25 63 72 60 74 100 100 100 100 100 100

0.20 57 65 56 75 87 92 86 100 97 100

0.15 63 65 68 86 73 100 86 100 100 100

0.10 64 66 66 71 77 100 100 100 100 100

0.05 64 55 71 72 77 100 100 100 100 94

0.00 60 54 59 70 92 100 100 100 100 100
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4A.6.4 AML continuous control problem with the partial Aitken

method

Aitken
ω m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

0.95 100 102 100 100 102 105 104 108 100 110

0.90 100 102 100 100 102 105 104 108 100 110

0.85 100 102 96 100 96 91 88 90 90 88

0.80 86 81 72 75 60 63 64 72 60 55

0.75 68 63 56 55 54 49 48 54 50 44

0.70 56 54 48 45 42 42 40 45 40 44

0.65 48 45 40 35 36 35 32 36 40 44

0.60 42 39 36 35 36 35 32 36 40 44

0.55 36 39 36 35 30 35 32 36 40 44

0.50 36 33 32 30 30 35 32 36 40 33

0.45 36 33 32 35 36 35 32 36 40 44

0.40 78 60 40 40 42 42 48 54 50 55

0.35 100 100 100 100 100 100 100 100 100 100

0.30 100 100 100 100 100 100 100 100 100 100

0.25 100 100 100 100 100 100 100 100 100 100

0.20 100 100 100 100 100 100 100 100 100 100

0.15 100 100 100 100 100 100 100 100 100 100

0.10 100 100 100 100 100 100 100 100 100 100

0.05 100 100 100 100 100 100 100 100 100 100

0.00 100 100 100 100 100 100 100 100 100 100
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4A.6.5 AML continuous control problem with the partial Stef-

fensen method

Steffensen
ω m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

0.95 61 28 25 26 25 29 33 28 31 45

0.90 53 31 21 21 25 22 25 28 31 34

0.85 47 28 21 21 19 22 25 28 31 34

0.80 61 28 25 21 25 22 25 28 31 34

0.75 53 34 25 21 25 22 25 28 31 34

0.70 49 37 25 21 25 22 25 28 31 34

0.65 53 34 25 21 25 22 25 28 31 34

0.60 61 34 25 21 19 22 25 28 31 34

0.55 67 34 25 21 19 22 25 28 31 34

0.50 69 31 25 21 19 22 25 28 31 23

0.45 69 31 25 21 25 22 25 28 31 34

0.40 69 31 25 21 25 22 25 28 31 34

0.35 53 31 25 26 31 29 33 37 41 45

0.30 67 34 29 31 37 36 49 46 51 56

0.25 65 31 33 46 55 71 65 82 101 100

0.20 65 34 37 56 37 106 81 100 101 100

0.15 73 31 45 71 37 106 49 100 101 100

0.10 51 43 57 76 79 106 105 100 101 100

0.05 67 55 73 86 103 106 105 100 101 100

0.00 71 64 101 61 103 106 105 100 101 100
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4A.6.6 AML continuous control problem with Anderson accel-

eration

Anderson
ω M=1 M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9 M=10

0.95 100 100 100 33 34 32 31 28 28 27

0.90 100 40 27 25 24 26 23 20 20 20

0.85 62 45 22 22 20 17 17 18 19 19

0.80 53 34 26 23 24 21 22 19 21 22

0.75 44 30 28 29 24 26 33 27 34 31

0.70 40 31 36 30 35 33 54 44 47 55

0.65 33 26 29 58 30 35 50 41 57 54

0.60 30 26 27 28 32 45 71 45 46 71

0.55 33 25 26 26 32 32 41 40 42 54

0.50 32 29 27 28 30 28 30 39 38 37

0.45 33 25 27 25 28 27 26 29 30 28

0.40 31 23 28 27 38 29 36 31 41 41

0.35 28 24 23 26 30 30 31 39 36 38

0.30 26 24 25 29 27 29 33 33 45 51

0.25 23 21 25 28 38 33 65 49 58 56

0.20 22 21 25 28 27 57 32 46 87 75

0.15 20 21 24 32 39 52 34 44 45 53

0.10 22 19 24 32 35 36 31 42 69 50

0.05 24 22 30 34 37 45 47 74 75 48

0.00 26 25 27 80 40 56 64 43 100 94
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4A.6.7 AML bang-bang control problem with the Wegstein method

Wegstein, updating q every nth iteration, −1 ≤ q ≤ 1
ω n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

0.95 31 32 11 14 17 20 23 26 29 32

0.90 30 30 29 30 17 20 23 26 29 32

0.85 30 30 29 14 17 20 23 26 29 32

0.80 31 20 26 26 17 20 23 26 29 32

0.75 31 24 17 14 17 20 23 26 29 32

0.70 30 24 11 46 27 20 23 42 29 32

0.65 28 28 26 42 37 44 37 42 29 32

0.60 30 26 20 50 27 44 44 26 29 32

0.55 30 26 32 22 17 20 23 26 29 32

0.50 31 30 32 14 17 32 23 26 29 32

0.45 31 28 32 34 17 32 23 26 29 32

0.40 27 28 38 46 27 32 23 26 29 32

0.35 25 36 38 46 52 56 37 26 29 32

0.30 28 30 41 46 52 50 44 50 56 62

0.25 29 32 35 38 42 50 44 50 20 22

0.20 32 34 35 34 32 14 16 18 20 22

0.15 27 30 35 34 27 14 16 26 11 12

0.10 27 28 35 30 27 14 16 18 29 12

0.05 28 30 29 26 37 14 23 10 11 12

0.00 33 32 35 30 37 26 9 10 11 12
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4A.6.8 AML bang-bang control problem with the partial Aitken

method

Aitken
ω m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

0.95 86 87 88 90 102 105 104 108 100 110

0.90 42 48 52 55 54 56 64 63 70 66

0.85 32 33 36 40 42 42 48 45 50 55

0.80 24 24 28 30 30 35 40 36 40 44

0.75 18 21 20 25 24 28 24 27 30 33

0.70 16 18 20 20 24 21 24 27 30 33

0.65 12 15 16 15 18 21 24 27 20 22

0.60 10 12 12 15 18 21 16 18 20 22

0.55 10 12 16 15 18 21 24 27 30 33

0.50 8 9 12 15 12 14 16 18 20 22

0.45 10 12 12 15 18 21 16 18 20 22

0.40 14 15 16 20 18 21 24 27 30 22

0.35 100 100 100 100 100 100 100 100 100 100

0.30 100 100 100 100 100 100 100 100 100 100

0.25 100 100 100 100 100 100 100 100 100 100

0.20 100 100 100 100 100 100 100 100 100 100

0.15 100 100 100 100 100 100 100 100 100 100

0.10 100 100 100 100 100 100 100 100 100 100

0.05 100 100 100 100 100 100 100 100 100 100

0.00 100 100 100 100 100 100 100 100 100 100
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4A.6.9 AML bang-bang control problem with the partial Stef-

fensen method

Steffensen
ω m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

0.95 101 100 101 66 103 106 105 100 101 100

0.90 51 100 41 41 73 64 33 64 71 78

0.85 33 100 101 41 43 43 49 46 51 45

0.80 29 34 29 26 37 36 33 37 41 34

0.75 29 28 17 26 25 22 33 28 21 34

0.70 23 22 21 21 19 22 17 19 21 23

0.65 21 19 17 16 19 15 17 19 11 12

0.60 21 13 13 11 13 15 9 10 11 12

0.55 19 16 13 11 13 15 17 19 21 23

0.50 19 16 17 11 7 8 9 10 11 12

0.45 21 16 17 16 13 15 9 10 11 12

0.40 17 19 17 21 25 22 17 19 21 12

0.35 17 16 17 21 19 22 25 28 31 23

0.30 19 16 17 16 19 22 25 28 31 34

0.25 19 16 17 16 19 22 25 28 31 34

0.20 19 13 17 21 19 22 25 28 31 34

0.15 19 13 17 21 25 22 25 28 31 34

0.10 19 16 17 21 25 29 33 37 31 34

0.05 19 19 17 26 25 29 33 37 41 45

0.00 17 22 21 26 25 36 33 46 41 56
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4A.6.10 AML bang-bang control problem with Anderson ac-

celeration

Anderson
ω M=1 M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9 M=10

0.95 97 100 100 100 100 100 100 100 100 100

0.90 93 62 100 100 100 100 98 100 100 100

0.85 72 71 56 49 62 62 100 91 83 100

0.80 55 56 68 50 68 100 46 60 56 100

0.75 41 40 50 58 48 76 50 70 57 61

0.70 52 23 40 43 36 76 52 45 46 41

0.65 18 20 37 28 38 41 45 35 54 100

0.60 26 24 25 42 30 42 33 32 31 34

0.55 24 19 29 26 28 23 27 26 30 31

0.50 18 24 17 34 28 63 32 69 39 100

0.45 23 24 26 31 28 29 42 56 47 17

0.40 17 25 32 38 39 29 38 43 52 80

0.35 24 21 22 32 38 20 17 17 17 17

0.30 23 23 32 23 42 45 20 19 19 19

0.25 27 28 47 30 38 44 41 33 23 19

0.20 22 27 26 51 47 78 35 41 39 25

0.15 25 24 26 28 29 31 92 39 26 19

0.10 25 20 28 27 28 40 36 57 46 22

0.05 26 28 33 30 30 33 32 37 72 49

0.00 24 19 26 26 32 30 42 33 43 49
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4A.6.11 Linear fixed endpoint control problem

For the linear fixed endpoint control problem we present Σ = N1 +N2 + ... in the tables;

the cumulative number of function evaluations required for convergence of the adapted

FBSM. With no acceleration, the adapted FBSM applied to the linear fixed endpoint

control problem requires solving three two-point boundary value problems (TPBVPs),

incurring a total of Σ = 177 function evaluations. This value is used as the midpoint

(yellow) of the heatmaps. Importantly, the acceleration techniques do not reduce the

number of TPBVPs that need to be solved, but rather facilitate solving each TPBVP

with reduced N , leading to reduced Σ. For the Wegstein method we apply the same

bounds on q as we did for the linear continuous control problem, noting that further

tuning of the bounds may improve results.
Wegstein, updating q every nth iteration, −2 ≤ q ≤ 0

ω n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

0 91 105 98 95 113 120 111 102 105 126

Partial Aitken
ω m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

0 42 36 36 45 54 84 48 54 60 66

Partial Steffensen
ω m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

0 173 57 51 33 39 38 27 30 33 36

Anderson
ω M=1 M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9 M=10

0 39 30 30 24 24 24 24 24 24 24

4A.6.12 AML fixed endpoint control problem

For the AML fixed endpoint control problem with no acceleration techniques, the adapted

FBSM requires solving ten TPBVPs; incurring Σ = 434 function evaluations. This is

achieved using the best tuning (ω = 0.55) from the AML continuous control problem. In

this particular instance, ω = 0.55 also happens to be the best tuning for the AML fixed

endpoint control problem if holding ω constant, when considering ω ∈ [0, 1) at increments

of 0.05. These ω values will not necessarily coincide in general, as the adapted FBSM

requires solving several related but distinct TPBVPs, each potentially calling for different

ideal tuning. For each of the acceleration methods we employ the tuning parameters that

minimised N for the AML continuous control problem. This does not imply that we are

using the best tuning parameters for the acceleration methods in the context of the AML

fixed endpoint control problem. This is important, as it demonstrates the effectiveness

of the techniques in accelerating fixed endpoint control problems without requiring pro-

hibitive tuning. In the following table, we present the cumulative N after each FBSM

within the secant steps of the adapted FBSM. In the right-most column, corresponding
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to the tenth and final TPBVP, we present Σ. While Wegstein’s method performs signif-

icantly worse than the case with no acceleration, we find that the Anderson, Aitken and

Steffensen methods are all able to reach convergence in fewer function evaluations.

No acceleration, ω = 0.55
Secant step 1 2 3 4 5 6 7 8 9 10
Cumulative N 38 98 147 188 229 270 311 352 393 434
Wegstein, ω = 0.55, updating q every 6th iteration, −1 ≤ q ≤ 1

Secant step 1 2 3 4 5 6 7 8 9 10
Cumulative N 26 172 356 423 505 675 809 929 1045 1161

Partial Aitken, ω = 0.5, m = 5
Secant step 1 2 3 4 5 6 7 8 9 10
Cumulative N 30 72 114 144 180 216 252 288 324 360

Partial Steffensen, ω = 0.5, m = 5
Secant step 1 2 3 4 5 6 7 8 9 10
Cumulative N 19 44 69 88 113 138 163 188 213 238

Anderson, ω = 0.85, M = 6
Secant step 1 2 3 4 5 6 7 8 9 10
Cumulative N 17 45 67 86 109 128 147 166 185 204
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[92] Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, Dombret
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pele GJ, Sanz MA, Sierra J, Tallman MS, Löwenberg B, Bloomfield CD. 2010 Diagnosis

and management of acute myeloid leukemia in adults: recommendations from an inter-

national expert panel, on behalf of the European LeukemiaNet. Blood 115, 453–474.

(doi.org/10.1182/blood-2009-07-235358).
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