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Abstract

Tissue geometry is an important influence on the evolution of many biologi-

cal tissues. The local curvature of an evolving tissue induces cell crowding or

spreading, which leads to differential tissue growth rates, and to changes in

cellular tension, which can influence cell behaviour. In this thesis, a cell-based

mathematical model for the curvature control of evolving biological tissues is

presented to investigate how this control mechanism interacts with directed cell

guidance mechanisms. First, the mathematical model is derived from conser-

vation principles applied to the density of tissue synthesising cells at or near

the tissue’s moving boundary. The resulting partial differential equation is then

solved numerically using a hybrid front-tracking method called the cell-based

particle method. We apply this model to understand how angled bone tissue

formation may generate anisotropies in tissue material properties, and to under-

stand the role of tangential cell motion in the bone resorption process. Finally,

ongoing work is presented on the application of the model to experimental bone

pore infilling data available through collaboration with experimental bone bi-

ologists. This work involves exploring mechanisms which could cause irregular

tissue growth behaviour in bone, where the infilling of bone pores is asymmetric.
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Chapter 1

Introduction

Understanding the evolution of biological tissues is important to tissue engi-

neering and regenerative medicine, where the controls which govern new tissue

growth need to be manipulated (Dzobo et al., 2018; Ambrosi et al., 2019). The

understanding of tissue evolution is also important in developmental biology,

where the question of how organisms manage remodelling and growth is critical

(Goriely, 2017). However, in many biological situations, tissue growth cannot

be observed within the living organism (in vivo) and further, in some situations

the growth cannot be observed in laboratory settings (in vitro) either. Mathe-

matical models for the evolution of tissues can be used to connect the different

data obtained experimentally including information about tissue geometry and

cell density (Rumpler et al., 2008; Alias and Buenzli, 2017; McCue et al., 2019).

This data often comes in the form of frozen snapshots of the tissue in time.

Tissue growth in bioscaffold infilling, tumour growth, wound healing, and bone

pore infilling are all examples where mathematical modelling has been used to

gain insights into the evolution of tissues (Figure 1.1) (Maini et al., 2004; Lowen-

grub et al., 2010; Kollmannsberger et al., 2011; Bidan et al., 2012, 2013; Guyot

et al., 2014; Jin et al., 2018; Alias and Buenzli, 2018). Furthermore, mathemat-

ical models provide methods to link experimentally observed tissue behaviour

with individual cell activity. This is achieved by making assumptions about cell

behaviour, which may not be observable experimentally, and testing biological
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Figure 1.1: Mathematical models can be used to reflect experimentally observed
tissue evolution behaviour and gain insights into cell behaviour. (a) Curvature
control model where tissue growth is described by the assembly of tensile ele-
ments, chords. The output of the model (top) reflects the actin organization
of the experimental data of bioscaffold infilling (bottom), reproduced with per-
missions from Bidan et al. (2013). (b) Mean curvature flow models (top) can
be used to describe the infilling of different geometries of bioscaffolds (bottom),
reproduced with permissions from Rumpler et al. (2008). (c) Tissue growth
models derived from cell conservation principles (top) reflect the behaviour ob-
served in experimental data of osteon (bone pore) infilling (bottom), reproduced
with permissions from Alias and Buenzli (2018). (d) Wound healing in different
geometries can be modelled using mathematical discrete and continuum models,
reproduced with permissions from Jin et al. (2018)

hypotheses using the mathematical models (Rumpler et al., 2008; Bidan et al.,

2013; Guyot et al., 2014; Alias and Buenzli, 2017; Buenzli et al., 2020).

The rate of tissue growth has been shown to depend on tissue geometry, more

specifically on the local curvature of the underlying tissue (Rumpler et al., 2008;

Bidan et al., 2012; Ehrig et al., 2019). This dependence of tissue growth rate on
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curvature can be modelled using curvature flows. Curvature flow models have

been quantitatively compared to experimental bioscaffold pore infilling data and

have been shown to accurately reflect infilling behaviour as well as answer ques-

tions about the most efficient infilling pore shape and size (Rumpler et al., 2008;

Bidan et al., 2013; Guyot et al., 2014; Ehrig et al., 2019; Alias and Buenzli, 2019;

Buenzli et al., 2020).

In this thesis, a mathematical model is developed for tissues that evolve un-

der curvature control and that are affected by cell guidance mechanisms. Cell

guidance mechanisms consist of signals which pull cells in a particular direction

and can be caused by chemical cues, mechanical cues, or other physical cues

in the environment. Our mathematical model is used to explore new biological

applications where directed cell guidance is needed to explain observed patterns

of tissue growth. A concrete application of the model to bone pore infilling is

presented, where specific experimental data available through collaboration en-

ables us to illustrate how mathematical models can be used to test hypotheses

about cell behaviours that cannot be observed directly.

The thesis is structured as follows. Chapter 2 consists of a journal article

submitted to the Journal of Theoretical Biology and available as a preprint

(Hegarty-Cremer et al., 2020). In Chapter 2, the model of tissue growth sub-

ject to curvature control and directed cell guidance mechanisms is derived in

three dimensional, covariant form from rigorous conservation principles. This is

achieved by considering the conservation of cells on an evolving surface. This

model is compared to similar models from the literature. A hybrid front-tracking

method, the cell-based particle method, is implemented to solve the model (Le-

ung and Zhao, 2009; Leung et al., 2011; Hon et al., 2014). Then, two applications
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of interest are considered: (i) the generation of anisotropies in tissue material

properties during bone pore infilling; and (ii) hypothesis testing of cell guid-

ance mechanisms required for the model to retrieve observed patterns of bone

resorption.

In Chapter 3, the model is applied to experimental data on the infilling of

bone pores, called osteons (Martin et al., 2004). A quantitative comparison

framework is devised to find optimal model parameters for experimental data

on osteons being infilled. Once the suitability of the model to osteon infilling

is established, the model is then used to assess hypotheses about the formation

of atypical osteons. This example illustrates the benefits of the mathemati-

cal model for answering questions about the development of biological tissues

which may not be addressable experimentally. For example, the movement

and secretion rate of individual bone-secreting cells cannot currently be mea-

sured, but can be included in the mathematical model. The model helps us

interpret the signatures that may be visible experimentally in tissue samples as

traces of specific cell behaviours. This allows us to identify requirements for

new experimental data to be collected, which is part of ongoing work with our

collaborators. The thesis is then concluded with an outlook on possible future

research areas.
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Abstract

Tissue geometry is an important influence on the evolution of many biologi-

cal tissues. The local curvature of an evolving tissue induces tissue crowding

or spreading, which leads to differential tissue growth rates, and to changes in

cellular tension, which can influence cell behaviour. Here, we investigate how

directed cell motion interacts with curvature control in evolving biological tis-

sues. Directed cell motion is involved in the generation of angled tissue growth

and anisotropic tissue material properties, such as tissue fibre orientation. We

develop a new cell-based mathematical model of tissue growth that includes

both curvature control and cell guidance mechanisms to investigate their in-

terplay. The model is based on conservation principles applied to the density

of tissue synthesising cells at or near the tissue’s moving boundary. The re-

sulting mathematical model is a partial differential equation for cell density on

a moving boundary, which is solved numerically using a hybrid front-tracking

method called the cell-based particle method. The inclusion of directed cell

motion allows us to model new types of biological growth, where tangential cell

motion is important for the evolution of the interface, or for the generation

of anisotropic tissue properties. We illustrate such situations by applying the

model to simulate both the resorption and infilling components of the bone re-

modelling process, and provide user-friendly MATLAB code to implement the

algorithms.
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1 Introduction

Understanding the mechanisms controlling the generation of biological tissue is

an important challenge in biomechanics and mechanobiology (Ambrosi et al.,

2019) with key applications in tissue engineering and developmental biology

(O’Brien, 2011; Dzobo et al., 2018). Tissue geometry influences the generation

of new tissue, particularly the rate of tissue growth and the organisation of tis-

sue material (Curtis and Varde, 1964; Dunn and Heath, 1976; Kollmannsberger

et al., 2011). Several tissue growth experiments show that the rate of tissue

progression is strongly dependent on tissue curvature. These findings apply to

bioscaffold pore infilling (Bidan et al., 2013, 2016; Guyot et al., 2014; Ripamonti

and Roden, 2010), wound healing (Poujade et al., 2007; Rolli et al., 2012), tu-

mour growth (Lowengrub et al., 2010), and bone remodelling (Martin, 2000;

Alias and Buenzli, 2018). This proportionality of growth rate and curvature

may be caused by the crowding and spreading of cells and tissue material due

to spatial constraints, and curvature-dependent tissue surface tension influenc-

ing cell proliferation rates (Nelson et al., 2005; Rumpler et al., 2008; Haeger et

al., 2015; Alias and Buenzli, 2017; Buenzli et al., 2020).

In addition to the collective influence of curvature on tissue progression, other

factors such as mechanical or chemical cues in the environment as well as cell-

scale geometrical features can induce individual cell responses including directed

cell migration. Mechanical cues include viscoelasticity (Chaudhuri et al., 2016),

surface stiffness (Pelham and Wang, 1997; Lo et al., 2000; Discher et al., 2005;

Engler et al., 2006), or surface mechanical stretch (Trepat et al., 2007; Livne

et al., 2014). Chemical cues include signalling molecules inducing attractive

or repulsive chemical gradients (Haeger et al., 2015), and cell-scale geometrical

9



cues include geometrical guidance such as curvotaxis (Callens et al., 2020) and

surface roughness gradients (Martin et al., 1995; Deligianni et al., 2001). While

the collective influence of curvature on tissue growth and the effects of envi-

ronmental cues on cell guidance mechanisms are well studied in isolation, how

these processes interact during the generation of new biological tissue remains

poorly understood.

In this work we develop a new mathematical model which explicitly includes

both the collective influence of curvature and directed cell guidance mecha-

nisms. The addition of directed cell guidance allows us to model new types of

biological growth, which cannot be generated by existing mathematical models

where the tissue interface progresses in the normal direction only (Bidan et al.,

2013; Guyot et al., 2014; Alias and Buenzli, 2017; Callens et al., 2020).

Indeed, the growth of several tissues involves directed cell motion where cells

move tangentially along the tissue surface (Figure 2.1). For example, shells,

horns, and tusks with a spiralling structure are generated by tissue being se-

creted at an angle to the base membrane (Figure 2.1a) (Skalak et al., 1982,

1997). Tangential cell velocity may also be responsible for the generation of

anisotropies in tissue material properties by aligning tissue fibrils with respect

to the cells motion (Figure 2.2). In lamellar bone, the so-called twisted ply-

wood structure of collagen fibrils may be due to the osteoblasts (bone secreting

cells) changing direction of motion during bone infilling (Martin et al., 2004)

(Figure 2.1c). Finally, tangential cell motion is suspected to occur in bone re-

sorption to keep osteoclasts at the front of the resorption cone (Figure 2.1c).

Mathematically, the evolution of smooth interfaces can be described by the

10



Figure 2.1: Tangential cell movement in tissue growth. (a) Shells grow by se-
cretion of new tissue at their base (mantle) at an angle to create spiralling
structures (reproduced with permissions from Goriely (2017)). (b) In lamel-
lar bone, successive tissue layers possess different collagen fibril orientations
which suggest changes in the tangential motion of osteoblasts during bone for-
mation (reproduced with permissions from Pazzaglia et al. (2012) and Schrof
et al. (2014)). (c) Resorption cavities during bone resorption maintain a stable
resorption front shape at the tip. Since the dissolution process of bone by os-
teoclasts is expected to occur in the normal direction, this suggests osteoclasts
are subject to cell guidance signals toward the cavity centerline. An example
of the serial section of a cutting cone, immunostained (black) for an osteoclas-
tic marker, obtained from Lassen et al. (2017) and schematic of an evolving
Haversian system, after Jaworski and Hooper (1980).

normal velocity of the interface only (Sethian, 1999). However, biological tissue

interfaces may develop cusps and sharp edges (Skalak et al., 1997; Alias and

11



Buenzli, 2017; Goriely, 2017). When these move at an angle to their base, one

is required to consider a more general tissue interface velocity that includes a

tangential component to avoid the emergence of singularities in the governing

equation for tissue growth velocity (Skalak et al., 1997).

Many existing models of geometric control of tissue growth consider the ge-

ometry of the tissue substrate only, so that cell guidance mechanisms and cell

crowding effects are not modelled explicitly (Skalak et al., 1982, 1997; Rum-

pler et al., 2008; Bidan et al., 2012, 2013; Gamsjager, 2013; Guyot et al., 2014;

Goriely, 2017; Ehrig et al., 2019). Here, we consider the cell-based mathemati-

cal model of Alias and Buenzli (2017), which explicitly accounts for curvature-

induced cell crowding and spreading, and we generalise this model to allow for

tangential cell motion. We derive the model from general conservation prop-

erties imposed on cells, which allows us to explicitly include cell behaviours.

To our knowledge, no mathematical model currently includes both the effect of

curvature on collective cell crowding and spreading and tangential cell motion

mechanisms.

The model of Alias and Buenzli (2017) is also extended to three dimensions

and the governing equations are derived in covariant form. The model derived

is a partial differential equation (PDE) for the density of cells to be solved on a

moving boundary, which represents the evolving tissue surface. This problem is

numerically solved to explore several situations in which tangential cell guidance

mechanisms are added. We demonstrate that with the addition of tangential

cell advection, new biologically relevant tissue growth phenomena can be mod-

elled, such as bone resorption and the generation of different fibre orientations

in lamellar bone.

12



2 Description of the model

Tissue growth usually occurs by cells synthesising new tissue close to the tissue’s

interface. To determine general evolution equations for the density of tissue-

synthesising cells subject to normal and tangential motion, we consider the

case where the tissue-synthesising cells are attached to the tissue interface and

described by a surface density, ρ (number of cells per unit surface). The motion

of the interface transports the cells in space and the cells may additionally move

laterally with respect to the material points of the surface. The motion of the

interface is considered to be due to new tissue being synthesised in the wake

of these surface-bound cells (Figure 2.2). This situation occurs for example in

wound healing, bone remodelling, bioscaffold pore infilling, and tumour growth

(Poujade et al., 2007; Rumpler et al., 2008; Lowengrub et al., 2010; Bidan et

al., 2013; Guyot et al., 2014) where tissue-synthesing cells are located at or near

the tissue interface. The normal velocity of the tissue interface, unn where n is

the outward-facing unit surface normal, is given by

un = kρ, (2.1)

where k is the tissue-synthesising cells’ secretory rate (volume of new tissue

synthesised per unit time per cell) (Buenzli, 2015). Tissue resorption can also

be modelled by assuming k to be negative. During the evolution of the tissue,

the interface may stretch locally depending on its curvature (Figure 2.2a), and

this will induce changes in cell density. Convex areas of the tissue substrate

result in cells spreading whereas concave areas of the tissue substrate result

in cells crowding. In addition, cell guidance mechanisms superimpose lateral

cell motion with respect to the tissue interface. Directional tissue growth may

therefore result from a combination of interface motion and lateral cell motion

13



(Figures 2.2b and 2.3).

Figure 2.2: Schematic illustrating the crowding and spreading effect of curvature
and the influence of tangential motion for tissue material properties; (a) shows
only movement in the normal direction and the resulting changes in density;
(b) includes both curvature control and cell guidance, meaning the cells crowd
and spread and also undergo directed motion, creating anisotropies in tissue
material properties (thin orange lines).

The tissue interface is denoted by S(t) and ρ(rS , t) denotes the surface density of

the tissue-synthesising cells, at position rS on S(t). We formally define ρ(rs, t)

by considering an infinitesimal element of surface δS at position rs of S(t),

and the number of cells living on this area, δN . It is important to choose δS

small enough to capture heterogeneous densities but large enough to contain a

sufficient number of cells to define a continuous surface density of cells, such

that

ρ =
δN

δS
. (2.2)

We now derive a conservation law for the surface density of cells living on

the evolving surface as the tissue evolves. To do so, we consider the material

derivative of ρ following the material trajectories, rS(t), of the surface S(t),

14



Figure 2.3: (a) Schematic of two dimensional surface portion being considered.
The curve C surrounding δS is illustrated as well as its outward facing normal
t̂. (b) One dimensional schematic of portion of interface being examined. The
normal and tangential components of the surface velocity are annotated in blue
and green respectively. Illustrative cells are included in orange, with the tan-
gential flux of cells into δS annotated in orange. The grey arrows indicate the
material trajectories of the surface. Cell trajectories and normal trajectories are
also annotated.

defined as

(
∂ρ

∂t

)
m

=
d

dt
ρ (rS(t), t) .

The material derivative obeys standard rules of differentiation, so that differen-

tiating Equation (2.2) gives

(
∂ρ

∂t

)
m

=
1

δS

(
∂δN

∂t

)
m

− ρ

δS

(
∂δS

∂t

)
m

. (2.3)

The first term on the right hand side of Equation (2.3) corresponds to changes

in density induced by changes in the number of cells residing in δS. The second

term on the right hand side of Equation (2.3) describes changes in cell den-

sity due to local changes in the area of the portion of interface δS during its
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evolution. In the first term, the number of cells may change due to prolifera-

tion, death, or net transport from the surrounding portions of the surface. The

change in cell number due to proliferation and elimination can be expressed by

(P − A)δN(t) where P is the per capita proliferation rate, and A is the per

capita cell elimination rate. The cell elimination rate may model cell death

(apoptosis), detachment from the surface (for example anoikis), or embedment

into the tissue. To describe the influence of tangential motion of the cells on cell

density changes at position rs, we introduce the tangential flux of cells, J(rS , t).

This cell flux is measured with respect to material points of the surface, which

are themselves transported in space. It represents the number of cells crossing

the boundary C of δS per unit length per unit time (Figure 2.3a). The total

number of cells leaving and entering δS is thus calculated by the line integral of

the flux of cells along C, where C is the curve surrounding δS, with unit normal

given by t̂ (Figure 2.3a). Therefore, the total rate of change of cell number in

δS is

(
∂δN

∂t

)
m

= −
∮
C

J · t̂ dl + (P −A)δN(t). (2.4)

Since δS is a small element of surface, the line integral in Equation (2.4) can be

written in terms of the surface divergence of J, which can be formally defined

as

∇S · J =
1

δS

∮
C

J · t̂ dl, as δS → 0 (2.5)

(Arnoldus, 2006). Thus, in the limit of an infinitesimally small area of the

interface δS, the change in density due to the change in number of cells in δS

in Equation (2.3) is given by

1

δS

(
∂δN

∂t

)
m

= −∇S · J + (P −A)ρ. (2.6)
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Equation (2.6) represents the fact that the surface divergence of the flux on a

curved manifold is related to local changes in surface density (Arnoldus, 2006),

much like, in the Euclidean space, the divergence of the flux is related to local

changes in volumetric density.

To evaluate the second term of on the right hand side of Equation (2.3), we

examine the rate at which δS changes following the material trajectories of

S(t). This depends on the local mean curvature,

κ = ∇S · n, (2.7)

and is given by

(
∂(δS)

∂t

)
m

= δS (unκ+∇S · uS) . (2.8)

where uS is the tangential component of the surface velocity and u (Figure 2.3).

Equation (2.8) is derived using the equation for the change of a material area

element over time from Batchelor (1976), see 2.A for details. In our notation,

κ is defined such that κ < 0 indicates concavity and κ > 0 indicates convexity.

Substituting Equations (2.6) and (2.8) into Equation (2.3), we find that the

evolution of the surface density of cells following material trajectories of the

interface is governed by

(
∂ρ

∂t

)
m

= −∇S · J− ρunκ− ρ∇S · uS + (P −A)ρ. (2.9)
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If cell migration includes advection and diffusion, the tangential flux of cells can

be written as

J = ρvS −D∇S ρ, (2.10)

where vS is the tangential velocity of the cells with respect to the surface and

−D∇S ρ corresponds to lateral diffusive flux along the curved interface where

∇S is the surface gradient of ρ, that is the derivative of ρ on the manifold

S(t) (Pressley, 2010). In this case, the evolution of the surface density of cells,

Equation (2.9) becomes

(
∂ρ

∂t

)
m

= D∇2
Sρ−∇S · (ρvS)− ρ∇S · uS

− ρunκ+ (P −A)ρ.

(2.11)

It is possible to determine the rate of change of cell density following other

trajectories than the material points of the interface. The evolution equation

for cell density takes a particularly convenient form when expressed following

trajectories normal to the interface at each time (Figure 2.3). We can relate the

derivatives of ρ along the normal and material trajectories by

(
∂ρ

∂t

)
n

=

(
∂ρ

∂t

)
m

− us · ∇Sρ (2.12)

where (∂/∂t)n represents the time derivative along the normal trajectories, that

is trajectories perpendicular to the surface at all times (Wong et al., 1996).

Substituting Equation (2.11) into Equation (2.12) gives

(
∂ρ

∂t

)
n

= D∇2
Sρ−∇S · (ρ(vS + uS))

− ρunκ+ (P −A)ρ.

(2.13)

18



The first term on the right hand side of Equation (2.13) is the Laplace-Beltrami

operator applied to the surface density of cells and describes the tangential dif-

fusion of cells along the curved tissue surface (Berger, 2002). The second term

describes the influence of tangential velocities of the cells vS and of the tissue

surface uS , respectively. The fourth term encapsulates the collective cell crowd-

ing or spreading effect of curvature, and the last term describes the gain or loss

of cells from the group of tissue-synthesising cells. Equations (2.11) and (2.13)

are general conservation equations for cells moving by advection and diffusion

with respect to a surface which is itself moving and deforming. In 2.B, we show

that these equations are a generalisation of similar conservation equations of

surface-bound quantities derived in the literature without tangential advection.

The tangential velocities of both the surface and the cells in Equation (2.13)

can be chosen to describe multiple biological tissue evolution scenarios. The

tangential velocity vS can represent for example epithelial cells moving with

respect to a basal membrane which may itself be transported in space with ve-

locity u. Biological situations where cells are not physically transported by a

moving tissue interface may be modelled by assuming that there is no tangential

movement of the interface (uS = 0) while cells may still have tangential veloc-

ity (vS 6= 0). This can occur in the case of bone resorption for example, where

material points of the bone interface do not move laterally but osteoclasts living

on the interface may (Lassen et al., 2017). It is important to note that although

the velocity of the tissue surface and the cells may not be distinguishable for

modelling the evolution of the tissue interface and changes in cell density, the

distinction between these velocities can be important for modelling the tissue

material properties produced (Figure 2.2b, Buenzli (2016)), as we will illustrate

in our application of the model to bone formation.
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In our applications, for simplicity in the numerical solution, we will look at

two dimensional problems where the interface is described by a one-dimensional

tissue interface, that is, a curve in two-dimensional space. In these situations,

Equation (2.13), can be written as

(
∂ρ

∂t

)
n

= D
∂2

∂l2
ρ− ρunκ−

∂

∂l
(ρ(vS + uS)) . (2.14)

where ∂/∂l is the derivative with respect to the arc length of the surface, which

is the one dimensional equivalent of the surface divergence and surface gradient

(Redžić, 2001). In the applications presented in Section 3, we solve the coupled

equations (2.1) and (2.14), where the tangential cell velocity is given various

forms and the ensuing behaviour is analysed.

2.1 Numerical method

Solving Equations (2.1) and (2.14) requires solving a PDE on a moving bound-

ary where the boundary motion is coupled with the PDE solution. To achieve

this, we use an efficient hybrid computational method, the cell-based particle

method (CBPM), developed in Leung and Zhao (2009); Leung et al. (2011) and

Hon et al. (2014). In this method, the interface is represented by Lagrangian

marker particles which are each associated with a grid cell of an underlying

Eulerian grid with grid cell length ∆x. The grid is used to redistribute the

particles along the moving interface to maintain quasi-uniform sampling. Fur-

thermore, scalar quantities, such as cell density, can be associated directly with

the marker particles (Leung and Zhao, 2009). This is an advantage over level-

set like methods, which require additional scalar fields similar to the level-set

function to represent surface-bound quantities (Alias and Buenzli, 2019). The

interface is evolved over discretised timesteps ∆t by advecting the marker par-
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ticles according to a velocity field. Local quadratic least squares interpolation

of the interface and of the surface density of cells is then used to estimate the

interface curvature and to evaluate spatial derivatives. The reader is referred to

the Supplementary Information, Leung and Zhao (2009); Leung et al. (2011);

Hon et al. (2014), and Hegarty-Cremer (2020) for more details.

3 Results

We now apply our mathematical model to cases of tissue growth where the

inclusion of tangential cell advection allows us to model new biologically rele-

vant situations. First, we validate the numerical method by solving simplified

equations which test the two migration mechanisms of Equation (2.14), that is

tangential cell advection and diffusion, as well as the crowding and spreading

effect of curvature. These solutions are compared with analytic solutions. Then

we model bone pore infilling and explore the generation of different orientations

of collagen fibrils in infilled osteons, as illustrated in Figure 2.1b. Finally, we

model bone resorption, where osteoclasts tunnel through old bone tissue and

investigate the influence of tangential cell velocity for the stability of travelling-

wave-like resorption fronts observed during the resorption of cortical bone.

3.1 Validation of the numerical method

To validate our implementation of the CBPM for solving Equation (2.14), we

compare numerical simulations to analytical solutions in a simple setting where

density is decoupled from the normal speed of the interface, that is we replace

Equation (2.1) with un = c, where c is a constant. We also set D = 0 and choose

a circular initial interface with initial radius R0. In this case, the interface

remains a circle at all times and it expands in the normal direction with radius

R(t). We parameterise the circle using the arc length l and solve for ρ on the
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Figure 2.4: Expanding circle with un = 0.035 and with or without tangential
velocity: comparison between CBPM simulations and exact solutions. (a) and
(b) Solution obtained using CBPM with vS = 0 and vS = 0.1l, respectively,
with interface shown at regular time intervals (∆T = 1). (c) and (d) Exact and
CBPM solution density representation over arc length parameter at t = 10 with
vS = 0 and vS = 0.1l, respectively. The discretisation used is ∆x = 0.01 and
∆t = 0.01.

domain −π < l < π. The governing equations become

dR

dt
= c (2.15)

∂ρ

∂t
+ vS

∂ρ

∂l
=
∂vS
∂l

ρ− ρcκ. (2.16)

We assume an arbitrary initial cell density distribution ρ(l, 0) = ρ0(l) and an

initial radius R(0) = R0, and impose periodic boundary conditions ρ(−π, t) =
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ρ(π, t). The solution for R(t) is

R(t) = ct+R0, (2.17)

so that κ(t) = 1/(ct + R0). To test the advection term in Equation (2.14), we

assume that cells are subject to the tangential cell velocity field vS = −al where

a is constant. The governing equation for ρ becomes a quasilinear advection

equation, which can be solved using the method of characteristics (Evans, 2010),

giving

ρ(l, t) =
ρ0(leat)R0e

at

ct+R0
. (2.18)

We test numerically both dilution of cells without advection, a = 0, and dilution

of cells with advection, a 6= 0. Figure 2.4 compares this analytical solution to the

numerical solution obtained using the CBPM. In Figure 2.4, the initial condition

for density is piecewise constant such that ρ = 0.5 when π/8 < |l| < 3π/8 and

ρ = 0 elsewhere. There is excellent alignment between the analytic solution

in Equation (2.18) and the one obtained by the CBPM both with and without

tangential velocity. The small discrepancies are due to some degree of smoothing

of the numerical solution, which originates from the local interpolation step of

the CBPM. As expected, if the numerical discretisation is refined, the match

improves (data not shown).

To validate our implementation of the CBPM for problems that include diffusive

transport, we solve the diffusion equation on a stationary circle using the CBPM.

With a sinusoidal initial condition ρ0(l) = 0.5+0.5 sin(l) and periodic boundary

conditions the analytic solution is given by

ρ(l, t) = 0.5 + 0.5 sin(l)e−4Dt. (2.19)
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Figure 2.5: Analytic (solid line) and CBPM (points) solutions for diffusion
around a stationary circle. The discretisation used is ∆x = 0.01 and ∆t = 0.01.

The results of the CBPM are compared with this solution at different times in

Figure 2.5. Again, there is an excellent agreement between the solutions.

3.2 Circular bone pore infilling

We now consider the case of a circular bone pore being infilled by a population

of osteoblasts distributed uniformly along the pore’s perimeter. This can be

thought of as the infilling of a cortical bone osteon seen in a transverse cross

section. New bone tissue is gradually produced such that the initial interface

is moving inwards while retaining a circular shape. As infilling proceeds, the

density increases as a result of the systematic effect of curvature (Buenzli, 2014,

2016). We examine three cases of tangential cell velocity: no tangential veloc-

ity, constant tangential cell velocity, and time-dependent tangential cell velocity

such that cells reverse their motion with respect to the interface at specific times

(Figure 2.6). By rotation symmetry, in these simulations, the density remains

uniform at all times, but it is time dependent due to the shrinkage of the bone
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Figure 2.6: Circular pore infilling results with cell secretion rate k =
7.8125e−06 mm/day and with varying tangential cell velocity. In each figure the
initial interface is the outermost ring and the interface is shown at regular time
intervals (∆T = 3 days). The top figures show density and interface position
while the bottom figures show cell trajectory tracking and interface position with
a single cell trajectory annotated in orange. (a) Infilling circle without tangential
velocity. (b) Infilling circle with tangential velocity vs = 0.0025 mm/day. (c)
Infilling circle with tangential velocity vs = 0.0025 mm/day when t < 12.5 days
and vs = −0.0025 mm/day when t ≥ 12.5 days. The location of the change
of direction is emphasised in a red dashed circle. The discretisation used is
∆x = 0.001 mm, ∆t = 0.075 days.

surface area as infilling proceeds.

The evolution of density and interface position is the same across the three cases

(Figures 2.6a–c). However, the cell trajectories in space are distinct, and this

creates different tissue material properties (Figures 2.6d–f). To visualise cell

trajectories in Figures 2.6d–f, cells are stained either in blue or in yellow. This

is achieved in the CBPM by assigning a new scalar property to each marker par-

ticle, which is simply advected along the cell trajectories. In Figure 2.6d, cells

have no tangential motion hence their trajectories are moving along straight
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radial lines. However, in Figures 2.6e and 2.6f, the cells move tangentially to

the surface, thus their trajectories spiral inwards. The results in Figure 2.6f il-

lustrate how one may explain a change in anisotropic tissue material properties.

As collagen fibrils secreted by osteoblasts may be weaved according to the di-

rectionality induced by cell migration, the change in cell trajectory orientation

could be used to describe the change in collagen fibre orientation in lamellar

bone and the consequent plywood structure (as illustrated in Figure 2.1b).

3.3 Bone resorption in basic multicellular units

We now examine the resorption phase of a bone remodelling event as another

example where the tangential velocity of cells may be important for the evo-

lution of the tissue interface. In bone resorption, bone tissue is removed by

osteoclasts attached to the bone surface. The resorption of bone matrix by os-

teoclasts creates a cavity which maintains consistent cellular organisation and

shape at the resorption front (Figure 2.1c) (Jaworski and Hooper, 1980; Ryser

et al., 2009; Buenzli, 2010, 2011, 2014; Buenzli et al., 2012; Lassen et al., 2017).

We apply our tissue growth model to this situation to show that to maintain

this stable travelling resorption front, directed tangential osteoclast motion is

required (Figure 2.1c).

Recent works have suggested that osteoclasts at the front of basic multicel-

lular units may remain at this position for a long period of time (Lassen et

al., 2017), unlike previous suggestions that osteoclasts move down the cavity

walls (Burger et al., 2003; Buenzli et al., 2012). We show here, based on sim-

ple numerical simulations, that a stable resorption front requires cell guidance

mechanisms to steer osteoclasts back toward the tip of the cavity (Figure 2.1c).

Without such directed motion, the cavity rapidly expands out and osteoclasts
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move away from each other (Figure 2.7a). Figures 2.7b and 2.7c show numeri-

cal simulations where two different types of signals are used to steer osteoclasts

back toward the tip of the cavity. The first signal modelled can be thought of

as haptotaxis, which is a cell guidance mechanism in response to adhesion gra-

dient on the substrate generated by cell binding to substrate molecules (Davies,

2013). The second is chemotaxis, which describes cell guidance through a chem-

ical gradient (Murray, 2002). Other signals could also be considered, such as

mechanical signals. Mechanical loading could be modelled by including a strain

field as presented in Smit and Burger (2000). This could be implemented ei-

ther as an external signal, where the mechanical strain could be transduced into

molecular signals by osteocytes, or an internal signal, where osteoclasts could

directly sense the strain.

Osteoclasts work in close contact with other cells lining the cavity walls, called

reversal cells, which may provide haptotactic signals such as receptor activator

of nuclear factor kappa-B ligand (RANKL) (Martin et al., 2004; Lassen et al.,

2017). Here we assume the haptotactic signal induces a tangential velocity to

the osteoclasts, vs = a l, where l is the arc length measured along the cavity wall

from the tip and a is a positive constant. This is similar to Section 3.2 where

l > 0 on the upper part of the cavity and l < 0 on the lower part of the cavity.

Using this form of tangential cell velocity, it can be seen from Figure 2.7b, that a

stable resorption front is formed. Between t = 0 and approximately t = 3 days,

there is a transient period, where the shape of the resorption front evolves until a

balance between the advection-induced crowding and curvature-induced spread-

ing of the osteoclasts is achieved. After this transient, the cell density profile

and the cavity front shape is maintained as it progresses through the bone tissue.
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Figure 2.7: Bone resorption results with different forms of tangential cell ad-
vection. The time is shown in days and the spatial unit is mm. The resorption
rate is 0.025 mm/day (k = −0.025). (a) Resorption front behaviour with no
tangential velocity pulling cells. (b) Haptotactic signal: arc length dependent
tangential velocity. The proportionality constant between the arc length dis-
tance and the tangential velocity is a = 0.6. (c) Chemotactic signal: tangential
velocity determined by the projection of an external gradient field on the inter-
face. The discretisation used is ∆x = 0.00375, ∆t = 0.02.

Alternatively, we model chemotaxis by projecting a velocity gradient field, such

as one created by a gradient of chemical concentration −b∇C, onto the cavity

surface and taking this projection as the tangential velocity,

vS = −b∇C · τ . (2.20)

Indeed, active osteoclasts remain bound to the interface, therefore they can only
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explore the tangential component of the chemical gradient field. This gradient

could be due to signalling molecules derived from mechanically-stimulated os-

teocytes embedded in bone matrix, that steer osteoclasts toward specific areas of

bone needing repair (Turner et al., 1994; Marotti, 2000; Ryser et al., 2009; Lere-

bours et al., 2016), such as high mobility group box protein 1 (HMGB1) (Yang

et al., 2008) and colony-stimulating factor 1 (CSF-1) (Harris et al., 2012), or it

may be due to other chemotactic molecules from the bone microenvironment,

such as monocyte chemoattractant protein-1 (MCP-1/CCL2) (Wu et al., 2013),

and the chemorepulsing sphingosine-1-phosphate (S1P) (Ishii et al., 2010). For

the results presented here, we simply take −b∇C = [0,−2.5 sgn(y)y2], which is a

velocity field in the y direction with streamlines pointing towards the centerline

of the cavity. Figure 2.7c shows that, similarly to the haptotaxis results, stable

resorption front behaviour is obtained after an adjustment period between t = 0

and t = 3 days.

Both forms of cell guidance signal result in stable resorption fronts, but they

lead to different resorption cavity shapes, indicating that the type of signal

is also important for the resorption front. The chemotactic signal results in

a wider distribution of osteoclasts around the resorption front compared to

the haptotactic signal, which results in a high concentration of cells on a nar-

row portion of the interface. Due to coupling, these differences in cell densi-

ties are reflected in the shape of the resorption fronts. However, the speed of

these resorption fronts is comparable, with the haptotactic signal canal reach-

ing x ≈ 0.345 mm at t = 12 days and the chemotactic signal canal reaching

x ≈ 0.34 mm at t = 12 days. These speeds align well with expected speeds of

resorption cavities (30-40µm/day) (Jaworski et al., 1981; Lassen et al., 2017).

29



Furthermore, the diameter of the canals falls within the values stated in Lassen

et al. (2017) BMU analysis. The ‘Level 1’ canal diameters (25µm from the front)

are 58.8µm for the chemotaxis and 87.7µm for the haptotaxis, and the ‘Level 2’

canal diameters (325 µm from the front) are both around 100µm. The range of

diameters found in Lassen et al. (2017) for Level 1 is ≈30-180µm with the mean

being 80µm and for Level 2 it is ≈110-390µm with the mean being 200µm.

4 Discussion and conclusion

Tangential cell motion generated by cell guidance mechanisms is important in

several situations of tissue growth, such as growth occurring at an angle with

respect to the tissue surface, and the generation of anisotropic tissue properties.

We have developed a new mathematical model for tissue growth under collec-

tive curvature control to incorporate such directed cell guidance mechanisms by

including tangential cell motion. The model is derived from conservation prin-

ciples applied to the surface density of tissue-synthesising cells. This derivation

results in a PDE for cell density on a moving boundary, which is coupled with

the boundary motion. The governing equations are expressed in covariant form,

that is, they are independent of a choice of surface parameterisation and coor-

dinate system. We solve the model numerically using a hybrid front-tracking

computational method, the CBPM, and find good agreement with analytic so-

lutions.

Experimentally, the interaction between curvature control of tissue growth and

directed cell motion is difficult to investigate, due to the challenge of controlling

evolving tissue geometries. Crowding and spreading effects on rates of tissue

progression are a consequence of space constraints that may be masked by cell

behavioural influences in experiments. The development of mathematical mod-
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els that account for such collective effects can help disentangle geometric and

cell behavioural influences of tissue growth (Cai et al., 2007; Alias and Buenzli,

2018; Buenzli et al., 2020). The example of bone tissue resorption developed

in this paper (Figure 2.7) illustrates the importance of taking into considera-

tion both the mechanistic influence of curvature on osteoclast density, and the

tangential motion of osteoclasts with respect to the bone interface. Without

accounting for the mechanistic influence of curvature, the presence of a driving

force steering osteoclasts toward the centerline of the resorption cavity would

not be highlighted. Without tangential motion of osteoclasts at the tip of bone

resorption cavities, our results suggest that stable cavity shapes are not possible.

Our mathematical model describes the joint evolution of the tissue interface and

tissue-synthesising cell density. The example of bone pore infilling in Figure 2.6

illustrates that directed motion of cells can generate anisotropies in tissue mate-

rial properties. While we did not model tissue generation explicitly, our model

may be coupled with more detailed tissue generation mechanisms that include

creation and destruction of tissue material at moving interfaces, as well as tissue

maturation mechanisms, based on bulk and surface mass balance (Cumming et

al., 2010; Buenzli, 2015, 2016). Our model thus provides a basis for further ex-

plorations into the relationship between the spatial organisation of anisotropic

tissue material properties, and the dynamics of their creation. Biological ex-

perimental data often takes the form of tissue samples or biopsies representing

single snapshots in time of the state of the tissue. This type of data contains

detailed spatial information about the organisation of a tissue, but it does not

offer a detailed picture of its time evolution. The provision of mathematical links

between features recorded in the state of a tissue and the dynamics of its forma-

tion may allow us to deduce how a tissue has been produced given an analysis
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of its material properties. In bone tissues, for example, several features of bone

formation are recorded, such as osteocyte density (Buenzli, 2015), mineral den-

sity (Buenzli, 2016; Lerebours et al., 2020), and tetracycline labels and lamellae,

which provide information about past location of the bone interface (Martin et

al., 2004; Buenzli, 2014; Andreasen et al., 2018). This type of information is

used in bioarcheology to estimate archaeological age and activity (Buckberry

and Chamberlain, 2002; Maggiano et al., 2008; Mays, 2010). An analysis of

lamellae patterns in bone cross sections could provide more information about

osteoblast behaviour, and provide more insights in cases of irregular bone for-

mation patterns such as drifting osteons (Robling and Stout, 1999; Maggiano,

2012) and bone disorders.

Discretising PDEs on moving boundaries is a challenging problem of applied

mathematics. In this paper, we restricted our model to two dimensional appli-

cations for simplicity. Clearly, applications of our model to three-dimensional

tissue growth are of interest (Figure 2.1) (Guyot et al., 2014; Goriely, 2017;

Ambrosi et al., 2019; Ehrig et al., 2019). Sophisticated techniques have been

developed to simulate the evolution of interfaces in three-dimensional complex

systems (Sethian, 1999; Tryggvason et al., 2001; Glimm et al., 2001; Shin and

Juric, 2002; Osher and Fedkiw, 2003; Du et al., 2006; Leung and Zhao, 2009; Hon

et al., 2014). While the level-let-like method developed in (Alias and Buenzli,

2019) for curvature-controlled tissue growth may be suitably adapted to include

tangential cell velocity, the CBPM of Hon et al. (2014) used in this work is also

applicable to three-dimensional interfaces.
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Appendices

2.A Evolution of local surface area

We start with the equation for the rate of change of a vector area element

(δS = nδS) of a material surface from Batchelor (1976),

(
∂(δS)

∂t

)
m

= δS(∇ · u)− (∇u)>δS, (2.21)

where ∇u is the Jacobian matrix of u. Following Stone (1990), we take the

inner product with n, to obtain an expression for the change in local surface

area, δS, over time,

(
∂(δS)

∂t

)
m

= δS
[
∇ · u− nT(∇u) n

]
. (2.22)

The right hand side of Equation (2.22) corresponds to subtracting to the total

divergence of u, that is, to the trace of the Jacobian matrix of u, the normal

component of the trace, nT(∇u) n. This gives the surface divergence operator

of u, so that

(
∂(δS)

∂t

)
m

= δS∇S · u (2.23)

Decomposing u into its tangential and normal components, u = unn + uS , one

gets

(
∂(δS)

∂t

)
m

= δS (∇S · (unn) +∇S · uS)

= δS (unκ+∇S · uS) (2.24)
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where the second equality in Eq (2.24) uses the fact that the surface diver-

gence of the unit normal vector is the mean curvature of the surface, κ =

∇S ·n (Goldman, 2005), and that the surface gradient is perpendicular to n, so

that n · ∇Sun = 0.

2.B Comparison with the literature

In multiphase physico-chemical systems, similar evolution equations to Equa-

tion (2.11) are derived for the surface transport of surfactants at the inter-

face between two phases (Stone, 1990; Wong et al., 1996; Xu and Zhao, 2003).

A difference between such physical systems and the biological systems we are

modelling is the coupling between the surface velocities and the cell density via

Equation (2.1). Cell density affects interface evolution, whereas in multiphase

physico-chemical systems, surface evolution is usually assumed to be indepen-

dent of surfactant density. Furthermore physico-chemical system models do not

consider the tangential velocity of a surfactant with respect to the surface.

In Stone (1990), surfactant mass balance equations are derived, however the

nature of the time derivative of surfactant density is unclear (Wong et al., 1996).

Time derivatives in Stone (1990) implicitly represent changes following paths

normal to the interface. The surfactant mass balance results obtained in Wong

et al. (1996) make the nature of the time derivative explicit by being derived

using an explicit parameterisation of the interface. The parameterisation is

general in the sense that the coordinate system is not necessarily bound to the

material points of the interface. If we set vS = 0, A = P = 0 in Equation (2.13),

we fall back on Equation (7) from Stone (1990) following normal trajectories,

and Equation (5b) from Wong et al. (1996) equation if the timelines of their

parameterisation are taken to be following the normal trajectories of the surface.
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Neither the equations in Wong et al. (1996) nor Stone (1990) include coupling

between the interface speed and density of cells nor tangential velocity. The

derivation in Alias and Buenzli (2017) includes coupling between cell density

and interface speed, but the cells have no tangential advection, that is, their

only lateral motion is diffusive. To compare our model with that in Alias and

Buenzli (2017), the cell velocities in Equation (2.13) must be chosen such that

the cells move along the normal trajectories of the interface. Therefore, if we

set vS = −uS , the governing equations agree.

2.C Numerical Discretisation

We provide more detail on the numerical method used to solve our mathemat-

ical model, the cell-based particle method (CBPM). As well as the advantages

of the CBPM discussed in the main text, the CBPM also allows for efficient

detection and implementation of topological changes during fusion or fragmen-

tation of the interface without requiring information about the connectivity of

the marker particles. This method is of O(N) in computational load, where

N is the number of marker particles. This is to be contrasted with standard

level set methods on N × N grids, which have O(N2) computational load, or

O(N logN) for local level set methods (Sethian, 1999). The CBPM method for

solving PDEs on moving boundaries gives approximately conservative solutions

(Leung and Zhao, 2009).

The CBPM algorithm is comprised of four main steps: initialisation, movement,

resampling, and activation or deactivation. The initialisation stage declares the

set of active marker particles which are used to track the interface, its geometry,

and any associated scalar quantities. Initialisation requires an explicit parame-
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terisation of the initial surface, γ(m), where m is a parameterisation variable for

the one-dimensional surface γ in two dimensional space. The movement stage

requires a velocity field which is used to advect the marker particles, and thus

to evolve to position of the interface. This velocity field can be space and time

dependent, and may be determined by external processes, or be coupled with

the evolution of intrinsic properties of the system. In our case, it is intrinsic

and implicitly time dependent since it depends on the surface density of cells.

To solve the partial different equation (PDE) for a scalar quantity residing on

the moving interface, each marker particle is supplemented with a scalar value,

which is evolved according to the particular PDE after the motion step of the

marker particles.

The resampling stage assures a quasi-uniform sampling of the interface through

local interpolation. The local interpolation of the interface is expressed in a

local coordinate system aligned with the local surface unit normal and calcu-

lated using quadratic least squares. The interpolation is used to update the

unit normals, curvature, and any other local surface properties of interest, as

well as to resample the active marker particles and calculate spatial derivatives

in Equation (13). Finally, the activation and deactivation stage deactivates

marker particles associated with underlying grid cells which no longer contain

part of the interface, and activates marker particles associated with underlying

grid cells into which a portion of the interface has now moved. The activation

and deactivation stage also detects changes due to topological changes of the

interface incldugin collision, fusion, or fragmentation. For more details on the

algorithm see to Leung and Zhao (2009); Leung et al. (2011), and Hon et al.

(2014). Below we describe how the method is applied to our problem.
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To solve Equations (1) and (13), we first need to choose an advective veloc-

ity field in the two dimensional space. Several choices are possible, including

paths normal to the interface at all times, material points of the interface, and

cell trajectories. Since cells may carry intrinsic information and it is expected

that the numerical resolution of cell density changes will be more accurate along

these trajectories, we choose to move the marker particles along cell trajecto-

ries. We thus define the intrinsic velocity field that governs the evolution of the

surface by

Vγ = unn + vSτ , (2.25)

and we use a forward Euler scheme to evolve the positions of the marker particles

in time for simplicity. More advanced time stepping schemes can be devised

(Leung and Zhao, 2009; Leung et al., 2011; Hon et al., 2014), but in practice,

moving boundary problems are more sensitive to spatial discretisation accuracy

than time discretisation accuracy (Osher and Fedkiw, 2003). Equation (13) is

solved after interface motion using operator splitting with forward Euler, with

the first step solving for curvature control,

ρ∗t = ρt−1 + ∆t(ρκun), (2.26)

where the ∗ indicates an intermediary step in the solution for ρt and ∆t is the

time step. Given there is a local interpolation for both the surface and the

density values, denoted by

γ̂(m) = α1 + α2m+ α3m
2, and (2.27)

ρ̂(m) = β1 + β2m+ β3m
2, (2.28)
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respectively, we can then calculate the diffusion term of Equation (13) by cal-

culating the Laplace Beltrami operator

∂2ρ̂

∂l2
=

1

g2
∂2ρ̂

∂m2
− 1

g3
τ · ∂

2γ̂

∂m2

∂ρ̂

∂m
(2.29)

directly from the second order interpolation, ρ̂(m). In Equation (2.29), g is

the surface metric, |∂γ̂/∂m|. Similarly to the Laplace-Beltrami operator, the

final term of Equation (13) can be calculated using the local interpolation.

The derivative of vS with respect to l can be calculated either explicitly or via

interpolation depending on the form of vS . The forward Euler method is then

used to step the diffusion and advection operators forward in time,

ρt = ρ∗t + ∆t

(
D

(
2b3
g2
− 2a3

g4
(a2 + 2a3m)(b2 + 2b3m)

)
+

−vs
g

(b2 + 2b3m)− ρ∗t
∂vS
∂l

)
.

(2.30)

This concludes the calculation of ρ between timesteps. We also include conver-

gence graphs where we examine the error of the final time solution compared to

the analytic solutions presented in Figures 2.4 and 2.5. The error is calculated

by comparing the densities at t = 10 along the arc length of the surface. For each

discretisation, the absolute error is calculated for every marker particle, then

the average of these absolute errors is found. The figures show that indeed the

error is reducing as the discretisation is refined, and the spatial discretisations

chosen for the results presented above are justified.

2.D Effect of resorption constants

Here we present results which show the sensitivity of the resorption behaviour

discussed in Section 3.3 to the strength of the cell signals. We present results
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Figure 2.8: Discretisation convergence graphs. (a) Comparison of average ab-
solute error of the advection-only problem (Equation 2.18. The time step
is changed with the spatial step, maintaining the relation ∆t = ∆x. (b)
Comparison of average absolute error of the diffusion-only problem (Equa-
tion 2.19). The time step is changed with the spatial step, maintaining the
relation ∆t = ∆x2/D.

for different values of a, the proportionality constant of the haptotactic signal,

and different values of b, the proportionality constant of the chemotactic signal.

We also present the result if both signals are linearly combined.

For both signals, we see that increasing the constant of proportionality, and thus

increasing the strength of the signal, causes a narrower front which travels faster

through the bone (Figure 2.9b and c). Weakening the signal has the opposite

effect (Figure 2.9a and c). When combining the two types of signals, we see

elements of the behaviours of each. There is a flatter front of the cutting cone,

which can be seen in the haptotactic results, but there is also a widening of the

channel further back which is characteristic of the chemotactic results. There-

fore, through the combination of these two signals, many different resorption

behaviours can be modelled.
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Figure 2.9: Sensitivity analysis of resorption behaviour to proportionality con-
stants. (a) and (b) Chemotactic signals with proportionality constants of
b = 1.25 and b = 5 respectively. (c) and (d) Haptotactic signals with pro-
portionality constants of a = 0.3 and a = 1 respectively. (e) Combination of
chemotactic and haptotacitc signals with b = 1 and a = 0.1.
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Chapter 3

Experimental Data Study

1 Introduction

In this Chapter, we consider the application of the mathematical model of cur-

vature control of tissue growth to the infilling of bone pores, called osteons.

The mathematical model follows from Polig and Lee (1990); Buenzli (2014) and

Alias and Buenzli (2018), and is a specialisation of the mathematical model

presented in Chapter 2. The originality of the work presented in this chapter

is (i) the development of a systematic, quantitative approach to calibrate the

model with experimental data on osteons available through collaboration, and

(ii) the examination of hypotheses about different infilling behaviour in atypical

osteons.

Osteons are cylindrical structures in dense, load-bearing bone (cortical bone)

which are created as a result of the lifelong tissue renewal process in bone, called

bone remodelling. Through this process, pores are created by bone-resorbing

cells, called osteoclasts, that tunnel through old bone. These pores are subse-

quently infilled by bone-secreting cells, called osteoblasts (Martin et al., 2004),

(Figure 3.1). As infilling progresses, some osteoblasts become embedded into the

bone tissue and become a new type of cell, osteocytes (Figure 3.1). Understand-
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Figure 3.1: Schematics and experimental snapshots of osteon infilling process.
Figures (a) and (c) show experimental data of cross sections in the longitudinal
and transverse planes respectively, reproduced from Lassen et al. (2017) and
Andreasen et al. (2018) respectively. (b) and (d) are diagrams of the process
which show characteristics which can be extracted from experimental data

ing the mechanisms that control the infilling of osteons is particularly important

as it is known that during age-related bone loss, bone porosity increases as a

result of the pores being infilled less with age (Seeman, 2008; Andreasen et

al., 2018). However, the effects of the mechanical and geometrical factors that

control this process remain poorly understood (Seeman, 2008; Lerebours et al.,
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2016). Determining the factors that influence the osteon infilling process in

vivo presents particular challenges as data cannot be easily extracted while the

process is ongoing. Live imaging of bone at this resolution (5-20µm) cannot be

obtained from live human subjects (Perilli et al., 2012). As a results of this,

most of the information that is available comes from bone biopsies, i.e. infor-

mation is only available at single snapshots in time.

By applying our mathematical model to investigate bone-infilling in osteons,

our aim is to help disentangle the individual effects of some of the factors of os-

teon infilling. The data that can be extracted from these samples is the cement

line (the initial pore cavity), the Haversian canal (the final pore that remains

after infilling has completed), and individual lamellae (bone layers with specific

orientations of tissue fibres), which provide records of past locations of the in-

terface (Figure 3.1). Our aim is to provide a more complete picture of the time

evolution between the initial pore cavity and the final pore cavity.

2 Experimental Data

The data used to calibrate the tissue growth model to osteon infilling was pro-

vided through our collaborators, Thomas Andersen, Christina Andreasen, and

Xenia Borggaard (University of Southern Denmark, Odense, Denmark). The

data was provided in the form of images of transverse cross-sections of cortical

bone taken during forensic examination of human subjects after an unexpected

death. None of the subjects showed evidence of pre-existing bone diseases. In

this study, we examined eight osteons from males and females aged between

24 and 44 years (Figure 3.2). These samples were chosen because the cement
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Figure 3.2: Experimental osteon data used. The pink/white elliptical shapes in
the center of the cement lines (black dashed lines) are the Haversian canals.

line (outline of initial pore before infilling started) was easy to identify. Our

collaborator Xenia Borggaard identified the cement lines using a staining of the

osteons, the cement lines are denoted as black dashed lines in Figure 3.2.

The cement line was taken to be the initial condition of the simulation and the

outline of the Haversian canal (outline of final pore once infilling has stopped)

was used to compare the experimental data and the final state of the simulation.

3 Methods

The mathematical model is the same as described in Chapter 2. In this appli-

cation, the density of cells in the model is the density of osteoblasts, and the

tissue surface is the evolving pore edge during the infilling of the pore with new

bone tissue. As this model is applied to relatively regular osteons showing no

evidence of tangential interface motion (Figure 3.2), no tangential interface mo-

tion is included at this stage (uS = 0), this decision was taken in discussion with
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our experimental collaborators. Tangential cell motion is believed to play a role

in more atypical osteon structures, such as drifting osteons (see Chapter 4). We

note that, although tangential osteoblast motion may be responsible for gener-

ating tissue material anisotropies in these osteons (Chapter 2, Section 3.2), this

motion does not necessarily influence the evolution of the interface itself, and

thus is not considered here (vS = 0). Here, the focus is first to calibrate the

model derived in Chapter 2 with the experimental data available, hence we are

concerned with the timing and location of intermediate interfaces and not with

the generation of anisotropies in the tissue produced.

3.1 Mathematical model

The model is applied in two-dimensions on a transverse cross section of an os-

teon (Figure 3.1c and d). Limiting the model to two dimensions is reasonable

as osteoblasts do not move considerably in the longitudinal (out of the plane)

direction (Parfitt, 1994). Without tangential cell velocity, the model is equiva-

lent to the model in Alias and Buenzli (2018). The governing equations of the

model are given by

un = kρ, (3.1)(
∂ρ

∂t

)
n

= D
∂2

∂l2
ρ− ρunκ−Aρ−Otun, (3.2)

where (∂/∂t)n indicates the derivative along the normal trajectories of the

bone surface (see Equation (2.12)), ρ is the density of tissue-secreting cells

(osteoblasts), k is the tissue secretion rate, D is the diffusivity, un is the normal

speed of the bone surface, κ is the local mean curvature, and the last two terms

are sink terms representing the rate at which the pool of active, tissue-secreting

osteoblasts is depleted. The sink terms are split into a general term A, and
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Otun which is the rate at which osteoblasts are embedded into the tissue and

become osteocytes (Buenzli, 2015). The three main mechanisms included in this

model are:

1. The crowding and spreading of osteoblasts according to curvature;

2. Osteoblasts diffusion along the tissue surface; and

3. The depletion of osteoblasts.

In Alias and Buenzli (2018) different geometric dependencies for the cell-specific

tissue secretion rate, k, and the rate at which tissue-secreting cells are lost, A,

were examined. In circular pore geometries, experimental evidence suggests that

A and k depend on pore radius, R (Marotti et al., 1976; Alias and Buenzli, 2018).

However, when pores are not circular, the dependence on R may be interpreted

as either curvature, or porosity φ. The best combination of functional forms was

found in Alias and Buenzli (2018) to be a curvature-dependent loss of tissue-

secreting cells,

A(κ) = −A0κ, (3.3)

and a porosity-dependent secretory rate,

k = ak + bk

√
φ

π
, (3.4)

where
√
φ/π is an approximation of the pore radius R. The linear secretory

rate function of R is based on experimental data, with the two parameters being

ak = 3.2741 × 10−6 mm2/day, and bk = 8.5727 × 10−5 mm2/day (Alias and

Buenzli, 2018). Therefore, there are two remaining parameters to be fit to the

experimental data, A0 and D.

Equations (3.1) and (3.2) define a PDE to be solved on an evolving interface and
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must be solved numerically. This problem is not trivial due to the asymmetries

in the interface which result in the development of heterogeneities in cell den-

sity and nonlinearities which arise from the coupling of the interface speed with

density. We choose to solve this model using a Kurganov-Tadmor (KT) finite

volume method (FVM) based on computer code intially written, and kindly

shared with us by Almie Alias (Alias, 2019). This choice was motivated by the

conservation properties of the method and its high resolution, which are impor-

tant when dealing with small-scale irregularities in initial interface (Alias and

Buenzli, 2018). The KT FVM solves for the position and density of the interface

in polar coordinates in conservative form, therefore the governing expressions

become

∂R

∂t
= −kη

R
, (3.5)

∂

∂t

(
∂R

∂θ

)
+

∂

∂θ

(
kη

R

)
= 0, (3.6)

∂(η)

∂t
+

∂

∂θ

 kη2 ∂R∂θ

R
(
R2 +

(
∂R
∂θ

)2) +D

 η ∂R∂θ
(
R+ ∂R

∂θ

)(
R2 +

(
∂R
∂θ

)2)2 − ∂η
∂θ

R2 +
(
∂R
∂θ

)2



= −Aη −Otkη,

(3.7)

where g = R
√

1 + 1/R2(∂R/∂θ)2 is the surface metric and η = ρg is the cell

density per unit angle (Alias and Buenzli, 2017). The initial density of os-

teoblasts is taken to be a uniform ρ0 = 161 cells/mm (Marotti et al., 1976;

Alias and Buenzli, 2018). Further details on the KT FVM scheme can be found

at Alias (2019).

3.2 Parameter Sweep

To determine the values of D and A0 which best reproduce the final condition

from the experimental data, simulations are run for all eight experimental os-
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A0 (mm/day) 0.000605, 0.0009075, 0.00121, 0.0015125, 0.001815
D (mm2/day) 0.000375, 0.0005625, 0.00075, 0.0009375, 0.001125

Table 3.1: Parameter Sweep Values

teons with varying D and A0 values around the values used in Alias and Buenzli

(2018), that is A0 = 0.00121 mm/day and D = 0.00075 mm2/day. The lower

and upper bounds for the parameter sweep are taken to be ±50% of the above

values. The parameter sweep values are listed in Table 3.1. Therefore, there is

a 5 × 5 grid of parameter pairs to test for each of the 8 osteons, resulting in a

total of 200 simulations to be run.

As the loss of secreting cells is a function of curvature (A(κ)), this function

is first re-scaled by a factor α for each osteon such that αA(〈κ0〉) = A0 where

〈κ0〉 indicates the average curvature around the pore at time 0. This ensures

that smaller osteons do not start infilling with a higher rate of loss of secreting

cell than larger osteons. Furthermore, the simulations are stopped when the

target remaining pore area (that of the Haversian canal in the experimental

osteon) is reached.

To find the parameters that best recreate the final pore of the experimental data,

(Ā0, D̄), error metrics are defined to compare the final states of the bone pore

in the experimental data and in the simulation results. To illustrate the results,

an example simulation output for one osteon is compared to experimental data

in Figure 3.3. The difference in final pore includes differences in area, location,

shape, and orientation. To capture these properties mathematically, we con-

sider the spatial distribution which describes the final pore shape and examine

the zeroth, first, and second moments of this distribution. This distribution is

49



Figure 3.3: Experimental data (a) compared with results from one simulation
(b). In (a), the ellipse fit to the final experimental pore shape is indicated with
a blue dashed line and the centroid of the final experimental pore is shown
with a blue diamond. The red solid line indicates the final pore shape from
the simulation, the red dashed line is the ellipse fit to this shape, and the
red square is the centroid of the final pore from the simulation results. The
parameter values for this simulation are A0 = 1.51 × 10−3 mm/day and D =
1.125× 10−3 mm2/day

an indicator function of the pore area defined as

χA(r) =


1 r ∈ A

0 otherwise,

(3.8)

where r is a vector indicating position and A is the remaining pore area. The

zeroth moment of this distribution corresponds to the pore area, the first mo-

ment to the centroid of the pore, and the second moment to the ellipse which

best fits the pore shape. We calculate these properties on both the experimental

final pore (Haversian canal) and on the final pore of the model output to define

error metrics. The difference in the final density distribution of osteoblasts is

described by averaging osteoblast density around the interface. In total, we

define five error metrics, based on discrepancies in
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1. Cell density;

2. Pore area;

3. Centroid of the pore;

4. Pore orientation; and

5. Pore aspect ratio.

Cell density

A reasonable assumption for the average density of osteoblasts at the end of

osteon infilling is ρexp = 46 cells/mm (Marotti et al., 1976; Buenzli, 2014).

We define the error in density as the relative error between the expected final

density of osteoblasts and the mean density in the simulation data at the final

time,

εiρ =

∣∣ρexp − 〈ρisim〉∣∣
ρexp

, where
〈
ρisim

〉
=

1

Ai

∮
∂Ai

ρisimdl, (3.9)

and the subscript ‘sim’ indicates the simulation data, the subscript ‘exp’ indi-

cates experimental data, and the superscript ‘i’ indicates the ith osteon (i =

1, ..., 8).

Pore area

The second error metric considered is the relative error of the final pore area,

determined as the zeroth moment of χA(r), i.e. the area is A =
∫∫

χA(r)dxdy,

εiA =

∣∣Aiexp −Aisim∣∣
Aiexp

. (3.10)
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It is important to note that the simulations are stopped when the remaining

pore area matches that of the experimental data, therefore εiA is only non-zero

when the target area is not reached, for example if the depletion rate of os-

teoblasts is too high.

Centroid of the pore

The centroid of χA(r) is defined as

rC = 〈r〉 =

∫∫
r χA(r)dxdy∫∫
χA(r)dxdy

. (3.11)

Since the finite volume solver stores the interface and the osteoblast density

in polar coordinates, the centroid is calculated by approximating the following

integrals using the trapezoidal rule,

rC =

〈x〉
〈y〉

 =
1∫ 2π

0

dθ

∫ R(θ)

0

dr r


∫ 2π

0

dθ

∫ R(θ)

0

dr r2 cos(θ)∫ 2π

0

dθ

∫ R(θ)

0

dr r2 sin(θ)

 , (3.12)

where R(θ) is the radius of the pore at angle θ. The error metric on the location

of the final pore is defined as

εiC =

∥∥∥riCexp − riCsim

∥∥∥√
Ai0exp

, (3.13)

where ‖·‖ indicates the two-norm, and Ai0exp is the initial pore area in the ith

experimental data osteon, which is used as a normalising factor across osteons.
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‘

Figure 3.4: Zeroth, first, and second moments of pore indicator function. Note
that origin of xy axis is aligned with rC to clarify θ, this is not the case in the
simulation results.

Pore shape

The second moments of the spatial distribution of the pore define elements of a

covariance matrix, S, where

S =


〈

(x− 〈x〉)2
〉 〈

(x− 〈x〉) (y − 〈y〉)
〉

〈
(x− 〈x〉) (y − 〈y〉)

〉 〈
(y − 〈y〉)2

〉
 . (3.14)

This matrix can be used to describe the ellipse which best fits the pore shape

such that (r−rC)
>S(r−rC) = 1 (Figure 3.4). That is, the equation for the ellipse

in general form is given by S11(x−xC)2+2S12(x−xC)(y−yC)+S22(y−yC)2 = 1.

Given the covariance matrix S, the orientation of the ellipse, θ, as well as the

ratio between its major and minor axes can be calculated. The length of the

major axis, a, and the minor axis, b of the ellipse are given by the eigenvalues
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S, where b ≤ a. The orientation of the ellipse, defined as the angle between the

positive x-axis and the major ellipse axis, can be obtained by the orthogonal

transformation that makes S diagonal. That is,

S = R−1DR, (3.15)

where

D =

a 0

0 b

 , (3.16)

and R is the transformation of axes required. The calculation of R is not

explicitly needed for find θ, the orientation of the ellipse is given by

θ =
1

2
arctan

(
− 2S12

S22 − S11

)
. (3.17)

The properties of the ellipse of interest are annotated in Figure 3.4. This pro-

vides us with two error metrics on the shape of the final pore, defined as the

relative error between the experimental data and the simulation data of the

ellipse orientation, θ and axis ratio, R = b/a:

εiθ =

∣∣θiexp − θisim∣∣
θiexp

, (3.18)

εiR =

∣∣Riexp −Risim∣∣
Risim

. (3.19)

Total error

Finally, to provide a single measure of error between the experimental data and

simulation results, the total error metric for a single osteon simulation with

parameter pair (A0, D) is defined as the sum of Equations (3.9), (3.10), (3.13),
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(3.18), and (3.19),

εitotal = εiρ + εiA + εiC + εiθ + εiR. (3.20)

The total error for a given parameter pair (A0, D) is taken to be the sum of the

total errors for each osteon,

εtotal =
8∑
i=1

εitotal. (3.21)

The aim of the parameter sweep is to find the parameter pair (Ā0, D̄) with the

smallest total error metric across all osteons.

4 Results

The error surfaces produced by each metric from the parameter sweep are pre-

sented in Figure 3.5, with the total error surface presented in Figure 3.6. Sepa-

rating the different error metrics shows that the area and density error metrics

have opposing behaviour as a function of different A0 values. That is, high

A0 values reduce the density error but increase the area error and vice versa

(Figure 3.5).

The centroid error shows more sensitivity to the diffusivity value than the area

and density metrics. However, the magnitudes of the individual relative error

metrics are quite different, therefore once they are considered together in the

total error metric, the area and density metrics are most significant. The to-

tal error metric is lowest at the center value of A0 (1.21×10−3 mm/day) and is

slightly lower at higher diffusivities (Figure 3.6). As the difference along the dif-

fusivity axis is small, perhaps a wider range of diffusivities should be explored.

The apparent lack of sensitivity to diffusivity may be because only one error

metric is evaluating density, and ερ does not include a measure of density het-
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Figure 3.5: Individual error metrics from the parameter sweep.

erogeneities along the final pore interface, only the average density at the final

time point. As can be seen in Figure 3.7, there can be significant differences

in density around the interface for the same value of A0. If data was avail-

able about the heterogeneities in density around the interface, the sensitivity of

more detailed error metrics of density to diffusivity may become more apparent.

Therefore, we can conclude that Ā0 = 1.21× 10−3 mm/day and that the range

of D values considered is appropriate, D̄ ∈ [3.75×10−4, 1.125×10−3] mm2/day

(Figure 3.6). In general, the simulations using (Ā0, D̄) agree well with the data

qualitatively (Figure 3.8).

The parameter sweep results show that the values of A0 and D proposed in

Alias and Buenzli (2018) are reasonable in view of the error metrics defined
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Figure 3.6: Total error metric for parameter sweep with some results from one
osteon highlighted.

here for the experimental osteons. In Alias and Buenzli (2018), these A0 and D

values were based solely on achieving smooth, circular final pores, and not on

the comparison with experimental data. Our parametric study which calibrates

A0 and D to experimental data therefore suggests that the geometric depen-

dence of osteoblast behaviour encapsulated in A(k) and k(φ) has the effect to

efficiently smooth the bone interface and to lead to round, regular final pores.
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Figure 3.7: All simulation results for one osteon.

There is a large difference in magnitude across the different error metrics. These

magnitude differences are deemed to be important, as a seven-fold increase in

expected osteoblast density is more important to avoid than a slight difference

in the orientation of the pore. Therefore, we simply take the sum of all five

metrics. However, a weighting of the metrics could be considered if biologically

relevant, for example, if one had more confidence about data relating to one
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Figure 3.8: Results for optimal parameters (Ā0, D̄) for each osteon. The centroid
of the experimental data pore is denoted by a blue diamond and the fitted ellipse
to the experimental data is a blue dashed line. The red square denotes the
centroid of the simulation results, the red solid line is the experimental final
pore and the red dotted line is the ellipse fitted to the simulation results.

error metric than another.
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4.1 Osteons with off-center Haversian canals

Having been able to reproduce osteon features well for reasonably regular pores,

the final aim of this study is to apply the model to pores with off-centered

Haversian canals. We aim to gain insight into osteoblast behaviours which may

cause these osteons to develop. Figure 3.9 shows the difference between an

osteon where the Haversian canal is centered within the cement line, and an

osteon where the Haversian canal is not in the center of the cement line. It

is clear from this comparison that further mechanisms are present which lead

to the location of the final pore being significantly off-center. Although we

can see in Figure 3.9 some influence of neighbouring osteons on the cement

line, these irregularities can be smoothed by the curvature-control model with

the final pore remaining in the center. The off-centering of the pore requires

more mechanisms that curvature control. We investigate three hypotheses which

could lead to osteons with off-center final pores:

H1. A time delay in the commencement of new tissue secretion on a portion

of the initial interface;

H2. A nonuniform initial density of osteoblasts which causes faster infilling on

one portion of the osteon interface; and

H3. A spatially-dependent nonuniform secretory rate such that one region in-

fills faster than the rest.

The time delay of H1 is implemented by setting k = 0 mm/day for y > 0 mm

for t < 10 days. The value of 10 days is chosen by inspecting the biological

image and noticing the ‘eclipsing’ lamellae about one third of the way through

the infilling process. H2 is applied by changing the initial uniform density of

osteoblasts (ρ0 = 161 cells/mm) to be a sinusoidal initial density function of θ,

with values centered around ρ0. The value of ρ0 is obtained from the parameter
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Figure 3.9: Experimental data images showing osteons with centered Haversian
canals (a) and off-centered canals (b).

study conducted in Alias and Buenzli (2018). Therefore, there is the same total

number of cells around the initial interface as when a uniform initial cell density

is used. A similar strategy is used for H3, where the k values are sinusoidally

perturbed as a function of θ and the center value is taken from the parametric

study in Alias and Buenzli (2018). We apply the three mechanisms to the os-

teon shown in Figure 3.10 and begin to analyse differences between the infilling

behaviours.

All three hypotheses successfully create an off-center final pore. Simulations per-

formed under H1 show ‘eclipsing’ lamellae behaviour, that is, lamellae which do

not reach entirely around the osteon, but rather narrow out to join with other

lamellae. This behaviour can be observed in the experimental osteon (Fig-

ure 3.10a). Furthermore, cell density around the final pore under H1 is close

to the final density expected from experimental data after the osteon has been

infilled. Figures 3.10b and c show that under H2 and H3 the tissue evolution

produces variation in thickness of individual lamellae, which has been noted
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by our collaborators as an important property. In Figure 3.10b (H2 ), a high

density of osteoblasts can be seen for most of the simulation for y < 0 between

x ± 0.05mm. Further experimental data about osteoblast density throughout

infilling is needed to confirm whether such high values of cell density as seen in

H2 are possible during bone formation. Cell density results for H3 are more

homogeneous, however the shape of the final pore is less aligned with the ex-

perimental data.

The differences between H2 and H3 show the importance of the coupling of

density and interface velocity. Initially, changing either the secretory rate or

the density has the same effect on the interface velocity, however due to the

dependence of the interface velocity on the solution of the density evolution

equation, significantly different behaviour is seen in Figures 3.10b and c. This

shows the importance of considering secretory rate and cell density indepen-

dently. These simulations suggest that cell density information over time could

help understand what underlying mechanisms are responsible for the generation

of off-center Haversian canals.

This short exploration into the generation of off-center Haversian canals in

osteons has shown that experimentally, we can look for eclipsing behaviour,

lamellar thickness, and cell density to understand which of the three possible

mechanisms is responsible for the asymmetry.
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Figure 3.10: Results of simulations of osteon with off-centered Haversian canal,
with simulation results at distinct time point above and the final pore ellipse
plotted on the experimental data below. (a) shows the results under H1, with an
example of eclipsing lamellae highlighted in orange in both the simulation and
the experimental data. (b) shows the results under H2. (c) shows the results
under H3. (d) shows the results under H0, where no mechanisms are added to
off-center the final pore.

4.2 Numerical solver issues

The investigation of the osteons with off-center final pores brought to light some

numerical issues using the KT FVM. It was found that the placement of the

origin in the polar coordinate framework influenced the simulation results signif-

icantly for small radii due to numerical inaccuracies. The different behaviours

according to origin placement can be seen in Figure 3.11a and b, where the

infilling of a perfectly circular osteon is simulated with a centered origin, and an

off-centered origin. Figures 3.11c and d show how the placement of the origin

of the polar coordinate system influences simulations on the osteon shown in
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Figure 3.11: Different model results due to placement of origin in KT FVM
simulations. (a) and (b) show the results with a circular pore while (c) and (d)
show the results of simulations on the experimental pore used in Figure 3.10.
(a) and (c) have the origin placed at the center of mass of the initial pore shape
while (b) and (d) have an off-center origin.

Figure 3.10. Therefore, origin placement seems important for this numerical

method, particularly when the remaining pore area is small. To alleviate this

numerical inaccuracy, the origin was recentered to be at the centroid of the

remaining pore periodically. The origin placement influence is an area open to

further investigation.
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4.3 Discussion

This chapter demonstrates the suitability of our mathematical model for analysing

osteon infilling data. We propose a method of quantitative analysis for density

and spatial data and conduct a parameter sweep with our devised error metric.

The parameter sweep results in the determination of reasonable parameters

and suggests that more insights could be gained into diffusion if more informa-

tion was available about the density of osteoblasts through the infilling process.

There is potential for further quantitative analysis by identifying intermediary

lamellae and comparing the simulation results at intermediate time points. This

may be achieved by comparing the interface from the numerical simulation when

the remaining pore area is the same as the area contained within the experi-

mental intermediary lamellae.

We show how our mathematical model can be combined with the analysis of tis-

sue material properties to gain insights into tissue growth behaviour. Through

the analysis of the biological artefacts present in osteons with off-center Haver-

sian canals, we are able to propose three hypotheses which can be assessed using

our mathematical model. Thus the mathematical model can facilitate the un-

derstanding of atypical biological growth behaviour.

Some instability issues were found initially with the CBPM when dealing with

the experimental osteon data, presumably because of small-scale irregularities

in the experimental initial conditions, hence the KT FVM was used. Due to

the issues of origin placement in the KT FVM, finding the best algorithm to

solve the model for osteon infilling is open for further investigation. There is

the potential for further exploration into the CBPM under more taxing initial
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conditions, for example by implementing the local grid refinement scheme de-

scribed in Leung and Zhao (2009).

Further information about cell density would benefit both the parameter sweep

and the exploration into osteons with off-center Haversian canals. In order to

gain more insight as to which of the three hypotheses considered is better suited

to the experimental behaviour, information about the cell density around the

interface throughout infilling or time information would be useful, as currently

only interface position can be seen.

66



Chapter 4

Concluding Remarks and Out-
look

The aim of this thesis was to gain insight into individual cell behaviours and

overall tissue dynamics during tissue growth using mathematical modelling of

biological tissue growth under curvature control and directed cell guidance. A

mathematical model has been derived from conservation principles for the evo-

lution of cell density along an evolving tissue interface under curvature control

and tangential cell motion. The inclusion of tangential cell motion in the gov-

erning equations allows for many different directed cell guidance mechanisms to

be modelled. The derivation of the mathematical model is in covariant form and

in three dimensions and results in a PDE on a moving boundary, whose motion

is coupled with the solution of the PDE. Using a hybrid front-tracking method,

the CBPM, the model was solved and the implementation of this method was

validated with exact solutions. The new model was compared to existing models

in the literature and applied to novel biological situations where tangential mo-

tion is important. Experimental osteon infilling data was also compared to the

model results and a framework of quantitative analysis was defined to compare

simulation results against experimental data. After establishing the suitability

of the model to osteon infilling, a case of atypical infilling behaviour was exam-

ined, illustrating the use of the mathematical model to test different hypotheses
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about the biological cell behaviours which may be difficult to measure experi-

mentally.

The mathematical model presented here has been derived under rigorous conser-

vation principles and includes lateral cell diffusion, the crowding and spreading

effect of curvature, cell tangential advection, interface tangential motion, and

sink or source terms. Similar governing equations can be found in the literature

in the context of surfactant mass balance in physico-chemical systems. The

mathematical model derived here agrees with equations found in the literature

in particular cases and the derivation clarifies some confusion in the literature

about the nature of the time derivative along different trajectories (see Chap-

ter 2 Section 2.B). The CBPM is a promising method of solving the governing

equations derived herein and may provide a way of addressing the origin place-

ment considerations needed for the KT FVM (Figure 3.11). Furthermore, the

CBPM method is applicable to three dimensions, therefore there is the possi-

bility of modelling a three dimensional bone pore and gaining insights into the

intricate three-dimensional structures of Haversian canals (Cooper et al., 2006;

Arhatari et al., 2011).

Through the mathematical model derived in this thesis, insight was gained into

the interactions between curvature control and cell guidance mechanisms. We

showed in our simulations of bone resorption (Chapter 2, Section 3.3) that

only by explicitly considering both curvature control and cell guidance can we

represent resorption cavities progressing through the bone tissue with a stable

resorption front shape. The mathematical model has a general tangential cell

advection term, hence there is flexibility in the different types of systems that

can be considered. The influence of mechanical loading could be included as
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a signal influencing the tangential velocity. Similarly to how a gradient field

was used to model chemotaxis, a strain field such as the one presented in Smit

and Burger (2000) could be used. Exploring the different types of signals is an

area of future work. Furthermore, external velocity field influences could also be

considered for more atypical osteon infilling behaviour, such as drifting osteons

(Figure 4.1). Drifting osteons occur when there is continuous resorption on one

side of the canal and continuous infilling on the other, so that the canal drifts

in the cross-sectional plane (Robling and Stout, 1999). Examining structurally

mature drifting osteons, the directions of the resorption canal movement may

be extracted (Robling and Stout, 1999). Using the model derived in this thesis,

tangential cell motion could be used to test these theories about drifting osteons

involving resorption canal movement in the cross-sectional plane presented in

Robling and Stout (1999) and Maggiano (2012).

Figure 4.1: Drifting osteons (arrows), reproduced with permissions from Mag-
giano (2012)

Tissue properties and tissue material anisotropies can be analysed using the

mathematical model to gain insights into cell behaviour during tissue evolu-
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tion. Biological artefacts in the osteon tissue have been used in conjuction with

the model to evaluate hypotheses about the generation of atypical tissues (Sec-

tion 4.1). It has also been established that tangential cell motion during infilling

could lead to anisotropies in tissue material properties, more specifically in col-

lagen fibre orientation. In our exploration, the mechanisms of tissue material

creation were not explicitly considered. The mathematical model derived here

could be coupled with a model for the generation of tissue material properties to

gain more insights into cell behaviour and the dynamics of anisotropic material

property creation. Such models exist in wound healing (Cumming et al., 2010)

where the creation and destruction of tissue material is modelled using bulk and

surface mass balance.

As well as qualitative inspection of tissues, methods of quantitative analysis

have been developed. Fitting ellipses to both the experimental data and sim-

ulations of osteon pores enabled a quantitative comparison of the pore shapes.

The parameter sweep in Section 3.2 allowed for justification of model parame-

ters and highlighted that additional information about the density of osteoblasts

throughout infilling is required. Now that quantitative comparison metrics have

been established, it could be possible to carry out uncertainty quantification of

the model parameters. This could achieved with methods such as Approximate

Bayesian Computation. Our collaborators are currently working on new ex-

perimental data analysis techniques to extract cell density information. This

additional data will be useful in further studies to investigate the three different

hypotheses examined in Section 4.1.

In conclusion, the mathematical model developed in this thesis has highlighted

the importance of considering curvature control and directed cell guidance mech-
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anisms in analysing the development of biological tissues. This mathematical

modelling has helped gain insights into the behaviours of osteoblasts and os-

teoclasts during the bone remodelling process and provides a basis into further

explorations of the spatial organisation of tissue material anisotropies as well as

the mechanisms which cause atypical bone remodelling behaviour.
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