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Abstract

Transport through biological environments that are densely crowded with obstacles is often clas-

sified as anomalous, rather than Fickian diffusion. Researchers often describe these transport

processes using either a random walk model or a fractional order differential equation model.

To explore these ideas, we simulate a single agent migrating through a crowded environment

that is populated by impenetrable immobile obstacles and examine averaged mean squared

displacement data. We also simulate the transport of a population of such agents through a

similar crowded environment and attempt to match population density data to the solution of

a related fractional order differential equation. Our work suggests that it may be inappropriate

to model the transport of either a single agent, or a population of agents through a crowded

environment using these standard approaches. We conclude that, despite the ubiquitous use

of fractional differential equations, that these modelling frameworks must be used with care.

To build on our simulation-based results, we also develop a new analytical method, based

on the theory of Markov chains, for modelling the transport of an agent through a crowded

environment. Using our new method, we calculate the exact long-time diffusivity as well as the

crossover time, which is the time scale required for the transport process to effectively become

Fickian. Finally, we extend our new model to include interactions between the motile agent and

the obstacles such as adhesion and repulsion.
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Chapter 1

Introduction

1.1 Overview

It is well known in the literature [4–9] that the transport of cells through environments that

are densely crowded by obstacles is not linear Fickian diffusion because the obstacles act as

blockages that hinder the rate at which transport can take place [4, 7, 10]. Because biological

environments are densely crowded with cells and macromolecules, it is believed that crowding

may play an important role in the motion of cells and some macromolecules, such as proteins

[4, 6]. At present, the quantitative effect that crowding has on transport through biological envi-

ronments is poorly understood [4]. As a result, there is great interest in accurate mathematical

models of crowding and of transport through crowded environments within the mathematical

biology community, as these models may provide valuable insights into the physical behaviour

of motile agents in these systems [8]. Previous studies have sought to describe transport through

crowded environments using either lattice–based time random walk (RW) models [11–17] or

fractional order differential equation (FDE) models [8, 10, 18–20].

Early RW models of transport in crowded environments were motivated by the problem

of modelling the transport of charge in complex amorphous solids. Montroll and Weiss [21]

and Scher and Lax [22] instigated a investigation of this problem and developed a continuous–

time random walk (CTRW) model that laid the theoretical foundation for many future studies.

Their model also motivated Saxton [11, 12] to study stochastic simulations of transport through

crowded environments. More recently, the main results of Saxton’s studies have been confirmed

by Wedemeier [23–26] and by Vilaseca and Isvoran [13–17]. Wedemeier also demonstrated

1



2 CHAPTER 1. INTRODUCTION

that a similar effect is observed if the motile agent adheres to the obstacles [25]. In RW models,

crowding effects are modelled by randomly occupying lattice sites with obstacles prior to the

commencement of the simulation and then enforcing an exclusion principle [27] by aborting

potential motility events that would lead to the motile agent occupying the same site as an

obstacle as the simulation progresses [11–17]. In these simulations, it is generally assumed that

the mean squared displacement (MSD) of the motile agent evolves in time as a power law,

⟨
r2
⟩
= (2d)D̄ tα, (1.1)

where r represents the displacement, d is the dimension of the system, t is time and ⟨·⟩ repre-

sents an average over a large ensemble of observations. We note that several random systems

exhibit non-ergodicity and that, for these systems, the ensemble and time averages are not al-

ways equivalent [10]. The exponent α describes the type of transport process taking place, with

α = 1 being associated with Fickian diffusion and α < 1 being associated with subdiffusion†.

All cases in which α ̸= 1 are referred to as anomalous diffusion.

Other investigators such as Yuste and Lindenberg [18, 28–30], Metzler and Klafter [10] and

Henry and Langlands [20] have modelled transport through crowded environments using FDE

models. An FDE model is related to a CTRW whose the master equation utilises either a long–

tailed waiting time distribution or a long–tailed jump step distribution [10]. Assuming that the

waiting times are exponentially distributed leads to an FDE with the basic form

∂αu

∂tα
= D̄∇2u, (1.2)

where u(x, t) represents the concentration of agents at x, D̄ is a generalised diffusivity with

units [L2/Tα] and ∂α/∂tα represents a Caputo fractional derivative [31, 32] of order α. The

parameter α has the same meaning in Equation (1.2) as it does in Equation (1.1).

More recently, experimentalists have shown that the MSD of an agent undergoing transport

through a crowded environment does not evolve in time as a linear power law [9, 33–35]. Banks

and Fradin used fluorescence correlation spectroscopy to demonstrate experimentally that the

MSD of proteins moving through a solution of dextran (a polysaccharide made of glucose

†If the master equation contains a long–tailed jump–step distribution then this parameter assumes values in the
domain 1 < α ≤ 2 in the associated FDE model. The domain 1 < α < 2 is termed “superdiffusion” and α = 2
is termed “ballistic” transport. These unique cases do not occur in crowded environments and we do not consider
them in this thesis.
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molecules) does not evolve as a linear power law, even at very low obstacle concentrations

[34]. These results were confirmed and extended by Sanabria et al. [33]. More recently, Dix

and Verkman have demonstrated experimentally that the MSD of lipids and proteins undergoing

transport through a membrane does not follow a linear power law [9] but were unsure whether

this was the result of crowding effect, intracellular interactions or some combination of both

effects. Experimental developments have lead some biologists [4, 5] to propose that crowding

may play a significant role in protein and nucleic acid synthesis and that the persistent neglect

of crowding by biochemists desperately needs to be remedied.

Numerical data from RW simulations [11, 12] demonstrate that in the long time limit, as

t → ∞, the transport process becomes Fickian. This effect has not been demonstrated for FDE

models. The time that an experimentalist must wait until the transport process has transitioned

from anomalous to Fickian diffusion is called the crossover time [11, 12]. The determination of

the crossover time as well as the long–time diffusivity in the long–time limit are both of great

interest. This behaviour has motivated some experimentalists to attempt to model crowded

transport using a Fickian diffusion equation with a time dependent diffusivity [6].

1.2 Research questions

This thesis will examine and answer the following questions:

1. Can the transport of cells through crowded environments be accurately modelled

using fractional order differential equations?

In the literature it is common to assume, without justification, that all transport processes

that occur in crowded environments are anomalous subdiffusion and can be accurately

modelled using an FDE [7, 10, 18, 20, 28–30, 36–38]. Unfortunately, many studies do

not consider the underlying RW that correspond to these models. Additionally, it can be

difficult to compare FDE models to experimental data due to practical difficulties in the

collection of this data that limits the size of most appropriate datasets [39, 40]. One way

to access the accuracy of FDE models is by comparing the quantitative predictions of an

FDE model with density information collected from a related RW model. We endeavour

to do so in the first stage of this project.

2. What effect do different obstacles shapes and sizes have on the transport process
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taking place?

Electron microscopy photographs indicate that cells can vary greatly in both their size

and shape [41]. It is known that these details can affect the transport process taking place

[13–17] but it is not clear how to include this information in an FDE model [7, 10]. Nor

is it clear how to quantify the effect that the presence of multiple cell types has on the

parameter α that describes the type of process taking place. However, it is relatively

simple to include this level of detail in a CTRW model. By comparing a standard FDE

model to a related CTRW model which includes these details, the effect that including

multiple obstacles of different sizes and shapes has on the FDE and the parameter α can

be ascertained.

3. How can the diffusivity in the long time limit of the system be calculated?

Studies of the MSD of a single agent undergoing transport in a crowded environment

demonstrate that in the long time limit, as t → ∞, the transport tends to become Fickian

[11, 12]. However, the diffusivity in the long time limit is not the same as the diffusivity

of an analogous random walk on an empty lattice [11, 12]. There is great interest in

determining the value of this reduced diffusivity D̄ in the long time limit for different

obstacle combinations [42–44]. A new algorithm for exactly calculating this value is

developed and outlined in this thesis.

4. How long must we wait until we can reasonably assume that the transport has

become Fickian?

There is interest in determining the length of time an experimentalist must wait until the

system has transitioned from the anomalous regime to the Fickian regime. This quantity is

called the crossover time and was studied by Saxton who proposed a method to calculate

it [11, 12]. Unfortunately, the application of Saxton’s method requires stochastic data

which is computationally expensive and, subsequently, very time consuming to generate.

Saxton’s method also requires that an investigator make several subjective choices that

can affect reproducibility [11, 12].

An alternative method of estimating this time is to use the Mean Action Time (MAT)

proposed by McNabb and Wake [45, 46]. MAT is an objective “rule–of-thumb” mea-

surement of the time that one must wait until a diffusion process can be considered to be

effectively at its steady state distribution [45–51] that can be applied to any process that
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tends to its steady state exponentially quickly [47–50].

In this thesis, McNabb and Wake’s theory and methodology are extended in a way that

allows their application to this new problem. This leads us to develop an explicit closed

form expression for the MAT of an agent undergoing transport through a crowded envi-

ronment.

The average displacement that a motile agent after one MAT is also of interest, however,

a thorough examination of this length is beyond the scope of this thesis.

5. How can we extend this new model to include cellular interactions such as adhesion

and repulsion?

The motion of cells and molecules through in vivo biological environments is affected by

the presence of other cells and scaffolds that can act as obstacles [11, 52–54]. Interactions

between cells and obstacles can include both crowding effects [55, 56], as well as adhe-

sion/repulsion effects [57, 58]. A great deal of theoretical progress has been made in terms

of developing mathematical insight into how adhesion between motile cells impacts in

vitro experiments without any obstacles present [59–62]. However, mathematical models

describing the impacts of both crowding and adhesion/repulsion in vivo, with obstacles

present, are predominantly based on simulation studies, without any underlying analysis

[11, 13, 25, 55].

While it is anticipated that both crowding and adhesion act to impede the motion of

cells in vivo, it is not possible to quantify the relative roles of these two mechanisms

based on intuition alone. Although it is possible to perform simulations that include both

crowding and adhesion, simulation studies can be time consuming, and can fail to provide

more general insight. To address these limitations, a stochastic, lattice-based model is

considered that describes the motion of an agent (e.g. a cell or biological molecule)

through an environment that is randomly populated by immobile obstacles at density

ϕ ∈ [0, 1]. The motion of the agent is affected by crowding and adhesion/repulsion

between the agent and the obstacles. The strength of adhesion/repulsion is given by

ζ ∈ [−1, 1]. Setting ζ = 0 corresponds to pure crowding with no adhesion/repulsion;

ζ > 0 corresponds to combined adhesion and crowding; and, ζ < 0 corresponds to

combined repulsion and crowding. An exact method that can be used to quantify the

relative roles of crowding and adhesion/repulsion by producing exact calculations of the
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long time Fickian diffusivity of the motile agent is presented in this thesis. This method

is used to quantify the roles of both crowding and adhesion/repulsion in terms of the long

time Fickian diffusivity D(ϕ, ζ).

1.3 Aims and outcomes of this thesis

The principal aim of this thesis is to use mathematical modelling to identify and quantify

transport processes that occur in crowded biological environments.

This thesis consists of the following aims:

• Compare an FDE with population density data from a CTRW to determine the role that

crowding plays in determining the type of transport process taking place.

• Extend this model to include environments densely crowded with obstacles of different

shapes, sizes and densities to determine how different distributions of obstacles affect the

transport process.

• Develop a new modelling methodology that describes the early time behaviour of an agent

undergoing transport through a crowded environment.

• Develop a new modelling methodology that allows the calculation of the long time dif-

fusivity of an agent undergoing transport through a crowded environment as well as the

calculation of the crossover time associated with a crowded environment.

This thesis is presented by publication and consists of five peer reviewed publications. Four

of these publications have been published in Q1 journals and one has been published in a Q2

journal†. The PhD candidate has contributed significantly to all five publications and is the

primary author of all five publications. The work presented in the thesis fulfils the Queensland

University of Technology requirements for the award of thesis by publication.

This thesis comprises the following publications:

• A.J. Ellery, M.J. Simpson, S.W. McCue and R.E. Baker (2014). Characterizing transport

through a crowded environment with different obstacle sizes. The Journal of Chemical
†Journal rankings are taken from http://www.scimagojr.com, which calculates rankings based on

information contained in the Scopus database.

http://www.scimagojr.com
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Physics. 140, 054108. Rank Q1. (Chapter 2.)

http://dx.doi.org/10.1063/1.4864000

• A.J. Ellery, R.E. Baker, S.W. McCue and M.J. Simpson (2016). Modeling transport

through an environment crowded by a mixture of obstacles of different shapes and sizes.

Physica A: Statistical Mechanics and its Applications. Rank Q2. (Chapter 4.)

http://dx.doi.org/10.1016/j.physa.2015.12.123

• A.J. Ellery, R.E. Baker and M.J. Simpson (2015). Calculating the Fickian diffusivity

for a lattice-based random walk with agents and obstacles of different shapes and sizes.

Physical Biology. 12: 066010. Rank Q1. (Chapter 5.)

http://dx.doi.org/10.1088/1478-3975/12/6/066010

• A.J. Ellery, R.E. Baker and M.J. Simpson (2016). Distinguishing between short-time

non-Fickian diffusion, and long-time Fickian diffusion for a random walk on a crowded

lattice. The Journal of Chemical Physics. 144, 171104. Rank Q1. (Chapter 7.)

http://dx.doi.org/10.1063/1.4948782

• A.J. Ellery, R.E. Baker and M.J. Simpson (2016). An analytical method for disentangling

the roles of adhesion and crowding for random walk models on a crowded lattice. Physi-

cal Biology. 13: 05LT02. Rank Q1. (Chapter 10).

http://dx.doi.org/10.1088/1478-3975/13/5/05LT02

1.4 Structure of this thesis

Each chapter of this thesis corresponds to a publication. Because each paper is an independent

publication there is some overlap in ideas between the chapters. The contribution that each

member of the research team made to each publication is indicated in Section 1.5. All team

members have read the contents of Section 1.5 and have consented to the inclusion of our

publications in this document.

In the literature [7, 10, 18, 20, 28–30, 36–38], CTRW models and FDE models are often as-

sumed, without justification, to be equivalent and interchangeable. In Chapter 2 this assumption

is explored by comparing both single agent and population data from a CTRW, implemented

using the Gillespie algorithm [63], with the analytical solution of a related FDE. Specifically,

http://dx.doi.org/10.1063/1.4864000
http://dx.doi.org/10.1016/j.physa.2015.12.123
http://dx.doi.org/10.1088/1478-3975/12/6/066010
http://dx.doi.org/10.1063/1.4948782
http://dx.doi.org/10.1088/1478-3975/13/5/05LT02
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the MSD of a motile agent undergoing a nearest neighbour random walk on a lattice which

contains obstacles is used to provide an estimate of the parameter α. Then, the transport of a

population of motile agents through a related crowded environment is modelled using the same

CTRW model and used to calculate population density data. Matching the solution of a related

FDE to this data provides an alternative estimate of α. The relationship between these two

independent estimates of α is examined and used to determine the properties of the obstacle

field for both a single agent and a population of agents; and for both types of models; and in

both cases, α decreases as the obstacle density increases and that the rate of decrease is greater

for smaller obstacles than for larger obstacles.

In Chapter 4 a similar analysis is performed in which there are several different types of

obstacles present on the lattice, of various shapes and sizes. Three different combinations

of obstacle types, which are referred to as distributions, are considered: (i) the first contains

relatively more smaller obstacles than larger ones; (ii) the second contains relatively more larger

obstacles than smaller ones and; (iii) the third contains the same number of occupied lattice sites

for each type of obstacle considered. By comparing two independent estimates of α it is shown

that the distribution of obstacle shapes and sizes also plays an important role in determining the

type of transport process taking place and investigate these effects.

The algorithm proposed by Mercier and Slater [42–44] for calculating the long time diffu-

sivity in a crowded environment is modified and extended in Chapter 5 so that it can be applied

to this new system. We show that in the long time limit as t → ∞, the transport process

becomes Fickian and that it is possible to use the Nerst–Einstein equation, a special case of the

fluctuation–dissipation theorem [64], to exactly calculate the long time diffusivity, D̄ for our

new system. We use this new method to confirm and extend our results from Chapter 2–4.

In Chapter 7 a Markov chain is developed and used to model the early time behaviour of

our system. A new method, based on the MAT proposed by McNabb and Wake [45, 46] and

expanded by others [47–51], is used to calculate the crossover time [11, 12], the amount of

time an experimentalist must wait until they can consider the transport process to be effectively

Fickian diffusion. Unlike the crossover time proposed by Saxton [11, 12], our new definition of

the crossover time does not require stochastic simulations to be evaluated and is exact, objective

and always reproducible.

The Mercier–Slater algorithm is then extended to examine the role of cellular interactions
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such as adhesion and repulsion in Chapter 10. Our model indicates that there is a threshold den-

sity of obstacles (ϕ ≈ 0.30) below which the affect of adhesion and repulsion has a negligible

affect on the transport process in the long time limit as t → ∞.

Finally, in Chapter 12, the main conclusions of this study are outlined and some possible

directions for future work are explored and discussed.

1.5 Statements of joint authorship

In this section, we outline the joint contributions of the PhD candidate and the coauthors to each

paper. All coauthors have consented to the presentation of this material in this thesis.

1.5.1 Chapter 2: Characterising transport through a crowded environment with differ-

ent obstacle sizes

The associated reference for this chapter is:

Ellery, Adam J and Simpson, Matthew J and McCue, Scott W and Baker, Ruth E, Character-

izing transport through a crowded environment with different obstacle sizes. J Chem Phys 140,

054108 (2014)

Abstract Transport through crowded environments is often classified as anomalous, rather

than normal (Fickian) diffusion. Several previous studies have sought to describe such transport

processes using either a continuous time random walk model or fractional order differential

equation model. For both these models the transport mechanism is characterised by a parameter

α, where α = 1 is associated with normal diffusion and α < 1 is associated with anomalous

subdiffusion. Here, we simulate a single agent migrating through a crowded environment that

is populated by impenetrable immobile obstacles and estimate α from averaged mean squared

displacement data. We also simulate the transport of a population of such agents through a

similar crowded environment and match population density data to the solution of a related

fractional order differential equation to obtain an alternative estimate of α. Our results allow

us to examine the relationship between our estimate of α and the properties of the obstacle

field for both a single agent and a population of agents; and we show that in both cases, α

decreases as the obstacle density increases, and that the rate of decrease is greater for smaller

obstacles than for larger obstacles. Our work suggests that it may be inappropriate to model



10 CHAPTER 1. INTRODUCTION

the transport of both a single agent and a population of agents through a crowded environment

using standard approaches. In particular, despite the ubiquitous use of fractional differential

equations to describe the transport of populations of agents through crowded environments, this

modelling framework must be used with care.

Statement of joint authorship

The work is divided as follows:

• Ellery, A. J. (Candidate) developed and programmed the numerical algorithms used to

simulate and model the process considered, performed the data analysis, derived algebraic

solutions to the fractional differential equation model, composed all figures and wrote and

critically reviewed the manuscript during the peer-review process.

• Simpson, M. J. initiated the concept for the manuscript, oversaw and supervised the

research, oversaw the drafting and redrafting of the manuscript prior to publication, wrote

the cover and revision letters, critically reviewed and revised the manuscript during the

peer-review process and acted as corresponding author.

• McCue, S. W. oversaw and supervised the research, oversaw the drafting and redrafting of

the manuscript prior to publication, critically reviewed and revised the manuscript during

the peer-review process.

• Baker, R. E. oversaw the drafting and redrafting of the manuscript prior to publication,

critically reviewed and revised the manuscript during the peer-review process.

1.5.2 Chapter 4: Modelling transport through an environment crowded by a mixture of

obstacles of different shapes and sizes

The associated reference for this chapter is:

Ellery, Adam J and Baker, Ruth E and McCue, Scott W and Simpson, Matthew J, Modeling

transport through an environment crowded by a mixture of obstacles of different shapes and

sizes. Physica A: Statistical Mechanics and its Applications 449 74 (2016).

Abstract Many biological environments are crowded by macromolecules, organelles and

cells which can impede the transport of other cells and molecules. Previous studies have

sought to describe these effects using either random walk models or fractional order differential
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equations. Here we examine the transport of both a single agent and a population of agents

through an environment containing obstacles of varying size and shape, whose relative densities

are drawn from a specified distribution. Our simulation results for a single agent indicate

that smaller obstacles are more effective at retarding transport than larger obstacles, and these

findings are consistent with our simulations of the collective motion of populations of agents.

In an attempt to explore whether these kinds of stochastic random walk simulations can be

described using a fractional order differential equation framework, we calibrate the solution of

such a differential equation to our averaged agent density information. Our approach suggests

that these kinds of commonly used differential equation models ought to be used with care

since we are unable to match the solution of a fractional order differential equation to provide a

meaningful interpretation of our averaged discrete results.

Statement of joint authorship

The work is divided as follows:

• Ellery, A. J. (Candidate) developed and programmed the numerical algorithms used to

simulate and model the process considered, performed the data analysis, derived algebraic

solutions to the fractional differential equation model, composed all figures and wrote and

critically reviewed the manuscript during the peer-review process.

• Baker, R. E. oversaw the drafting and redrafting of the manuscript prior to publication,

critically reviewed and revised the manuscript during the peer-review process.

• McCue, S. W. oversaw and supervised the research, oversaw the drafting and redrafting of

the manuscript prior to publication, critically reviewed and revised the manuscript during

the peer-review process.

• Simpson, M. J. initiated the concept for the manuscript, oversaw and supervised the

research, oversaw the drafting and redrafting of the manuscript prior to publication, wrote

the cover and revision letters, critically reviewed and revised the manuscript during the

peer-review process and acted as corresponding author.
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1.5.3 Chapter 5: Calculating the Fickian diffusivity for a lattice based random walk with

agents and obstacles of different shapes and sizes

The associated reference for this chapter is:

Ellery, Adam J and Baker, Ruth E and Simpson, Matthew J, Calculating the Fickian diffusivity

for a lattice-based random walk with agents and obstacles of different shapes and sizes. Physical

Biology 12 066010 (2015).

Abstract Random walk models are often used to interpret experimental observations of

the motion of biological cells and molecules. A key aim in applying a random walk model

to mimic an in vitro experiment is to estimate the Fickian diffusivity (or Fickian diffusion

coefficient), D. However, many in vivo experiments are complicated by the fact that the motion

of cells and molecules is hindered by the presence of obstacles. Crowded transport processes

have been modelled using repeated stochastic simulations in which a motile agent undergoes

a random walk on a lattice that is populated by immobile obstacles. Early studies considered

the most straightforward case in which the motile agent and the obstacles are the same size.

More recent studies considered stochastic random walk simulations describing the motion of

an agent through an environment populated by obstacles of different shapes and sizes. Here,

we build on previous simulation studies by analysing a general class of latticebased random

walk models with agents and obstacles of various shapes and sizes. Our analysis provides exact

calculations of the Fickian diffusivity, allowing us to draw conclusions about the role of the size,

shape and density of the obstacles, as well as examining the role of the size and shape of the

motile agent. Since our analysis is exact, we calculate D directly without the need for random

walk simulations. In summary, we and that the shape, size and density of obstacles has a major

influence on the exact Fickian diffusivity. Furthermore, our results indicate that the difference

in diffusivity for symmetric and asymmetric obstacles is significant.

Statement of joint authorship

The work is divided as follows:

• Ellery, A. J. (Candidate) jointly developed the concept, developed and programmed

the numerical algorithms used to model the stochastic process considered, performed the

data analysis, simplified the solution methodology, composed all figures and wrote and

critically reviewed the manuscript both prior to and during the peer-review process.
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• Baker, R. E. oversaw the drafting and redrafting of the manuscript prior to publication,

critically reviewed and revised the manuscript during the peer-review process.

• Simpson, M. J. jointly developed the concept, prepared the cover and response letters,

critically reviewed and revised the manuscript both prior to and during the peer-review

process.

1.5.4 Chapter 7: Distinguishing between short-time non-Fickian diffusion, and long-

time Fickian diffusion for a random walk on a crowded lattice

The associated reference for this chapter is:

Ellery, Adam J and Baker, Ruth E and Simpson, Matthew J, Distinguishing between short-time

non-Fickian diffusion, and long-time Fickian diffusion for a random walk on a crowded lattice.

The Journal of Chemical Physics 144 171104 (2016).

Abstract The motion of cells and molecules through biological environments is often hin-

dered by the presence of other cells and molecules. A common approach to modelling this

kind of hindered transport is to examine the mean squared displacement (MSD) of a motile

tracer particle in a lattice-based stochastic random walk in which some lattice sites are occupied

by obstacles. Unfortunately, stochastic models can be computationally expensive to analyse

because we must average over a large ensemble of identically-prepared realisations to obtain

meaningful results. To overcome this limitation we describe an exact method for analysing a

lattice-based model of the motion of an agent moving through a crowded environment. Using

our approach we calculate the exact MSD of the motile agent. Our analysis confirms the

existence of a transition period where, at first, the MSD does not follow a power law with time.

However, after a sufficiently long period of time, the MSD increases in proportion to time. This

latter phase corresponds to Fickian diffusion with a reduced diffusivity owing to the presence

of the obstacles. Our main result is to provide a mathematically motivated, reproducible and

objective estimate of the amount of time required for the transport to become Fickian. Our new

method to calculate this crossover time does not rely on stochastic simulations.
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Chapter 2

Characterising transport through a crowded

environment with different obstacle sizes

A paper published in Journal of Chemical Physics.

Ellery, Adam J and Simpson, Matthew J and McCue, Scott W and Baker, Ruth E, Character-

izing transport through a crowded environment with different obstacle sizes. The Journal of

Chemical Physics 140, 054108 (2014)

2.1 Abstract

Transport through crowded environments is often classified as anomalous, rather than normal

(Fickian) diffusion. Several previous studies have sought to describe such transport processes

using either a continuous time random walk model or fractional order differential equation

model. For both these models the transport mechanism is characterised by a parameter α, where

α = 1 is associated with normal diffusion and α < 1 is associated with anomalous subdiffusion.

Here, we simulate a single agent migrating through a crowded environment that is populated

by impenetrable immobile obstacles and estimate α from averaged mean squared displacement

data. We also simulate the transport of a population of such agents through a similar crowded

environment and match population density data to the solution of a related fractional order

differential equation to obtain an alternative estimate of α. Our results allow us to examine the

relationship between our estimate of α and the properties of the obstacle field for both a single

agent and a population of agents; and we show that in both cases, α decreases as the obstacle

density increases, and that the rate of decrease is greater for smaller obstacles than for larger

17
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obstacles. Our work suggests that it may be inappropriate to model the transport of both a single

agent and a population of agents through a crowded environment using standard approaches. In

particular, despite the ubiquitous use of fractional differential equations to describe the transport

of populations of agents through crowded environments, this modeling framework must be used

with care.

2.2 Introduction

Many biological environments, both intracellular and extracellular, are densely crowded by

large molecules and cells [4, 6, 9]. Experiments imply that transport through such crowded

environments can be modelled as anomalous diffusion, not normal (Fickian) diffusion [4–6, 34,

35, 65]. Since crowding is a common feature of biological systems, it is important to understand

how to characterise and quantify transport processes within these systems.

Several previous investigations have sought to quantitatively describe transport through

crowded environments by studying the motion of a single agent through an environment that

is populated by impenetrable immobile obstacles [11–14, 16, 17]. Theory indicates that for

a diffusion process in two dimensions, the mean squared displacement (MSD) of a agent,

averaged over a sufficiently large ensemble, obeys the power law

⟨
r2
⟩
= 4D tα, (2.1)

where r is the displacement, t is time, D is a generalised diffusivity and ⟨·⟩ is an ensemble

average [7, 10, 37, 66, 67]. The exponent α indicates the type of transport, with α = 1 for

normal diffusion and α < 1 for anomalous subdiffusion [7, 10, 37, 66]. As such, the averaged

MSD of a single agent is often a key quantity of interest in experimental studies [33–35] since

from it we can estimate α.

As an alternative to studying the motion of a single agent in a crowded environment, other

experiments have studied the transport of a population of agents through crowded environments

and described the density of agents using continuum models. Theory indicates that if the

average MSD of an individual motile agent obeys the power law described by Equation (2.1),

then the transport of a population of such agents obeys a fractional order differential equation
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(FDE) [7, 10, 32, 37]

∂αu

∂tα
= D

∂2u

∂x2
, 0 < x < L, t > 0, (2.2)

where u(x, t) is the density of agents, ∂α/∂tα is a Caputo fractional derivative of order α

taken with respect to time [31, 32] and L is the length of the spatial domain. The solution

of Equation (2.2) requires the specification of appropriate initial conditions and boundary con-

ditions relevant to the particular situation of interest. Equations (2.1) and (2.2) are two standard

mathematical models that are used to represent transport through crowded environments. Both

of these mathematical models are ubiquitous throughout the literature [7, 10, 32, 37].

In this chapter, we extend earlier work by investigating how obstacle size, shape and density

influences the motion of both a single agent and a population of agents. In Section 2.3.1 we

simulate the motion of a single agent through a crowded environment and estimate α from

averaged MSD data. As illustrated in the work of Saxton [11, 12], the averaged MSD does not

obey Equation (2.1) and certain challenges arise when we interpret such data using this power

law. We also examine the relationship between our estimates of α and the size, shape and

density of obstacles by repeating our simulations and systematically varying these properties of

the obstacles. In Section 2.3.2 we study the transport of a population of agents and estimate

α by matching the solution of Equation (2.2) with the observed agent density profiles obtained

from our stochastic model. Again, we examine how the properties of the obstacle field influence

our estimates of α by repeating our simulations and systematically varying the size, shape and

density of obstacles. We also discuss the challenges which arise when comparing the solution of

Equation (2.2) with the population density data. Finally, we summarise and discuss our results

in Section 2.5, before concluding this work with some comments about how the present study

could be extended.

2.3 Stochastic simulations

We consider a square lattice with lattice spacing ∆, of dimension M ×N , where we index sites

(i, j), with 0 ≤ i ≤ M and 0 ≤ j ≤ N , so that each site has location (x, y) = (i∆, j∆). The

dimensions of the lattice are 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly, where Lx = M∆ and Ly = N∆. At

the beginning of each simulation we randomly populate the lattice with impenetrable immobile
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obstacles. We denote the probability that any individual site is occupied by an obstacle as

ϕ ∈ [0, 0.5], where we have restricted ϕ to be less than the percolation threshold for a square

lattice [68].

In this study we consider four types of impenetrable immobile obstacles: (i) obstacles which

occupy a single lattice site; (ii) obstacles which occupy two adjacent lattice sites; (iii) obstacles

which occupy four lattice sites in a two by two arrangement, and (iv) obstacles which occupy

nine lattice sites in a three by three arrangement. We refer to these types of obstacles as 1× 1,

1 × 2, 2 × 2 and 3 × 3 obstacles, respectively. We note that 1 × 1, 2 × 2 and 3 × 3 agents are

symmetric with respect to the lattice whereas 1×2 obstacles are asymmetric. In all cases where

we consider 1× 2 obstacles, we always ensured that the lattice was populated with, on average,

half the 1× 2 obstacles aligned along the x axis and half aligned along the y axis.

Our stochastic transport model is an exclusion process [27]. Individual agents are allowed to

undergo a usual nearest neighbour random walk [69] which incorporates crowding effects. The

crowding effects are modelled by aborting potential motility events that would lead to an agent

stepping to a site that is occupied by another agent or an obstacle. This means that an agent at

location (x, y) will attempt to step to either (x±∆, y) or (x, y±∆), with the target site chosen

with equal probability of 1/4. If the target site is occupied by an agent or an obstacle then that

potential motility event is aborted. We use a Gillespie algorithm to advance the simulation in

time [63] and we terminate the algorithm once it reaches some predetermined inspection time

t = T . Since we wish to generate averaged data from our stochastic algorithm, we always

consider a large number of identically-prepared realisations of each kind of simulation. To

minimise computational effort, we follow the previous work of Vilaseca and coworkers [13]

and only regenerate the obstacle field after every R identically-prepared realisations.

2.3.1 Motion of a single agent

We first consider the transport of a single agent through a crowded environment. After popu-

lating the lattice with obstacles, a single agent is placed on a randomly chosen vacant site and

allowed to undergo a random walk, as described previously, with periodic boundary conditions

applied along all boundaries of the domain.

To minimise stochastic fluctuations in the MSD data, we average the data over an ensemble

of K identically-prepared realisations. Since we initialise each realisation by placing the agent
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Figure 2.1: The averaged MSD (blue-solid) of a single agent migrating through a lattice
populated by impenetrable immobile obstacles. Results in (a), (b), (c) and (d) were generated
on a lattice occupied by 1× 1, 1× 2, 2× 2 and 3× 3 sized obstacles, respectively. Results are
shown for ϕ = 0, 0.1, 0.2, 0.3, 0.4 and 0.5, with the arrow indicating the direction of increasing
ϕ. All results were generated on a 256 × 256 lattice and were averaged over an ensemble of
K = 50, 000 realisations. The obstacle field was regenerated every R = 500 realisations. The
region enclosed by the dashed lines is shown in Figure 2.2.

at a randomly-located lattice site, the obstacle field is re-initialised every R = 500 realisations.

For convenience, the MSD is recorded at geometrically-spaced temporal nodes which are re-

lated by tn+1 = tn + h, where tn is the nth node, t0 = 0, h = T (1 − g)/(1 − gP−1), P is the

total number of nodes and g is a geometric growth factor, chosen to be g = 1.1. To analyse the

averaged MSD data, we rewrite Equation (2.1) as

log10

[
⟨r2⟩
t

]
= log10[4D] + (α− 1) log10[t]. (2.3)

Equation (2.3) implies that if our averaged MSD data follows the power law given by Equa-

tion (2.1), then plotting the data as log10[⟨r2⟩/t] as a function of log10[t], the data will fall on a

straight line with slope α − 1. Our data is shown in Figure 2.1 for each obstacle type and for a

selection of obstacle densities, 0 ≤ ϕ ≤ 0.5. This figure shows that, with the exception of the

special (no crowding) case ϕ = 0, the data does not lie on a straight line, which means that the

averaged MSD does not obey the power law described in Equation (2.1). This observation is

consistent with previous studies [11–14, 16, 17].

To provide an estimate of α we follow a similar strategy that has been implemented by
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Figure 2.2: The averaged MSD (blue-solid) of a single agent migrating through a lattice
populated by impenetrable immobile obstacles. All results are the same as those in Figure
2.1 except that here we only show the region bounded by 102 < t < 103. A straight line
(red-dotted) intersecting the ordinate of the averaged MSD data at t = 102 and t = 103 is
superimposed. Equation (2.3) indicates that the slope of these lines should be equal to α − 1.
Corresponding values of α for each case are given in Table 2.1.

others [11–14, 16, 17]. We focus on small time data during the interval 102 ≤ t ≤ 103, which

we chose since the averaged MSD data forms an approximately straight line during this interval

for each dataset in Figure 2.1. An estimate of α can be obtained by calculating the slope of the

straight line that intersects the ordinate of the averaged MSD data at t = 102 and t = 103, as

highlighted in Figure 2.2. This procedure allows us to estimate α using Equation (2.3). If we

let qi denote the ordinate of the averaged MSD curve at time 102 and qj denote the ordinate of

the averaged MSD data curve at time 103, our estimate of α is given by

α ≈ qj − qi
103 − 102

+ 1. (2.4)

To quantify the variability in this estimate of α, we perform the same calculation after shifting

the time interval one temporal node to the left, and then one node to the right. This provides us

with two other estimates of α which are given by

αL ≈ qj−1 − qi−1

103 − 102
+ 1, αR ≈ qj+1 − qi+1

103 − 102
+ 1, (2.5)

where αL is our estimate of α obtained by shifting the time interval one temporal node to the
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Figure 2.3: The dependence of α with obstacle concentration ϕ for each different obstacle
type. Results correspond to 1 × 1 (dark blue), 1 × 2 (green), 2 × 2 (magenta) and 3 × 3
obstacles (light blue), respectively. The arrow indicates the direction of decreasing obstacle size.
All results were generated on a 256 × 256 lattice and the associated MSD data was averaged
over K = 50, 000 identically-prepared realisations. The obstacle field was regenerated every
R = 500 realisations. The estimates of α were calculated using Equation (2.4) and the error
bars indicate the interval, [α − EL, α + ER], which was calculated using Equation (2.6).

left and αR is our estimate of α obtained by shifting the time interval one temporal node to the

right. We estimate the uncertainty in our approximation of α using

EL = αL − α, ER = α− αR, (2.6)

which allows us to identify an interval of [α − EL, α + ER], as our estimate of the uncertainty

in our estimate of α.

We show our estimates of α and the associated uncertainty interval for all obstacle types

with 0 ≤ ϕ ≤ 0.5 in Table 2.1. The same data is presented graphically in Figure 2.3 with error

bars indicating the magnitude of EL and ER below and above the data points respectively. For

our data, EL ≈ ER so the error bars in Figure 2.3 are approximately symmetric. Our results

confirm that when ϕ = 0 the transport appears to be normal diffusion since we have α = 1.

For all the obstacle types considered, the transport process appears to become increasingly

anomalous as ϕ increases since we observe α < 1 in these cases and that our estimate of α

decreases as the obstacle density increases. Furthermore, we note that the rate at which α

decreases with ϕ is different for each obstacle type considered here. For a given value of ϕ, the

greatest decrease in α is observed for 1× 1 obstacles and the smallest decrease in α is observed
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for 3 × 3 obstacles. One way of interpreting this trend is that populating the lattice with larger

obstacles leaves larger spaces through which the agents can migrate than occurs for smaller

obstacles at the same density. This result confirms that both the obstacle density and the obstacle

size can have an important impact on the transport process. We note that the relationship we

observe between α and ϕ is qualitatively similar to the results previously reported by Saxton

[11, 12], as well as more recent work by Isvoran and coworkers [17]. In particular, Vilaseca

and coworkers observed qualitatively similar trends for transport in three-dimensional crowded

environments[13].

2.3.2 Population of agents

In practice, it is more common for experimentalists to report observations of the collective

motion of a population of agents, such as molecules [70–72] or cells [73–77], rather than the

motion of a single agent. This consideration motivates us to consider a second set of stochastic

simulations where we consider the motion of a population of agents in a crowded environment.

To initiate our stochastic simulations we first randomly populate a lattice with impenetrable

immobile obstacles, in exactly the same way that we did in Section 2.3.1. The simulations are

initialised by populating all remaining vacant sites in the vertical strip where x = 0 with motile

agents. These agents undergo the same random walk procedure as described in Section 2.3.1,

except that in this case we have multiple agents on the lattice and potential motility events

are aborted if an agent attempts to step to a lattice site that is occupied by either another

agent or an obstacle. Once the Gillespie algorithm reaches a specified time, t = T , the

algorithm is terminated. To generate averaged density data we perform many identically-

prepared realisations of the same stochastic process. Since regenerating the obstacle field is

computationally expensive, we again follow the work of Vilaseca and coworkers by regenerating

the obstacle field every R = 100 realisations.

Simulations are performed by enforcing periodic boundary conditions along the horizontal

boundaries where y = 0 and y = Ly. As the simulation proceeds, agents that were originally

located along the vertical strip with x = 0 move from their original location and begin to

migrate across the lattice. As soon as one of these agents steps off the vertical strip with x = 0

we replace that agent with a new agent. This ensures that the density of agents at x = 0 remains

constant throughout the simulations and that new agents are constantly introduced onto the
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lattice at x = 0. If, during the simulation, any agent reaches the vertical strip where x = Lx, we

immediately remove those agents from the simulation which ensures that the density of agents

along the boundary where x = Lx remains zero for all time during the simulation.

Once the simulation reaches time T , we count the number of agents located within each

vertical strip along the lattice and normalise this count by the number of agents located in the

vertical strip with x = 0. We average this agent density data over a large ensemble of K

identically prepared realisations and calculate the averaged agent density profile at time T in

the following way: let nk(i, j) denote the occupancy of site (i, j) during the kth realisation such

that nk(i, j) = 0 corresponds to a vacant site and nk(i, j) = 1 corresponds to an occupied

site. Then, the average occupancy of sites in the ith vertical strip, estimated after performing K

identically-prepared realisations, is

ũ(i∆, T ) =
1

K

K∑
k=1

1

n̄k

N∑
j=0

nk(i, j), (2.7)

where n̄k =
∑N

j=0 nk(0, j) denotes the number of agents within the vertical strip with x = 0

during the kth identically-prepared realisation. We note that Equation (2.7) is a double average

such that our density profile is constructed by averaging first over the occupancy of each site

in each vertical strip in the lattice, and second over an ensemble of K identically-prepared

simulations [78].

An example of these simulations is shown in Figure 2.4 for each of the different obstacles

considered in this study. In Figure 2.4 (a) we show a snapshot from a single realisation of

the stochastic model and in Figure 2.4 (b) we show the averaged agent population density data

obtained using an ensemble of K = 50, 000 realisations for ϕ = 0. Other results in Figure 2.4

(c)–(d), (e)–(f), (g)–(h) and (i)–(j) show a single realisation of the stochastic model together

with the corresponding averaged agent density data for lattices populated with 1 × 1, 1 × 2,

2× 2 and 3× 3 obstacles, respectively. For all results in Figure 2.4 (c)–(d), (e)–(f), (g)–(h) and

(i)–(j), the lattice is populated such that ϕ = 0.5.

The results in Figure 2.4 illustrate how the obstacle size and shape affects the motion of a

population of agents moving through the crowded environment. In Figure 2.4 (a), for ϕ = 0,

we observe that individual agents amongst the population almost reach the boundary at x = Lx

during the simulation. In contrast, the profiles in Figure 2.4 (c), (e), (g) and (i), in which
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ϕ = 0.5, show that agents in a crowded environment are unable to move as far in the positive

x direction owing to crowding effects. If we compare the snapshots in Figure 2.4 (c), (e), (g)

and (i), we observe that the distance the agents move in the positive x direction varies with the

size and shape of the obstacles even though the density of obstacles in Figure 2.4 (c), (e), (g)

and (i) is the same. These results imply that 1 × 1 agents are more effective at retarding the

collective motion of the agents than 3× 3 obstacles at the same density. These trends observed

in the individual snapshots from the stochastic model are consistent with the averaged density

data in Figure 2.4 (b), (d), (f), (h) and (j).

To explore how the averaged density profiles from the stochastic simulations changes with

time, we present ũ(x, T ) in Figure 2.6 for the different obstacle types at times t = 100, 550, 1000

for ϕ = 0.50. In all cases the profiles in Figure 2.6 show that the distance the density profile

propagates in the positive x direction increases with time; however, we observe very different

behaviour depending on the shape and size of the obstacles. In particular, we observe that the

smaller 1× 1 obstacles have a greater impact on the propagation of the average density profile

than the larger 3 × 3 obstacles at the same density. This trend is consistent with the averaged

MSD data presented in Section 2.3.1 where we observed that the smaller 1× 1 obstacles led to

a slower increase in the averaged MSD data with time. We note that all results in Figure 2.6

are for ϕ = 0.5 only. An equivalent set of density profiles for ϕ = 0 and ϕ = 0.25 illustrate

the same trends and are presented in Chapter 3. We will make more specific comments on this

agent density data in Section 2.4.

2.4 Fractional order differential equation model

We now attempt to model the transport process of Section 2.3.2 using Equation (2.2). Since the

averaged MSD of a single agent migrating through a crowded lattice does not follow the power

law described by Equation (2.1), the FDE given by Equation (2.2) may not be an appropriate

representation of this transport process. Despite this possible weakness, we are interested in

determining how well Eq. (2.2) describes this transport process, since modelling transport

through crowded environments using a FDE framework is a standard approach that is ubiquitous

throughout the literature[7, 10, 37, 66, 67]. To achieve this goal we will determine estimates

of α and D such that the solution of the FDE matches our observed data. Furthermore we are

interested in examining how these estimates of α and D vary with obstacle size, shape, density



2.4. FRACTIONAL ORDER DIFFERENTIAL EQUATION MODEL 29

and simulation time, T .

In our discrete simulations, described in Section 2.3.2, we ensured that lattice sites along

the vertical strip with x = 0 were always occupied by agents whereas lattice sites along

the vertical strip with x = Lx were never occupied by agents. All simulations described in

Section 2.3.2 were initialised without any agents on the lattice. These boundary conditions and

initial conditions correspond to

u(0, t) = 1, u(Lx, t) = 0, u(x, 0) = 0, (2.8)

where we have normalised the density at x = 0 to be unity. Equation (2.2), with the boundary

conditions and initial condition described by Equation (2.8), can be solved using separation of

variables [32, 79] to give

u(x, t) =
Lx − x

Lx

−
∞∑
n=1

(
2

nπ

)
sin

(
nπx

Lx

)
Eα

[
−D

(
nπ

Lx

)2

tα

]
, (2.9)

where Eα[z] is the Mittag-Leffler function [32] with parameter α and argument z

Eα[z] =
∞∑
k=0

zk

Γ(αk + 1)
, (2.10)

and Γ(z) is the gamma function.

The parameters α and D in Equation (2.9) can be estimated by matching Equation (2.9)

to our averaged agent density data, calculated in Section 2.3.2, using a nonlinear least-squares

parameter estimation algorithm. For this study we use the Levenberg-Marquardt algorithm

[80, 81]. To proceed, we first define a measure by which the solution of Equation (2.2) can be

compared to our averaged density data from the stochastic model, which is given by

ϵi = u(i∆, T )− ũ(i∆, T ), (2.11)

where u(i∆, T ) is the solution of Equation (2.9) and ũ(i∆, T ) is the averaged agent density data

from the discrete simulations. The Levenberg-Marquardt algorithm seeks to minimize the sum

of the squares of the residuals, S(α,D) =
∑M

i=0 ϵ
2
i , where the sum is taken over each vertical
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Table 2.2: The anomalous diffusion parameter, α̂, and the diffusion coefficient, D̂, for averaged
agent population data. Parameters were approximated by matching stochastic data generated
using the algorithm described in Section 2.3.2 to Equation (2.9) using the Levenberg-Marquardt
algorithm

1× 1 Obstacles 1× 2 Obstacles 2× 2 Obstacles 3× 3 Obstacles
Time D̂ α̂ D̂ α̂ D̂ α̂ D̂ α̂

100 0.17 1.00 0.17 1.00 0.17 1.00 0.17 1.00
ϕ = 0.00 550 0.21 1.00 0.21 1.00 0.21 1.00 0.21 1.00

1000 0.22 1.00 0.22 1.00 0.22 1.00 0.22 1.00
100 0.25 0.745 0.25 0.77 0.25 0.81 0.12 1.00

ϕ = 0.25 550 0.09 1.00 0.1 1.00 0.125 1.00 0.145 1.00
1000 0.09 1.00 0.105 1.00 0.13 1.00 0.150 1.00
100 0.20 0.50 0.245 0.535 0.25 0.62 0.245 0.70

ϕ = 0.50 550 0.115 0.64 0.25 0.6050 0.245 0.71 0.245 0.785
1000 0.12 0.625 0.25 0.61 0.245 0.725 0.06 1.00

strip of the lattice. The Levenberg-Marquardt algorithm takes an initial guess of the parameters

(α0, D0), and iteratively improves the parameter estimate by moving along the surface S(α,D)

to find the least-squares estimate of the parameters, (α̂, D̂), such that S(α̂, D̂) is a minimum.

To implement the Levenberg-Marquardt algorithm, we restrict our search to that region of the

parameter space where 0.5 ≤ α ≤ 1 and 0 < D ≤ 0.25.

Results in Figure 2.5 show the error surfaces described by S(α,D) for 3× 3 obstacles with

ϕ = 0, 0.25, 0.5 and T = 100, 550, 1000. An equivalent set of results for 1× 1, 1× 2 and 2× 2

obstacles are given in Chapter 3. On each error surface in Figure 2.5 we indicate the location of

(α̂, D̂) and we note that in each case the Levenberg-Marquardt algorithm converged to the same

point (α̂, D̂), regardless of the initial guess, (α0, D0). Our estimates of (α̂, D̂) for each case are

summarised in Table 2.2. For ϕ = 0 the error surface is relatively shallow at T = 100, whereas

by T = 550 the error surface has become steeper with a more clearly defined minimum with

(α̂, D̂) ≈ (1, 0.25) as we expect since this case corresponds to a standard exclusion process with

no obstacles. For simulations with ϕ > 0, however, the error surfaces are relatively shallow at

T = 100 and remain relatively shallow at T = 1000, which means that there are large regions

of the parameter space in which S(α,D) is almost constant with no clear minimum. For a given

simulation time, T , and obstacle density ϕ > 0, there are a number of (α̂, D̂) pairs for which

u(x, t) matches the data equally well. We also note that our estimates of α̂ and D̂ appear to

vary with the simulation time, T , and that the estimated best-fit value of α̂ tends to increase
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as T increases. This means that associating an (α̂, D̂) pair with our simulations is problematic

since it is unclear which combination of parameters we should use at a given time, or at what

simulation time, T , we should measure them.

To examine the sensitivity of the solution of Equation (2.2), u(x, t), to variations in our

estimate of α̂ we plot u(x, t), with α̂±0.05 and D̂, in Figure 2.6. In generating these sensitivity

results we have taken care to ensure that we only report results where α ≤ 1. For cases where

α̂ + 0.05 > 1 we do not plot any additional solution. Comparing the solutions with α̂ ± 0.05

to the original solution with α̂ in each subfigure of Figure 2.6 indicates that the results at T =

100 are relatively insensitive to our choice of α since the solutions with α̂ ± 0.05 are visually

indistinguishable from the solution with α̂ at this scale. In contrast, the solution at T = 1000

indicates that we observe an increased sensitivity to the value of α since the solutions with

α̂± 0.05 are clearly distinguishable from the solution with α̂ at this scale.

2.5 Discussion

In this work, we presented a discrete stochastic model of transport through a crowded envi-

ronment that was randomly populated with impenetrable immobile obstacles. In particular,

we focused on developing an understanding of how the obstacle shape, size and density affect

the transport processes. To achieve this goal, we collected two different kinds of commonly-

reported data from our stochastic simulations. We first considered the motion of a single agent

through the crowded environment and we reported how the averaged MSD data varied as a

function of time for this process. Our results showed that this data does not obey Equation (2.1).

To make progress using this approach, we estimated α by assuming that the data could be ap-

proximated by the power law described by Equation (2.1) within a representative time interval,

and fitted a straight line to the data within this time interval for each obstacle density and shape

that we considered.

Our estimates of α from the averaged MSD data indicate that the degree to which the

transport process could be interpreted as anomalous depends on the obstacle size, shape and

density. In general, we found that as the obstacle density, ϕ, increased, our estimate of α

decreased. Counter intuitively, we found that the decrease in α was most rapid for the smallest

of our obstacle sizes, 1 × 1 obstacles. This implies that smaller obstacles give rise to a larger
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ũ
(x
,t
)

(d
ar

k
bl

ue
),

th
e

an
al

yt
ic

al
so

lu
tio

n
of

E
qu

at
io

n
(2

.2
),
u
(x
,t
),

w
ith

(α̂
,D̂

)
(r

ed
-d

as
he

d)
an

d
th

e
an

al
yt

ic
al

so
lu

tio
n

of
E

qu
at

io
n

(2
.2

),
u
±
(x
,t
),

w
ith

α
=

α̂
±

0.
05

an
d
D

=
D̂

(l
ig

ht
bl

ue
),

w
he

re
ca

re
w

as
ta

ke
n

to
on

ly
pr

es
en

tr
es

ul
ts

w
he

re
α

≤
1.

R
es

ul
ts

in
(a

)–
(c

);
(d

)–
(f

);
(g

)–
(i

)
an

d
(j

)–
(l

)
co

rr
es

po
nd

to
la

tti
ce

s
po

pu
la

te
d

w
ith

1
×
1,
1
×
2,
2
×
2

an
d
3
×
3

ob
st

ac
le

s,
re

sp
ec

tiv
el

y.
R

es
ul

ts
in

(a
),

(d
),

(g
)a

nd
(j

);
(b

),
(e

),
(h

)a
nd

(k
)a

nd
(c

),
(f

),
(i

)a
nd

(l
)

co
rr

es
po

nd
to

T
=

10
0,

T
=

55
0

an
d
T

=
10
00

re
sp

ec
tiv

el
y.

T
he

ũ
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crowding effect than larger obstacles placed randomly at the same density. One way to interpret

this trend is that populating a lattice with larger obstacles leads to larger vacant regions between

the obstacles through which the smaller agents may migrate. Regardless of whether or not our

averaged MSD data can be described using Equation (2.1), our simulation data implies that

the shape, size and density of obstacles has a major impact on transport through a crowded

environment.

To complement our averaged MSD data for the motion of a single agent through a crowded

environment, we separately considered the transport of a population of agents through a crowded

environment by using the same random walk framework, except that we considered simulations

that contained many motile agents. In these simulations, the motion of a particular agent is

affected by the presence of the obstacles as well as the presence of other agents on the lattice,

since we only permitted those motility events that would place an agent on a vacant lattice site.

For these simulations we chose initial conditions and boundary conditions so that averaged data

describing this transport process was effectively one-dimensional. In particular, we averaged

the number of agents over each strip in the y direction in order to track density profiles which

propagated in the positive x-direction in time. To provide us with information about how the

obstacle size, shape and density affected this averaged agent density profile, we performed many

realizations of the same process and systematically varied properties of the obstacle field. Our

suite of density profiles again shows that smaller obstacles were more effective at retarding the

motion of the population of agents than larger agents placed at the same density.

In an attempt to describe the transport of a population of agents through a crowded envi-

ronment using a continuum mathematical model, we applied a FDE to our averaged density

data. To estimate how well the FDE model matched the data we calibrated the parameters α

and D in the FDE model using a nonlinear least squares parameter estimation algorithm so that

the solution of the FDE matched our averaged density data from the stochastic simulations.

This procedure again confirmed that the transport process depends on obstacle size, shape and

density. We observed a qualitatively similar trend to that which we observed in our earlier

simulations of the transport of a single agent, namely, that as the obstacle density, ϕ, increased,

α decreased. We also noted that smaller obstacles lead to a greater decrease in α than larger

obstacles placed randomly at the same density and that, generally, our estimates of α increased

as the simulation time increased.
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Our studies indicate that it may be inappropriate to model the transport of an agent popula-

tion through a crowded environment using a FDE, since the averaged data from our stochastic

simulations do not match the solution of the standard FDE model. Our attempts to match the

FDE to the population density data were problematic since we obtain different combinations

of α and D at different simulation times. Furthermore, the nonlinear least-squares algorithm

indicates that there are large regions in (α,D) parameter space in which the deviation between

the solution of the FDE and the averaged simulation data is very small, suggesting that there are

many different parameter combinations that match the observed transport process. For example,

at any fixed value of time t, the averaged density profile associated with a high density of 1× 1

obstacles can be matched to the solution of the FDE for any value of 0.5 ≤ α ≤ 1.0 provided

that we make an appropriate choice of D.

In summary, our work has raised two key issues with respect to modelling transport through

crowded environments. First, we have shown that obstacle shape, size and density play a

key role in the transport process. This is an important point to make since many previous

studies have dealt exclusively with one type of obstacle [11, 12]. Furthermore, those studies

which did consider obstacles of different size examined averaged MSD data alone without any

explicit consideration of averaged density information [13, 14]. One of the limitations of our

present work is that we only considered transport through crowded environments where, in each

simulation, only one obstacle type was considered. An important extension of the present work

could be to consider the transport through a crowded environment where the obstacles size was

described by a statistical distribution of different types of obstacles.

A second key issue raised in this work relates to the difficulties we have experienced when

attempting to parameterise standard differential equation descriptions of the averaged density

information using data from our discrete model. Despite the widespread use and analysis of

FDE models, our attempt to fit the solution of Equation (2.2) to our density data has produced

least-squares estimates of α that are strongly dependent on the inspection time. This result im-

plies that Equation (2.2) does not describe the averaged properties of our discrete model, since

any use of Equation (2.2) assumes the parameter α is a constant. Indeed, these observations

are consistent with the fact that the averaged MSD data for the equivalent process for a single

agent does not follow the widely-discussed power law given by Equation (2.1). We conclude

that FDE models, such as Equation (2.2), should be used with care.
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Chapter 3

Additional results for Chapter 2

Results in Figures 3.1–3.2 are equivalent to the results in Figure 2.6 (Chap. 2) except that these

results correspond to ϕ = 0 and ϕ = 0.25, respectively. Similarly, the results in Figures 3.3–3.5

are equivalent to the results in Figure 2.5 (Chap 2) except that these results correspond to 1× 1,

1× 2 and 2× 2 obstacles, respectively.
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Chapter 4

Modelling transport through an environment

crowded by a mixture of obstacles of different

shapes and sizes

A paper published in Physica A.

Ellery, Adam J and Baker, Ruth E and McCue, Scott W and Simpson, Matthew J, Modeling

transport through an environment crowded by a mixture of obstacles of different shapes and

sizes. Physica A: Statistical Mechanics and its Applications 449 74 (2016).

4.1 Abstract

Many biological environments are crowded by macromolecules, organelles and cells which can

impede the transport of other cells and molecules. Previous studies have sought to describe these

effects using either random walk models or fractional order differential equations. Here we

examine the transport of both a single agent and a population of agents through an environment

containing obstacles of varying size and shape, whose relative densities are drawn from a

specified distribution. Our simulation results for a single agent indicate that smaller obstacles

are more effective at retarding transport than larger obstacles, and these findings are consistent

with our simulations of the collective motion of populations of agents. In an attempt to explore

whether these kinds of stochastic random walk simulations can be described using a fractional

order differential equation framework, we calibrate the solution of such a differential equation

to our averaged agent density information. Our approach suggests that these kinds of commonly

43
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(a) (b)

Figure 4.1: (a) Intracellular image of mouse pancreatic acinar cells [41]. (b) Intracellular image
of alpha cells from a diabetic mouse [41]. Images (a)-(b) are reproduced with kind permission
from Springer.

used differential equation models ought to be used with care since we are unable to match the

solution of a fractional order differential equation to provide a meaningful interpretation of our

averaged discrete results.

4.2 Introduction

Many biological environments, such as those shown in Figure 4.1 (a)–(b), are crowded by

macromolecules, organelles and cells of varying size and shape. Experimental and computa-

tional evidence suggests that crowding effects may impede the transport of macromolecules and

cells in such environments [4, 6, 9, 82–85]. Therefore, the development of reliable mathematical

models of this transport process is very important. Several previous studies have sought to

describe crowded transport processes using either random walk simulation models [1, 11–13,

17, 23, 25, 55, 86–88] or fractional order differential equation (FDE) models [7, 10, 29, 30, 36–

38, 89–91]. Although some previous studies have considered the effect of different obstacle

shapes and sizes in detail [92–95], others have simply focused on studying transport through

environments in which a single type of obstacle is present [13, 17]. Here, we focus on environ-

ments containing a mixture of different types of obstacles since experimental images (Figure 4.1

(a)–(b)) indicate that biological environments may contain multiple types of obstacles, whose

sizes vary considerably.

In this work we examine the transport of both individual agents and populations of agents

through crowded environments using a lattice-based unbiased nearest neighbour random walk

model. We simulate crowding effects by randomly populating the lattice with immobile ob-

stacles of different shapes and sizes, whose relative densities are specified by a particular
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distribution. By holding the density of lattice sites occupied by obstacles, ϕ, constant, and

varying the relative density of each individual obstacle type, we are able to create different

crowding environments. Some of these environments are dominated by small obstacles, whilst

others are dominated by large obstacles.

Although the idea of studying transport through a crowded environment using random walk

simulations has become well established since Saxton’s original studies over twenty years ago,

this area of research remains active with many recent studies making valuable contributions.

For example, recent theoretical advancements have extended Saxton’s lattice–based results

to lattice–free frameworks [92, 96, 97], including studying the role of obstacle orientation

[98]. Progress has also been made by combining experimental and theoretical approaches,

for example, studying overlapping circular and elliptical obstacles [99] and studying more

complicated environments containing up to 15 different types of obstacles [93]. Other more

experimentally–oriented studies have sought to interpret trajectory data describing the motion of

individual cells or molecules using various mathematical frameworks [94, 95, 100]. In addition

to this collection of studies which explicitly focus on motion through crowded environments,

other researchers have made progress towards the development, application and solution of

FDE models that are thought to implicitly represent crowded transport. Such FDE models have

been analysed in various biological settings including chemical reactions [29], reaction fronts

[30, 36] and reaction–diffusion mechanisms [37]. We would like to emphasise that the group

of studies described here, focussing explicitly on motion through crowded environments using

experimental and simulation data [92–100], have not attempted to interpret their results using

any kind of FDE framework. Conversely, the group of studies described here focussing on FDE

models [29, 30, 36, 37, 91] have not attempted to connect the solution of any FDE model to

measurements from any simulation or experiment which explicitly represents transport through

a crowded environment. Therefore, given the discrepancy between these two active areas of

the literature, one of the aims of the present study is to consider a stochastic model of transport

through a crowded environment containing a mixture of different obstacle shapes and sizes and

to use averaged data from the stochastic model to examine whether it is possible to represent

the transport process using a simpler FDE framework. Although there is a current debate in

the literature about how to discriminate between obstructed diffusion, CTRWs and FDEs, and

fractional Brownian motion [8], we concentrate on CTRWs and FDEs in this work.
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4.3 Stochastic simulations

We consider a two–dimensional square lattice, with lattice spacing ∆, where we index sites

(i, j), with 0 ≤ i ≤ M and 0 ≤ j ≤ N , so that each site has location (x, y) = (i∆, j∆).

The dimension of the lattice is 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly, where Lx = (M + 1)∆ and

Ly = (N + 1)∆. At the start of a simulation we randomly populate the lattice with immobile

obstacles to a specified, spatially uniform density, ϕ. We then place either a single motile

agent (Section 4.4) or a population of motile agents (Section 4.5) on vacant sites. These agents

undergo an unbiased nearest neighbour random walk in which we enforce a simple exclusion

condition [27]. Potential motility events that would lead to an agent occupying the same site as

another agent or an obstacle are aborted. We use the Gillespie algorithm [63] to advance the

simulation until we reach some time T . We always average our results over K identically

prepared realisations. The initial location of the motile agent is randomly chosen in each

realisation. To minimise the computational expense, we regenerate the obstacle field every

R realisations [1, 13]. Provided that R is sufficiently small, this has no observable effect on

the averaged results [1, 13]. For all results presented we always checked that the results were

insensitive to the size of the lattice.

In this study, we consider four types of obstacles which occupy: (i) a single lattice site

(1 × 1); (ii) two adjacent lattice sites (1 × 2); (iii) four lattice sites in a square arrangement

(2× 2); and (iv) nine lattice sites in a square arrangement (3× 3). We note that 1× 1, 2× 2 and

3 × 3 obstacles are symmetric with respect to the lattice whilst 1 × 2 obstacles are not. When

placing the asymmetric 1 × 2 obstacles on the lattice we always take care to randomly orient

the obstacles so that, on average, there is no preferred direction of alignment.

For any distribution of obstacles placed on the lattice at random, the total number of ob-

stacles is approximately given by
∑

mAm nm = ⌊NMϕ⌋, where Am and nm denote the area

and number of the mth obstacle type, respectively, ⌊·⌋ denotes the floor function and the sum

is taken over all obstacle types. Although this relationship is an approximation, we find that∑
mAmnm − ⌊NMϕ⌋ is extremely small provided that we consider a sufficiently large lattice,

which means that the approximation is very accurate and does not impact our results. For

example, for all choices of M , N and ϕ used in this work, we find that
∑

mAmnm−⌊NMϕ⌋ <

3× 10−5. Here we use the floor function because in any stochastic realisation of the model the

summation is always an integer whereas NMϕ is not always an integer.
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In all cases that we consider, with four types of obstacles, we have

n(i) + 2n(ii) + 4n(iii) + 9n(iv) = ⌊NMϕ⌋, (4.1)

where we have expanded the sum and substituted the size of each obstacle into the equation.

Since Equation(4.1) is Diophantine [101] with four unknowns, it is necessary to enforce some

additional relationships between the different types of obstacles to ensure that the solution is

unique. In particular, we consider three different situations:

I. Decreasing distribution: A distribution in which the number of lattice sites occupied by

each type of obstacle forms a decreasing geometric series, in which smaller obstacles are more

abundant than larger obstacles. In this case, the ratio of the number of sites occupied by each

successive type of obstacle is a positive constant, r. Mathematically, we can write this as

(A(i)n(i))/(A(ii)n(ii)) = (A(ii)n(ii))/(A(iii)n(iii)) = (A(iii)n(iii))/(A(iv)n(iv)) = r. To solve

explicitly for the number of each obstacle type, we note that

A(i)n(i) = r3A(iv)n(iv),

A(ii)n(ii) = r2A(iv)n(iv),

A(iii)n(iii) = rA(iv)n(iv). (4.2)

Substituting Eqs. (4.2) into Equation (4.1) gives

A(iv)n(iv)

(
1 + r + r2 + r3

)
= ⌊NMϕ⌋. (4.3)

Finally, combining the solution of Equation (4.3) with Eqs. (4.2) gives

n(i) =
r3⌊NMϕ⌋

A(i)β
, n(ii) =

r2⌊NMϕ⌋
A(ii)β

,

n(iii) =
r⌊NMϕ⌋
A(iii)β

, n(iv) =
⌊NMϕ⌋
A(iv)β

, (4.4)

where β = 1 + r + r2 + r3. When the coefficients in Eqs. (4.4) are non-integers we apply the
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floor function. Choosing r = 4, and substituting the values for A(m) for each case, we obtain

n(i) =
576

765
⌊NMϕ⌋, n(ii) =

72

765
⌊NMϕ⌋,

n(iii) =
9

765
⌊NMϕ⌋, n(iv) =

1

765
⌊NMϕ⌋. (4.5)

The coefficients in Eqs. (4.5) determine the number of occupied lattice sites for each obstacle

type. As expected, the number of lattice sites occupied by smaller 1 × 1 obstacles is much

greater than the number occupied by larger 3× 3 obstacles.

II. Increasing distribution: A distribution in which larger obstacles are more abundant than

smaller obstacles. In this case we assume that the number of 1 × 1, 1 × 2, 2 × 2 and 3 × 3

obstacles form the first, second, fourth and ninth terms in an increasing geometric series in

which the ratio between successive terms is r. These terms are chosen to coincide with the area

of each obstacle type. It follows that

n(ii) = r n(i),

n(iii) = r3 n(i),

n(iv) = r8 n(i). (4.6)

The solution of Equation (4.1) with Eqs. (4.6) is

n(i) =
⌊NMϕ⌋

γ
, n(ii) =

r⌊NMϕ⌋
γ

,

n(iii) =
r3⌊NMϕ⌋

γ
, n(iv) =

r8⌊NMϕ⌋
γ

, (4.7)

where γ = 1 + 2r + 4r3 + 9r8. In our case, choosing r = 5/4, we have

n(i) =
65536

4257001
⌊NMϕ⌋, n(ii) =

81920

4257001
⌊NMϕ⌋,

n(iii) =
128000

4257001
⌊NMϕ⌋, n(iv) =

390625

4257001
⌊NMϕ⌋. (4.8)

As expected, the number of larger 3 × 3 obstacles is much greater than the number of smaller

1× 1 obstacles.
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III. Constant distribution: A distribution in which the number of lattice sites occupied by each

type of obstacle is equal: n(i) = 2n(ii) = 4n(iii) = 9n(iv). The solution of Equation (4.1) with

this condition is given by

n(i) =
36

144
⌊NMϕ⌋, n(ii) =

8

144
⌊NMϕ⌋,

n(iii) =
9

144
⌊NMϕ⌋, n(iv) =

4

144
⌊NMϕ⌋. (4.9)

In this case, no obstacle type occupies a larger proportion of lattice sites than any other. Distri-

bution III is an intermediate case relative to distributions I and II, and we refer to distributions

I, II and III as decreasing, increasing and constant distributions, respectively.

In Figure 4.2 (a), (b) and (c) we show the proportion of lattice sites occupied by each

obstacle type for ϕ = 0.2, 0.3, 0.4, respectively. Specifically, in each subfigure, we show

the relative density of occupied lattice sites, ϕm = A(m)n(m)/(⌊NMϕ⌋), for each obstacle

type. For each value of ϕ shown, the decreasing distribution has a relative abundance of

small obstacles, the increasing distribution has a relative abundance of large obstacles, and

the constant distribution lies between. Figure 4.2 (d), (e) and (f) show lattices occupied by

obstacles from the decreasing, increasing and constant distributions, respectively. Visually, in

Figure 4.2 (e), which shows a lattice occupied by obstacles drawn from an increasing distribu-

tion, we see that the crowded environment contains many vacant, interconnected and spacious

corridors. Conversely, Figure 4.2 (d), which shows a lattice occupied by obstacles drawn from

the decreasing distribution, appears to contain far less of these vacant interconnected corridors.

Figure 4.2 (f), which corresponds to the constant distribution, lies between these two cases.

Therefore, in summary, visual inspection of the different crowding environments indicate that

a lattice crowded using the increasing distribution appears to contain the highest degree of

interconnected free space which we anticipate will facilitate transport more readily than the

decreasing or constant lattice environments. We note that while it might be straightforward to

anticipate this qualitative trend, it is not, by any means, obvious what the quantitative differences

between transport through these different environments might be. In Sections 4.4 and 4.5 we

attempt to apply mathematical models to describe motion through these different environments

in order to provide such quantitative information.

To be consistent with previous simulation studies we take care to ensure that ϕ is always

less than the site percolation threshold [13, 23, 25] which, for a square lattice occupied by 1× 1
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Figure 4.2: (a)-(c) Density of lattice sites, ϕm, occupied by each type of obstacle as a
function of obstacle size, for N = 100, M = 100 and ϕ = 0.2, 0.3, 0.4, respectively.
The decreasing, increasing and constant distributions are shown as red-diamond, blue-square
and black-pentagrams, respectively. Images in (d)-(f) show lattice environments occupied by
decreasing, increasing and constant distributions, respectively, each with ϕ = 0.4. Each type of
obstacle is uniquely coloured, as described in the legend.



4.4. TRANSPORT OF A SINGLE AGENT 51

obstacles, is approximately 0.5927 [27]. We also note that visual inspection of the crowding

environments in Figure 4.2 confirms the presence of closed regions of free space.

4.4 Transport of a single agent

We first consider the transport of a single agent through a crowded environment randomly

populated with obstacles, to density ϕ, whose relative numbers are drawn from one of the

distributions described in Secs. 4.3. After placing the obstacles on the lattice, we then place

a single agent at a randomly chosen vacant site and allow it to undergo a random walk with

periodic boundary conditions applied along all boundaries. To assess the effect of the different

crowding environments on the transport process, we record the squared displacement of the

agent, r(t)2 = (x(t)−x(0))2+(y(t)−y(0))2, at geometrically spaced time intervals which are

related by tn+1 = tn+hgn, where t0 = 0, h = T (1−g)/(1−gP−1), P is the total number of time

points and g = 1.1 is a geometric factor. Repeating this process for many identically prepared

simulations allows us to calculate an ensemble average of r(t)2. Many previous studies have

analysed this kind of data by assuming that the MSD follows a power law [1, 11–13]

⟨
r2
⟩
= 4Dtα, (4.10)

where D [L2T−α] is a generalised diffusion coefficient, 0 < α < 2 indicates the type of trans-

port process taking place, with α = 1 corresponding to Fickian diffusion, α < 1 corresponding

to subdiffusion, α > 1 corresponding to superdiffusion [7, 10] and ⟨·⟩ denotes an average over

a large ensemble of simulations. In this work we focus on 0 < α ≤ 1 because transport through

a crowded environment is thought to be subdiffusive (α < 1) [7, 10], whereas transport through

an uncrowded environment is known to be Fickian (α = 1). We rewrite Equation (4.10) as

log10(⟨r2⟩ /t) = log10(4D)+(α−1) log10(t), which suggests that, if the MSD follows Equation

(4.10), plotting log10(⟨r2⟩ /t) as a function of log10(t) will lead to a straight line with slope α−1.
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Figure 4.3: (a)-(c) MSD for a single agent moving through a lattice randomly populated with

obstacles whose relative densities are drawn from the decreasing, increasing, and constant

distributions, respectively (solid blue). Results are also shown for the control case with no

obstacles present (dashed red). In each case we have N = M = 256 and ϕ = 0.0, 0.2, 0.3, 0.4.

Averaged simulation data was constructed with R = 200 and K = 50, 000. The arrow points in

the direction of increasing ϕ.

MSD data associated with a crowded environment populated by obstacles drawn from

decreasing, increasing and constant distributions is shown in Figure 4.3 (a), (b) and (c), re-

spectively. In each plot we include results from a control case, with no obstacles present and

ϕ = 0. For the control case we see that the MSD data forms a perfectly straight line, lying on

the horizontal axis, for all t considered. This confirms that without any obstacles present we

have Fickian diffusion with α = 1, as expected.

Results for the MSD data in Figure 4.3 with ϕ > 0 are more interesting. A visual, qual-

itative comparison of these results confirms that the details of the crowding environment has

an important impact on the transport process since the curves describing the MSD are different

for each obstacle distribution. To demonstrate these differences quantitatively we calculate the

slope of each MSD curve in Figure 4.3, for ϕ = 0.4, at t = 104. To do this, we perform a

linear regression through the five temporal intervals closest to t = 104 in each data set. The

linear regression analysis provides us with an estimate of the slope from which we estimate

α. This procedure gives α = 0.73 for the decreasing distribution, α = 0.98 for the increasing

distribution and α = 0.92 for the constant distribution, suggesting that the decreasing distribu-

tion is most effective at retarding the transport process, that the increasing distribution is least

effective at retarding the transport process, and that the constant distribution is between these

two extremes.
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Our results for the MSD data in Figure 4.3 indicate that the data does not follow the power

law given by Equation (4.10) when ϕ > 0. If the MSD data were to obey this power law, the

plots in Figure 4.3 would be straight lines for all t. However, this is not the case, since the MSD

data with ϕ > 0 forms a family of curves. Each of these curves eventually asymptotes to a

horizontal line as t → ∞. This result has been observed previous by us [1] and many others

[11–13]. We note that there are other discrete random walk process which genuinely obey

power laws, such as Equation (4.10). For example, the previous stochastic model analysed by

Kehr and Kutner [102] is associated with MSD data that follows a power law with α = 1/2.

However, for the biologically motivated random walk models like we consider here, this is not

the case.

4.5 Transport of a population of agents

The development of mathematical models that can be used to describe and predict the transport

of a population of agents through a crowded environment is very important as this kind of

situation is often observed and measured during biological experiments For example, Kicheva

[39] considered the motion of a population of initially confined molecules within the developing

wing disc, and the motion of these molecules is hindered by the presence of other biomolecules

and obstacles within the wing disc. Similarly, Simpson [75] considered the motion of a pop-

ulation of initially confined neural crest cells along the tissues of the developing gut tissues in

a chick embryo, and the motion of these cells is hindered by the presence of other cells and

obstacles in the gut tissues. To mimic this kind of biological experiment we now consider a

transport process in which an initially confined population of agents moves through a crowded

environment. As in Section 4.4, we initially populate the lattice with obstacles drawn from

an increasing, decreasing or constant distribution to density ϕ. To initialise the simulation, we

populate all vacant lattice sites in the vertical columns for which (Lx − w) ≤ 2x ≤ (Lx + w)

with agents. This corresponds to a population of agents initially confined to a vertical strip, of

width w, located at the centre of the domain. We then allow the agents to undergo an unbiased

nearest neighbour random walk in which we enforce a straightforward exclusion mechanism

by aborting potential motility events which would lead to an agent occupying the same lattice

site as another agent or an obstacle. Absorbing boundary conditions at x = 0 and x = Lx are

enforced.
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Figure 4.4: Results in (a)-(c); (d)-(f) and (g)-(i) show a lattice occupied by a decreasing,
increasing and constant distribution of obstacles, respectively. Each type of obstacle is uniquely
coloured, as described in the legend. Results in (a), (d) and (g) show the lattice occupied by the
obstacles without any agents present, each with ϕ = 0.40. Results in (b), (e) and (h) show the
same lattice and obstacle distribution where the vacant sites within the central 21 columns of the
lattice have been initialised with motile agents. Results in (c), (f) and (i) show the distribution
of agents after performing a random walk simulation until T = 1000. All results correspond to
M = 120, N = 15 and w = 21.
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Figure 4.4 (a), (d) and (g) shows a lattice which has been stochastically populated with ob-

stacles from the decreasing, increasing and constant distributions, respectively, with ϕ = 0.4.

In Figure 4.4 (b), (e) and (h) we show the same lattices as in Figure 4.4 (a), (d) and (g),

except that now we have placed a population of agents onto all vacant sites in the central 21

columns. We treat the system shown in Figure 4.4 (b), (e) and (h) as the initial condition for our

simulations describing the transport of a population of agents through a crowded environment.

We apply periodic boundary conditions along the horizontal boundaries and reflecting boundary

conditions along the vertical boundaries. In Figure 4.4 (c), (f) and (i), we show the resulting

distribution of agents from a single realisation at T = 1000. One way of comparing the

distribution of agents in Figure 4.4 (c), (f) and (i) is to measure the width of the spreading

population of agents. Recalling that the width of the initial distribution of agents was 21 lattice

sites at t = 0, by t = 1000 the widths of the spreading population are 61, 77 and 75 lattice sites

for the decreasing, increasing and constant distributions, respectively. These differences suggest

that the rate at which the initially confined population of agents is able to spread through the

crowded environment is greatest for the environment populated by obstacles from the increasing

distribution, and smallest when the obstacles are drawn from the decreasing distribution. This

trend is consistent with the results described in Section 4.4 describing the motion of a single

agent. Since we have only dealt with a single realisation of the stochastic model to arrive at these

preliminary observations, we now consider performing many identically prepared realisations

to investigate whether similar differences occur when we describe the process using averaged

data. To ensure that we do not encounter the Fickian regime we consider two observation times,

T = 1000 and T = 3000, as our MSD simulations suggest that the transition from non–Fickian

to Fickian behaviour occurs after T = 104 for all situations that we consider.

Since our initial distribution of agents in Figure 4.4 is, on average, independent of vertical

position, we can characterise the averaged transport process as a function of the horizontal

coordinate, x, and time, t [78, 103]. We construct averaged agent population density data in the

following way: once the simulation reaches time T we calculate the density of agents in each

vertical column of the lattice. Let nk(i, j) denote the occupancy of site (i, j) during the kth iden-

tically prepared realisation such that nk(i, j) = 0 corresponds to a vacant site and nk(i, j) = 1

corresponds to a site which is occupied by an agent. The density of agents in each vertical

column is [
∑M

j=1 nk(i, j)]/n̄k, where we have normalised the density by dividing by the number

of agents which initially occupy the central column at x = Lx/2, n̄k =
∑M

j=1 nk(Lx/2, j).
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The average density of agents in each column, at time T , further averaged using data from K

identically prepared realisations, is given by [78, 103]

ū(x, T ) =
1

K

K∑
k=1

(
1

n̄k

M∑
j=1

nk(i, j)

)
. (4.11)

It has become increasingly common for researchers to implicitly represent transport through

crowded environments using FDE models [7, 10, 29, 30, 36, 37, 89–91], and we note that many

of these previous applications neglect to consider the relationship between the FDE description

and the underlying stochastic mechanism. To improve our understanding of whether averaged

density data from our relatively straightforward stochastic model can be accurately represented

by an FDE framework, we now attempt to match our averaged agent density information with

the solution of

∂αu

∂tα
= D

∂2u

∂x2
, 0 < x < Lx, (4.12)

where ∂α/∂tα denotes a Caputo fractional derivative [32] of order α and Lx is the length of the

spatial domain. Appropriate boundary and initial conditions that match our stochastic simula-

tions are u(0, t) = 0, u(Lx, t) = 0 and u(x, 0) = H (x− [Lx − w]/2) − H(x− [Lx + w]/2),

where H(·) is the Heaviside function. For these conditions the solution of Equation (4.12) is

u(x, t) =
∞∑
k=1

Ak sin

(
kπx

Lx

)
Eα

[
−D

(
kπ

Lx

)2

tα

]
, (4.13)

where Eα[·] denotes a Mittag–Leffler function [32], and Ak = 4{sin [kπ/2] sin [kπw/(2Lx)]}/(kπ).

To investigate whether Equation (4.12) provides an accurate framework to describe our

averaged density data we must determine appropriate values of D and α. We estimate D and

α by matching u(x, t) to the averaged agent population density, ū(x, t), using the Levenberg–

Marquardt algorithm [80]. To apply this algorithm we first define ϵi = ū(x, T )−u(x, T ), which

measures the difference between the observed averaged data and the solution of Equation (4.12)

at t = T . The Levenberg–Marquardt algorithm minimises S(α,D) =
∑M

i=0 ϵ
2
i , where the sum

is taken over all vertical columns of the lattice, by iteratively stepping from an initial guess,

(α0, D0), down the gradient of S(α,D) to the least squares estimate, (α̂, D̂). As the algorithm

proceeds we always ensure that 0 < D ≤ 1/4 and 0 < α ≤ 1, as solutions outside of this
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Figure 4.5: Evolution of the average population density, ū(x, t) (blue), and the least squares
solution of Equation (4.12), u(x, t) (red-dashed). Results show density profiles for ϕ = 0
and correspond to two different simulation times, T = 1000 and T = 3000, with the arrows
indicating the direction of increasing time. The least squares estimates α̂ and D̂ are given in
the top left of each subfigure for T = 1000, and in the top right of each figure for T = 3000.
Simulation parameters correspond to N = 100, M = 1000 and w = 21, with R = 100 and
K = 100, 000. The Fourier series solution for u(x, t) was obtained by truncating the infinite
series, Equation (4.13), after 30, 000 terms.

parameter range are physically unrealistic. Furthermore, we always test that our estimates of

(α̂, D̂) are independent of the initial guess, (α0, D0).

We first consider a control case with no obstacles and ϕ = 0. Results are shown in Figure

4.5, confirming that the match between the density profiles from the averaged stochastic data

and the solution of the Equation (4.12) with the least squares parameter estimates, (α̂, D̂), is

excellent. Furthermore, the Levenberg-Marquardt algorithm shows that we have α̂ = 1.00

and D̂ = 0.25 at both T = 1000 and T = 3000. This is an expected result since there are

no obstacles on the lattice and previous research has shown, from a theoretical point of view,

that averaged density data associated with this random walk model without any obstacles is

governed by Equation (4.12) with α = 1 and D = 1/4 [78, 103]. In this case Equation (4.12)

reduces to the linear diffusion equation. For this study it is relevant for us to make note of the

fact that we obtain the same estimates of α̂ = 1.00 and D̂ = 0.25 at two different inspection

times, T = 1000 and T = 3000.

Results in Figure 4.6 show the averaged agent population density, ū(x, t), superimposed on

the solution of Equation (4.12), u(x, t), obtained using the least squares parameter estimates,

(α̂, D̂), for ϕ > 0. Several observations can be made from the results in Figure 4.6. Firstly,

the match between the averaged agent density data and the solution of Equation (4.12) with

(α̂, D̂) is excellent. However, our estimates of D̂ and α̂ are very sensitive to the different types
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Figure 4.6: Evolution of the average population density, ū(x, t) (blue), and the least squares
solution of Equation (4.12), u(x, t) (red-dashed). Results in (a)-(c); (d)-(f) and (g)-(i)
correspond to decreasing, increasing and constant obstacle distributions, respectively. Results
in (a), (d), (g); (b), (e), (h) and (c), (f), (i) show density profiles for ϕ = 0.2, 0.3, 0.4,
respectively. Results in each subfigure correspond to two different simulation times, T = 1000
and T = 3000, with the arrows indicating the direction of increasing time. The least squares
estimates α̂ and D̂ are given in the top left of each subfigure for T = 1000, and in the top right
of each figure for T = 3000. Simulation parameters correspond to N = 100, M = 1000 and
w = 21, with R = 100 and K = 100, 000. The Fourier series solution for u(x, t) was obtained
by truncating the infinite series, Equation (4.13), after 30, 000 terms.
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of obstacle distributions. For example, at T = 1000 with ϕ = 0.4, we have α̂ = 0.79, 0.91

and 0.86 for the decreasing, increasing and constant obstacle distributions, respectively. This

suggests that the decreasing distribution is very effective at retarding the transport process,

that the increasing distribution is least effective at retarding the transport process, and that the

constant distribution lies between these two cases. Secondly, unlike the control case with ϕ = 0,

the calibration procedure for the data with ϕ > 0 indicates that our estimates of D̂ and α̂ depend

upon the inspection time, T . This observation is contrary to the assumptions underpinning

Equation (4.12), where D and α are supposed to be constant.

4.6 Discussion

In this work, we consider a transport process through a crowded environment that is populated

by immobile obstacles of varying size and shape. In particular, we focus on three distributions

of obstacle size and shape which represent an environment crowded by a relative abundance of

small obstacles, an environment crowded by a relative abundance of large obstacles and an inter-

mediate case. This framework allows us to create qualitatively different crowded environments

whilst holding the density of occupied lattice sites constant, and to explore how the details of

the distribution of agent shape and size impacts the transport properties.

We first consider the motion of a single motile agent and record the MSD as a function of

time. To analyse these data, we use a standard method [1, 11–13, 17] and plot log10(⟨r2⟩ /t) as

a function of log10(t). If the MSD followed a power law, these data would fall on a straight line.

Instead, we observe that these data do not fall on a straight line, indicating that the transport

process does not follow Equation (4.10). This kind of observation is consistent with several

previous studies [11–13, 17]. To quantify how the transport process is affected by different

distributions of obstacle shapes and sizes, we follow a standard approach and estimate the slope

of the plot of log10(⟨r2⟩ /t) as a function of log10(t). These results confirm that the details of

the distribution of the obstacles can play an important role since different distributions with

constant ϕ lead to different MSD data.

To extend our analysis to apply to biological experiments that involve the motion of popula-

tions of cells or molecules, we also consider the motion of a population of motile agents through

various crowded environments. To simplify our analysis, we choose an initial condition that is,
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on average, symmetric in the vertical direction and recorded average density of agents in each

column of the lattice. This framework allows us to describe the transport of a population of

agents as a function of the horizontal coordinate, x, and time, t. Extracting averaged density

data from our stochastic model confirms that the details of the distribution of obstacle size and

shape has an important impact on the transport process since we observe that otherwise identical

populations of agents are able to move through some environments far more easily than others,

even though the density of obstacles, ϕ, is the same.

To provide quantitative insight into our results describing the transport of a population of

agents, we match our averaged density data with the solution of a standard FDE model, Equation

(4.12), to provide a least squares estimate of D and α for the various crowding environments.

Our results confirm that α decreases with ϕ, as expected, with the additional result that α also

decreases when we consider distributions of obstacles in which small obstacles dominate. This

trend is consistent with the MSD data, and together our observations confirm that obstacle

distributions in which smaller obstacles dominate are more effective at retarding the transport

process [104]. These outcomes imply that if we are to reliably predict and model transport

through a crowded environment, we must characterise both the total density of obstacles, ϕ, as

well as additional details of the distribution of obstacle shapes and sizes.

We conclude with some cautionary remarks. Since our least squares estimates of D and α in

Equation (4.12) appear to depend on the inspection time T , our results suggest that FDE models

ought to be used with care since a fundamental assumption underlying the use of these models

is that D and α are constants that do not depend on the inspection time. Despite the widespread

use of FDE models like Equation (4.12), our model calibration procedure implies that even a

relatively straightforward random walk model, such as the model we consider here, cannot be

properly described using this kind of FDE model. Our observation that the averaged density

profiles are not described by Equation (4.12) is consistent with our analysis of MSD data which

do not follow the commonly invoked power law, Equation (4.10).
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Calculating the Fickian diffusivity for a

lattice–based random walk with agents and

obstacles of different shapes and sizes

A paper published in Physical Biology.

Ellery, Adam J and Baker, Ruth E and Simpson, Matthew J, Calculating the Fickian diffusivity

for a lattice-based random walk with agents and obstacles of different shapes and sizes. Physical

Biology 12 066010 (2015).

5.1 Abstract

Random walk models are often used to interpret experimental observations of the motion of

biological cells and molecules. A key aim in applying a random walk model to mimic an

in vitro experiment is to estimate the Fickian diffusivity (or Fickian diffusion coefficient), D.

However, many in vivo experiments are complicated by the fact that the motion of cells and

molecules is hindered by the presence of obstacles. Crowded transport processes have been

modelled using repeated stochastic simulations in which a motile agent undergoes a random

walk on a lattice that is populated by immobile obstacles. Early studies considered the most

straightforward case in which the motile agent and the obstacles are the same size. More

recent studies considered stochastic random walk simulations describing the motion of an agent

through an environment populated by obstacles of different shapes and sizes. Here, we build on

previous simulation studies by analysing a general class of lattice based random walk models

61
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with agents and obstacles of various shapes and sizes. Our analysis provides exact calculations

of the Fickian diffusivity, allowing us to draw conclusions about the role of the size, shape

and density of the obstacles, as well as examining the role of the size and shape of the motile

agent. Since our analysis is exact, we calculate D directly without the need for random walk

simulations. In summary, we find that the shape, size and density of obstacles has a major

influence on the exact Fickian diffusivity. Furthermore, our results indicate that the difference

in diffusivity for symmetric and asymmetric obstacles is significant.

5.2 Introduction

Random walk models are routinely used to model both in vitro and in vivo experimental ob-

servations describing the motion of cells and biomolecules [67, 69, 105–107]. Often the aim

of applying a random walk model to mimic in vitro observations is to provide an estimate

of the diffusivity, D [108–110]. Unlike simpler in vitro experiments, in vivo experiments are

complicated by the fact that the cells and biomolecules move through an environment populated

by various types of obstacles that, owing to crowding effects, hinder their motion [93, 100, 111,

112].

Early analysis of random walk models describing motion through crowded environments

involved repeated stochastic simulations of the random walk of an agent on a lattice, where

the lattice is populated by immobile obstacles [11, 12]. In these early models both the size of

the agent and the obstacles are equal to the lattice spacing [11, 12]. Analysing the temporal

evolution of the mean squared displacement (MSD) of the motile agent indicates that, after a

sufficient period of time, the MSD grows in proportion to time. Measuring the constant of

proportionality from repeated computer simulations provides a means of estimating the long–

time Fickian diffusivity, D [11, 12, 23, 25]. Using this approach, it is possible to demonstrate

that D decreases as the density of obstacles increases, as we might anticipate [11, 12, 23,

25]. Other avenues of investigation involved the use of perturbation theory [113], percolation

theory [114–116] and the eigenvalue spectrum [117]. More recent studies attempt to provide

more realistic descriptions of cell and biomolecule motion by considering the motion of agents

through environments that are populated by obstacles of varying shapes and sizes [1, 13, 94].

Similar to earlier models, these more detailed simulation studies show that, after a sufficient

period of time, the MSD increases in proportion to time, and this observation can also be used
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to estimate the long–time Fickian diffusivity, D [1, 13]. In addition to showing that D depends

on the density of obstacles, these studies suggest that D also depends on the size and shape of

the obstacles [1, 13].

Instead of relying on repeated stochastic random walk simulations, here we present a method

that enables us to exactly calculate the long–time Fickian diffusivity, D, for a lattice–based

random walk in which we vary the shape and size of both the motile agent and the immobile

obstacles. We achieve this by generalising an approach previously described by Mercier and

Slater [42–44]. The algorithm is described in Section 5.3, where we also confirm the accuracy

of the approach by comparing exact calculations of D with estimates obtained using standard

simulation methods. In Section 5.4.1 we systematically vary the size of the agent, the size

of the obstacles and the density of the obstacles to examine how these details affect D for a

two–dimensional random walk in which both the agents and obstacles are symmetric in shape.

In Section 5.4.2 we consider a suite of two–dimensional scenarios in which either the agent

or the obstacles are asymmetric. We also demonstrate how our approach can be implemented

for three–dimensional problems in Section 5.4.3 where we systematically vary the size, shape

and density of symmetric obstacles in three–dimensions. In Section 5.4.4 we calculate D for

obstacle densities up to 50%. Finally, in Section 5.5, we discuss the implications of our results.

For symmetric agents and obstacles of the same size, we show that D decreases with the

density of obstacles. This is an expected result that has been observed previously in simulation

studies, however we also make further observations that have not been identified previously.

For a given obstacle density, we find that D is most reduced for larger motile agents, relative

to smaller motile agents, provided that the obstacles are symmetric. However, the opposite

can be true when we consider the motion of agents in an environment populated by asymmetric

obstacles. Furthermore, we find that D is sensitive to the size of the agents and obstacles relative

to the size of the lattice spacing. In summary, our results indicate that the value of D is strongly

linked to the details of the shape, size, symmetry and density of the obstacles. Therefore, caution

ought to be exercised when D is estimated without a detailed characterisation of the obstacle

shape, size and density.
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Figure 5.1: Various sizes and shapes of the two– and three–dimensional agents and obstacles
used in this study. The dimensions relative to the lattice spacing are indicated next to each
object.

5.3 Theory

We now consider a two–dimensional square lattice of dimension X×Y , with unit lattice spacing

∆ = 1. Sites are indexed (i, j) so that each site has location (x, y) = (i, j), with 0 ≤ x ≤

(X − 1) and 0 ≤ y ≤ (Y − 1). We also consider a three–dimensional square lattice of

dimension X × Y × Z, with unit lattice spacing ∆ = 1. Sites are indexed (i, j, k) so that

each site has location (x, y, z) = (i, j, k), with 0 ≤ x ≤ (X − 1), 0 ≤ y ≤ (Y − 1) and

0 ≤ z ≤ (Z − 1). Since we always work with unit lattice spacing and unit rate constants,

all calculations of diffusivity are dimensionless. These calculations can be redimensioned by

rescaling with an appropriate dimensional lattice spacing, ∆, if required.

We represent various crowding environments by randomly populating a lattice with immo-

bile obstacles to a specified spatially uniform density, ϕ = m0ν/m, where m0 is the number of

obstacles, ν is the number of sites per obstacle, and m is the total number of lattice sites. For

the two–dimensional lattice we consider the five different types of agents and obstacles depicted

in Figure 5.1, namely: (i) a square obstacle of area 1 (1 × 1, ν = 1); (ii) a square obstacle of

area 4 (2 × 2, ν = 4); (iii) an asymmetric obstacle of area 2, consisting of two adjacent lattice

sites (1 × 2, ν = 2); (iv) an asymmetric obstacle of area 3 in an L–shaped arrangement (

ν = 3); and (v) an asymmetric obstacle of area 3 consisting of three lattice sites in a row (1× 3,

V = 3). When placing asymmetric obstacles on the lattice we always take care to randomly
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orient the obstacles so that, on average, there is no preferred direction of alignment. For the

three–dimensional lattice we consider two types of obstacles that are also depicted in Figure

5.1, namely: (vi) a cubic obstacle of volume 1 (1× 1× 1, ν = 1); and (vii) a cubic obstacle of

volume 8 (2 × 2 × 2, ν = 8). Although our results focus on these seven specific obstacle and

agent shapes, the exact procedure for calculating D can be applied to other obstacle and agent

shapes by extending our analysis in an obvious way. Throughout this study we always ensure

that ϕ is well below the relevant percolation threshold [68]. In the first part of the study we

focus on modest obstacle densities, 0 < ϕ ≤ 0.15. In the second part of the study we provide

additional results for higher obstacle densities, ϕ ≤ 0.50.

To provide a check on the accuracy of our exact calculations of D we perform stochastic

random walk simulations with the aim of showing that the exact calculations match estimates

of D from a simulation approach. To initiate the random walk simulations we place a single

motile agent at a randomly chosen location on the lattice, being careful to ensure that the agent

does not overlap with any obstacles. The shape of the agent is chosen from one of the types

depicted in Figure 5.1. The agent undergoes an unbiased nearest neighbour random walk with

unit step length (∆ = 1), periodic boundary conditions and an exclusion condition [27]. The

exclusion condition means that any potential motility event that would lead to part of the agent

occupying any site that is already occupied by an obstacle is aborted [27]. Our discrete model is

similar to a blind-ant random walk [114]. We use the Gillespie1977 algorithm [63] to advance

the simulation through time until we reach a pre–specified termination time, T . In all situations

the rate at which the motile agent attempts to undergo a motility event is set to unity. Since the

random walk simulations are stochastic, we always average our results over a large ensemble

of identically prepared realisations. As each random walk simulation proceeds, we track the

position of the agent and record the agent trajectory, from which we can calculate the MSD.

After performing a large number of identically prepared realisations of each random walk,

we make the standard assumption that the average MSD data follows a power law [11, 12, 23,

25] ⟨
r2
⟩
= (2dD)tα, (5.1)

where r2 = x2 + y2 + z2 is the dimensionless displacement squared, t is dimensionless time, d

is the dimension of the system, α is an exponent, 0 < D ≤ 1/(2d) denotes the dimensionless

diffusivity and ⟨·⟩ denotes an average over a large ensemble. Fickian diffusion is associated
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with α = 1 [69]. To estimate D from this data we rewrite Equation (5.1) as

log10

(
⟨r2⟩
t

)
= log10 (2dD) + (α− 1) log10 (t) . (5.2)

Equation (5.2) suggests that if the data follows this power law, when we plot log10 (⟨r2⟩ /t) as a

function of log10(t) we should observe a straight line with slope α−1. It is well–known that for

MSD data generated in this way, a plot of log10 (⟨r2⟩ /t) as a function of log10(t) asymptotes to

a horizontal line [11, 12, 23, 25]. This indicates that, after a sufficient amount of time we have

α = 1 and we can estimate the Fickian diffusion coefficient by estimating the intercept of the

horizontal asymptote of the plot of log10 (⟨r2⟩ /t) as a function of log10(t) [11, 12, 23, 25].

Instead of recording the square of the total displacement, r2 = x2 + y2 + z2, an alternative

approach is to record the temporal evolution of the square of the displacement in each com-

ponent direction and apply a similar technique. This approach would allow us to estimate the

diffusion coefficient in each direction. For example, treating the x, y and z components of

the MSD data in this way can be used to provide estimates of Dx, Dy and Dz, respectively,

allowing us to explore whether there are any differences in the diffusivity in each direction.

Here, 0 < Dx ≤ 1/d, 0 < Dy ≤ 1/d and 0 < Dz ≤ 1/d, where d is the dimension of the

problem. To implement this approach we plot log10 (⟨x2⟩ /t), log10 (⟨y2⟩ /t) or log10 (⟨z2⟩ /t) as

a function of log10(t), and we estimate Dx, Dy and Dz from measuring the long time intercept

of these curves, which asymptote to log10 (2Dx), log10 (2Dy) and log10 (2Dz), respectively.

Using this approach we plot the MSD data, focusing at first on the x–component of the

trajectory data, for several different combinations of different sized agents and obstacles, in both

two and three dimensions, in Figure 5.2. Results in Figure 5.2(a) show plots of log10 (⟨x2⟩ /t)

as a function of log10(t) for both 1× 1 and 2× 2 shaped agents undergoing a random walk on a

two–dimensional lattice that is randomly populated by either 1× 1 obstacles or 2× 2 obstacles.

Results in Figure 5.2(b) show plots of log10 (⟨x2⟩ /t) as a function of log10(t) for both 1×2 and

1× 1 agents and obstacles as well as results for both 1× 1 and L–shaped agents and obstacles.

Similar plots for three–dimensional random walk simulations are shown in Figure 5.2(c) for

both a 1 × 1 × 1 and 2 × 2 × 2 agent moving on a three–dimensional lattice populated with

either 1 × 1 × 1 or 2 × 2 × 2 obstacles. Regardless of the dimension of the problem, or the

combination of agent and obstacle shape and size, each plot in Figure 5.2 shows that the MSD

curve eventually asymptotes to a horizontal line confirming that we eventually observe Fickian
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Figure 5.2: Results in (a) show averaged MSD data, log10(⟨x2⟩/t), for a 1 × 1 agent moving
on a lattice populated with 1 × 1 (blue) and 2 × 2 obstacles (red), and similar data for a 2 × 2
agent moving on a lattice populated with 1 × 1 (orange) and 2 × 2 obstacles (green). Results
in (b) show log10(⟨x2⟩/t) for a 1 × 2 agent moving on a lattice populated with 1 × 1 obstacles
(blue), a 1 × 1 agent moving on a lattice populated with 1 × 2 obstacles (red), an L–shaped
agent moving on a lattice populated with 1 × 1 obstacles (orange) and a 1 × 1 agent moving
on a lattice populated with L–shaped obstacles (green). Results in (c) show log10(⟨x2⟩/t) for
a 1 × 1 × 1 agent moving on a three–dimensional lattice populated with 1 × 1 × 1 obstacles
(blue) and 2× 2× 2 obstacles (red), and similar data for a 2× 2× 2 agent moving on a lattice
populated with 1 × 1 × 1 obstacles (orange) and 2 × 2 × 2 obstacles (green). The size of the
lattice and density of obstacles are M = N = 10, P = Q = R = 10 and ϕ = 0.1, respectively.
All random walk simulations are averaged over 50, 000 identically prepared realisations. We
also superimpose, for each case, in each subfigure, a dashed horizontal line, log10(2Dx), where
Dx is the long time Fickian diffusivity in the x–direction. Exact values of Dx are calculated
using the Mercier–Slater algorithm using GMRES with a strict error tolerance of 10−8.

diffusion. Since these curves asymptote to log10 (2Dx), as indicated by Equation (5.2), we can

estimate Dx from these data by measuring the intercept of the horizontal asymptote. This is a

standard approach that has been used in many previous studies [11, 12, 23, 25].

Results in Figure 5.2 suggest that, in both two and three dimensions, smaller obstacles are

more effective at reducing the diffusivity than larger obstacles at the same density. For a two–

dimensional random walk with symmetric agents and obstacles, as shown in Figure 5.2(a), we

find that a lattice populated with small obstacles is most effective at reducing the diffusivity,

and that this effect is more pronounced for larger agents. Results for a two–dimensional

random walk with asymmetric agents and obstacles, as shown in Figure 5.2(b), also suggest

that small obstacles are more effective at reducing the diffusivity and that this reduction is

more pronounced if the agent is asymmetric than if it is symmetric. Comparing the data in

Figure 5.2(a)–(b) suggests that the reduction in diffusivity is greater for a 2 × 2 agent than for

an asymmetric 1 × 2 agent. Data in Figure 5.2(c) indicate that similar trends apply in three

dimensions.

In practice, trajectory data from stochastic random walk simulations is very noisy [118]
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and to make sense of these data it is necessary to average over a very large ensemble of

identically prepared realizations to obtain accurate estimates of the long time diffusivity. In

some cases, calculating the diffusivity directly from stochastic random walk simulations can

be overwhelmingly computationally expensive. This observation motivates us to apply an

alternative, exact approach.

5.3.1 Algorithm and worked example

We now calculate the diffusivity using the method proposed by Mercier and Slater [42–44].

This algorithm provides an exact solution for a given obstacle configuration of interest. The

Mercier–Slater method involves applying a vanishingly small bias, ϵ > 0, to the random walk

making it more probable for the agent to attempt to move in a particular direction. The bias can

be applied separately in either the x, y or z directions, and is therefore applicable to random

walks in both two and three dimensions. If the bias is applied in the x–direction, we calculate

the exact diffusivity in that direction using the Nernst–Einstein relationship (a special case of

the fluctuation-dissipation theorem [64]),

Dx =
Dx

D0x

= lim
ϵ→0

µ(ϵ)

µ0

, (5.3)

where 0 < Dx ≤ 1/d is the dimensionless diffusivity in the x–direction, D0x = 1/d is the

dimensionless diffusivity in the x–direction when there are no obstacles present, µ(ϵ) is the

motility of the agent moving in the x–direction under the action of the bias and µ0 is the motility

of the agent moving in the x–direction without the influence of the bias. Dx denotes the ratio

of Dx to D0x so that 0 < Dx ≤ 1. Applying the bias in the y or z–directions can be used to

calculate Dy or Dz, respectively.

Throughout this work we always apply the Mercier–Slater method by applying the bias in

the positive x, y or z directions. We note that applying the bias in the negative x, y or z direction

does not change our results since the sign of ϵ does not affect the value of the limit in Equation

(5.3). Since µ(ϵ) and µ0 do not vary with time, we can calculate them by considering properties

of the long time expected motion of the agent on the lattice. Equation (5.3) thus permits an

exact calculation of the long time Fickian diffusivity, and it can be applied to each combination

of agent and obstacle shapes and sizes in Figure 5.2.
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We calculate µ(ϵ) from the mean agent velocity at each lattice site. Let v be a vector whose

qth element, v(q), denotes the mean agent velocity at site q. If we consider the x direction, the

mean agent velocity is given by

v(q) = p+L+ − p−L−, (5.4)

where p± are the probabilities of movement in the positive and negative x–directions, respec-

tively, and L± = 1 if the relevant target site is vacant and zero if it is occupied.

The probability of finding the agent at any particular lattice site in the long time limit is

given by solving the eigenvalue problem

Tn = n,

where T represents a transition matrix in which the element of the ath row and bth column, Tab,

is the probability that an agent located at site b will step to site a in the next time step, and n

is a vector whose qth element, n(q), denotes the probability that an agent is located at site q in

the long time limit. Generally, we normalise n to ensure that
∑

q n(q) = 1, and we do this

by calculating the unit vector, n̂. The mean (global) velocity is given by v · n̂, and from these

quantities we can derive

µ(ϵ) =
v · n̂
ϵ

, (5.5)

from which we can recover the diffusivity using Equation (5.3).

In summary, applying the Mercier–Slater algorithm involves the following steps:

1. for a given obstacle configuration, construct the transition matrix, T;

2. solve Tn = n;

3. calculate n̂;

4. calculate the mean velocity, v, at each lattice site;

5. calculate µ(ϵ) using Equation (5.5);

6. calculate Dx using Equation (5.3).

To save a mathematical step we take advantage of the fact that the row rank of (T−I) is less

than or equal to the number of rows of T, and is only equal in the special case in which T = I.

Accordingly, we introduce the normalisation condition by rewriting Tn = n as (T− I)n = 0,
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(a) (b) (c)

Figure 5.3: (a) Special case (i), a lattice in which the obstacles (solid black) are laid down
in a configuration so that the agent (represented by X) cannot move. (b)–(c) Special case (ii),
two examples of lattices in which the obstacles (solid black) are laid down so that the lattice
contains two or more independent closed regions.

where I is an identity matrix of appropriate size, and we replace a row of the new coefficient

matrix, (T− I), with ones. This gives An = b where A is the modified coefficient matrix and

b = [0, 0, ..., 1]T, which enforces the normalisation condition.

A further simplification can also be implemented. If vϵ and vI denote the ϵ dependent

and ϵ independent components of v, respectively, and nϵ and nI denote the ϵ dependent and

ϵ independent components of n̂, respectively, and neglect terms of order ϵ2 and higher, then

Equation (5.3) and Equation (5.5) can be re–expressed in the simpler form [42]

D = vϵ · nI + vI · nϵ. (5.6)

To solve for nϵ and nI we separate A into its ϵ dependent and ϵ independent components (so

that A = AI + ϵAϵ), and note that nI and nϵ satisfy [42]

AI nI = b, (5.7)

AI nϵ = −Aϵ nI . (5.8)

There are a number of special cases in which the algorithm leads to interesting results. Here

we will explicitly discuss two of these special cases:

(i) It is possible that the obstacles may be placed in a way that prevents the agent from

moving. In Figure 5.3 (a) we show an example of this special case. Here, we have T = I and
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the algorithm gives

n =

(
1

N
,
1

N
, ...,

1

N

)T

,

v = 0,

where N is the total number of vacant lattice sites. For this system, Equation (5.6) gives D = 0,

as expected.

(ii) In the special case in which the lattice contains closed and independent regions, the

agent will remain trapped in the starting region for all time. We show two example lattices, in

Figure (5.3)(b)–(c), in which obstacles are laid down in a manner that separates the available

lattice sites into two independent regions, each of which has an independent set of probability

equations. For scenarios in which the agent has been placed into a closed region, there are two

possible ways to proceed. Firstly, if we take the usual approach and consider the entire lattice

we find that T is block diagonal and D = 0. Secondly, if we treat each independent region

separately we find that D > 0 in each region.

For all of the results presented in this work, we always consider a random arrangement of

obstacles. We do not consider these two scenarios any further in this Chapter.

To demonstrate the application of the algorithm we present a worked example for the lattice

and obstacle configuration shown in Figure 5.4(a). This is a two–dimensional lattice, of size

4× 2, containing a 1× 2 obstacle in the lower left portion of the lattice. If we bias the motion

in the positive x–direction and consider the case where the agent is initially located at site 1,

the probability that the agent will step to site 2 is (1 + ϵ)/4 and the probability that the agent

will step to site 4 is (1 − ϵ)/4. The agent will attempt to step in the negative y–direction with

probability 1/4, however this attempted motility event will be aborted because of the obstacle.

Similarly, the agent will attempt to step in the positive y direction with probability 1/4 and this

attempted motility event will also be aborted due to the periodic boundary conditions and the

location of the obstacle. Therefore, there is a probability of 1/4 + 1/4 = 1/2 that the agent

will remain at site 1. Following a similar process of reasoning for the remaining lattice sites,
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Figure 5.4: (a) and (b) show two examples of two–dimensional lattices, used for the worked
calculations. In each case the site numbering and obstacle locations (black) are given. (c) shows
an example of a three–dimensional lattice, used for the worked calculations. The site numbering
and obstacle location (black) is given. For the three–dimensional lattice we show both the entire
lattice (lower right) as well as the two layers of the lattice (lower left).

the transition matrix for this lattice, with a bias in the positive x direction, is given by

T =



1
2

1+ϵ
4

0 1−ϵ
4

0 0

1−ϵ
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1
2

1+ϵ
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0 0 0

0 1−ϵ
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4

1
2

0

1+ϵ
4

0 1−ϵ
4

0 0 1
2

0 0 1
2

0 1+ϵ
4

1+ϵ
4

0 0 0 1
2

1−ϵ
4

1−ϵ
4



.

The mean velocity vectors, whose elements are given by Equation (5.4), are

vI =

(
0, 0, 0, 0,−1

4
, 1
4

)T

, (5.9)

vϵ =

(
1
2
, 1
2
, 1
2
, 1
2
, 1
4
, 1
4

)T

. (5.10)
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From Eqs. (5.7)–(5.8) it follows that

nI =

(
1
6
, 1
6
, 1
6
, 1
6
, 1
6
, 1
6

)T

, (5.11)

nϵ =

(
− 1

792
, 23
792

, 47
792

,− 25
792

, 95
792

,− 73
792

)T

. (5.12)

Combining Eqs. (5.9)–(5.12) with Equation (5.6) gives Dx = 4/11.

If we bias motion in the positive y–direction, following a similar procedure, the transition

matrix for this lattice is

T =


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

.

Note that the coefficients appear to be independent of ϵ owing to a number of algebraic can-

cellations. For example, the probability of stepping in the positive y direction, from site 3 to

site 5, is (1 + ϵ)/4. The probability of stepping in the negative y direction, from site 3 to

site 5, is (1 − ϵ)/4. This means that the net probability of stepping from site 3 to site 5 is

(1 + ϵ)/4 + (1− ϵ)/4 = 1/2, which is independent of ϵ. The mean velocity vectors are

vI =

(
0, 0, 0, 0, 0, 0

)T

, (5.13)

vϵ =

(
0, 0, 1

2
, 1
2
, 1
2
, 1
2
,

)T

. (5.14)
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From Eqs. (5.7)–(5.8) it follows that

nI =

(
1
6
, 1
6
, 1
6
, 1
6
, 1
6
, 1
6

)T

, (5.15)

nϵ =

(
0, 0, 0, 0, 0, 0

)T

. (5.16)

Combining Eqs. (5.13)–(5.16) with Equation (5.6) gives Dy = 1/3. Additional worked

examples in both two and three dimensions are given in Chapter 6.

The systems of linear equations that we derive are exact, however we always solve these

equations numerically. In general, the transition matrix is large and sparse. Under these condi-

tions Eqs. (5.7)–(5.8) can be solved efficiently using the generalised minimal residual method

(GMRES) [119]. GMRES is an iterative method which efficiently solves for the solution to

the matrix equation Ax = b in the Krylov subspace Kn = span {b,Ab,A2b, ...,An−1b} by

finding the vector xn which minimises the Euclidean norm of the residual Axn − b to within

any given error tolerance [119]. To demonstrate our implementation of this approach we apply

it to calculate the diffusivity in the x–direction for each combination of agent and obstacle

depicted in Figure 5.2. Using our estimate of Dx, we plot horizontal lines at log10 (2Dx) on

each subfigure in Figure 5.2. Comparing the averaged MSD data in Figure 5.2 with the relevant

horizontal lines at log10 (2Dx) confirms that there is very good agreement between the exact

calculations of Dx and the results from the averaged MSD data since the averaged MSD data

asymptotes to the same horizontal line indicated by the exact calculations. Note that all MSD

data in Figure 5.2 corresponds to the x-component of the trajectory data which is why the

estimates of diffusivity correspond to the x-component.

5.4 Results

Now that we have described and verified the algorithm for calculating the diffusivity on a

range of small lattices, we apply the algorithm to calculate the diffusivity on larger, more

practically sized lattices. We interpret our results by applying the algorithm to a large number

of identically-prepared lattices with the same value of ϕ but with randomly arranged obstacles.

Since the obstacles are always randomly oriented we always find that ⟨Dx⟩ = ⟨Dy⟩ = ⟨Dz⟩

(results not shown), confirming that there is, on average, no anisotropy. Therefore, for the
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Figure 5.5: Results in (a)–(h) show a normalised histogram of D values for 10, 000 lattices
which are randomly populated with obstacles to densities ϕ = 0.15 (red), ϕ = 0.10 (blue) and
ϕ = 0.05 (green). N is the normalised number of counts in each histogram box. Results in
(a)–(d) and (e)–(h) correspond to 1×1 and 2×2 agents, respectively. Results in (a)–(b); (e)–(f)
and (c)–(d); (g)–(h) correspond to 1×1 and 2×2 obstacles, respectively. Results in (a), (c), (e),
(g) and (b), (d), (f), (h) correspond to M = 50 and M = 100, respectively. All histograms are
constructed with 250 equally spaced intervals between 0.00 to 1.00. The solution of all systems
of linear equations use GMRES with a strict error tolerance of 10−8.

remainder of this study we only present results for ⟨Dx⟩, and for simplicity we drop the subscript

x and the triangular brackets.

For a small number of simulations the agent is placed in a closed region and D = 0. We

have included these simulations in Figures 5.5–5.8.

5.4.1 Two–dimensional random walk with symmetric agents and obstacles

We first consider two–dimensional lattices involving either 1 × 1 or 2 × 2 agents moving on a

lattice which has been randomly populated with either 1× 1 or 2× 2 obstacles at density ϕ. We

use the Mercier–Slater algorithm to calculate D for each lattice, and we consider an ensemble

of 10, 000 identically prepared lattices. Results are shown as a histogram of D in Figure 5.5.

The mean estimates of D are given in Table 5.1.

For each system we consider, our results indicate that D decreases with increasing obstacle

density and that smaller obstacles are more effective at reducing D than larger obstacles at the
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same density. For all densities considered, D is smaller for 1 × 1 obstacles than for 2 × 2

obstacles for both 1 × 1 and 2 × 2 agents at the same density. We also note that these effects

are more pronounced for larger agents than for smaller agents. On average, the diffusivity of a

2×2 agent on a given lattice is smaller than the diffusivity of a 1×1 agents on the same lattice.

We find that, in situations where the agent and obstacles are the same size, the absolute size

of the agent and obstacles relative to the size of the lattice spacing has an impact on D. For

example, for ϕ = 0.15, with 1× 1 agents and 1× 1 obstacles we have D = 0.6564, whereas for

a similar situation with 2 × 2 agents and 2 × 2 obstacles we have D = 0.4849, corresponding

to a reduction in D by approximately 26%.

A histogram of calculated diffusivities is given in Figure 5.5. Results in the left column

correspond to lattices with X = Y = 50 while results in the right column correspond to a larger

lattice with X = Y = 100. Our results indicate that the mean diffusivity for each combination

of agent and obstacle sizes is approximately independent of the size of the lattice. However, the

standard deviation of each distribution decreases as the lattice size increases. For example, for

a system in which 2× 2 agents move through a lattice populated with 2× 2 obstacles to density

ϕ = 0.15, we have D = 0.4841 ± 0.0491 and D = 0.4849 ± 0.0279 for X = Y = 50 and

X = Y = 100, respectively. This reduction in variability suggests that for a larger lattice fewer

realisations are required to estimate D reliably.

5.4.2 Two–dimensional random walk with asymmetric agents and obstacles

We now consider a two–dimensional system in which either the agent or the obstacles are

asymmetric. Specifically, we consider the situation where we have: (i) either a 1 × 1 agent

moving on a lattice populated with 1× 2 obstacles or we have a 1× 2 agent moving on a lattice

populated with 1× 1 obstacles; (ii) the situation where we have either a 1× 1 agent moving on

a lattice populated with L–shaped obstacles or we have a L–shaped agent moving on a lattice

populated with 1×1 obstacles; (iii) the situation where we have either a 1×1 agent moving on a

lattice populated with 1×3 obstacles or we have a 1×3 agent moving on a lattice populated with

1 × 1 obstacles. A histogram of the ensemble of the diffusivity results is shown in Figure 5.6

and the sample mean and variability, given by the sample standard deviation, for each system

are shown in Table 5.2.

Our results for the asymmetric agents and obstacles are interesting because some of the
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Figure 5.6: Results in (a)–(l) show a normalised histogram of D values for 10, 000 lattices
which are randomly populated with obstacles to densities ϕ = 0.15 (red), ϕ = 0.10 (blue) and
ϕ = 0.05 (green). N is the normalised number of counts in each histogram box. Results in
(a)–(b), (c)–(d), (e)–(f), (g)–(h), (i)–(j), (k)–(l) correspond to a 1× 2 agent with 1× 1 obstacles,
a 1 × 1 agent with 1 × 2 obstacles, an L–shaped agent with 1 × 1 obstacles, a 1 × 1 agent
with L–shaped obstacles, a 1 × 1 agent with 1 × 3 obstacles, and a 1 × 3 agent with 1 × 1
obstacles, respectively. Results in (a), (c), (e), (g), (i), (k) and (b), (d), (f), (h), (j), (l) correspond
to X = Y = 50 and X = Y = 100, respectively. All histograms are constructed with 250
equally spaced intervals between 0.00 to 1.00. The solution of all systems of linear equations
use GMRES with a strict error of tolerance 10−8.
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trends we observed in Section 5.4.1 for symmetric agents and obstacles do not apply. Specifi-

cally, while the data in Table 5.2 suggest that the smaller 1× 1 obstacles are more effective are

reducing D than larger 1× 2 obstacles for each density considered. However, we see that larger

L–shaped obstacles are more effective at reducing the diffusivity than the smaller 1×1 obstacles

for higher densities. 1 × 3 obstacles are less effective at reducing the diffusivity compared to

L–shaped obstacles. This particular result is interesting because it shows that obstacles of the

same size can have a different impact on the diffusivity, and we attribute this to the difference

in obstacle shape. However, 1 × 3 agents have a lower diffusivity, on average, than L–shaped

agents when they are placed on a lattice populated with 1× 1 obstacles. We also observe other

differences when we compare the symmetric and asymmetric cases. For example, a 1× 1 agent

moving on a lattice occupied with L–shaped obstacles to a density of ϕ = 0.15 is associated

with D = 0.0898 whilst an L–shaped agent moving on a lattice occupied with 1 × 1 obstacles

has D = 0.1247, an increase of approximately 40%. Similarly, a 1×1 agent moving on a lattice

occupied with 1×3 obstacles has D = 0.6560 whilst a 1×3 agent moving on a lattice occupied

with 1 × 1 obstacles has D = 0.0846, a decrease of approximately 87%. Therefore, unlike the

symmetric cases considered in Section 5.4.1, increasing the size of asymmetric agents does not

necessarily decrease the diffusivity.

5.4.3 Three–dimensional random walk with symmetric obstacles

We now demonstrate how to apply the algorithm to three–dimensional problems in which

either 1 × 1 × 1 or 2 × 2 × 2 agents move on a lattice that is randomly populated with either

1× 1× 1 or 2× 2× 2 obstacles. To manage the computational expense of dealing with three–

dimensional calculations we consider three–dimensional lattices that contain approximately the

same number of lattice sites as those considered in the two–dimensional simulations in Sections

5.4.1 and 5.4.2. We show a histogram of the ensemble calculations of D in Figure 5.6. The

sample mean and variability, indicated by the sample standard deviation, are reported in Table

5.3.

Similar to the results in two dimensions, we find that D decreases with ϕ for all combinations

of agents and obstacles in three dimensions. Our calculations indicate that smaller 1 × 1 × 1

obstacles are more effective at reducing D than larger 2 × 2 × 2 obstacles, for both types of

agents and for all obstacle densities considered. Furthermore, for all obstacle types and densities
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Figure 5.7: Results in (a)–(h) show a normalised histogram of D values for 10, 000 lattices
which are randomly populated with obstacles to densities ϕ = 0.15 (red), ϕ = 0.10 (blue) and
ϕ = 0.05 (green). N is the normalised number of counts in each histogram box. Results in
(a)–(b), (c)–(d), (e)–(f) and (g)–(h) correspond to simulations involving a 1× 1× 1 agent with
1× 1× 1 obstacles, a 1× 1× 1 agent with 2× 2× 2 obstacles, a 2× 2× 2 agent with 1× 1× 1
obstacles, and a 2 × 2 × 2 agent with 2 × 2 × 2 shaped obstacles, respectively. Results in (a),
(c), (e), (g), and (b), (d), (f), (h) correspond to P = Q = R = 15 and P = Q = R = 25,
respectively. All histograms are constructed with 250 equally spaced intervals between 0.00 to
1.00. The solution of all systems of linear equations use GMRES with a strict error tolerance of
10−8.

considered, these effects are most pronounced for larger 2×2×2 agents than they are for smaller

1 × 1 × 1 agents. These results are consistent with the general conclusions we reached for a

two–dimensional systems in Section 5.4.1.

Similar to the two–dimensional results, we find that situations in which the agent and

obstacle are the same size, the absolute size of the agent and obstacles relative to the lattice

spacing affects D. Generally, increasing the size of the agents and obstacles relative to the

lattice spacing decreases D. For example, for ϕ = 0.10, we have D = 0.8463 and D = 0.7136

for systems involving 1× 1× 1 and 2× 2× 2 agents and obstacles, respectively.

Two sets of histograms of each ensemble of D are given in Figure 5.7, corresponding to two

differently sized three–dimensional square lattices: P = Q = R = 15 and P = Q = R = 25.

Our results indicate that increasing the size of the lattice does not alter the mean D for any

combination of agents and obstacles considered. However, increasing the size of the lattice

reduces the sample standard deviation, which is consistent with our exact calculations of D in
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Figure 5.8: D for a 1 × 1 agent moving on a 100 × 100 two–dimensional lattice randomly
populated with 1 × 1 obstacles to density ϕ. Results are given for 0 ≤ ϕ ≤ 0.5. Here the data
points correspond to ⟨D⟩, constructed using 10,000 identically prepared lattices. The error bars
denote the sample standard deviation.

two dimensions.

5.4.4 Higher values of obstacle density

We now consider a wider range of values of ϕ, 0 ≤ ϕ ≤ 0.5, for a situation in which 1 × 1

agents move on a lattice that is randomly populated with 1×1 obstacles. Without any obstacles,

we have ϕ = 0 and D = 1. Additional results in Table 5.4 and Figure 5.8 report values of D for

0 ≤ ϕ ≤ 0.5. As ϕ increases, D decreases, as expected. For ϕ = 0.45 and ϕ = 0.50 we find that

D = 4.46 × 10−5 and D = 5.37 × 10−8 which both round to zero at four decimal places. We

find that the standard deviation of the distribution increases with ϕ, and decreases as the size of

the lattice increases, as shown in Figure 5.9.

5.5 Discussion and conclusion

A routine aim of applying a random walk model to replicate observations made from cellular

and molecular experiments is to provide an estimate of the Fickian diffusivity [108–110]. While

these concepts are relatively straightforward in an in vitro experimental setting, applying a

random walk model to an in vivo situation is complicated by the fact that the motion of cells

and molecules is hindered by the presence of obstacles of varying shapes and sizes [93, 100,
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Figure 5.9: Results in (a)–(b) show a normalised histogram of D values for 10, 000 lattices
which are randomly populated with obstacles to densities ϕ = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30,
0.35 and 0.40, which are labelled in sequential order (i)–(viii), respectively. N is the normalised
number of counts in each histogram box. Results in (a)–(b) correspond to X = Y = 50 and
X = Y = 100, respectively. All histograms are constructed with 250 equally spaced intervals
between 0.00 to 1.00. The solution of all systems of linear equations use GMRES with a strict
error tolerance of 10−8.

ϕ 1× 1 Agents with 1× 1 obstacles
0.05 0.8907± 0.0011

0.10 0.7765± 0.0022

0.15 0.6564± 0.0100

0.20 0.5297± 0.0178

0.25 0.3980± 0.0210

0.30 0.2617± 0.0226

0.35 0.1275± 0.0201

0.40 0.0203± 0.0110

0.45 0.0000± 0.0007

0.50 0.0000± 0.0000

Table 5.4: Average diffusivity, D, with the variability indicated by the sample standard
deviation, for each two–dimensional combination of symmetrical agents and symmetrical
obstacles considered. All results correspond to a 100 × 100 lattice and are calculated from
an ensemble of 10, 000 identically prepared realisations.



5.5. DISCUSSION AND CONCLUSION 85

111, 112]. Previous approaches for estimating the diffusivity from a random walk model in

a crowded environment involve performing repeated stochastic random walk simulations and

collecting MSD data [11, 12, 23, 25]. Since agent trajectory data can be very noisy and estimates

of diffusivity require long time MSD data, it can be computationally demanding to estimate the

Fickian diffusivity from repeated simulations of such models.

In this work we calculate D using a different approach that provides an exact result without

the need for performing repeated stochastic simulations [42–44]. Our results provide insight

into the details of how varying the shape and size of the obstacles affects the Fickian diffusivity.

Furthermore, we are also able to explore how varying the shape and size of the motile agent

affects the diffusivity. In summary, our results show that the diffusivity is strongly dependent on

the details of the obstacle field and is sensitive to the density of obstacles, the size of obstacles,

the shape of obstacles and the size of the obstacles relative to the agent.

Although our approach for calculating D overcomes certain limitations of relying solely

upon stochastic simulation data, our approach is subject to other limitations. For example, the

approach used to calculate D in this study is only relevant to the situation where the obstacles are

stationary. This is relevant for certain problems, whereas other previous studies have considered

mobile obstacles for which the exact calculations are not relevant. While the results presented in

this study are limited to four different types of two–dimensional obstacles and agents, and two

different types of three–dimensional obstacles and agents, the approach outlined here can also

be applied to other lattices, such as a triangular lattice, and other types of agents and obstacles

of varying shapes and size.
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Chapter 6

Additional results for Chapter 5

We now calculate the long time diffusivity in each direction for the lattices shown in Figure

5.4(b)–(c). For the lattice in Figure 5.4(b), when we bias motion in the positive x–direction, the

transition matrix is given by

T =
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Equations (5.7)–(5.8) gives

nI =
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,

from which we arrive at the diffusivity

Dx = vϵ · nI + vI · nϵ = 0.

This result is expected as the location of the two 1 × 1 obstacles on this lattice mean that the

displacement of the x–component of the trajectory is always confined by the obstacles and

cannot increase indefinitely. When we bias the motion in the positive y–direction, the transition

matrix is given by

T =
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Using Eqs. (5.7)–(5.8), we have

nI =

(
1
6
, 1
6
, 1
6
, 1
6
, 1
6
, 1
6

)T

,

nϵ =

(
0, 0, 0, 0, 0, 0

)T

,

giving a diffusivity of

Dy = vϵ · nI + vI · nϵ =
1

3
.

We now consider the three–dimensional lattice depicted in Figure 5.4(c). The algorithm is

identical to the algorithm for a two–dimensional lattice except that each lattice site has a

maximum of six nearest neighbors instead of four. Introducing a bias in the positive x–direction,

the transition matrix for this lattice is given by

T =


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Equations (5.7)–(5.8) give

nI =

(
−1

7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7

)T

,

nϵ =

(
0, 0, 0, 0, 0, 0, 0

)T

,

and the diffusivity is

Dx = vϵ · nI + vI · nϵ =
2

7
.

Because the lattice in Figure 5.4(c) is symmetric in each direction, it follows that Dx = Dy =

Dz = 2/7, and this can be confirmed by repeating the calculations by biasing the motion in the

positive or negative y and z directions, respectively.
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Distinguishing between short-time non-Fickian

diffusion, and long-time Fickian diffusion for a

random walk on a crowded lattice

A paper published in the Journal of Chemical Physics.

Ellery, Adam J, Baker, Ruth E and Simpson, Matthew J, Distinguishing between short-time

non-Fickian diffusion, and long-time Fickian diffusion for a random walk on a crowded lattice.

The Journal of Chemical Physics 449 74 (2016).

7.1 Abstract

The motion of cells and molecules through biological environments is often hindered by the

presence of other cells and molecules. A common approach to modelling this kind of hindered

transport is to examine the mean squared displacement (MSD) of a motile tracer particle in a

lattice-based stochastic random walk in which some lattice sites are occupied by obstacles.

Unfortunately, stochastic models can be computationally expensive to analyse because we

must average over a large ensemble of identically-prepared realisations to obtain meaningful

results. To overcome this limitation we describe an exact method for analysing a lattice-based

model of the motion of an agent moving through a crowded environment. Using our approach

we calculate the exact MSD of the motile agent. Our analysis confirms the existence of a

transition period where, at first, the MSD does not follow a power law with time. However,

after a sufficiently long period of time, the MSD increases in proportion to time. This latter
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phase corresponds to Fickian diffusion with a reduced diffusivity owing to the presence of the

obstacles. Our main result is to provide a mathematically motivated, reproducible and objective

estimate of the amount of time required for the transport to become Fickian. Our new method

to calculate this crossover time does not rely on stochastic simulations.

7.2 Introduction

Modelling the transport of cells and molecules can be complicated because many biological

environments are crowded with structures that can obstruct cellular and molecular motion. In

the literature, this kind of hindered transport is often modelled using a lattice-based nearest

neighbour random walk in which a proportion of lattice sites are populated with immobile

obstacles [1–3, 11–14, 25, 40, 55, 56, 120]. In these simulations, crowding effects are modeled

explicitly by enforcing an exclusion principle that prevents the motile agent from stepping

onto any site that is occupied by obstacles [27]. Mean squared displacement (MSD) data

from simulations indicate the existence of a transition period where, at first, the MSD does

not follow a power law in time [1–3, 11–14, 25]. However, after a sufficiently long period of

time, the MSD increases in proportion with time, and the transport process eventually becomes

Fickian [67, 69, 121]. Since it is common to quantify biological transport in terms of a Fickian

diffusivity, it is of interest to predict the amount of time required for the transport process to

effectively reach the Fickian regime. We refer to this amount of time as the crossover time.

Here, we propose a new, exact method for calculating the transient MSD and crossover

time for a lattice-based random walk in which the lattice is partially occupied by immobile

obstacles. Our results do not depend on performing stochastic simulations. We apply existing

results from Markov chain theory to show that the transient phase approaches the Fickian

phase exponentially fast. Using this information we present an objective, mathematically based

estimate of the crossover time using the concept of mean action time [45, 48, 49].

7.3 Stochastic simulations

We consider a two-dimensional square lattice, of dimension X × Y , with unit lattice spacing.

Sites are indexed (i, j) so that each site has location (x, y) = (i, j). The lattice is randomly
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populated with obstacles, with density ϕ. A motile agent is placed on an unoccupied site and

allowed to undergo a discrete time nearest neighbour random walk [122] with time steps of unit

duration. Periodic boundary conditions are enforced on all boundaries. Crowding effects are

modelled explicitly by aborting all potential motility events that would lead to the motile agent

stepping to a site that is occupied by an obstacle [27].

As the simulation proceeds we record the displacement of the agent, r(t), and we use this

information to calculate the MSD, ⟨r2(t)⟩, where ⟨·⟩ denotes an average over a large ensemble

of identically prepared realisations in which the motile agent has the same starting position in

each realisation. Several earlier studies [11–14, 25] suggest that ⟨r2(t)⟩ may evolve as a power

law, ⟨r2(t)⟩ = 4Dtα, where 0 < α < 2 is a constant that indicates the type of transport taking

place [69]. Subdiffusion is associated with α < 1, superdiffusion is associated with α > 1, and

classical Fickian diffusion is associated with α = 1. To explore this power law behaviour, we

follow a standard approach by plotting log10 (⟨r2(t)⟩ /t) as a function of log10 (t) [11, 12]. If

the MSD follows this power law, the data in this plot should fall on a straight line. If the power

law holds, the straight line will have a negative slope if α < 1, a positive slope if α > 1, or it

will be a horizontal line if the transport is Fickian and α = 1.

Results in Figure 7.1 (a)–(c) show stochastic MSD data for ϕ = 0.05, 0.15, 0.25, respec-

tively. In each subfigure we show plots of log10 (⟨r2(t)⟩ /t) as a function of log10 (t) for

five randomly-chosen starting locations. After a sufficiently large amount of time, each MSD

curve, for each value of ϕ, appears to approach to the same, approximately horizontal, straight

line. This is consistent with previous analysis since the MSD is proportional to t, giving

⟨r2(t)⟩ = 4Dt, in the long time limit [42, 43], as t → ∞. In this case, the crowded Fickian

diffusivity, D, is reduced relative to the standard obstacle-free diffusivity, D0 = 1/4 in two

dimensions on a unit lattice, and the value of D depends on ϕ. For each value of ϕ considered

in Figure 7.1, we observe a different horizontal asymptote, and we see that D decreases with ϕ.

All stochastic simulation results in Figure 7.1 are obtained by performing many identically

prepared realisations of a random walk in which the initial location of the motile agent is held

constant. Additional results, given in Figure 7.2, are obtained by performing many identically

prepared realisations of a random walk in which the initial location of the motile agent is chosen

randomly in each realisation. Since the MSD data in Figure 7.2 (a)–(c) are further averaged over

different starting locations, we denote the MSD data in Figure 7.2 as ⟨r̄2(t)⟩. For each value



94 CHAPTER 7.

0 1 2 3 4 5

−0.4

−0.2

0.0

φ = 0 .05
lo
g
1
0

t

log10 ( t)
0 1 2 3 4 5

−0.4

−0.2

0.0

φ = 0 .15

log10 ( t)
0 1 2 3 4 5

−0.4

−0.2

0.0

φ = 0 .25

log10 ( t)

(a) (b) (c)

r 
(t

)
2

Figure 7.1: (a)–(c) show log10 (⟨r2(t)⟩ /t) as a function of log10 (t) for five randomly chosen
starting positions on lattices with ϕ = 0.05, 0.15, 0.25, respectively. Exact results, calculated
using the Markov chain approach (solid blue), are superimposed on results from stochastic
simulations (dashed red). All results correspond to X = Y = 103, and simulation data
is averaged over 104 identically prepared realisations. The exact solution is calculated until
t = 103 , whereas the stochastic simulations are calculated until t = 5× 104.
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Figure 7.2: (a)–(c) show plots of log10 (⟨r̄2(t)⟩ /t) as a function of log10 (t) for
ϕ = 0.05, 0.15, 0.25 , respectively (solid black). In each case the logarithm of the crossover
time, log10(C), is superimposed (vertical red). The least–squares best fit straight lines for early
time data (0 ≤ t ≤ 102) and late time data (104 ≤ t ≤ 106) are also given (blue–dashed). The
ordinate of the intersection of these fitted straight lines is Saxton’s crossover time [11, 12]. All
simulations use X = Y = 25, and averaged MSD data is generated using 5 × 104 identically
prepared realisations. The MSD data is generated until t = 106.

of ϕ, the MSD data in Figure 7.2 forms a curve which, like the data in Figure 7.1, eventually

asymptotes to a horizontal line after a sufficient amount of time [11–14, 25].

Now that we have presented standard MSD data from a stochastic random walk algorithm

in Figures 7.1-7.2, we aim to present some analysis allowing us to predict key features of the

simulated data without the need for performing stochastic simulations.



7.4. ANALYSIS 95

7.4 Analysis

Let p(t) be a vector whose kth element denotes the probability of finding the motile agent at the

kth lattice site at time t. The evolution of p(t) is given by the Markov chain

p(t) = p(0)Tt, (7.1)

where T is the transition matrix [122, 123] and the superscript t indicates exponentiation to the

value of time, t. The elements of T, Ta,b, denote the probability that the agent will step from

site a to site b per time step. Evaluating Equation (7.1) in a computationally efficient manner

is challenging. Although T is sparse, Tt is not, and even a modestly sized lattice may require

several petabytes to store and manipulate. To manage computational limitations, we evaluate

Equation (7.1) iteratively at discrete time steps, tm = m, for m = 0, 1, 2, 3, . . .. This allows us

to take advantage of the relation p(t) = (p(0)Tt−1) T, from which it follows that

p(tm) = p(tm−1)T, ∀ m = 1, 2, 3, . . . (7.2)

This approach allows us to calculate p(t) by storing just p(tm) and the sparse transition matrix,

T.

Simulation data in Figures 7.1-7.2 is obtained by imposing periodic boundary conditions.

To evaluate the MSD in the simulations we record the number of times that the motile agent

crosses the boundaries of the lattice to arrive at a particular site. However, in our analysis,

the vector p(t) does not contain any information about the number of times that the agent

crosses the lattice boundaries. To deal with this analytically, we consider a large lattice that is

composed of a periodic tiling of the smaller lattice used in the simulations. The tiling is chosen

to be sufficiently large to ensure that the probability that the agent reaches the boundaries of

the larger tiled lattice during the time interval considered is zero. Because p(t) is the exact

probability of locating the agent at any site at time t, we calculate the MSD exactly, without

considering an ensemble

r2(t) =
∑
i,j

x2
i,j(t) pij(t), (7.3)

where x2
i,j(t) = [i(t) − i(0)]2 + [j(t) − j(0)]2 and pij(t) denotes the probability of finding

the agent at site (i, j), on the tiled lattice, at time t. At each discrete value of time, we use



96 CHAPTER 7.

Equation (7.3) to calculate the exact value of r2(t). We apply Equations (7.2)–(7.3) to mimic the

stochastic simulation data in Figure 7.1. Exact results are superimposed on averaged simulation

results in Figure 7.1 (a)–(c). For each of ϕ, and for each of the five starting positions we find that

the Markov chain calculation compares very well with the averaged stochastic simulation data.

Exact and simulation data in Figure 7.1 are compared for t < 103 since it becomes increasingly

expensive to evaluate the exact results for larger t.

7.5 Crossover time

Transport of single cells or molecules is often quantified in terms of a Fickian diffusivity.

Therefore, we are interested in predicting the amount of time required for the transport process

to effectively reach the Fickian regime. Previous estimates of the crossover time have been

obtained using simulation data. For example, Saxton [11, 12] obtained averaged stochastic

MSD data and fitted two straight lines to that data. The first straight line is fitted to the small

time, early portion of the MSD data. The second straight line is fitted to the large time, late

portion of the MSD data. Using this approach, Saxton estimated the crossover time by finding

the time at which these two straight lines intersect. This method suffers from the limitation

that it requires the generation of stochastic simulation data. Furthermore, the choice of fitting

straight lines to early and late time data involves making subjective choices. In particular,

without an objective definition of early time and late time, this definition of crossover time is

not reproducible. In contrast, we provide a mathematically motivated and reproducible estimate

of the crossover time that avoids performing stochastic simulations.

The rate at which p(0)Tt approaches p(0)Π is bounded by an exponential (Chapter 8), with

rate λt
2 = eloge(λ2) t, where λ2 is the real eigenvalue of T that has the second-largest magnitude..

Using this bound we use the theory of mean action time (Chapter 9) to provide a finite estimate

of the crossover time,

C = − 2

loge λ2

. (7.4)

This definition of crossover time is simpler to implement than Saxton’s [11, 12] approach

because we do not need to perform stochastic simulations, nor do we need to make subjective

choices about fitting straight lines to early time and late time simulation data.
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In practice, it is straightforward to calculate λ2 using the following algorithm: (i) Cal-

culate the eigenvector, u, corresponding to the leading eigenvalue of T using the power–

iteration method [124]; (ii) Calculate Hotelling’s deflated matrix [124], A = T − λ1vv
T,

where v = u/|u| and the superscript T denotes a transpose; and (iii) Apply the power–iteration

method a second time to the matrix A and use the Rayleigh coefficient λ2 = wTAw/wTw,

where w is the eigenvector of the leading eigenpair of A, to recover λ2.

Results in Figure 7.2 (a)–(c) shows log10(C) superimposed on the simulated MSD curves.

Visually, the values of C appear to act as a useful estimate of the crossover time because

the simulated MSD curves appear to be effectively horizontal for t > C. In particular, we

have C = 0.57 × 104, 1.3 × 104 and 5.6 × 104 for ϕ = 0.05, 0.15 and 0.25, respectively.

These results show that the crossover time increases with ϕ, as we might anticipate. In Figure

7.2(a)–(c) we also show the least–squares best fit straight lines for both early and late time.

The intersection of these straight lines gives Saxton’s crossover time. In these cases we have

CSaxton = 0.37× 102, 1.2× 102 and 4.1× 102 for ϕ = 0.05, 0.15 and 0.25, respectively. These

estimates are two orders of magnitude smaller than the estimates given by our new definition.

We note that, unlike Saxton’s method, our approach is based on an objective mathematical

definition, is reproducible, and does not require any stochastic simulations.

7.6 Discussion

We present an exact method for modelling the motion of a tracer particle on a crowded lattice.

The Markov chain method leads to exact calculations of the probability of finding an agent at

a site at any time, and from this information we can calculate the MSD exactly. These exact

results compare very well with simulation data.

Our analysis shows that λt
2 is an upper bound for the difference between a vector describing

the time dependent probabilities of finding an agent at any site, and the long time limit. Here,

λ2 is the real eigenvalue of T that has the second largest magnitude. Since we have exponential

decay, we use the theory of mean action time to define an objective, mathematically motivated

estimate of the amount of time required to effectively reach the long time limit. Therefore,

our mathematically motivated definition of crossover time is less subjective than previous ap-

proaches that rely on generating stochastic data and fitting straight lines to that data [11, 12].
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Our analysis of the crossover time is useful if we wish to implement the previous analysis

of Mercier and Slater [42, 43]. Mercier and Slater describe a method for calculating the long

time Fickian diffusivity, D, for a lattice-based random walk in which a proportion of the sites

are occupied by obstacles. An implicit assumption in applying Mercier and Slater’s algorithm

is that the transport process has been taking place for a sufficiently long period of time because

this analysis is relevant only in the long time limit, t → ∞. To implement Mercier and Slater’s

approach, one must first decide whether a sufficient amount of time has passed so that the

long time limit is relevant. Our approach for calculating C provides this information without

performing simulations.

Although this Chapter focuses on two–dimensional examples, our definition of C, and the

approach for calculating C applies directly to three-dimensional lattices without any modifica-

tion.



Chapter 8

Additional results for Chapter 7: Part I

Let the ith element of the vector p(t) denote the probability of locating the agent at site i at

time t. In this appendix we prove that the vector p(t) satisfies the identity

||p(0)Tt − p(0)Π||2 ≤ λt
2,

where T is a transition matrix and λ is the second eigenvalue of T .

We begin by considering the long time limit of p(t) satisfies,

lim
t→∞

p(t) = lim
t→∞

p(t− 1)T,

= p(0)Π,

where Π = lim
t→∞

Tt. The spectral norm of any square matrix, A, is given by [125]

||A||2 =
√

λmax {AHA}, (8.1)

where || · ||2 denotes the spectral norm, the superscript H denotes a Hermitian transpose, and

λmax {·} denotes the largest eigenvalue. The spectral norm of the difference between p(t) and

lim
t→∞

p(t) satisfies a triangle inequality

||p(0)Tt − p(0)Π||2 ≤ ||p(0)||2

≤ ||Tt −Π||2,

≤ ||Tt −Π||2,
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where we have used the fact that ||p(0)||2 ≡ 1. The quantity ||Tt −Π||2 is an upper bound for

the magnitude of the difference between p(t) and lim
t→∞

p(t) at any time t.

To quantify this upper bound, we note that, because T is symmetric, it is always diagonalis-

able [124], giving

Π = lim
t→∞

Tt,

= lim
t→∞

VDtV−1.

Furthermore, because T is doubly stochastic, the eigenvalues of T are all real and satisfy

|λk| ≤ 1, for k = 1, 2, 3, . . .. We arrange these eigenvalues by magnitude so that λ1 > λ2 >

λ3 > · · · , with λ1 = 1. The long time limit is therefore given by Π = VD∞V−1, where

D∞ = lim
t→∞

Dt = diag{1, 0, · · · , 0}. This allows us to write

Tt −Π = V
(
Dt −D∞)V−1,

= VDaV
−1,

where Da = diag{0, λt
2, · · · , λt

n−1}. Since T is symmetric, its eigenvectors form an orthonor-

mal basis for Rn×n, where n is the number of vacant lattice sites. This also means that V is

unitary [124] and satisfies VH = V−1. Using these properties we can write

(
Tt −Π

)H (
Tt −Π

)
= V−HDaV

HVDaV
−1,

= VD2
aV

−1. (8.2)

The largest eigenvalue of VD2
aV

−1 is given by the second diagonal element of the diagonal

matrix, λ2t
2 . Combining Equations (8.1)–(8.2) gives

||p(0)Tt − p(0)Π||2 ≤ λt
2.

For modest sized lattices λ2 can be calculated using the power-iteration method [124].



Chapter 9

Additional results for Chapter 7: Part II

In this appendix we briefly review the theory of Mean Action Time that was developed by

McNabb and Wake [45, 46]. To demonstrate the theory of mean action time, we consider

dz

dt
= −kz(t),

with k > 0, which is a model of exponential decay. McNabb and Wake [45] define

F (t) = 1− z(t)

z(0)
,

which is a monotonically increasing function of t that satisfies F (0) = 0 and lim
t→∞

F (t) = 1−.

If we consider F (t) to act like a cumulative distribution function, the associated probability

density function is

f(t) = − 1

z(0)

dz

dt
.

The mean of this distribution can be thought of as a measure of the amount of time required for

z(t) to effectively asymptote to the long time limit, lim
t→∞

z(t) = 0. The mean of this probability

density function, called the mean action time, is

M = − 1

z(0)

∫ ∞

0

t
dz

dt
dt.

For the exponential decay model we obtain M = 1/k.

Higher moments can be used to quantify the width of the distribution [49]. The variance is
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given by

V = − 1

z(0)

∫ ∞

0

t2
dz

dt
dt,

where V represents the variance. For the exponential decay model we have V = 1/k2. A useful

definition of the amount of time required for z(t) to effectively asymptote to the long time

limit, accounting for the mean and width of the distribution, is M +
√
V . Previous analysis of

exponentially decaying laboratory data confirms that this definition leads to very useful results

that are simple to implement [126]. Therefore, a mathematically motivated finite estimate of

the amount of time required for the decay process to effectively reach the long time limit is

C = M +
√
V .

Or, for the exponential decay model,

C = 2/k.



Chapter 10

An analytical method for disentangling the roles of

adhesion and crowding for random walk models on

a crowded lattice

A letter published in the Physical Biology.

Ellery, Adam J, Baker, Ruth E and Simpson, Matthew J,An analytical method for disentangling

the roles of adhesion and crowding for random walk models on a crowded lattice. Physical

Biology

10.1 Abstract

Migration of cells and molecules in vivo is affected by interactions with obstacles. These

interactions can include crowding effects, as well as adhesion / repulsion between the motile

cell / molecule and the obstacles. Here we present an analytical framework that can be used to

separately quantify the roles of crowding and adhesion / repulsion using a lattice-based random

walk model. Our method leads to an exact calculation of the long time Fickian diffusivity, and

avoids the need for computationally expensive stochastic simulations

10.2 Simulations and Analysis

Motion of cells and molecules through in vivo biological environments is affected by the pres-

ence of other cells and scaffolds that can act as obstacles [11, 52–54]. Interactions between
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cells and obstacles can include both crowding effects [55, 56], as well as adhesion/repulsion

effects [57, 58]. A great deal of theoretical progress has been made in terms of developing

mathematical insight into how adhesion between motile cells impacts in vitro experiments

without any obstacles present [59–62]. However, mathematical models describing the impact of

both crowding and adhesion/repulsion in vivo with obstacles present are predominantly based

on simulation studies, without any underlying analysis [11, 13, 25, 55].

While we anticipate that both crowding and adhesion act to impede the motion of cells in

vivo, it is not possible to quantify the relative roles of these two mechanisms based on intuition

alone. Although it is possible to perform simulations that include both crowding and adhesion,

simulation studies can be time consuming, and can fail to provide more general insight. To

address these limitations we consider a stochastic, lattice-based model describing the motion of

an agent (e.g. a cell or biological molecule) through an environment that is randomly populated

by immobile obstacles at density ϕ ∈ [0, 1]. The motion of the agent is affected by crowding and

adhesion/repulsion between the agent and the obstacles. Since the model involves just a single

agent moving amongst a population of obstacles, there is no adhesion/repulsion between agents.

The strength of adhesion/repulsion is measured by ζ ∈ [−1, 1]: setting ζ = 0 corresponds

to pure crowding with no adhesion/repulsion; ζ > 0 corresponds to combined adhesion and

crowding; and ζ < 0 corresponds to combined repulsion and crowding. We present an exact

method that can be used to quantify the relative roles of crowding and adhesion/repulsion by

producing exact calculations of the long time Fickian diffusivity, D, of the motile agent. Using

this method we calculate D(ϕ, ζ) so that we are able to quantify the roles of both crowding and

adhesion/repulsion in terms of the long time Fickian diffusivity. Our results suggest that there

is a threshold density of obstacles (ϕ ≈ 0.3) below which adhesion/repulsion has a negligible

impact on the long time Fickian diffusivity. In contrast, above this threshold (ϕ > 0.3),

adhesion/repulsion interactions have a significant influence on the long time Fickian diffusivity.

The accuracy of our exact calculations is tested using random walk simulations, and although

we present results for a two-dimensional square lattice, our approach applies to any regular

lattice in two or three dimensions.

We consider a square lattice with unit lattice spacing, ∆ = 1, and dimension X × Y . Sites

are indexed (i, j) so that each site has location (x, y) = (i∆, j∆) with 0 ≤ x ≤ X − 1 and

0 ≤ y ≤ Y −1. To initiate a simulation, lattice sites are randomly populated with immobile and

impenetrable obstacles to a spatially uniform density, ϕ, with, at most, one obstacle per site. A
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motile agent is placed on a vacant site, and allowed to undergo a nearest neighbor random walk

in which all potential motility events that would place the agent on a site that is occupied by an

obstacle are aborted.

During each discrete time step, of duration τ = 1, the probability that the motile agent

attempts to step to a randomly chosen nearest neighbor lattice site is

pm
4

(
1− ζ

4
N

)
, (10.1)

where pm ∈ [0, 1] is the probability that an isolated agent will attempt to move during a time

interval of duration τ , N = 0, 1, 2, 3 or 4, is the number of nearest neighbor sites occupied

by obstacles, and ζ ∈ [−1, 1] is the adhesion/repulsion parameter. Note that, to ensure that

both the net probability of movement and the net probability of remaining stationary during any

time step are always greater or equal to zero, and less than or equal to unity, we consider five

different situations. In these situations the agent in question is adjacent to either N = 0, 1, 2, 3

or 4 obstacles. Solving the resulting set of inequalities for these five different situations leads

us to write the adhesion/repulsion factor in Equation 10.1 as (1− ηN/4), with η ∈ [−1, 1].

(a) (b)
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Figure 10.1: (a) Lattice schematic illustrating how crowding and adhesion/repulsion are
incorporated into the random walk model. Circles represent motile agents and the squares
represent immobile obstacles. The green lines between the agent and obstacle indicates that the
model incorporates adhesion/repulsion between the motile agent and immotile obstacles. (b)
Plot of log10 (⟨r2(t)⟩ /t) as a function of log10 (t) (green solid) from a suite of simulations with
pm = 1.0, ζ = 0, ϕ = 0.2, X = 10 and Y = 10. The ensemble average is obtained by averaging
over 100,000 identically prepared realizations. The lower horizontal line (black dashed) shows
log10

(
4 D̄
)
, where D̄ = 0.095 is the exact calculation of the Fickian diffusivity. The upper

horizontal line (red dashed) shows log10 (4D0), for comparison.

The schematic in Figure 10.1(a) illustrates how crowding and adhesion/repulsion are incor-

porated into the model. The lattice site containing the red agent is not adjacent to any obstacles
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(N = 0) and the probability that the red agent will move during a time step of duration τ is

simply pm, which is independent of ζ . Since there are no obstacles surrounding the red agent,

it is able to move to any of the four nearest neighbor sites, with the target site being chosen at

random. In contrast, the blue agent is adjacent to one obstacle (N = 1) and the probability that

the blue agent will move during a time step of duration τ is pm (1 − ζ/4), which depends on

the strength of adhesion/repulsion. Therefore, the motility of agents that are adjacent to one or

more obstacles are affected by the strength of adhesion/repulsion to those obstacles. If the blue

agent attempts to move, the direction of movement will be chosen at random. If, in this case,

the blue agent attempts to move in the positive x direction, the potential movement event will

be aborted due to crowding effects caused by the obstacle.

To quantify how crowding and adhesion/repulsion affect the motility of a single motile

agent, we consider performing a stochastic simulation in which we record the agent’s squared

displacement, r2(t) = x2(t) + y2(t), where x2(t) and y2(t) represent the components of the

squared displacement in the x and y directions, respectively. Following earlier studies [11, 13,

25, 55] we assume that the mean squared displacement follows a power law

⟨
r2(t)

⟩
= (2d)D̄ tα, (10.2)

where d = 2, 3 is the physical dimension, ⟨·⟩ denotes the average over a large ensemble of

identically prepared realizations, and D̄ is a generalized diffusivity with units [L2/Tα] which is

less than the diffusivity when no obstacles are present, D0 = pm∆
2/(2 d τ). The exponent α is

a positive constant that can be used to classify the type of transport process taking place, with

α = 1 corresponding to Fickian diffusion and α < 1 corresponding to subdiffusion [11, 13, 25,

55]. Rearranging Equation (10.2) gives

log10
(⟨
r2(t)

⟩
/t
)
= log10

(
(2d)D̄

)
+ (α− 1) log10 (t) . (10.3)

This means that if the power law in Equation (10.2) accurately describes the evolution of the

mean squared displacement data, a plot of log10 (⟨r2(t)⟩ /t) as a function of log10 (t) will be a

straight line for all t > 0. If the transport process is Fickian diffusion (α = 1) the straight line

will be horizontal, with zero slope. In contrast, if the transport process is subdiffusion (α < 1)

the straight line will have negative slope.
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To demonstrate these ideas we perform an ensemble of simulations without adhesion/repulsion

and with ϕ = 0.2 on a lattice with periodic boundary conditions, and we plot log10 (⟨r2(t)⟩ /t) as

a function of log10 (t) in Figure 10.1(b). Consistent with many previous simulation studies [1,

3, 11, 13, 25, 55, 127], we observe that log10 (⟨r2(t)⟩ /t) follows a curve. Initially the curve

has a negative slope, and the curve tends to a horizontal asymptote as t → ∞. This suggests

that the transport process becomes Fickian in the long time limit, t → ∞, with a reduced

Fickian diffusivity, D̄. For the data in Figure 10.1(b), we fit a horizontal line to the data in

the interval 103 ≤ t ≤ 104, giving D̄ ≈ 0.095. This means that the obstacles have reduced

the long time Fickian diffusivity compared to the case where there are no obstacles present,

D0 = pm∆
2/(2 d τ) = 0.25, in this case.

Unfortunately, using stochastic simulations to compute the long time Fickian diffusivity like

we did in Figure 10.1(b) is problematic for two reasons. First, a very large number of identically

prepared realizations of the stochastic process are required to produce sufficiently smooth mean

squared displacement data. Second, the Fickian diffusion regime is only reached in the long

time limit, t → ∞, meaning that we must perform a very large number of identically prepared

realizations over a very long period of time to obtain a reasonable approximation of D̄. These

two issues motivate us to develop an exact calculation of D̄ that does not rely on stochastic

data. To calculate the long time Fickian diffusivity we modify a method originally proposed

by Mercier and Slater [2, 42, 43, 128]. Our modification to their method is to incorporate the

effects of adhesion/repulsion. We will describe how to apply the method to calculate the long

time Fickian diffusivity in each component direction. All of the details are given for the x

Cartesian direction, and adapting the method to apply to the y and z Cartesian directions is

straightforward.

To begin with we apply the Nernst-Einstein relationship, which is a special case of the

fluctuation-dissipation theorem [129],

D̄x = D0
µ(ϵ)

µ0

, (10.4)

where µ(ϵ) represents the probability of movement in the positive x direction when the motion

includes a bias of strength ϵ ≪ 1, and µ0 is the probability of movement in the positive x
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direction where there is no bias. The motility is given by

µ(ϵ) =
v · n̂
ϵ

, (10.5)

where v and n̂ are vectors whose kth elements denote the (local) velocity at the kth site, and the

long time limit of the probability of locating the agent at the kth site, respectively. In practice,

we calculate n̂ by constructing the transition matrix associated with the lattice, T, and then

solving Tn = n for n, from which we calculate n̂ = n/|n|. The elements of T, Ta,b, denote

the probability that the agent will step from site a to site b per time step. Therefore, T encodes

details about the strength of adhesion/repulsion, the effects of crowding, and the effects of

different boundary conditions [2].

The velocity vector, v, can be calculated element-wise using v(k) = p+L+ − p−L−, where

v(k) is the kth element of v, p± are the probabilities of movement in the positive and negative

x directions, L± = 1 if the relevant target site is vacant and L± = 0 if the relevant target site

is occupied by an obstacle. Once we have applied this method to calculate D̄x, we perform

analogous calculations in the y and z directions to give D̄y and D̄z, respectively. Calculating

the long time Fickian diffusivity in each direction allows us to investigate the possibility of

any anisotropy in the system. For our calculations here, in two dimensions with randomly

placed obstacles, we observe no anisotropy and we have D̄x ≈ D̄y on a sufficiently large

lattice. Therefore, we report our results in terms of the total diffusivity, D̄ = D̄x + D̄y [2]. To

demonstrate the accuracy of our calculation, we apply it to the lattice configuration previously

considered in Figure 10.1(b) and find that D̄ = 0.095, which is identical to the result obtained

using stochastic simulations. To visualise the match between the exact calculation and the

simulation results, we superimpose a horizontal line at log10
(
4D̄
)

in Figure 10.1(b), where

D̄ = 0.095 is the exact calculation of the long time Fickian diffusivity. To emphasize the

differences between the transport process where obstacles are present (ϕ > 0) from when

obstacles are absent (ϕ = 0), we plot a horizontal line at log10 (4D0) in Figure 10.1(b).

It is important to note that certain arrangements of obstacles lead to D̄ = 0. Any situation

where obstacles form a closed loop and the motile agent is placed inside the closed loop will

lead to D̄ = 0, as discussed in Section 2.1 of Ellery et al. [2]. This situation can occur for

any value of ϕ > 0. One way of dealing with these special cases would be to apply the exact

calculation to a suite of identically-prepared lattices and to exclude those lattices which contain
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closed loops of obstacles, leading to D̄ = 0. We could then calculate an average diffusivity

by averaging D̄ for the remaining lattices where D̄ > 0. Instead of excluding these cases, we

take a simpler, unbiased approach by calculating D̄ for a number of identically-prepared lattices

and report the average value of D̄ across all randomly-populated lattices. We acknowledge that

some of these lattices may contain closed loops of obstacles, meaning that we may have D̄ = 0

for some of these lattices [2]. Furthermore, we note that the distinction between situations where

we obtain D̄ = 0 and D̄ > 0 is independent of the percolation threshold [67, 129]. Indeed, our

calculations confirm that we can have situations where D̄ = 0 on a finite sized lattice where ϕ is

below the percolation threshold as well as other situations where D̄ > 0 on a finite sized lattice

where ϕ is above the percolation threshold.

Now that we have explained how the exact calculation of the long time Fickian diffusivity

can be performed, we apply the calculation to a family of lattices with different obstacle densi-

ties, ϕ. By repeating our calculations of the long time Fickian diffusivity with different values of

ζ , we can construct the function D̄(ϕ, ζ), showing how the long time Fickian diffusivity varies

with both the obstacle density and the strength of adhesion/repulsion. A contour plot of D̄(ϕ, ζ)

is shown in Figure 10.2(a) for ζ ∈ [−0.9, 0.9] and ϕ ∈ [0, 0.5]. When ϕ = 0 and there are no

obstacles, we obtain D̄(0, ζ) = D0, as expected. Comparing the slope of D̄(ϕ, ζ) in each of

the ϕ and ζ directions indicates that, in general, the long time Fickian diffusivity is far more

sensitive to ϕ than ζ . In particular, for small values of ϕ, the diffusivity appears, at this scale, to

be relatively insensitive to the strength of adhesion/repulsion. However, at larger values of ϕ,

there is an significant dependence on ζ .

To further explore the effects of adhesion/repulsion, Figure 10.2(b) shows the ratio

D̄(ϕ, ζ)/D̄(ϕ, 0) for different values of ζ . This ratio is approximately unity for all values of ζ

when ϕ < 0.3. For ϕ > 0.3 the affect of adhesion (ζ > 0) is to decrease D̄(ϕ, ζ)/D̄(ϕ, 0),

whereas the affect of repulsion (ζ < 0) is to increase D̄(ϕ, ζ)/D̄(ϕ, 0), as we might anticipate.

The increase in D̄(ϕ, ζ) due to repulsion can be as great as 1100% for the values of ϕ and ζ that

we consider.

In summary, we present a method that allows us to quantify the roles of both crowding and

adhesion/repulsion by quantifying the long time Fickian diffusivity of a motile agent moving

through a crowded environment. A key feature of our approach is that it avoids the needs for per-

forming stochastic simulations. Our calculations allow us to examine how the long time Fickian
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diffusivity depends both on the density of obstacles, ϕ, and the strength of adhesion/repulsion,

ζ . Additional results (not presented) confirm the accuracy of our method since the maximum

deviation between the exact calculations and estimates based on repeated stochastic simulation

results is less than 0.1% for the range of ϕ and ζ considered in Figure 10.2(a). A key feature of

our results is that the long time impact of adhesion/repulsion is negligible for sufficiently small

obstacle densities, ϕ < 0.3, when the mean free diffusion time between two collisions is small.

Therefore, our results suggest that estimates of the long time Fickian diffusivity for low obstacle

densities can neglect the affect of adhesion/repulsion. In contrast, for moderate to high obstacle

densities, ϕ > 0.3, our calculations show that adhesion/repulsion has an important impact that

ought to be accounted for.

φ

ζ(a) (b)

0.00
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0.00
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φ

D(φ,ζ)

D(φ,0)

Figure 10.2: (a) Plot of D̄(ϕ, ζ) for ϕ ∈ [0, 0.5] and ζ ∈ [−0.9, 0.9] with pm = 1.0
and X = 100, Y = 100. The surface plot of D̄(ϕ, ζ) is constructed by discretizing
the (ϕ, ζ) parameter space into a square grid with 50 equally spaced intervals in the ϕ
direction and 100 equally spaced intervals in the ζ direction. Values of D̄(ϕ, ζ) are calculated
at each discrete (ϕ, ζ) value, and the surface plot is constructed using MATLAB. All
exact calculations of D̄(ϕ, ζ) are repeated using 10 identically prepared lattices, randomly
populated to density ϕ, and the values of D̄(ϕ, ζ) are averaged over the suite of lattices
considered to give the results in (a). Curves in (b) show the ratio D̄(ϕ, ζ)/D̄(ϕ, 0) for
ζ = −0.90 (red),−0.45 (dark blue), 0.00 (black), 0.45 (green), 0.90 (light blue), with the arrow
indicating the direction of increasing ζ .
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Additional results for Chapter 10

In this appendix we provide details of three example calculations. In these examples we

consider the lattice in Figure 11.1. We calculate the long time diffusivity by considering the

x–direction only and in all cases we apply periodic boundary conditions. For each worked

example we have apply a bias in the positive x direction of ϵ and we set pm = 1. The three

example calculations presented here correspond to three different choices of ζ . Our method can

also be used to calculate the long time diffusivity in the y–direction by applying the bias in the

y–direction.

Figure 11.1: A lattice for which ϕ = 2/9. Obstacles are shown as black squares. The lattice
sites are numbered as indicated.

Example 1: No adhesion/repulsion, ζ = 0.

We first consider a case in which there is no adhesion/repulsion (ζ = 0). For this example

111
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the transition matrix is given by

T =


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

.

The probability that the agent will be at the nth site in the long time limit is given by solving

Tn = n, and then normalizing to give n̂. The velocity vector can be calculated element-wise

using

v(i) = p+L+ − p−L−,

where p± denotes the probability of moving in the positive and negative x directions and L± = 1

if the site is vacant and L± = 0 otherwise. For this example these vectors are given by

n̂ =


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, v =



−1
4

1
4

1
4

−1
4

0

0

0



+ ϵ



1
4

1
4

1
4

1
4

1
2

1
2

1
2



.

From these vectors we can directly calculate the long–time diffusivity, using the formula [3,
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127]

D̄x =
vϵ nI + vI nϵ

Dx0

= 0.13,

where the subscripts ϵ and I denote the ϵ dependent and independent components of the vectors

and Dx0 denotes the diffusivity in the x direction when ϕ = 0. To test the veracity of this exact

calculation we also performed stochastic simulations and analysed the long time diffusivity

in the same way as described in the main paper which gives D̄x = 0.13. The stochastic

approximation of D̄x used an ensemble of 100,000 identically prepared realizations of the

random walk algorithm over the interval 0 ≤ t ≤ 106.

Example 2: Repulsion, ζ = −0.1.

The second case we consider involves repulsion with ζ = −0.1. In this case the transition

matrix is given by

T =


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

,
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and n̂ and v are given by

n̂ =


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, v =


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,

giving

D̄x =
vϵ nI + vI nϵ

Dx0

= 0.14.

To test the veracity of this exact calculation we also performed stochastic simulations and

analysed the long time diffusivity in the same way as described in the main paper which gives

D̄x = 0.14. The stochastic approximation of D̄x used an ensemble of 100,000 identically

prepared realizations of the random walk algorithm over the interval 0 ≤ t ≤ 106. We note that

the diffusivity in Example 2, with repulsion, is greater than the diffusivity in Example 1 without

any adhesion or repulsion.

Example 3: Adhesion, ζ = 0.1.

The third case we consider involves adhesion with ζ = 0.1. In this case the transition matrix
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is given by

T =


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,

and n̂ and v are given by

n̂ =
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, v =
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,

which gives

D̄x =
vϵ nI + vI nϵ

Dx0

= 0.12.

To test the veracity of this exact calculation we also performed stochastic simulations and

analysed the long time diffusivity in the same way as described in the main paper which gives

D̄x = 0.12. The stochastic approximation of D̄x used an ensemble of 100,000 identically

prepared realizations of the random walk algorithm over the interval 0 ≤ t ≤ 106. We note that
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the diffusivity in Example 3, with adhesion, is less than the diffusivity in Example 1 without

any adhesion or repulsion.



Chapter 12

Conclusions and Recommendations

In this chapter we summarise the main results and contributions of this work and discuss

potential avenues for further investigation.

12.1 Summary of the research

This study uses numerical data from a stochastic model of crowded transport to assess the

accuracy of a related FDE model. We show that one of the underlying assumptions of FDE

models, that the order of the fractional derivative, α, is constant, is not true for this particular

stochastic process. This leads us to conclude that FDE models must be applied with great

care and motivates us to develop a new modelling framework of transport through crowded

environments. Our new modelling framework enables us to model the early to intermediate

time behaviour of a motile agent; to calculate the reduced diffusivity of the motile agent in the

long time limit; and to calculate the crossover time of an agent undergoing transport through a

crowded environment.

The principle aims of this thesis are to:

• Compare an FDE with population density data from a CTRW to determine the role that

crowding plays in determining the type of transport process taking place.

• Extend existing models to include environments that are densely crowded with obstacles

of different shapes and sizes to determine how different distributions of obstacles affect

the transport process.
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• Develop a new modelling methodology that describes the early time behaviour of an agent

undergoing transport through a crowded environment.

• Develop a new modelling methodology that allows the calculation of the long time dif-

fusivity of an agent undergoing transport through a crowded environment as well as the

calculation of the crossover time associated with a crowded environment.

In the literature [7, 10, 18, 20, 28–30, 36–38], CTRW models and FDE models are often

assumed, without justification, to be equivalent and interchangeable. In Chapter 2 we compare

a CTRW with the analytical solution of a related FDE. Specifically, we track the MSD of a

motile agent undergoing a nearest neighbour random walk on a lattice that contains obstacles

and use this data to provide an estimate of a parameter α, which describes the type of transport

process taking place. Then, we simulate the transport of a population of motile agents through

a crowded environment using the same CTRW model and use these simulations to generate

population density data. We match the solution of a related FDE to this data to provide an

alternative estimate of α. An underlying assumption of FDE models is that α, the order of the

fractional derivative, is a constant. We show that this assumption is not true for our systems

and conclude that FDE models must be used with great care. We also examine the relationship

between these two independent estimates of α and the properties of the obstacle field for both a

single agent and a population of agents; and for both types of models; and we show that in both

cases, α decreases as the obstacle density increases and that the rate of decrease is greater for

smaller obstacles than for larger obstacles.

In Chapter 4 we extend our analysis to an environment in which there are several different

types of obstacles present on the lattice, of various shapes, sizes and densities. Specifically, we

consider three different distributions of obstacles: (i) the first contains relatively more smaller

obstacles than larger ones; (ii) the second contains relatively more larger obstacles than smaller

ones and; (iii) the third contains the same number of occupied lattice sites for each type of

obstacle considered. The inclusion of multiple obstacle types allows us to create radically

different environments in which the density of obstacles, ϕ, is a constant. We again track and

use the MSD of a single agent to provide an estimate of α and then match population density

information to a related FDE to provide a second independent estimate of α. By comparing

these two independent estimates of α we find that the distribution of obstacle shapes and sizes

also play an important role in determining the type of transport process taking place and we
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investigate these effects. We conclude that the density of obstacles, alone, is not sufficient to

describe the type of transport process taking place and that unless researchers include additional

information about the size, shape and relative densities of different obstacle types, their results

may be difficult to reproduce.

These new results lead us to consider alternative models of transport through crowded envi-

ronments. Specifically, we consider (i) how to model the early to intermediate time behaviour

of a single motile agent moving through a crowded environment; (ii) how to determine the

diffusivity of the motile agent in the long time limit, after the transport process has become

Fickian and; (iii) the length of time an experimentalist must wait until they can treat the transport

process as Fickian diffusion.

We begin by examining an algorithm proposed in a different context by Mercier and Slater

[42–44] for calculating the long time diffusivity in a crowded environment in Chapter 5, and

modify it so that it can be applied to our new system. Our new algorithm allows a researcher

to take a lattice of interest and directly calculate the diffusivity of a motile agent in the long

time (Fickian) regime without performing any computationally expensive and time consuming

stochastic simulations. The ease with which our new method can be applied allows us to

examine a larger set of environments than those considered by earlier studies [11, 12] which

were limited to considering computationally expensive CTRW models. Our new method allows

us to confirm the qualitative trends of our data from Chapters 2–4 and present new quantitative

results.

To model the early to intermediate time behaviour of our system we outline a new modelling

framework which is motivated by the theory of Markov chains. The application of our new

method involves several practical difficulties and we outline and provide solutions to these

problems in Chapter 7. Unlike stochastic models which provide noisy stochastic data that is

only useful if it is averaged over a large ensemble, our new model allows researchers to perform

a single exact calculation that typically takes less time than CTRW simulations. We compare

our exact calculation of the MSD of a motile agent with MSD data from a related stochastic

model to demonstrate the ease with which our new method can be applied.

We then propose another new method, motivated by the MAT proposed by McNabb and

Wake [45, 46] and expanded by others [47–51], to provide experimentalists with a ‘rule-of-

thumb’ measurement of the amount of time they must wait until they can safely assume that a
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motile agent undergoing transport in a crowded environment is undergoing Fickian diffusion,

called the crossover time [11, 12]. Unlike the crossover time proposed by Saxton [11, 12],

our new definition of the crossover time can be exactly calculated for a given lattice of interest

without performing time consuming and expensive stochastic simulations. Additionally, unlike

the method proposed by Saxton, our new method is both objective and reproducible.

Finally, we extend our variation of the Mercier–Slater algorithm to include interactions

between the motile agent and the obstacles, such as adhesion and repulsion in Chapter 10.

Our results suggest that there is a threshold density of obstacles (ϕ ≈ 0.30) below which the

affect of adhesion and repulsion is negligible in the long time limit as t → ∞. For obstacle

densities above this threshold (ϕ > 0.30) cellular interactions play a major role.

12.2 Future work

There are multiple avenues for future investigation that have arisen from this thesis. We consider

some of them below:

• Models of crowded transport with motile obstacles.

All of the work in this thesis assumes that the obstacles acting as blockages are stationary.

Experimental data indicates that this assumption is physically unrealistic for both bio-

logical environments [34, 39, 105, 108] and analogous non–biological physical systems

[53, 54]. Although it is trivial to extend a CTRW model to include motile obstacles, it is

non–trivial to extend the Markovian framework developed in Chapter 5 or the modified

Mercier–Slater algorithm developed in Chapter 7 to include this level of complexity.

In Chapter 5 we calculated the long time diffusivity associated with each member a set

of lattices occupied with randomly placed obstacles to density ϕ. We show that the

distribution of these diffusivities depends on the density, shape, size and distribution of

obstacles present on the lattice.

• Extension to analogous non–biological systems.

This work was motivated by the problem of accurately modelling cellular motility. How-

ever, there are several other fields in which crowded transport is of theoretical interest

including models of the transportation of charge in amorphous semiconductors [22, 130,
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131], nuclear magnetic resonance diffusometry [132, 133] and the transport of contami-

nants in certain porous geological media [134], amongst many others.

Unlike biological systems, these systems have the advantage that collecting large data sets

is relatively simple and cheap so that a direct comparison of the theoretical predictions

of this research with experimental data is possible. An extension of the ideas developed

in this work to other fields would be of wide interest within the mathematics and physics

communities.

• Development of image processing software

The application of this research may be difficult for non-mathematicians to understand

and implement. This motivates the development of software tools that simplify its appli-

cation. Such software might take, as input, a photograph of a colony of cells in a Petri

dish and output various parameters of interest such as the crossover time and long time

diffusivity.

An example algorithm for such a software package is as follows:

1. Input a photograph of a Petri dish.

2. We associate each pixel with an individual lattice site. Utilising image segmentation

techniques we can distinguish the pixels in the image that represent cells from the

pixels that represent vacant space.

3. We generate the transition matrix, T, that is associated with this lattice.

4. From the transition matrix, T, we calculate the crossover time, C, and the long time

diffusivity, D̄, using the theory outlined in Chapters 5–7.

5. We output C and D̄ to the user.

The software might include a tool that enables the user to adjust the adhesion parameter,

ζ , and the size of the motile agent.

One disadvantage of this approach is that it does not take into consideration the fact that

cells do not move on a lattice. It may be necessary to make a correction in order to account

for these differences. This would require further research into how to extend the results

of this thesis to a lattice–free environment.
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12.3 Final remarks

Mathematical modelling has the ability to provide valuable insight into transport processes that

occur in crowded environments. In this study, we investigate the standard models of crowded

transport that are utilised throughout the literature, FDE models and CTRW models, and show

that they are not equivalent. Specifically, we show that FDE models must be used with great

care as one of the underlying assumptions of these models is that the quantity α that describes

the type of transport taking place is a constant and this may not be true for all systems. We

also showed that the size, shape and density of obstacles in the environment can significantly

impact the value of α and suggested that experimentalists include this additional information

when reporting their results.

This motivates us to develop a new model that allows us to model the early time behaviour of

an agent undergoing transport through a crowded environment and to develop an algorithm that

allows researchers to calculate both the long time diffusivity and the crossover time of the agent.

This new methodology provides new information that is of great value to experimentalists and

opens up several new avenues for investigation by future researchers.
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