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Abstract

The Fisher-Kolmogorov equation supports travelling wave solutions that are

successfully used to model numerous invasive phenomena with applications in

biology and ecology. The Fisher-Kolmogorov equation assumes that individu-

als, or cells, in the population proliferate logistically and move according to a

linear diffusion mechanism. The long-term solution of the Fisher-Kolmogorov

equation is a travelling wave solution with a smooth front that captures impor-

tant features of invasion, however the solution fails to represent a population

on a well-defined domain. Another limitation of the Fisher-KPP equation is

that the solution always evolves to an invading front and therefore the solu-

tion is unable to mimic the extinction of invasive populations. We modify the

Fisher-Kolmogorov equation to include a moving boundary whose evolution is

governed by a Stefan condition. The novel Fisher-Stefan model gives rise to

the spreading-extinction dichotomy. We aim to extend further the model by

considering two cell populations, such as a population of cancer cells invading

into a population of skin cells. Both populations of cells in the two-phase

moving boundary model undergo linear diffusion and proliferate logistically.

The interface between the two populations moves according to a two-phase

Stefan condition.
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Chapter 1

Introduction

1.1 Background

Biological invasion occurs when populations of motile and proliferative individ-

uals or cells evolve to moving fronts that invade vacant regions. Wound healing

is a common example of biological invasion [Sherratt and Murray 1990,Maini

et al. 2004a, Cai et al. 2007, Simpson et al. 2013], where the population of

epidermal cells diffuses and proliferates to close the open wound. Tumour in-

vasion is another example of biological invasion where cancerous cells invade

the tissues of an organ or metastasise throughout the body [Swanson et al.

2003,Pérez-Beteta et al. 2018]. Embryonic development is an example of non

pathological invasion, when cells derived from the neural crest colonises the

gastrointestinal tract to form the enteric nervous system [Simpson et al. 2007].

Biological invasion has many applications in ecology [Skellam 1951,Shigesada

et al. 1951, Steel et al. 1998] where the models used include interactions

between the populations such as mating, mutualism, competition and preda-

tion [Kot 2003].

Mathematical models of invasion are useful to study the factors that in-

fluence the evolution of a population. For example, a mathematical model of

invasion can help to determine how to preserve an endangered species [Grif-

fith et al. 1989], how to predict the survival rate of a patient in cancer ther-

apy [Swanson et al. 2003, Swanson et al. 2008], how to ensure the success of

an implant in tissue reconstruction [Buenzli et al. 2020].

Biological invasions are studied using partial differential equation (PDE)

models based upon the classical Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-
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KPP) equation [Fisher 1937,Kolmogorov et al. 1937]. The Fisher-KPP equa-

tion is a one-dimensional reaction–diffusion equation that assumes that indi-

viduals, or cells, in the population proliferate logistically and move according

to a linear diffusion mechanism, such as

∂u

∂t
= D

∂2u

∂x2
+ λu

(
1− u

K

)
(1.1)

where the cell density u(x, t) of the population is a function of position −∞ <

x <∞ and time t > 0, the diffusion coefficient or the diffusivity is D > 0, the

proliferation rate is λ > 0 and the carrying capacity is K > 0.

(a) (b)

(c) (d)

Figure 1.1: Biological invasion and moving front. (a) Picture of scratch wound
healing assay experiment of sarcoma cells. The original picture is from Dihaf Zeki,
obtained under Creative Common Licence CC BY-SA 4.0 [Wikipedia 2016]. The
modified picture shows one side of the scratch. (b) Cross-section of clusters of cultured
melanoma cells invading surrounding tissues (Figure 1 from Chapter 5). The red box
in (a) and (b) highlights the invading front. (c) Time-dependent solutions of Fisher-
KPP equation (1.1) with D = 1 and λ = 1 evolving to a smooth-fronted travelling
wave solution. (d) Time-dependent solutions of Porous-Fisher equation (1.2) with
λ = 1 evolving to a sharp-fronted travelling wave solution. In (c) and (d) the density
profiles are shown at t = 2, 4, 6, 8, 10 and 12. The initial conditions on compact
support are shown in blue. Homogeneous Neumann boundary conditions are used at
x = 0 and x = 40. The black arrow in (a), (c) and (d) indicates the direction of the
moving front. The black arrow in (b) indicates the position of the invading front.

The long term solution of Fisher-KPP equation with appropriate boundary

conditions, such as no-flux at the boundaries, is a travelling wave with a speed

that depends on the initial conditions. A travelling wave solution is a function

that moves with a constant speed while keeping its shape. The travelling wave

solution of Fisher-KPP equation has a minimum speed cmin = 2
√
Dλ. Figure

2
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1.1(c) shows the density profiles obtained by solving numerically the Fisher-

KPP equation (1.1) for an interval of time sufficiently long so the solution

evolves to a travelling wave. The parameters used in Figure 1.1(c) are D = 1

and λ = 1 such as the travelling wave speed is c = 2. We can identify two

steady states in the travelling wave solution: behind the invading front, where

u(x, t) → 1 and ∂u/∂x → 0, where the population has reached a density

corresponding to the maximum carrying capacity, and ahead of the moving

front, where u(x, t) → 0 and ∂u/∂x→ 0, where the population vanishes.

Figure 1.1(a) shows a picture of a scratch assay experiment, that can be

characterised by a diffusion coefficient and a proliferation rate of cells. A

scratch assay involves creating a laceration into a monolayer of homogenous

cells and monitoring the migration of cells at the leading edge of the scratch.

Many scratch assay experiments [Maini et al. 2004a,Jin et al. 2016,Johnston

et al. 2015,Warne et al. 2019] have successfully validated the relationship

that defines the wave speed as a function of the proliferation rate and the

diffusivity, as in Fisher-KPP equation, such as c = 2
√
Dλ. Two-dimensional

extensions of the Fisher-KPP equation have also been studied [Sherratt and

Murray 1990,Simpson et al. 2013,Swanson et al. 2003].

The solution of the Fisher-KPP equation misses an important feature of

biological invasion: a well defined position of the moving front. In the exper-

iment of Figure 1.1(a) the population occupies a well-defined domain where

u(x, t) > 0, and the population vanishes outside the domain, where u(x, t) = 0.

Figure 1.1(b) shows a cross-section of an experiment of cultured melanoma

cells invading into the surrounding skin cells. Again, as highlighted in the red

box in Figure 1.1(b), the moving front of the cluster of melanoma cells is well

defined. In Figure 1.1(c) we cannot define a position where u(x, t) = 0, as

the solution in Fisher-KPP model does not have compact support. A well-

known extension of the Fisher-KPP equation is the Porous-Fisher equation

that supports a travelling wave solution with a sharp-front (Figure 1.1(d)).

The Porous-Fisher equation [Murray 2002, Sánchez-Garduño and Maini

1994, Sánchez Garduño and Maini 1994] includes a non-linear diffusion term

and is defined by

∂u

∂t
= D

∂

∂x

[
u
∂u

∂x

]
+ λu

(
1− u

K

)
, (1.2)
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where the solution u(x, t) is a density function of position −∞ < x < ∞ and

time t > 0, the constant diffusivity is D > 0, the proliferation rate is λ > 0

and the carrying capacity is K > 0. Experiments show that the velocity of

cell population is affected by contact inhibition [Tremel et al. 2009,Warne

et al. 2019] and that a density-dependant diffusion makes the model more

easily reproduced in experiments [Jin et al. 2016,McCue et al. 2019]. As in

the Fisher-KPP equation, the travelling wave solution of the Porous-Fisher

equation depends on the initial conditions. Minimal speed cmin =
√
Dλ/2

is achieved from initial condition with compact support. The difference with

Fisher-KPP equation is that the solution of Porous-Fisher equation with min-

imum speed has a compact support and a sharp front such as u(x, t) = 0 at

the position of the moving front.

Another limitation of the solution of the Fisher-KPP equation is that the

solution always evolves to a travelling wave with a positive speed, from initial

condition with compact support. It means that the solution cannot represent

the stalling, the recession or the extinction of biological populations. It is also

a missing feature in the Porous-Fisher equation. We know, for example, that

the success of a translocation in species conservation depends on many factors,

as the population goes extinct in some areas [Griffith et al. 1989] and do not

always invade the new geographic region. Another example of a biological

population that could not be represented by the Fisher-KPP equation is a

population that could recede, like a tumour that is shrinking.

Water Ice

(a) (b)

Figure 1.2: One-phase Stefan problem of melting ice. (a) The temperature
h(x, t) is shown in blue on the domain of the water 0 < x < s(t). The ice occupies
the domain s(t) < x < ∞. The black arrow indicates the direction of the moving
boundary when the ice is melting. (b) The solution h(x, t) of the classic Stefan
problem (1.3)–(1.5) is shown when κ = 1, f(t) = −exp(t) at t = 0.2, 0.4, 0.6 and 0.8,
for initial conditions u(x, 0) = 0. The black arrow indicates the direction of increasing
time t.

4



We reformulate the Fisher-KPP equation to include a moving boundary

such as the domain of the population is defined on 0 < x < s(t), where

s(t) is the position of the moving boundary. We use the Stefan condition

from the classic Stefan problem [Crank 1987]. The classic Stefan problem is a

boundary value problem that describes the evolution of the boundary between

two phases during a change of phase at a constant temperature. We pose the

Stefan problem as

∂h

∂t
= α

∂2h

∂x2
, (1.3)

∂h(0, t)

∂x
= f(t), h(s(t), t) = 0, (1.4)

ds(t)

dt
= −κ∂h(s(t), t)

∂x
, (1.5)

where h(x, t) is the temperature function of position 0 < x < s(t) and time

t > 0. The parameter α > 0 is the thermal diffusivity in the heat equation

(1.3). The condition h(s(t), t) = 0 at the interface represents the temperature

of solidification or the temperature of fusion. The parameter in the Stefan

condition (1.5) represents the quotient K/(ρl) where K is the thermal con-

ductivity of the liquid, ρ is the density and l is the latent heat [Crank 1987].

The latent heat is the energy absorbed during the fusion of a solid or the

energy released during the solidification of a liquid. We assume that κ > 0 if

the latent heat is positive, as when ice is melting (Figure 1.2(a)). The Stefan

condition (1.5) describes the heat balance at the interface of the liquid and

the solid. The velocity of the moving boundary s(t) is limited by the diffusion

of heat in the liquid as the liquid supplies the energy to melt the solid. The

solution of the problem depends on the function f(t). Figure 1.2(a) shows the

domain of the water and the direction of the moving boundary when the ice is

melting. The initial condition used is u(x, 0) = 0, corresponding to s(0) = 0.

The flux of heat at x = 0 corresponds to f(t) = −exp(t), as used in (1.4) [Kut-

luay 1997]. Figure 1.2(b) shows how the temperature and the length of the

domain of the liquid are evolving with time t increasing.

We aim to apply the idea behind the classic Stefan problem to the Fisher-

KPP equation [Du and Lin 2010, Du and Guo 2011, Du and Guo 2012, Du

et al. 2014a,Du et al. 2014b,Du and Lou 2015]. We define the dimensionless

5



boundary value problem as

∂u

∂t
=
∂2u

∂x2
+ u(1− u), (1.6)

∂u(0, t)

∂x
= 0, u(s(t), t) = uf, (1.7)

ds(t)

dt
= −κ∂u(s(t), t)

∂x
, (1.8)

where u(x, t) is the density function of position 0 < x < s(t) and time t > 0,

the parameter in the Stefan condition is κ, and the density at the position of

the moving boundary is set to a constant uf ∈ [0, 1). As the model defined by

equations (1.6)–(1.8) describes the evolution of the density for one population,

we are also looking to define the model for two populations of cells, separated

at their interface by a moving boundary.

The boundary value problem is represented in (1.6)–(1.8) with nondimen-

sional variables. A parameter κ remains in the Stefan condition (1.8), origi-

nally applied to heat transfer problems. The novel use of this parameter in

the context of biological applications implies some challenges. First, the role

of the parameter κ in the resulting mathematical solution is yet to be fully

understood. Second, the parameter κ has to be quantified experimentally.

Many questions arise while defining κ in the boundary value problem (1.6)–

(1.8). For example, is the parameter κ strictly positive? Usually, biological

quantities, such as density, diffusivity and proliferation rate, are expected to

be positive. We may consider first κ > 0. We may also examine the Stefan

condition where the flux of density at the boundary multiplied by κ is pro-

portionnal to the speed. The flux of density and the speed could be positive

or negative. Consequently, could we consider κ to not be strictly positive?

Do we have to apply limitations on the parameter κ to yield a solution where

u(x, t) is positive, so that the density has a biological meaning? We expect

this work to build gradually solid mathematicals results in order to open the

door to experimental estimations of the parameter κ.

Single-species invasion equations such as the Fisher-KPP equation and

Porous-Fisher equations do not describe explicitly the interactions between

the invading populations and their environment [Painter and Sherratt 2003].

We know, for example, that tumour cells induce a change in the pH of the

micro-environment of the host tissue [Gatenby and Gawlinski 1996, Astanin
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and Preziosi 2009]. Gatenby and Gatwinski proposed a complex model of three

differential equations that describes the dynamics between acid, tumour and

host populations [Gatenby and Gawlinski 1996]. The model shows how the

production of acid by tumour cells is detrimental to the skin and promotes

cancer invasion. Another type of interaction between populations describes

the production of an extracellular matrix that benefits the growth of a tissue

[Browning et al. 2021]. We aim to include the analysis of a novel model of acid-

mediated invasion [Browning et al. 2019], and a model of substrate-mediated

invasion [Browning et al. 2021] to this study.

When studying a mathematical model of biological invasion, we look for the

travelling wave solution. However, it is not always possible to determine the

exact solution of a differential equation or a system of differential equations.

For example, the travelling wave solution of the Fisher-KPP equation has

known exact solutions for c = 0 and for c = ±5/
√
6 [Murray 2002,McCue

et al. 2021a]. There is many numerical schemes that we can use to solve

differential equations. The Newton-Raphson method is a numerical method

that we use to solve the nonlinear partial differential equation, such as the

Fisher-KPP equation. A combination of phase plane and perturbation analysis

can also be used to explore the solutions of the governing equations that we

are studying. As the phase plane analysis has a pivotal role in this thesis, we

give a summary of some results obtained from the phase plane analysis of the

Fisher-KPP equation and the Porous-Fisher equation [Murray 2002].

The phase plane dynamical system of the Fisher-KPP equation is obtained

after expressing the dimensionless equation with respect to the travelling wave

coordinate z = x− ct, such as

dU

dz
= V,

dV

dz
= −cV − U(1− U). (1.9)

The linearisation around equilibrium points (U, V ) = (1, 0) and (U, V ) =

(0, 0) indicates that equilibrium point (1, 0) is a saddle and that equilibrium

point (0, 0) is a stable node, if c > cmin and a stable spiral, if c < cmin, where

the dimensionless wave speed cmin = 2. Figure 1.3 shows the phase portrait

of dynamical system of equations (1.9). The travelling wave solution is an

heteroclinic orbit leaving the saddle (1, 0) and entering the stable node (0, 0)

when c ≥ cmin, as in Figure 1.3(a)–(b). We also show the heteroclinic orbit
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(a) (b) (c)

Figure 1.3: Phase plane of Fisher-KPP system (1.9). (a) Heteroclinic orbit in
solid green, where c > cmin. (b) Heteroclinic orbit in solid green, where c = cmin. (b)
Heteroclinic orbit in dashed green, where c < cmin. The minimum speed is cmin = 2.
The black disks represent equilibrium points (1, 0) and (0, 0).

leaving the saddle (1, 0) and spiralling around equilibrium point (0, 0) when

c < cmin in dashed green in Figure 1.3(c), that is usually completely discarded

as a part of trajectory goes into quadrants where U(z) < 0.

The phase plane system of Porous-Fisher equation is usually studied after

removing the singularity at U = 0 by rescaling the travelling wave coordinate,

using ζ(z) =

∫ z

0
dy/U(y) [Murray 2002], such as

dU

dζ
= UV

dV

dζ
= −cV − V 2 − U(1− U). (1.10)

By looking at the linearisation around equilibrium points (U, V ) = (0, 0),

(U, V ) = (1, 0) and (U, V ) = (0,−c), from the desingularised system (1.10),

one solution is an heteroclinic orbit leaving the saddle (1, 0) and entering the

stable node (0, 0), as shown in Figure 1.4(a). An exact solution can be found

by taking the trajectory that is a straight line between the equilibrium point

(1, 0) and the saddle (0,−c), as shown in Figure 1.4(b). We can write the

line equation V = −cmin(1 − U) that we substitute in dV/dU = [−cV −

V 2−U(1−U)]/(UV ) to determine the minimum speed cmin = 1/
√
2. Solving

dU/dz = −[1− U(z)]/
√
2, we obtain the exact solution

U(z) =


1− exp

(
z − zc√

2

)
z < zc,

0 z > zc,

(1.11)

where the zc is the chosen position of the front of the sharp travelling wave

solution. When c < cmin, no heteroclinic orbit can be found leaving the saddle

(1, 0). As shown in Figure 1.4(c), the trajectory leaving the saddle (1, 0) goes

to U(ζ) → −∞.
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(a) (b) (c)

Figure 1.4: Phase plane of Porous-Fisher system (1.10). (a) Heteroclinic orbit
in solid green, when c > cmin. (b) Heteroclinic orbit in solid green, when c = cmin.
(b) Phase portrait when c < cmin, no heteroclinic orbit between equilibrium points.
The minimum speed is cmin = 1/

√
2. The black disks represent equilibrium points

(1, 0), (0,−c) and (0, 0).

1.2 Research questions

1. What features of biological invasion are enabled in the trav-

elling solution of the Fisher-KPP model reformulated with a

moving boundary?

The Fisher-KPP model supports a travelling wave solution that repre-

sent some features of biological invasion: the moving front has a speed

proportional to the diffusivity and to the proliferation rate, such as

cmin = 2
√
λD. The Fisher-KPP model fails to represent a moving front

where the population occupies a well defined domain and where the

density falls at zero at the moving front (uf = 0). Moreover, the model

cannot represent the stalling or the extinction of a population.

We reformulate the Fisher-KPP model with a moving boundary. A

Stefan condition relates the speed of the moving front to a proportion

(κ > 0) of the loss of population at the boundary. We suppose that the

reformulated model, that we call the Fisher-Stefan model, gives rise to

a travelling solution with compact support, and we want to understand

the relationship between the wave speed and the condition at the moving

boundary. We also want to understand what conditions in the model lead

to extinction.

2. How does the parameter κ in the Stefan condition modify the

type of travelling wave solution in the Fisher-Stefan model?

The Fisher-Stefan model admits a travelling wave solution with a sharp

front where the wave speed depends on the parameter κ. In the first
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research question, we set κ > 0 to obtain a positive travelling wave speed.

A receding biological population, that is leaving a domain previously

occupied, is represented by a travelling wave solution with speed c <

0. We expect the Fisher-Stefan model to give rise to a travelling wave

solution with speed c < 0 when κ < 0. The model could represent both

biological invasion and recession. We aim to determine the role and the

limits of the parameter κ .

3. How does the density uf in the Stefan condition modify the

speed and the shape of the travelling wave solution in the

Fisher-Stefan model?

The Stefan condition relates the speed of the moving front to a propor-

tion (κ) of the loss of population at the boundary. By default, in the

two previous research questions, we set the density to fall at zero at the

moving boundary. The travelling solution obtained in the two previous

research questions represents either the invasion or the recession of the

population. In this question, we explore the effect of setting the den-

sity of population at the moving boundary to a positive value, such as

uf ∈ [0, 1). This condition can be seen as if the moving front is invading

a domain where there is a pre-existent density of population or as if the

moving front is receding and leaving a remaining population in the pre-

viously fully occupied domain. We want to determine the relationship

between the wave speed c, the parameter κ and the density of population

uf at the moving front.
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4. What features of biological invasion are enabled in a model

of two populations, where the dynamics of each population is

described by Fisher-KPP equation, and where the two popu-

lations are separated by a moving boundary?

Real biological population of cells invade a domain occupied by another

population, as when cancer cells invade a host tissue. We propose a

novel mathematical model of malignant invasion consisting of a two-

phase moving boundary problem where the cells in each population un-

dergo diffusive migration and logistic proliferation. The populations are

separated by an interface that moves according to a two-phase Stefan

condition. We expect the solution of the moving boundary model to

describe a sharp moving front between the cancer and surrounding tis-

sues. We aim to understand the relationship between the travelling wave

solution, and the parameters of the model: the relative diffusivity, the

relative proliferation rate and the parameters in the Stefan condition.

5. How does the travelling wave solution that represents acid-

mediated cancer invasion into skin is influenced by the degra-

dation rate of the skin and the far field density of the skin?

Single-species models, like the Fisher-KPP model and the one-phase

Fisher-Stefan model, support travelling wave solutions but do not ex-

plicitly describe interactions between the invading population and the

surrounding environment. We study a model of two coupled differential

equations to represent the acid-mediated cancer invasion into surround-

ing tissues. The first equation relates the rate of change of density of

cancer population to the nonlinear diffusion and the proliferation of the

cancer cells. The second equation relates the rate of change of density

of skin population to the degradation of the skin by cancer cells. We

aim to understand how the characteristics of the travelling wave solu-

tion representing invasion depend on two factors: the degradation rate γ

of the skin by cancer cells and the far-field density V of the skin density

of population ahead of the moving front.
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6. How does the travelling wave solution that represents substrate-

mediated cellular invasion is influenced by the rates of produc-

tion and decay of substrate?

The migration and proliferation of healthy cells into a surrounding en-

vironment can be associated to the production of a substrate. The phe-

nomenon is observed in tissue engineering when osteoblast precursor

cells are transplanted on bioscaffolds. The cells invade the structure of

the bioscaffold and bridge the pore within the scaffold. A single-species

model able to represent the substrate-mediated invasion is the modified

Fisher-KPP model that includes a degenerate diffusivity. The exponent

in the power law function of the degenerate diffusivity is still to be de-

termined, which can makes the model complicated to apply. An other

limitation of the single-species model is the inadequacy to describe ex-

plicitly the interactions between the tissue and the substrate.

We study two coupled differential equations that describe the dynamics

of substrated-mediated tissue invasion. The first equation relates the

rate of change of tissue density to the density-dependant diffusion of the

cells and to the growth of the tissue. The second equation relates the

rate of change of the substrate density to the production of substrate by

the tissue cells and to the decay of the substrate. We aim to understand

how the characteristics of the travelling wave solution depend on two

factors: the rate of production r1 of substrate by tissue cells and the

degradation rate r2 of the substrate.

1.3 Objectives and outcome

We divide the research investigation into six objectives, listed as follows:

� Objective 1: Determine the relationship between Fisher-KPP and Fisher-

Stefan models using numerical computation, phase plane analysis, per-

turbation analysis, focussing on travelling wave solutions.

� Objective 2: Build upon Objective 1 to develop and analyse a Fisher-

Stefan model to represent the invasion and the recession of one popula-

tion of cells.
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� Objective 3: Build upon Objective 1 and 2 to develop and analyse a gen-

eralised Fisher-Stefan model to represent the invasion and the recession

of one population of cells with any value of wave speed.

� Objective 4: Extend Objective 1 to develop and analyse a Fisher-Stefan

model for two different populations of cell, separated by a moving bound-

ary.

� Objective 5: Determine the features of travelling wave solutions of acid-

mediated cancer-skin model of invasion and the relationship to Fisher-

KPP model using a combination of numerical simulation, phase plane

analysis and perturbation techniques.

� Objective 6: Determine the features of travelling wave solutions of substrate-

mediated model of invasion and the relationship to Porous-Fisher model

using a combination of numerical simulation, phase plane analysis and

perturbation techniques.

The outcome of this thesis by publication consists of four published ar-

ticles in different peer-reviewed journals and two manuscripts submitted for

publication. The journals selected are ranked Q1 or Q2. We present the list

of articles by order of appearance in the document. Items in the list of pub-

lications numbered from 1 to 6 correspond respectively to chapters numbered

from 2 to 7.

1. El-Hachem M, McCue SW, Jin W, Du Y, Simpson MJ (2019) Revis-

iting the Fisher-Kolmogorov-Petrovsky-Piskunov equation to interpret

the spreading-extinction dichotomy. Proceedings of the Royal Society A

475, 20190378. (10.1098/rspa.2019.0378).

Abstract The Fisher-Kolmogorov-Petrovsky-Piskunov model, also known as

the Fisher-KPP model, supports travelling wave solutions that are successfully

used to model numerous invasive phenomena with applications in biology, ecol-

ogy, and combustion theory. However, there are certain phenomena that the

Fisher-KPP model cannot replicate, such as the extinction of invasive popula-

tions. The Fisher-Stefan model is an adaptation of the Fisher-KPP model to

include a moving boundary whose evolution is governed by a Stefan condition.

The Fisher-Stefan model also supports travelling wave solutions; however, a key
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additional feature of the Fisher-Stefan model is that it is able to simulate popu-

lation extinction, giving rise to a spreading-extinction dichotomy. In this work,

we revisit travelling wave solutions of the Fisher-KPP model and show that

these results provide new insight into travelling wave solutions of the Fisher-

Stefan model and the spreading-extinction dichotomy. Using a combination

of phase plane analysis, perturbation analysis and linearisation, we establish

a concrete relationship between travelling wave solutions of the Fisher-Stefan

model and often-neglected travelling wave solutions of the Fisher-KPP model.

Furthermore, we give closed-form approximate expressions for the shape of the

travelling wave solutions of the Fisher-Stefan model in the limit of slow travel-

ling wave speeds, c≪ 1

2. El-Hachem M, McCue SW, Simpson MJ (2021) Invading and receding

sharp-fronted travelling waves. Bulletin of Mathematical Biology 83, 35.

(doi:10.1007/s11538-021-00862-y).

Abstract Biological invasion, whereby populations of motile and prolifera-

tive individuals lead to moving fronts that invade vacant regions, are routinely

studied using partial differential equation (PDE) models based upon the clas-

sical Fisher-KPP equation. While the Fisher-KPP model and extensions have

been successfully used to model a range of invasive phenomena, including eco-

logical and cellular invasion, an often-overlooked limitation of the Fisher-KPP

model is that it cannot be used to model biological recession where the spa-

tial extent of the population decreases with time. In this work we study the

Fisher-Stefan model, which is a generalisation of the Fisher-KPP model ob-

tained by reformulating the Fisher-KPP model as a moving boundary problem.

The nondimensional Fisher-Stefan model involves just one parameter, κ, which

relates the shape of the density front at the moving boundary to the speed of

the associated travelling wave, c. Using numerical simulation, phase plane and

perturbation analysis, we construct approximate solutions of the Fisher-Stefan

model for both slowly invading and receding travelling waves, as well as for

rapidly receding travelling waves. These approximations allow us to determine

the relationship between c and κ so that commonly-reported experimental es-

timates of c can be used to provide estimates of the unknown parameter κ.

Interestingly, when we reinterpret the Fisher-KPP model as a moving bound-

ary problem, many disregarded features of the classical Fisher-KPP phase plane
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take on a new interpretation since travelling waves solutions with c < 2 are nor-

mally disregarded. This means that our analysis of the Fisher-Stefan model has

both practical value and an inherent mathematical value.

3. El-Hachem M, McCue SW, Simpson MJ (2021) Non-vanishing sharp-

fronted travelling wave solutions of the Fisher-Kolmogorov model. Ac-

cepted for publication in Mathematical Medecine and Biology. (arXiv:

2107.05210).

Abstract The Fisher-KPP model, and generalisations thereof, involve sim-

ple reaction-diffusion equations for biological invasion that assume individuals

in the population undergo linear diffusion with diffusivity D, and logistic pro-

liferation with rate λ. For the Fisher-KPP model, biologically-relevant initial

conditions lead to long-time travelling wave solutions that move with speed

c = 2
√
λD. Despite these attractive features, there are several biological lim-

itations of travelling wave solutions of the Fisher-KPP model. First, these

travelling wave solutions do not predict a well-defined invasion front. Second,

biologically-relevant initial conditions lead to travelling waves that move with

speed c = 2
√
λD > 0. This means that, for biologically-relevant initial data,

the Fisher-KPP model can not be used to study invasion with c ̸= 2
√
λD, or

retreating travelling waves with c < 0. Here, we reformulate the Fisher-KPP

model as a moving boundary problem and show that this reformulated model al-

leviates the key limitations of the Fisher-KPP model. Travelling wave solutions

of the moving boundary problem predict a well-defined front that can propa-

gate with any wave speed, −∞ < c <∞. Here, we establish these results using

a combination of high-accuracy numerical simulations of the time-dependent

partial differential equation, phase plane analysis and perturbation methods.

All software required to replicate this work is available on GitHub.

4. El-Hachem M, McCue SW, Simpson MJ (2020) A sharp-front moving

boundary model for malignant invasion. Physica D: Nonlinear Phenom-

ena 412, 132639. (doi:10.1016/j.physd.2020.132639).

Abstract We analyse a novel mathematical model of malignant invasion

which takes the form of a two-phase moving boundary problem describing the

invasion of a population of malignant cells into a population of background

tissue, such as skin. Cells in both populations undergo diffusive migration and
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logistic proliferation. The interface between the two populations moves accord-

ing to a two-phase Stefan condition. Unlike many reaction-diffusion models of

malignant invasion, the moving boundary model explicitly describes the motion

of the sharp front between the cancer and surrounding tissues without need-

ing to introduce degenerate nonlinear diffusion. Numerical simulations suggest

the model gives rise to very interesting travelling wave solutions that move

with speed c, and the model supports both malignant invasion and malignant

retreat, where the travelling wave can move in either the positive or negative x-

directions. Unlike the well-studied Fisher-Kolmogorov and Porous-Fisher mod-

els where travelling waves move with a minimum wave speed c ≥ c∗ > 0, the

moving boundary model leads to travelling wave solutions with |c| < c∗∗. We

interpret these travelling wave solutions in the phase plane and show that they

are associated with several features of the classical Fisher-Kolmogorov phase

plane that are often disregarded as being nonphysical. We show, numerically,

that the phase plane analysis compares well with long time solutions from the

full partial differential equation model as well as providing accurate perturba-

tion approximations for the shape of the travelling waves.

5. El-Hachem M, McCue SW, Simpson MJ (2021) Travelling wave analy-

sis of cellular invasion into surrounding tissues. Physica D: Nonlinear

Phenomena 428, 133026. (doi:10.1016/j.physd.2021.133026).

Abstract Single-species reaction-diffusion equations, such as the Fisher-KPP

and Porous-Fisher equations, support travelling wave solutions that are often

interpreted as simple mathematical models of biological invasion. Such travel-

ling wave solutions are thought to play a role in various applications including

development, wound healing and malignant invasion. One criticism of these

single-species equations is that they do not explicitly describe interactions be-

tween the invading population and the surrounding environment. In this work

we study a reaction-diffusion equation that describes malignant invasion which

has been used to interpret experimental measurements describing the invasion

of malignant melanoma cells into surrounding human skin tissues [Browning

et al. 2019]. This model explicitly describes how the population of cancer

cells degrade the surrounding tissues, thereby creating free space into which

the cancer cells migrate and proliferate to form an invasion wave of malignant

tissue that is coupled to a retreating wave of skin tissue. We analyse travel-
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ling wave solutions of this model using a combination of numerical simulation,

phase plane analysis and perturbation techniques. Our analysis shows that

the travelling wave solutions involve a range of very interesting properties that

resemble certain well-established features of both the Fisher-KPP and Porous-

Fisher equations, as well as a range of novel properties that can be thought of

as extensions of these well-studied single-species equations.

6. El-Hachem M, McCue SW, Simpson MJ (2022) A continuum mathemat-

ical model of substrate-mediated tissue growth. Bulletin of Mathematical

Biology 84, 49. (doi: 10.1007/s11538-022-01005-7).

Abstract We consider a continuum mathematical model of biological tissue

formation inspired by recent experiments describing thin tissue growth in 3D–

printed bioscaffolds. The continuum model involves a partial differential equa-

tion describing the density of tissue, û(x̂, t̂), that is coupled to the concentration

of an immobile extracellular substrate, ŝ(x̂, t̂). Cell migration is modelled with

a nonlinear diffusion term, where the diffusive flux is proportional to ŝ, while

a logistic growth term models cell proliferation. The extracellular substrate ŝ

is produced by cells, and undergoes linear decay. Preliminary numerical simu-

lations show that this mathematical model, which we call the substrate model,

is able to recapitulate key features of recent tissue growth experiments, includ-

ing the formation of sharp fronts. To provide a deeper understanding of the

model we then analyse travelling wave solutions of the substrate model, show-

ing that the model supports both sharp-fronted travelling wave solutions that

move with a minimum wave speed, c = cmin, as well as smooth-fronted travel-

ling wave solutions that move with a faster travelling wave speed, c > cmin. We

provide a geometric interpretation that explains the difference between smooth-

and sharp-fronted travelling wave solutions that is based on a slow manifold

reduction of the desingularised three-dimensional phase space. In addition to

exploring the nature of the smooth- and sharp-fronted travelling waves, we also

develop and test a series of useful approximations that describe the shape of the

travelling wave solutions in various limits. These approximations apply to both

the sharp–fronted travelling wave solutions, and the smooth-fronted travelling

wave solutions.
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1.4 Structure of the thesis

Each chapter following the introduction corresponds to one publication or one

manuscript submitted for publication. As each publication presented is inde-

pendent of the others, the chapters may overlap each other when presenting

the equations or the methods.

Chapter 2 addresses the first research question that corresponds to ob-

jective 1. The literature review is about biological invasion and the classic

one-phase Stefan problem. The Fisher-Stefan model is described with a den-

sity uf = 0 at the moving boundary. Time-dependant numerical solutions

of the model are shown. A phase plane analysis of both Fisher-KPP and

Fisher-Stefan models is given to compare the features of their solutions. An

important result is derived: the relationship between the wave speed c and

the parameter κ of the Stefan condition. The spreading-extinction dichotomy

is demonstrated. Additional material gives the details about the numerical

methods used, including the numerical method to solve a moving boundary

problem.

Chapter 3 addresses the second research question that corresponds to ob-

jective 2. A literature review is presented on the Fisher-Stefan model and on

biological recession. The previous Fisher-Stefan model from chapter 2 is mod-

ified to include κ < 0. Both receding and invading travelling waves solutions

are obtained from the model. A phase plane and perturbation analysis give

the solutions in some interesting limits. The numerical methods are given in

the last section. The PDE solver used is the same as in Chapter 2.

Chapter 4 addresses the third research question that corresponds to objec-

tive 3. A literature review is presented on the limitation of Fisher-KPP and

Porous-Fisher models. The Fisher-Stefan model is generalised to include a

density uf ∈ [0, 1) at the moving boundary. Slow and fast, receding and invad-

ing travelling waves solutions are obtained from the model. Phase plane and

perturbation analysis give an accurate relationship between the wave speed c

and κ in some important limits. The numerical method for solving the PDE

on a non uniform mesh is given in the last section, that includes additional

results.

Chapter 5 addresses the fourth research question that corresponds to ob-

jective 4. A literature review is presented on skin-cancer invasion and the
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Fisher-Stefan problem. The two-phase moving boundary model is posed. Nu-

merical solutions of the model are presented in either the positive or the neg-

ative direction. The solutions are also studied in the phase plane. The last

section gives the numerical methods to solve the two-phase moving boundary

problem. The last section also gives additional results in the phase plane.

Chapter 6 addresses the fifth research question that corresponds to objec-

tive 5. A literature review is presented on models of acid-mediated cancer

invasion. The model is presented with time-dependant solutions that evolve

to travelling waves. A phase plane analysis compares the features of travelling

wave solution of the model with the Fisher-KPP model. The relationship of

the minimal speed with the density of the skin in the far field, V is obtained

numerically. Some interesting limits, such as when the decay rate of the skin

γ ≫ 1, are studied with perturbation analysis. A dispersion relationship is

derived and validated. The last section gives the numerical methods to solve

the system of coupled partial differential equations.

Chapter 7 addresses the fifth research question that corresponds to objec-

tive 6. A literature review is presented on tissue growth in printed bioscaffolds

and different models describing the interaction between populations. Smooth

and sharp fronted travelling wave solutions are presented in the physical plane.

The relationship between the minimum wave speed and the production and

decay rates of the substrate, r1 and r2, is obtained numerically. An exhaustive

phase plane/space analysis demonstrates the existence of the minimum speed.

A comparison is made with Porous-Fisher equation when r1 ≫ 1 and when

r2 ≫ 1. A perturbation solution is given for fast smooth-fronted travelling

wave solutions.

We conclude the thesis in Chapter 8 that gives a summary of the research

and describes the future work to be done. At the end of the document, the

bibliography lists all the references by alphabetical order of first author.

1.5 Statement of joint authorship

This thesis consists of four published articles in different peer-reviewed journals

and of two manuscripts submitted for publication. The PhD candidate has

contributed substantively to all six manuscripts. We present a summary of the

contribution of the PhD candidate and the co-authors for each manuscript, in
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this section. The listed description of the contributions has been approved by

all co-authors.

Chapter 2: Revisiting the Fisher-Kolmogorov-Petrovsky-Piskunov

equation to interpret the spreading-extinction dichotomy

The corresponding article is:

El-Hachem M, McCue SW, Jin W, Du Y, Simpson MJ (2019) Revis-

iting the Fisher-Kolmogorov-Petrovsky-Piskunov equation to interpret

the spreading-extinction dichotomy. Proceedings of the Royal Society A

475, 20190378. (10.1098/rspa.2019.0378).

Statement of joint authorship:

� Maud El-Hachem conceived and designed the study, performed all

numerical and symbolic calculations, drafted the article, and gave

final approval for publication.

� Scott W McCue conceived and designed the study, gave final ap-

proval for publication.

� Jin Wang conceived and designed the study, gave final approval for

publication.

� Yihong Du conceived and designed the study, gave final approval

for publication.

� Matthew J Simpson conceived and designed the study, gave final

approval for publication.

Chapter 3: Invading and receding sharp-fronted travelling waves

The corresponding article is:

El-Hachem M, McCue SW, Simpson MJ (2021) Invading and receding

sharp-fronted travelling waves. Bulletin of Mathematical Biology 83, 35.

(doi:10.1007/s11538-021-00862-y).

Statement of joint authorship:

� Maud El-Hachem conceived and designed the study, performed all

numerical and symbolic calculations, drafted the article, and gave

final approval for publication.
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� Scott W McCue conceived and designed the study, gave final ap-

proval for publication.

� Matthew J Simpson conceived and designed the study, gave final

approval for publication.

Chapter 4: Non-vanishing sharp-fronted travelling wave solutions

of the Fisher-Kolmogorov model.

The corresponding article is:

El-Hachem M, McCue SW, Simpson MJ (2021) Non-vanishing sharp-

fronted travelling wave solutions of the Fisher-Kolmogorov model. Ac-

cepted for publication in Mathematical Medecine and Biology. (arXiv:

2107.05210).

Statement of joint authorship:

� Maud El-Hachem conceived and designed the study, performed all

numerical and symbolic calculations, drafted the article, and gave

final approval for publication.

� Scott W McCue conceived and designed the study, gave final ap-

proval for publication.

� Matthew J Simpson conceived and designed the study, gave final

approval for publication.

Chapter 5: A sharp-front moving boundary model for malignant

invasion

The corresponding article is:
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2.1 Abstract

The Fisher–Kolmogorov–Petrovsky–Piskunov model, also known as the Fisher-

KPP model, supports travelling wave solutions that are successfully used to

model numerous invasive phenomena with applications in biology, ecology, and

combustion theory. However, there are certain phenomena that the Fisher-

KPP model cannot replicate, such as the extinction of invasive populations.

The Fisher-Stefan model is an adaptation of the Fisher-KPP model to in-

clude a moving boundary whose evolution is governed by a Stefan condition.

The Fisher-Stefan model also supports travelling wave solutions; however, a

key additional feature of the Fisher-Stefan model is that it is able to sim-

ulate population extinction, giving rise to a spreading-extinction dichotomy.

In this work, we revisit travelling wave solutions of the Fisher-KPP model

and show that these results provide new insight into travelling wave solutions

of the Fisher-Stefan model and the spreading-extinction dichotomy. Using

a combination of phase plane analysis, perturbation analysis and linearisa-

tion, we establish a concrete relationship between travelling wave solutions of

the Fisher-Stefan model and often-neglected travelling wave solutions of the

Fisher-KPP model. Furthermore, we give closed-form approximate expres-

sions for the shape of the travelling wave solutions of the Fisher-Stefan model

in the limit of slow travelling wave speeds, c≪ 1.

2.2 Introduction

The Fisher-KPP model [Aronson and Weinberg 1978,Fisher 1937,Kolmogorov

et al. 1937, Canosa 1973,Murray 2002, Grindrod 2007] is a one-dimensional

reaction-diffusion equation combining linear diffusion with a nonlinear logistic

source term,
∂ũ

∂t̃
= D̃

∂2ũ

∂x̃2
+ λ̃ũ

(
1− ũ

K̃

)
, (2.1)

where ũ(x̃, t̃) ≥ 0 is the population density that depends on position x̃ ≥ 0,

and time t̃ > 0. The dimensional parameters in Fisher-KPP model are the

diffusivity D̃ > 0, the proliferation rate λ̃ > 0 and the carrying capacity density

K̃ > 0. Solutions of the Fisher-KPP model on a semi-infinite domain that

evolve from initial conditions with compact support asymptote to a travelling

wave with a minimum wave speed, c̃min = 2
√
λ̃D̃ in the long time limit, t̃→
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∞ [Aronson and Weinberg 1978,Fisher 1937,Kolmogorov et al. 1937,Canosa

1973, Murray 2002, Grindrod 2007]. The Fisher-KPP model also gives rise

to travelling wave solutions with c̃ > c̃min for initial conditions that decay

sufficiently slowly as x̃ → ∞ [Aronson and Weinberg 1978, Fisher 1937,

Kolmogorov et al. 1937,Canosa 1973,Murray 2002,Grindrod 2007], although

for most practical applications we are interested in travelling wave solutions

that move with the minimum wave speed since initial conditions with compact

support are more often relevant [Maini et al. 2004a, Maini et al. 2004b,

Simpson et al. 2013,Sherratt and Murray 1990].

The Fisher-KPP model and its extensions have been used successfully in a

wide range of applications including the study of spatial spreading of invasive

species in ecology [Skellam 1951,Shigesada et al. 1951,Steel et al. 1998,Levin

et al. 2003]. In cell biology, the spatial spreading of invasive cell populations

has been modelled using the Fisher-KPP model and its extensions for a range

of applications including in vitro cell biology experiments [Cai et al. 2007,Sen-

gers et al. 2007,Tremel et al. 2009,Nardini et al. ,Warne et al. 2019,Vo et al.

2015] and in vivo malignant spreading [Swanson et al. 2003, Swanson et al.

2008,Pérez-Beteta et al. 2018]. Other areas of application include combustion

theory [Mercer and Weber 1995,Tang et al. 1993] and bushfire invasion [Forbes

1997]. Some of the extensions of the Fisher-KPP model involve working with

different geometries [Simpson et al. 2013, Sengers et al. 2007], such as in-

ward and outward spreading in geometries with [Treloar et al. 2014] and

without [Jin et al. 2018] radial symmetry. Other variations include: (i) con-

sidering models with nonlinear diffusivity [King and McCabe 2003, Sánchez-

Garduño and Maini 1994,McCue et al. 2019, Simpson et al. 2006,Witelski

1995,Sherratt and Marchant 1996]; (ii) incorporating different nonlinear trans-

port mechanisms [Perumpanani et al. 1999,Marchant et al. 2001, Landman

et al. 2005]; (iii) models of multiple invading subpopulations [Simpson et al.

2006, Painter and Sherratt 2003]; and (iv) multi-dimensional models incor-

porating anisotropy [Painter and Hillen 2013]. The Fisher-KPP model gives

rise to travelling wave-like solutions that do not allow the solution to go ex-

tinct. A cartoon of this kind of behaviour is shown schematically in Figure

2.1(a)-(c) where an invading cell population will propagate indefinitely on a

semi-infinite domain. In contrast, the schematic in Figure 2.1(d)-(f) shows a
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different outcome where the same initial condition evolves in such a way that

the population eventually becomes extinct.

Figure 2.1: Schematic showing the evolution of a cell population. (a)-(c)
The evolution of an invading cell population at t = 0, t1, and t2, with t2 > t1 > 0. In
this case the population invades in the positive x direction indefinitely, provided that
the domain is infinite. (d)-(f) The evolution of a cell population at t = 0, t1, and t2,
with t2 > t1 > 0. In this case the population tends to extinction. Note that we have
deliberately made the initial distribution of cells in (a) and (d) identical.

We are concerned here with the Fisher-Stefan model [Du and Lin 2010,Du

and Guo 2011,Bunting et al. 2012,Du and Guo 2012,Du et al. 2014a,Du et al.

2014b,Du and Lou 2015]

∂ũ

∂t̃
= D̃

∂2ũ

∂x̃2
+ λ̃ũ

(
1− ũ

K̃

)
, (2.2)

∂ũ

∂x̃
= 0 at x̃ = 0, (2.3)

ũ(L̃(t̃), t̃) = 0 (2.4)

dL̃(t̃)

dt̃
= −κ̃∂ũ

∂x̃
at x̃ = L̃(t̃), (2.5)

where ũ(x̃, t̃) ≥ 0 is the population density that depends on position 0 ≤

x̃ ≤ L(t) and time t̃ > 0. In this model the length of the domain, L(t), is

determined as part of the solution. The parameters in the Fisher-Stefan model

are the same as in the Fisher-KPP model, as well as the Stefan parameter

κ̃ > 0, which relates the time rate of change of L̃(t̃) with the spatial gradient of

the density, ∂ũ/∂x̃, at the moving boundary x̃ = L̃(t̃). One way of interpreting

(2.3) is that we have zero net flux at x̃ = 0. Another way of interpreting (2.3)
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is that we have a symmetry condition at x̃ = 0, and in this case the behaviour

of the solution where x̃ > 0 is reflected about the point x̃ = 0. In this work

we focus on the solution where x̃ > 0, with t̃ > 0, with a zero flux boundary

condition at x̃ = 0.

As with the Fisher-KPP model, solutions of the Fisher-Stefan model, (2.2)-

(2.5), can also lead to constant speed, constant shape travelling waves in the

long time limit, as t̃→ ∞ [Du and Lin 2010,Du and Guo 2011,Bunting et al.

2012,Du and Guo 2012,Du et al. 2014a,Du et al. 2014b,Du and Lou 2015].

Interestingly, for the same initial condition but different choice of parame-

ter κ̃, the Fisher-Stefan model can also give rise to a very different outcome

whereby the population tends to extinction, ũ(x̃, t̃) → 0 on 0 < x̃ < L̃e as

t̃ → ∞ [Du and Lin 2010, Du and Guo 2011, Bunting et al. 2012, Du and

Guo 2012,Du et al. 2014a,Du et al. 2014b,Du and Lou 2015]. This major

difference between the Fisher-KPP model and Fisher-Stefan model is of great

interest because the Fisher-KPP model never leads to extinction, regardless

of the choice of parameters. One way of interpreting this difference is that the

Fisher-Stefan model is able to capture and predict additional details that are

of practical interest because it is well known that many initially small translo-

cated populations will become extinct [Griffith et al. 1989]. This is one of

the shortcomings of the Fisher-KPP model since this model implies that every

small initial population always leads to successful invasion.

The Fisher-Stefan model is an adaptation of the Fisher-KPP model that

includes a moving boundary, x = L(t), inspired by the classical Stefan prob-

lem [Crank 1987,Gupta 2017]. The classical Stefan problem is a one-dimensional

model of heat conduction that includes a phase change, such as the conduction

of heat associated with the melting of ice into water [Crank 1987,Gupta 2017].

An interesting mathematical and physical feature of the classical Stefan prob-

lem is that the interface between the two phases can move with time, giving

rise to the notion of a moving boundary problem [Crank 1987, Gupta 2017].

Unlike classical models of heat conduction without any phase change [Cranck

1979], the solution of the Stefan problem requires the specification of two

boundary conditions at the moving interface [Crank 1987,Gupta 2017]. First,

the temperature at which the phase change occurs is specified at the moving

boundary. This is analogous to Equation (2.3) in the Fisher-Stefan model.
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Second, the Stefan condition specifies a balance of latent heat energy to spe-

cific heat energy at the moving boundary, relating the time rate of change of

position of the moving boundary to the flux of heat at the boundary [Crank

1987,Gupta 2017]. This is analogous to Equation (2.5) in the Fisher-Stefan

model.

The moving boundary problem (2.2)-(2.5) with λ̃ = 0 represents a one-

phase Stefan problem which has an initial domain of solid, 0 < x̃ < L̃(0), at

some initial temperature ũ(x̃, 0), insulated at x̃ = 0. The interval x̃ > L̃(0) is

initially occupied by liquid assumed to already be at the fusion temperature.

For this particular problem formulation, the interface L̃(t̃) propagates into the

liquid region as the heat energy contained within the solid is continually used

as latest energy to convert the liquid to solid. The process continues until

ũ(x̃, t̃) → 0 and L̃(t̃) → L̃e as t̃ → ∞, where a simple energy balance shows

that

L̃e = L̃(0) +
κ̃

D̃

∫ L̃(0)

0
ũ(x̃, 0) dx̃. (2.6)

We shall return to this result later. A more general two-phase Stefan problem

involves heat conduction in both phases, again separated by a moving bound-

ary [Crank 1987, Gupta 2017]. Just like the Fisher-KPP model, there are

many extensions of the classical Stefan problem such as dealing with higher-

dimensions [King et al. 1999,McCue et al. 2003,McCue et al. 2005,McCue

et al. 2008] as well as modifying the moving boundary condition [King and

Riley 2000].

2.3 Results and discussion

2.3.1 Nondimensionalisation

We introduce the dimensionless variables, x = x̃
√
λ̃/D̃, t = λ̃t̃ and u = ũ/K̃,

to rescale the Fisher-KPP equation as

∂u

∂t
=
∂2u

∂x2
+ u(1− u), (2.7)

on x ≥ 0 and t > 0. It is useful to note that Equation (2.7) involves no free

parameters, and that all solutions of Equation (2.7) with compactly supported

initial conditions will eventually lead to travelling waves that move with speed
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cmin = 2. In this work we always specify the boundary conditions for the

Fisher-KPP model to be

∂u

∂x
= 0 at x = 0, (2.8)

∂u

∂x
= 0 at x = x∞, (2.9)

and the initial condition to be

u(x, 0) = α [1−H(x− β)] , (2.10)

where H(x) is the usual Heaviside function, and α and β are positive constants

so that we have u(x, 0) = α for x < β and u(x, 0) = 0 for x > β. Here

x∞ is chosen to be sufficiently large so that we can numerically approximate

the infinite domain problem on 0 ≤ x < ∞ by the finite domain problem

0 ≤ x ≤ x∞ [Simpson and Landman 2006]. Full details of the numerical

method used to solve Equation (2.7), together with benchmark test cases to

confirm the accuracy of our numerical solutions are given in the Additional

Material.

To nondimensionalise the Fisher-Stefan model we employ the same dimen-

sionless variables as in the Fisher-KPP model with L(t) = L̃(t̃)
√
λ̃/D̃ and

κ = κ̃/D̃ so that we have

∂u

∂t
=
∂2u

∂x2
+ u (1− u) , (2.11)

∂u

∂x
= 0 at x = 0, (2.12)

u(L(t), t) = 0, (2.13)

dL(t)

dt
= −κ∂u

∂x
at x = L(t). (2.14)

It is relevant to note that the nondimensional Fisher-Stefan model involves

one parameter, κ > 0. For all numerical solutions of Equations (2.11)-(2.14)

in this work we always apply the initial condition (2.10) such that L(0) = β.

Full details of the numerical method used to solve Equations (2.11)-(2.14),

together with benchmark test cases to confirm the accuracy of our numerical

solutions, are given in the Additional Material.

To illustrate key features of the Fisher-KPP and Fisher-Stefan models we
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present numerical solutions of both models in Figure 2.2. Results in Figure

2.2(a) show the time evolution of the solution of the Fisher-KPP model from an

initial condition with compact support. Plotting solutions at equally spaced

values of time suggests that the solution approaches a travelling wave that

moves in the positive x direction with constant speed and constant shape. Our

numerical solutions confirm that the speed of propagation is c = 2, as expected.

Results in Figure 2.2(b) show the time evolution of the solution of the Fisher-

Stefan model (2.11)-(2.14) for the same initial condition used in Figure 2.2(a)

together with a particular choice of κ. Again, plotting solutions at equally

spaced values of time suggests that the solution approaches a travelling wave

that moves in the positive x direction with constant speed and constant shape.

In this case, for our choice of κ, our numerical solution suggests that c = 1.2,

which is slower than the minimum wave speed for the Fisher-KPP model.

Another important difference between the travelling wave solutions in Figure

2.2(a)-(b) is that the travelling wave solution of the Fisher-KPP model does

not have compact support since u(x, t) > 0 for all x ≥ 0 and t > 0. This feature

of the Fisher-KPP model has been previously criticised as being biologically

implausible [Maini et al. 2004a,Maini et al. 2004b,McCue et al. 2019] (and

this observation has motivated extensions of the Fisher-KPP model to include

various nonlinear diffusion terms so that the resulting travelling waves have

compact support [Maini et al. 2004a,Maini et al. 2004b,McCue et al. 2019]).

In contrast, owing to the boundary conditions at x = L(t), the travelling wave

solution of the Fisher-Stefan has compact support since we have u(L(t), t) = 0

for t > 0. Therefore, we have identified two features of the Fisher-Stefan model

that are appealing when compared to the Fisher-KPP model: (i) the Fisher-

Stefan model permits population extinction whereas the Fisher-KPP model

implies that all initial populations successfully invade; and (ii) travelling wave

solutions of the Fisher-Stefan model have compact support whereas travelling

wave solutions of the Fisher-KPP model do not.
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Figure 2.2: Numerical solutions of the Fisher-KPP and the Fisher-Stefan
models. (a) Numerical solutions of the Fisher-KPP equation evolving into a travel-
ling wave solution with the minimum wave speed, c = 2. (b) Numerical solutions of
Fisher-Stefan model evolving into a travelling wave solution with c = 1.2. (c) Numer-
ical solutions of the Fisher-Stefan model leading to extinction. (d) Magnified region
of the solution in (c), for 0 ≤ x ≤ 2, to clearly show the dynamics of the extinction
behaviour. For the Fisher-Stefan model we set κ = 20 in (b) and κ = 0.45 in (c). Nu-
merical solutions of the Fisher-Stefan model are obtained with ∆ξ = 1×10−4, whereas
numerical solutions of the Fisher-KPP model are obtained with ∆x = 1× 10−4. For
both the Fisher-KPP and Fisher-Stefan models we set ∆t = 1×10−3 and ϵ = 1×10−8.
For all results presented here the initial condition is Equation (2.10) with α = 0.5
and β = 1.

Results in Figure 2.2(c) show the time evolution of the solution of the

Fisher-Stefan model for the same initial condition used in Figure 2.2(a)-(b),

but this time we choose a slightly smaller value of κ. In this instance, plotting

the solutions at the same intervals of time as in Figures 2.2(a)-(b) indicates

that the solution does not tend towards a travelling wave, and instead appears

to go extinct. Figure 2.2(d) shows a magnified view of the solution in Figure

2.2(c) so that we can see additional details as the population tends to extinc-

tion. From these magnified solutions we see that L(0) = 1. By t = 20 we have

L(20) ≈ 1.4, and after this time the solution rapidly tends to zero. Together,
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the results in Figure 2.2(b)-(d) illustrate the spreading-extinction dichotomy

since for certain choices of κ we observe spreading as a travelling wave in Figure

2.2(b), whereas keeping everything else identical except for choosing a smaller

value of κ we observe the population going extinct in Figure 2.2(c)-(d). These

initial comparisons in Figure 2.2 indicate that the solutions of the Fisher-KPP

and Fisher-Stefan models can be very different. As we will show, it is the dif-

ference in boundary conditions in the two models that drives these differences

in the time dependent solutions of the partial differential equation models.

Since both the Fisher-KPP and Fisher-Stefan models support travelling wave

solutions we will now explore these models in the phase plane.

2.3.2 Phase plane analysis

Numerical solutions of the Fisher-KPP model in Figure 2.2(a) suggest that

we seek travelling wave solutions with travelling wave coordinate z = x − ct,

where c > 0 is the constant speed of propagation in the positive x direction.

In the travelling wave coordinate, Equation (2.7) simplifies to a second order

nonlinear ordinary differential equation

d2U

dz2
+ c

dU

dz
+ U(1− U) = 0, (2.15)

where −∞ < z <∞, with U(−∞) = 1 and U(∞) = 0.

Our treatment of the analysis of travelling wave solutions of the Fisher-

Stefan model is very similar except that we must first assume that our choice

of initial condition and κ in Equation (2.11)-(2.14) is such that a travelling

wave solution forms, as in Figure 2.2(b). In this case, writing Equation (2.11)

in the travelling wave coordinate gives rise to the same second order nonlinear

ordinary differential equation, Equation (2.15) with U(−∞) = 1. The other

boundary condition is treated differently and to see this difference we express

the Stefan condition (2.14) in terms of z, giving

dL(t)

dt
= −κdU

dz
, (2.16)

at z = L(t) − ct. For a travelling wave solution we have dL(t)/dt = c, so

that the differential equation (2.15) holds on −∞ < z < 0. The boundary
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conditions are given by U(−∞) = 1, and

−κdU
dz

= c, (2.17)

at z = 0. Therefore, while the Fisher-KPP and Fisher-Stefan models presented

as partial differential equations appear to be very different, when we seek

travelling wave solutions of these models in the travelling wave coordinate we

find that the equations governing the phase planes for the two models are the

same, with differences only at one boundary condition.

We first examine travelling wave solutions of the Fisher-KPP model by

re-writing Equation (2.15) as a first order dynamical system

dU

dz
= V, (2.18)

dV

dz
= −cV − U(1− U), (2.19)

for −∞ < z < ∞. This dynamical system has two equilibrium points: (1, 0)

and (0, 0). A travelling wave solution corresponds to a heteroclinic trajectory

between these two equilibrium points. Linear analysis shows that the eigen-

values at (1, 0) are
(
−c±

√
c2 + 4

)
/2 so that the local behaviour at (1, 0) is a

saddle point [Murray 2002]. The eigenvalues at (0, 0) are
(
−c±

√
c2 − 4

)
/2,

meaning that the local behaviour at (0, 0) is a stable spiral for c < 2 and a

stable node if c ≥ 2 [Murray 2002]. Therefore, to avoid nonphysical negative

solutions near (0, 0) we require c ≥ 2, giving rise to the well known minimum

wave speed for the Fisher-KPP model [Murray 2002,Harley et al. 2015].

The shape of the heteroclinic orbit between (0, 0) and (1, 0) is given by the

solution of
dV

dU
=

−cV − U(1− U)

V
. (2.20)

Neither the system (2.18)–(2.19) or Equation (2.20) have exact solutions

for an arbitrary choice of c > 0. Therefore, we will consider numerical solu-

tions of these ordinary differential equations when we present and visualise the

phase planes in this work, with details of the numerical methods given in the

Additional Material. The solution of Equation (2.20) gives V (U), while the

solution of the system (2.18)–(2.19) gives U(z) and V (z), and we will use both

approaches where relevant. All phase planes presented in this work are gen-
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erated using a combination of exact and numerical methods that are outlined

in the Additional Material.

Figure 2.3: Phase planes and density profiles for the Fisher-KPP equation
with various choices of c. (a) Phase plane and heteroclinic trajectory for c = 10.
(b) The corresponding density profile for the heteroclinic trajectory in (a). (c) Phase
plane and heteroclinic trajectory for c = 2. (d) The corresponding density profile
for the heteroclinic trajectory in (c). (e) Phase plane and heteroclinic trajectory for
c = 0.5. (f) The corresponding density profile for the heteroclinic trajectory in (e).
Equilibrium points at (1, 0) and (0, 0) are shown with black discs. The blue arrows
show the flow associated with the dynamical system, and the solid orange line shows
the heteroclinic trajectory that runs between (0, 0) and (1, 0). The orange disc in (c)
shows the location where the heteroclinic trajectory intersects with the U(z) = 0 axis
where V (z) < 0.

Results in Figure 2.3 show a suite of phase planes for the Fisher-KPP

model for a range of c. The phase plane in Figure 2.3(a) shows the flow, the

location of the equilibrium points and the heteroclinic orbit for c = 10, which

approaches (0, 0) without spiralling. When we plot the solution in terms of the
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density, U = U(z), in Figure 2.3(b), we see that this solution is positive and

monotonically decreasing. Similar results are presented in Figure 2.3(c)-(d)

for c = 2. In contrast, Figure 2.3(e) shows the phase plane for c = 0.5 where

we see that the heteroclinic orbit approaches (0, 0) as a spiral, indicating that

U(z) < 0 in certain regions. This oscillatory behaviour is often invoked to

justify the condition that c ≥ cmin = 2 for the Fisher-KPP model and the

possibility of travelling waves with c < 2 is typically ignored [Murray 2002].

Since travelling wave solutions of the Fisher-KPP and Fisher-Stefan mod-

els are governed by the same phase planes, it is worthwhile to examine how

the phase planes in Figure 2.3 relate to the travelling wave solutions of the

Fisher-Stefan model. As previously stated, travelling wave solutions of the

Fisher-Stefan model satisfy a different boundary condition, (2.17). The tra-

jectory in the phase plane must intersect with, and terminate at, (0,−c/κ).

The phase planes and heteroclinic orbits for the Fisher-KPP model in Figure

2.3(a)-(b) and Figure 2.3(c)-(d) show that such an intersection is impossible

for these choices of c ≥ 2. In particular, the linearisation about (0, 0) means

that whenever c ≥ 2, the stable node at (0, 0) precludes the possibility of such

an intersection, illustrating that there is no travelling wave solution for the

Fisher-Stefan model with c ≥ 2. In contrast, for c < 2, the trajectory intersects

the V -axis at some point, (0,−c/κ), as indicated by the orange disc in Figure

2.3(e). Therefore, this additional boundary condition for the Fisher-Stefan

model together with the linearisation about (0, 0) indicates that travelling

wave solutions for the Fisher-Stefan model require c < 2. Under these condi-

tions, the trajectory in the phase plane corresponding to the travelling wave

solutions runs between (1, 0) and (0,−c/κ), and since this trajectory never

leaves the fourth quadrant we avoid the issue of negative densities. This is a

very interesting result because the standard phase plane analysis of travelling

wave solutions of the Fisher-KPP model typically discard any solutions for

which c < 2 based on physical grounds [Murray 2002,Canosa 1973]. In this

work we show that it is precisely these normally-discarded solutions that actu-

ally form the basis of the travelling wave solutions of the Fisher-Stefan model

provided that we only consider that part of the trajectory between (1, 0) and

(0,−c/κ), where U(z) ≥ 0. Therefore, by revisiting the travelling wave solu-

tions of the Fisher-KPP model we are providing insight into the properties of

36



travelling wave solutions of the Fisher-Stefan model.

Figure 2.4: Family of trajectories in the phase plane for various choices of
c. Heteroclinic trajectories running between (1, 0) to (0, 0) for c = 10, 2, 1 and 0.5,
as indicated. An additional trajectory with c = 0 forms a homoclinic trajectory to
(1, 0). Equilibrium points at (1, 0) and (0, 0) are shown with black discs. For the
trajectories with 0 < c < 2 the intersection with the U(z) = 0 axis is shown with an
appropriately coloured disc: green for c = 1; blue for c = 0.5; and red for c = 0.

We now provide additional results in Figure 2.4 comparing trajectories

in the phase plane for a wider range of c. The trajectories for c = 10 and

c = 2 show a heteroclinic orbit that runs between (1, 0) and (0, 0) without

spiralling around the origin. These trajectories are associated with travelling

wave solutions of the Fisher-KPP model for these choices of c. Additional

results for c = 1 and c = 0.5 are also shown, and these trajectories clearly

spiral near to the origin. However, both of these trajectories cross the V -

axis at some point, shown with an appropriately coloured disc in Figure 2.4,

where U(z) = 0 and V (z) < 0, which satisfies the Fisher-Stefan boundary

condition. Therefore, the trajectories in Figure 2.4 with c < 2 are shown

as a combination of solid and dashed lines. Those parts of the trajectories

shown in solid correspond to the travelling wave solution of the Fisher-Stefan

model, whereas the dashed parts of the trajectories are not associated with

the travelling wave solution. Finally, we also include a trajectory in Figure

2.4 for c = 0. In this case the trajectory forms a homoclinic orbit with (1, 0).

Although this trajectory does not correspond to any travelling waves with

c > 0, later we will show it is important when constructing approximate
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perturbation solutions for c≪ 1.

2.3.3 Relationship between κ and c

Figure 2.5: Relationship between c and κ for the Fisher-Stefan model.
The blue curve is obtained by solving Equation (2.20) and calculating the value of
κ corresponding to the intersection of (0,−c/κ). The red circles are obtained by
solving Equations (2.2-2.4) and using the full time dependent solutions to estimate the
eventual long time travelling wave speed, c. The black circle denotes the approximate
critical value of κcrit. The Fisher-Stefan model is solved with ∆ξ = 1 × 10−4, ∆t =
1 × 10−3, ϵ = 1 × 10−8 and the initial condition given by Equation (2.10), where
α = 0.5 and β = 1. The inset shows the comparison of the numerical solution the
perturbation solutions. The red line is the O(1) perturbation solution, the green curve
is the O(c) perturbation solution and the blue curve is the full numerical result.

It is interesting to recall that all solutions of the Fisher-KPP model evolving

from initial conditions with compact support always eventually form a travel-

ling wave with the minimum wave speed, cmin = 2. In contrast, the question

of whether travelling wave solutions will form for the Fisher-Stefan model de-

pends upon the choice of initial condition. Furthermore, if a travelling wave

solution for the Fisher-Stefan model does form, the speed of that travelling

wave will depend on the choice of κ. To explore the relationship between

the speed of the travelling wave and κ, we use a combination of phase plane

analysis and numerical solutions of the Fisher-Stefan model (2.11)-(2.14). By

repeatedly solving the phase plane equations, (2.18) for different values of

c < 2, we are able to estimate the point at which the trajectory leaving (1, 0)

first intersects the V -axis and then use the boundary condition, V = −c/κ

at U = 0, to calculate the corresponding values of κ. The solid blue curve in

Figure 2.5 shows this relationship. The results in the inset of Figure 2.5 will
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be discussed in section 2.3.5. We find that as we examine increasing values

of c towards the threshold value of c = 2, κ appears to grow without bound.

This numerical result suggests that κ→ ∞ as c→ 2−.

In addition to exploring the relationship between κ and c in the phase

plane, we also solve the Fisher-Stefan model (2.11)-(2.14) numerically with a

particular choice of initial condition given by Equation (2.10) with β = 1 and

α = 0.5. We allow such numerical solutions to evolve for a sufficient duration of

time that the resulting solution appears to settle into a travelling wave, from

which we can estimate the speed, c. Repeating this procedure for various

values of κ enables us to estimate how our choice of κ influences c. Additional

results, shown as red discs in Figure 2.5, confirm that long time travelling

wave solutions from the partial differential equation description compare very

well with the relationship implied by the phase plane analysis.

As we stated in Section 2.3.2, whenever we are working in the phase plane

we make the implicit assumption that a travelling wave solution has been gen-

erated. Yet, when we compare results in Figure 2.2(b)-(c) we know that long

time travelling wave solutions do not always form, since this outcome depends

upon the choice of κ. We explore this in Figure 2.5 by holding the initial

condition constant in the numerical solution of Equations (2.11)-(2.14) and

choosing a sequence of increasingly small values of κ. The numerical solutions

suggest that for this initial condition there is a threshold value, κcrit ≈ 0.48.

If κ > κcrit we observe long time travelling wave solutions and for κ < κcrit

the population eventually becomes extinct. This approximate threshold value

is shown in Figure 2.5 as a black disc, and the relationship between κ and

c obtained in the phase plane is shown as a solid line for κ > κcrit and as a

dashed line for κ < κcrit.

2.3.4 Critical length and the spreading-extinction dichotomy

We will now provide insight into the spreading-extinction dichotomy by exam-

ining time-dependent numerical solutions of Equations (2.11)-(2.14) in Figure

2.6. Figure 2.6(a) shows numerical solutions for a particular choice of κ where

we see some very interesting behaviour. At t = 30 the solution appears to be

decreasing, almost to extinction, whereas by t = 60 and t = 90 the solution

recovers from the initial decline to eventually form a travelling wave. Results

39



in Figure 2.6(b) show details at intermediate values of t to clearly highlight

this initial decline followed by the recovery. Figure 2.6(c) shows estimates of

L(t) as a function of t, where we see that L(t) increases slowly at early time

before eventually increasing at a constant rate, corresponding to a travelling

wave solution. In contrast, Figure 2.6(d) shows the solution of Equations

(2.11)-(2.14) for the same initial condition as in Figure 2.6(a) with the only

difference being that κ is reduced. Figure 2.6(d) indicates that the population

appears to be almost extinct at t = 90, and additional results magnified in

Figure 2.6(e) show that the population never recovers, and instead goes ex-

tinct as t increases. Figure 2.6(f) shows L(t) as a function of t, where we see

that the spreading population initially increases its domain before eventually

stalling.
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Figure 2.6: Numerical solutions of the Fisher-Stefan model showing both travelling wave and extinction phenomena. The first row represents
the invasion phenomenon, and the second row represents the extinction. (a) Time evolution of the density profiles for invading cell population. (b) Magnified
density profiles in (a) from x = 0 to 2 at intermediate times. (c) Progression of L(t) superimposed with the critical length of π/2. (d) Time evolution of the
density profiles for extinction. (e) Magnified density profiles in (d) from x = 0 to 2 at intermediate times. (f) Progression of L(t) superimposed with the critical
length of π/2. For both simulations, ∆ξ = 1× 10−4, ∆t = 1× 10−3, ϵ = 1× 10−8, and the initial condition given by Equation (2.10), where α = 0.5 and β = 1.
Results in (a)-(c) correspond to κ = 0.5, while results in (d)-(f) correspond to κ = 0.4.
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Du and colleagues [Du and Lin 2010] provide a formal proof of the ex-

istence of a critical length, Lcrit = π/2, such that if ever L(t) > Lcrit the

population will evolve to a travelling wave, whereas if L(t) never exceeds this

critical length then the population will eventually become extinct. Here we

provide some simple physical and mathematical arguments to confirm this

result. Visual inspection of the time dependent solutions of Equations (2.11)-

(2.14) in Figure 2.6(b) and (e) confirm that we have u(x, t) ≪ 1 close to the

time when population recovers (Figure 2.6(b)) or fails to recover from the ini-

tial decline (Figure 2.6(e)). This observation suggests that we can study the

spreading-extinction dichotomy using an approximate linearised model where

U(x, t) ≪ 1. Under these conditions we can approximate the Fisher-Stefan

model with
∂U
∂t

=
∂2U
∂x2

+ U , (2.21)

for 0 < x ≤ L, with ∂U/∂x = 0 at x = 0 and U = 0 at x = L. In this

approximate analysis we treat the domain length as a fixed quantity and this

allows us to write down the exact solution of the linear equation (2.21) as

U(x, t) =
∞∑
n=1

An cos(γnx)e
t(1−γ2

n), (2.22)

where γn = π(2n − 1)/(2L), n = 1, 2, 3, . . . and An are constants chosen so

that the solution matches the initial condition, U(x, 0). The solution of the

linearised model (2.22) can be further simplified by assuming that the dynam-

ics near the time of population recovery, or decline, can be approximated by

taking a leading eigenvalue approximation so that

Û(x, t) ∼ A1 cos
(πx
2L

)
et(1−π2/[4L2]). (2.23)

With this approximate solution we formulate a conservation statement

describing the time rate of change of the total population within the domain,

dn

dt
=

∫ L

0
Û(x, t) dx+

∂Û(L, t)
∂x

, (2.24)

where n(t) =
∫ L
0 Û(x, t) dx is the total population within the domain. The

first term on the right of Equation (2.24) is the rate of increase of the total

population owing to the source term and the second term on the right of
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Equation (2.24) is the rate of decrease of the total population owing to diffusive

loss at the boundary at x = L. Setting dn/dt = 0, and substituting Equation

(2.23) into (2.24) gives L = Lcrit = π/2, corroborating the results of Du and

colleagues [Du and Lin 2010]. We interpret this as follows. Once a time-

dependent solution of Equations (2.11)-(2.14) evolves such that L(t) > π/2,

the net positive accumulation of mass in the system means that a travelling

wave solution will eventually form, as in Figure 2.6(a)-(c). Alternatively, if

the time dependent solution of Equations (2.11)-(2.14) evolves such that L(t)

never exceeds π/2, the net loss of mass in the system means that the population

will always go extinct, as in Figure 2.6(d)-(f). It is also worthwhile to note

that since the result that Lcrit = π/2 is governed by a linearised model (2.21),

this outcome will hold for any generalisation of the Fisher-Stefan model that

can be linearised to give Equation (2.21). For example, if we extended the

Fisher-Stefan model to consider a generalised logistic source term, u(1− u)m,

where m > 0 is some exponent [Simpson et al. 2010, Tsoularis and Wallace

2002,Broadbridge et al. 2002,Bradshaw-Hajek and Broadbridge 2004], then

the same Lcrit = π/2 would apply.

2.3.5 Perturbation solution when c ≪ 1

Now that we have used phase plane analysis and linearisation to establish

conditions for travelling wave solutions of the Fisher-Stefan model to form, we

turn our attention to whether it is possible to provide additional mathemat-

ical insight into the details of the shape of the travelling wave solutions. It

is well known that travelling wave solutions of the Fisher-KPP model travel

with speed c ≥ cmin = 2, and that it is possible to obtain approximate pertur-

bation solutions to describe the shape of the travelling wave solutions in large

c limit [Canosa 1973,Murray 2002,Simpson et al. 2006]. We now attempt to

follow a similar analysis to describe the shape of the travelling wave solution

of the Fisher-Stefan model for which c < 2, suggesting that we attempt to find

a perturbation solution for small c:

V (U) = V0(U) + cV1(U) +O(c2). (2.25)

Substituting this expansion into Equation (2.20) we obtain ordinary differen-

tial equations governing V0(U) and V1(U) which can be integrated exactly.
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Ensuring that U(1) = 0 we obtain

V0(U) = ±
√
−U2 +

2U3

3
+

1

3
, (2.26)

V1(U) =
−(U − 2)(1 + 2U)3/2 −

√
27

5(U − 1)
√
1 + 2U

. (2.27)

Since we solve for both V0(U) and V1(U) we can construct both an O(1)

perturbation solution given by V (U) = V0(U) +O(c), as well as an O(c) per-

turbation solution given by V (U) = V0(U) + cV1(U) +O(c2). To compare the

accuracy of these perturbation solutions for the shape of the V (U) curve in the

phase plane we generate a series of numerical phase planes for c = 0.05, 0.1, 0.2

and 0.5 in Figure 2.7. The numerical trajectories, shown in blue, run between

the equilibrium points (1, 0) and (0, 0), and pass through the point (0,−c/κ).

In the numerical solutions we highlight (0,−c/κ) with a blue disc. In each

subfigure of Figure 2.7, we compare the numerical trajectory with the O(1)

perturbation solution in red. In each case the O(1) perturbation solution runs

between (1, 0) and first intersects the V -axis at (0,−1/
√
3). We show this

point with a red disc. Comparing the red and blue trajectories in the fourth

quadrant clearly shows a discrepancy that increases with c, as expected. Simi-

larly, in each subfigure of Figure 2.7 we also compare the numerical trajectory

with the O(c) perturbation solution shown in green. In each case the O(c)

perturbation solution runs between (1, 0) and first intersects the V -axis at

(0,−1/
√
3 + c(

√
27 − 2)/5), and we show this point with a green disc. Com-

paring the green and blue trajectories in the fourth quadrant shows that we

have an excellent match between the numerical and perturbation solutions.

This comparison indicates that the O(c) perturbation solution can be used to

provide a highly-accurate approximation of the shape of the travelling wave

solutions of the Fisher-Stefan model for c < 0.5.
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Figure 2.7: Comparison of numerical trajectories in the phase plane and
perturbation solutions for various choices of c. The blue lines are the numerical
trajectories for c = 0.05, 0.1, 0.2 and 0.5 in (a)-(d), respectively. The red curves are
the O(1) perturbation solution. The green curves are the O(c) perturbation solution.
The red, blue and green discs indicate the intersection points of the trajectories with
U(z) = 0.

Using Equations (2.25)-(2.27) we can obtain additional analytical insight

into the relationship between c and κ that we previously explored numerically

in Figure 2.5. Since the ordinate of the intersection point is V = −κ/c, we

can develop approximate closed-form relationships between c and κ. These

relationships are plotted in the inset of Figure 2.5 for κ < 2 and c < 1.

Comparing the numerically deduced relationship between c and κ with the

perturbation solutions shows a good match, with the expected result that the

O(c) perturbation solution leads to a particularly accurate approximation.

Since our perturbation solutions provide good approximations to the V (U)

curve in the fourth quadrant of the phase plane, shown in Figure 2.7, we now

compare the accuracy of the perturbation solutions in the travelling wave

coordinate system. For the O(1) perturbation solution we have

dU

dz
= −

√
−U2 +

2U3

3
+

1

3
. (2.28)
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Integrating Equation (2.28) with U = 0 at z = 0 gives an implicit solution

2(U − 1)
√
1 + 2U arctanh

√
1+2U

3√
3(U − 1)

√
1 + 2U

=
z√
3
+ 2 arctanh

√
1

3
. (2.29)

For the O(c) perturbation solution we have

dU

dz
= −

√
−U2 +

2U3

3
+

1

3
+ c

−(U − 2)(1 + 2U)3/2 −
√
27

5(U − 1)
√
1 + 2U

, (2.30)

for which we cannot find an exact solution. Nonetheless, Equation (2.30) can

be integrated numerically to give a numerical approximation of U(z).

Figure 2.8: Density profiles comparing the numerical solution of the
Fisher-Stefan equation with the perturbation solution for c ≪ 1. (a) c
= 0.05. (b) c = 0.1. (c) c = 0.2. (d) c = 0.5. The solid blue line represents the
travelling wave solution obtained from the time-dependent Fisher-Stefan model, (2.2)
and shifting the resulting travelling wave profile so that U(0) = 0. The red solid line
represents the travelling wave profile obtained from the O(1) perturbation solution
and the dashed green line represents the travelling wave profile obtained from the
O(c) perturbation solution. In each subfigure we show an inset magnifying the trav-
elling wave profiles so that the differences between the numerical and perturbation
solutions are visually distinct.

Figure 2.8 shows a suite of travelling wave solutions obtained by solving

Equations (2.11)-(2.14) (in dashed blue) presented for c = 0.05, 0.1, 0.2 and

0.5. In each case the solutions are obtained for a sufficiently long time that
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the full time dependent numerical solutions have settled into a travelling wave.

These travelling waves are then shifted so that u(x, t) = 0 at z = 0, where

z = x−ct. For each value of c, we superimpose plots of the O(1) solution, given

by Equation (2.29) (in solid red). The results show that the O(1) solution

provides an excellent match to the shape of the full numerical solutions of

Equations (2.11)-(2.14) for c = 0.05. For larger c, however, the O(1) solution

provides a relatively poor approximation. Similarly, for each value of c we also

plot the O(c) solution (in solid green). Here we see that the O(c) perturbation

solution provides an excellent match, being indistinguishable from the full

numerical solutions of Equations (2.11)-(2.14) for c < 0.1. In each subfigure of

Figure 2.8 we also provide an inset showing a magnified region just behind the

leading edge of the wavefront to make the comparison between the numerical

solution of the partial differential equation and the two perturbation solutions

clearer.

2.4 Conclusion

In this work we directly compare features of the travelling wave solutions of

the well-known Fisher-KPP model and solutions to the Fisher-Stefan model.

A key feature of the Fisher-KPP model is that any positive initial condition

with compact support will always evolve into a travelling wave that moves with

the minimum wave speed, cmin = 2. Therefore, according to the Fisher-KPP

model, any initial population will lead to successful invasion. This feature is a

potential weakness of the Fisher-KPP model since it is well known that small

translocated populations do not always invade, and can become extinct [Grif-

fith et al. 1989]. In contrast, the Fisher-Stefan model is an adaptation of the

Fisher-KPP model with a moving boundary, x = L(t). In the Fisher-Stefan

model, the evolution of the moving boundary is governed by a one-phase Stefan

condition [Du and Lin 2010,Du and Guo 2011,Bunting et al. 2012,Du and Guo

2012,Du et al. 2014a,Du et al. 2014b,Du and Lou 2015]. The Fisher-Stefan

model can support travelling wave solutions with speed c < 2. Since both the

Fisher-KPP and the Fisher-Stefan model support travelling wave solutions,

both of these models can be used to simulate invasion processes. However,

unlike the Fisher-KPP model, the Fisher-Stefan model also predicts the ex-

tinction of certain initial populations, giving rise to the spreading-extinction
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dichotomy [Du and Lin 2010,Du and Guo 2011,Bunting et al. 2012,Du and

Guo 2012, Du et al. 2014a, Du et al. 2014b, Du and Lou 2015]. The key

difference between these two models is the difference in boundary conditions.

The spreading-extinction dichotomy associated with the Fisher-Stefan model

has been studied, mainly using rigorous mathematical approaches, leading to

many important existence results [Du and Lin 2010,Du and Guo 2011,Bunting

et al. 2012,Du and Guo 2012,Du et al. 2014a,Du et al. 2014b,Du and Lou

2015]. One of the aims of this work is to provide a more practical comparison

of the Fisher-KPP and Fisher-Stefan models using standard tools of applied

mathematics and engineering to provide insight into the similarities and differ-

ences between these two models of invasion. It is interesting to note that the

partial differential equation descriptions of the Fisher-KPP and Fisher-Stefan

models are very different, since the Fisher-KPP model is associated with a

fixed domain and the Fisher-Stefan model is a moving boundary problem. In

contrast, when we analyse the travelling wave solutions of both models we find

that the equations governing the trajectories in the phase plane are the same.

Interestingly, standard phase plane arguments for the Fisher-KPP model lead

us to conclude that travelling wave solutions with c < cmin = 2 are not possi-

ble since these solutions would involve negative densities and are therefore not

normally recorded or discussed. In this work we show that the travelling wave

solutions of the Fisher-Stefan model require that c < 2, and it turns out that

it is precisely these normally-discarded solutions for the Fisher-KPP model

that are relevant for the Fisher-Stefan model.

In the non-dimensional Fisher-Stefan model there is one free parameter,

κ > 0, that relates the dynamics of the moving boundary, x = L(t), and the

spatial gradient of the density function at the moving boundary. By analysing

trajectories in the phase plane associated with travelling wave solutions of the

Fisher-Stefan model we are able to arrive at a relationship between κ and

c, confirming that c → 2− as κ → ∞. However, all phase plane analysis of

the Fisher-Stefan model implicitly assumes that a travelling wave solution has

formed, whereas numerical solutions of the full partial differential equation

description of the Fisher-Stefan model shows that for a fixed initial condition

there is a critical value κcrit: for κ > κcrit the solution eventually evolves to

a travelling wave, whereas for κ < κcrit the solution eventually goes extinct.
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The time-dependent solutions of the partial differential equation model suggest

that near this transition between eventual extinction and eventual travelling

wave formation, we have u(x, t) ≪ 1, suggesting that we can obtain insight

using a linearised model. Working in a linearised framework we obtain an

approximate solution from which we form a conservation statement describing

the net accumulation of total population numbers in the domain. In the

critical case where there is zero net accumulation of mass in the domain, we

find that there is a critical length, Lcrit = π/2, and whenever L(t) exceeds π/2

the solution will always evolve to a travelling wave while if L(t) never exceeds

π/2 the density will always eventually go extinct. Using a comparison with

the Stefan problem, Equations (2.11)–(2.14) with λ̃ = 0, we can strengthen

these results to be that if L(t) exceeds

π

2
− κ

∫ L(t)

0
u(x, t) dx,

then a travelling wave will form. Or, if the population goes extinct with

L(t) → Le as t→ ∞, then

L(0) + κ

∫ L(0)

0
u(x, t) dx < Le <

π

2
.

While it is well-known that there are no closed-form exact solutions de-

scribing travelling wave solutions of the Fisher-KPP equation for arbitrary c,

it is possible to obtain approximate perturbation solutions for c≫ 1 [Canosa

1973,Murray 2002]. Since travelling wave solutions for the Fisher-Stefan model

move with speed c < 2, we construct a perturbation solution for c ≪ 1, lead-

ing to approximate closed form solutions for the shape of the trajectory in the

phase plane which can be used to estimate the shape of the travelling wave.

We find that the O(c) perturbation solutions provide an excellent match to our

full numerical solutions for c < 0.5, thereby providing analytical insight into

the relationship between the speed and shape of the travelling wave solutions

of the Fisher-Stefan model.

There are many ways that our work could be extended. For example,

all our results involve a thorough comparison between full time-dependent

solutions of partial differential equation models and the phase portrait in the

case where a travelling wave solution forms. While such comparisons strongly
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suggest that the travelling wave solutions are stable, we have not attempted

any formal proof of stability. We leave this question for future consideration.

Furthermore, this work focuses almost entirely upon travelling wave solutions

of the full time dependent partial differential equation models and we do not

consider any other kind of time dependent solution in any detail.

The purpose of this work is to compare the Fisher-Stefan and Fisher-

KPP models of invasion. Although we begin our work by pointing out that

Fisher-Stefan model enables us to simulate population extinction, whereas

Fisher-KPP does not, there are also limitations of the Fisher-Stefan model

that warrant acknowledgement and discussion. For example, time-dependent

solutions of the Fisher-Stefan model that move in the positive x-direction,

including travelling wave solutions, involve a loss of the population at the

free boundary, x = L(t), since ∂u/∂x < 0 at x = L(t). It could be difficult

to justify this loss at the moving boundary based on biological, ecological or

physical grounds and/or to calibrate the model to estimate a relevant value of

κ. To address this point, it is worthwhile recalling that the Fisher-Stefan model

makes use of a one-phase Stefan boundary condition which is a simplification

of a more realistic two-phase Stefan boundary condition [Crank 1987,Gupta

2017]. In more realistic applications of invasion, such as malignant cellular

invasion into surrounding tissues, there will be a conversion of consumed tissue

into malignant cells at the interface [Perumpanani et al. 1999,Gatenby and

Gawlinski 1996,Haridas 2017,Browning et al. 2019]. One way of interpreting

this conversion from tissues to cells is that there is a loss of one species, in this

case the surrounding tissue, that is converted into another species, in this case

invasive cells. Therefore, while we appreciate that the practical interpretation

of loss at the moving boundary in the one phase Fisher-Stefan model is difficult

to justify, we anticipate that this loss at a moving boundary would be very

natural in an extended framework where the Fisher-Stefan model is re-cast as

a two-phase problem.

This article has no additional data. Key algorithms used to generate results

are available on Github at GitHub.
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2.5 Additional material

2.5.1 Numerical methods

2.5.1.1 Fisher-KPP model

We solve the Fisher-KPP equation

∂u

∂t
=
∂2u

∂x2
+ u(1− u), (2.31)

on 0 ≤ x ≤ x∞, with x∞ chosen to be sufficiently large. We discretise the

domain with a uniform finite difference mesh, with spacing ∆x. We approxi-

mate the spatial derivatives in Equation (2.31) using a central finite difference

approximation, and we integrate Equation (2.31) using an implicit Euler ap-

proximation, giving rise to

uj+1
i − uji
∆t

=

(
uj+1
i−1 − 2uj+1

i + uj+1
i+1

∆x2

)
+ uj+1

i (1− uj+1
i ), (2.32)

for i = 2, . . . ,m − 1, where m = x∞/∆x + 1 is the total number of spatial

nodes on the finite difference mesh, and the index j represents the time index

so that we approximate u(x, t) by uji , where x = (i− 1)∆x and t = j∆t.

For all numerical solutions of Equation (2.31) we enforce no-flux boundary

conditions at x = 0 and x = x∞

uj+1
2 − uj+1

1 = 0, (2.33)

uj+1
m − uj+1

m−1 = 0. (2.34)

Together, Equations (2.32)–(2.34) form a nonlinear system of algebraic

equations that describe how to approximate uj+1
i from uji for i = 1, . . . ,m.

We use Newton-Raphson iteration to solve this non-linear system and we

continue with the iterations until the infinity norm of the difference between

successive estimates of uj+1
i falls below some small tolerance, ϵ. For all results

presented we are always careful to choose ∆x, ∆t and ϵ so that the numerical

algorithm produces grid-independent results. To illustrate the accuracy of our

algorithm we present results in Figure 2.9 showing the evolution of the solution

of Equation (2.31) evolving from an initial condition with compact support.

Here we see that the solution rapidly approaches a constant shape, constant
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speed travelling wave what moves with the minimum wave speed, c = 2, as

expected [Murray 2002].

Figure 2.9: Numerical solutions of Equation (2.31) with ∆x = 1 × 10−4, ∆t =
1 × 10−3, x∞ = 50 and ϵ = 1 × 10−8. For this example the initial condition is
u(x, 0) = 0.5 for x ≤ 1 and u(x, 0) = 0 for x > 1.

We have confidence in our numerical results in Figure 2.9 since we find

that the results are grid-independent. Furthermore, if we change the initial

condition so that u(x, 0) ∼ e−ax, as x → ∞, we find that c = 1/a + a, for

a > 1, as expected [Murray 2002].
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2.5.1.2 Fisher-Stefan equation

To obtain numerical solutions of the Fisher-Stefan problem,

∂u

∂t
=
∂2u

∂x2
+ u(1− u), (2.35)

for 0 < x < L(t) and t > 0, we first use a boundary fixing transformation

ξ = x/L(t) [Simpson 2015] so that we have

∂u

∂t
=

1

L2(t)

∂2u

∂ξ2
+

ξ

L(t)

dL(t)

dt

∂u

∂ξ
+ u(1− u), (2.36)

on the fixed domain 0 < ξ < 1 and t > 0. Here L(t) is the length of the domain

that we will discuss later. To close the problem we must also transform the

appropriate boundary conditions giving

∂u

∂ξ
= 0 at ξ = 0, (2.37)

u = 0 at ξ = 1. (2.38)

We spatially discretise Equations (2.36)-(2.38) with a uniform finite dif-

ference mesh, with spacing ∆ξ, approximating the spatial derivatives using a

central finite difference approximation, giving

uj+1
i − uji
∆t

=
1

(Lj)2

(
uj+1
i−1 − 2uj+1

i + uj+1
i+1

∆ξ2

)

+
ξ

Lj

(
Lj+1 − Lj

∆t

)(
uj+1
i+1 − uj+1

i−1

2∆ξ

)
+ uj+1

i (1− uj+1
i ), (2.39)

for i = 2, . . . ,m− 1, where m = 1/∆ξ+1 is the total number of spatial nodes

on the finite difference mesh, and the index j represents the time index so that

uji ≈ u(ξ, t), where ξ = (i − 1) ∆ ξ and t = j∆t.

Discretising Equations (2.37)-(2.38) leads to

uj+1
2 − uj+1

1 = 0, (2.40)

uj+1
m = 0. (2.41)

We use Newton-Raphson iteration to solve the non-linear system defined by

Equations (2.39)-(2.41) and we continue with the iterations until the infinity
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norm of the difference between successive estimates of uj+1
i falls below some

small tolerance, ϵ. As the Newton-Raphson iterates converge we also update

the L(t) by considering the Stefan boundary condition

dL(t)

dt
= −κ∂u

∂x
, at x = L(t). (2.42)

To incorporate the Stefan boundary condition into our numerical method we

must transform the boundary condition to the fixed domain,

dL(t)

dt
= − κ

L(t)

∂u

∂ξ
, at ξ = 1, (2.43)

and we then discretise Equation (2.43) allowing us to update L(t+∆t) as the

Newton-Raphson iterates converge

Lj+1 = Lj − ∆tκ

Lj

(
uj+1
m − uj+1

m−1

∆ξ

)
. (2.44)

To demonstrate the accuracy of our numerical method to solve the Fisher-

Stefan problem we consider a closely related, but simplified problem, that has

an exact solution [Kutluay 1997]. We consider

∂u

∂t
=
∂2u

∂x2
, (2.45)

on 0 < x < L(t) for t > 0, with a moving boundary at L(t). The boundary

conditions are given by

∂u

∂x
= −et at x = 0, (2.46)

u = 0 at x = L(t), (2.47)

with the Stefan condition is

dL(t)

dt
= −∂u

∂x
at x = L(t), (2.48)

With L(0) = 0, the exact solution to this moving boundary problem is

u(x, t) = −e(t−x) − 1, (2.49)

on 0 < x < t, for 0 < t < 1. Therefore, by setting λ̃ = 0, κ = 1 and
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changing the boundary condition from ∂u/∂x = 0 at x = 0 to ∂u/∂x = −et

at x = 0, our numerical scheme ought to approximate the exact solution,

Equation (2.49). Since the initial condition for the exact solution has L(0) = 0,

we make progress by evaluating the exact solution at t = τ < 1 and we use

this solution as the initial condition from which the numerical solution can

be evaluated for t > τ . Results in Figure 2.10 compare numerical solutions

and this exact solution with τ = 0.2. This exercise gives us confidence in our

numerical solution of the moving boundary problem since the numerical and

exact solutions in Figure 2.10 are indistinguishable at this scale.

Figure 2.10: Comparison of numerical and exact solutions for the simplified
moving boundary problem. Numerical solutions are obtained with ∆ξ = 1×10−4,
∆t = 1×10−3 and ϵ = 1×10−8. The numerical solutions (blue solid) are superimposed
on the exact solutions (yellow dashed) and solutions are shown at t = 0.2, 0.4 and 0.8,
with the arrow showing the direction of increasing t.

2.5.1.3 Numerical estimate of c

In this work we solve both the Fisher-KPP and the Fisher-Stefan models and

use the time-dependent solutions to provide an estimate of the travelling wave

speed, c. To obtain this estimate we specify a contour value, u(x, t) = u∗. At

the end of each time step in we use linear interpolation to estimate x∗ such

that u(x∗, t) = u∗. Therefore, at the end of each time step we have estimates

of both x∗(t +∆t) and x∗(t), allowing us to estimate the speed at which the
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contour moves

c =
x∗(t+∆t)− x∗(t)

∆t
. (2.50)

We find that evaluating Equation (2.50) at each time step leads to a time

series of estimates of c, and we find that these estimates asymptote to some

positive constant value as t→ ∞ for those problems that support a travelling

wave solution. For all results presented we set u∗ = 0.5, but we find that our

estimates of c obtained using this approach are not particularly sensitive to

our choice of u∗ [Landman et al. 2005].

2.5.1.4 Construction of the phase planes

The dynamical system that defines the phase plane for travelling wave solu-

tions of the Fisher-KPP and Fisher-Stefan models is given by

dU

dz
= V, (2.51)

dV

dz
= −cV − U(1− U). (2.52)

Using the chain rule, Equations (2.51)-(2.52) can be written equivalently as

dV

dU
=

−cV − U(1− U)

dV
, (2.53)

where V = V (U).

When we construct phase planes in the main document we use a com-

bination of exact and computational techniques. The locations of equilib-

rium points and boundary conditions are plotted on the phase plane using

exact mathematical expressions for their location. The flow, defined exactly

by Equations (2.51)-(2.52), is plotted using the quiver function in MAT-

LAB [Mathworks 2021]. To estimate the trajectories in the phase plane we in-

tegrate Equations (2.51)-(2.52) numerically using the ODE45 function in MAT-

LAB [Mathworks 2021]. When we compute the phase plane trajectories we

set the tolerance to 1 × 10−4 in ODE45 and we choose the initial condition

using information from the linear analysis nearby the (1, 0) equilibrium point

to ensure that the initial condition is close to the heteroclinic orbit.
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Chapter 3

Invading and receding

sharp–fronted travelling

waves
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3.1 Abstract

Biological invasion, whereby populations of motile and proliferative individuals

lead to moving fronts that invade vacant regions, are routinely studied using

partial differential equation (PDE) models based upon the classical Fisher–

KPP equation. While the Fisher–KPP model and extensions have been suc-

cessfully used to model a range of invasive phenomena, including ecological and

cellular invasion, an often–overlooked limitation of the Fisher–KPP model is

that it cannot be used to model biological recession where the spatial extent

of the population decreases with time. In this work we study the Fisher–

Stefan model, which is a generalisation of the Fisher–KPP model obtained by

reformulating the Fisher–KPP model as a moving boundary problem. The

nondimensional Fisher–Stefan model involves just one parameter, κ, which

relates the shape of the density front at the moving boundary to the speed

of the associated travelling wave, c. Using numerical simulation, phase plane

and perturbation analysis, we construct approximate solutions of the Fisher–

Stefan model for both slowly invading and receding travelling waves, as well

as for rapidly receding travelling waves. These approximations allow us to

determine the relationship between c and κ so that commonly–reported ex-

perimental estimates of c can be used to provide estimates of the unknown

parameter κ. Interestingly, when we reinterpret the Fisher–KPP model as a

moving boundary problem, many disregarded features of the classical Fisher–

KPP phase plane take on a new interpretation since travelling waves solutions

with c < 2 are normally disregarded. This means that our analysis of the

Fisher–Stefan model has both practical value and an inherent mathematical

value.

3.2 Introduction

Biological invasion is normally associated with situations where individuals

within a population undergo both movement and proliferation events [Edelstein-

Keshet 2005,Kot 2003,Murray 2002]. Such proliferation and movement, com-

bined, can give rise to an invading front. An invading front involves a pop-

ulation moving into a previously unoccupied space. Ecologists are particu-

larly interested in biological invasion. For example, Skellam’s [Skellam 1951]
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work studies the invasion of muskrats in Europe; similarly, Otto and cowork-

ers [Otto et al. 2018] study the spatial spreading of insects, whereas Bate and

Hilker [Bate and Hilker 2019] study the invasion of predators in a predator–

prey system. As with many other similar examples, these three studies all

make use of partial differential equation (PDE) models of invasion.

Another common application of biological invasion is the study of cell inva-

sion, including wound healing and malignant spreading. Mathematical models

of wound healing often consider the closure of a wound space by populations

of cells that are both migratory and proliferative [Flegg et al. 2020, Jin et al.

2016, Jin et al. 2017,Maini et al. 2004a, Sherratt and Murray 1990]. Malig-

nant invasion involves combined migration and proliferation of tumour cells,

which leads to tumour invasion into surrounding tissues [Byrne 2010,Curtin

et al. 2020, Strobl et al. 2020, Swanson et al. 2003], as illustrated in Figure

3.1(a)–(b), which shows the invasion of malignant melanoma cells. Regardless

of the application, many mathematical models of biological invasion involve

the study of moving fronts, shown schematically in Figure 3.1(c), using PDE

models [Browning et al. 2019, Sengers et al. 2007,Warne et al. 2019]. We

interpret the schematic in Figure 3.1(c) by thinking of the population as be-

ing composed of individuals that undergo diffusive migration with diffusivity

D > 0, and logistic proliferation, with proliferation rate λ > 0. As indicated,

these two processes can lead to the spatial expansion as the population density

profile moves in the positive x–direction.

The Fisher–KPP model [Canosa 1973,Fisher 1937,Kolmogorov et al. 1937,

Edelstein-Keshet 2005, Murray 2002] is probably the most commonly used

reaction–diffusion equation to describe biological invasion in a single homo-

geneous population. The Fisher–KPP model assumes that individuals in the

population proliferate logistically and move according to a linear diffusion

mechanism [Fisher 1937,Kolmogorov et al. 1937]. Travelling wave solutions

of the Fisher–KPP model are often used to mimic biological invasion [Maini

et al. 2004a,Maini et al. 2004b,Simpson et al. 2013]. Long time solutions of

the Fisher–KPP model that evolve from initial conditions with compact sup-

port eventually form smooth travelling waves without compact support such

that u(x, t) → 0 as x → ∞. These travelling wave solutions of the Fisher-

KPP model move with speed c = 2
√
λD [Edelstein-Keshet 2005,Murray 2002].
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Figure 3.1: Biological motivation. (a) Malignant melanoma (dark) spreading
superficially across the skin surface [NCI 1985] (reproduced with permission). (b)
Vertical cross section through a human skin equivalent experiment showing the inward
invasion of a population of melanoma cells (dark) [Haridas 2017,Haridas et al. 2018]
(reproduced with permission). In (a)–(b) the region containing the leading edge of
the invading population is highlighted in a red rectangle and the location of the sharp
front is highlighted with blue arrows. (c) Schematic solution of a mathematical model
showing a sharp–fronted density profile that could either invade or recede, by moving
in the positive or negative x–direction, respectively. In the schematic the location of
the sharp front is also highlighted with a blue arrow.

There are many other popular choices of single–species mathematical models

of biological invasion; for example, the Porous–Fisher model [McCue et al.

2019,Sánchez Garduno and Maini 1995,Sherratt and Marchant 1996,Witelski

1995] is a generalisation of the Fisher–KPP model with a degenerate nonlin-

ear diffusion term which results in sharp–fronted travelling wave solutions.

Long time solutions of the Porous–Fisher model that evolve from initial con-

ditions with compact support lead to invasion waves that move with speed

c =
√

(λD)/2 [Murray 2002]. Another generalisation of the Fisher–KPP

model is the Fisher–Stefan model [Du and Lin 2010, Du et al. 2014a, Du

et al. 2014b, Du and Lou 2015]. This approach involves reformulating the

Fisher–KPP model as a moving boundary problem on 0 < x < L(t). Setting

the density to zero at the moving front, x = L(t), means that the Fisher–

Stefan model also gives rise to sharp–fronted solutions like the Porous–Fisher

model [El-Hachem et al. 2019]. The motion of L(t) in the Fisher–Stefan

model is controlled by a one–phase Stefan condition [Crank 1987, Dalwadi

et al. 2020,Hill 1987,Mitchell and O’Brien 2014] with parameter κ.

Populations of motile and proliferative individuals do not always invade

new territory; in fact, sometimes motile and proliferative populations recede

or retreat. The spatial recession of biological populations are often described

in ecology. For example, populations of desert locusts [Ibrahim et al. 2000],
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plants in grazed prairies [Sinkins and Otfinowski 2012], Arctic foxes [Killen-

green et al. 2007] and dung beetles [Horgan 2009] have all been observed to

undergo both invasion and recession in different circumstances. While some

previous mathematical models of biological invasion and recession have been

described [Chaplain et al. 2020,El-Hachem et al. 2020,Painter and Sherratt

2003], these previous models often focus on describing interactions between

multiple subpopulations in a heterogeneous community rather than classical

single species models, such as the Fisher–KPP model. In fact, none of the

three commonly–used single species models described here, the Fisher–KPP,

Porous–Fisher or Fisher–Stefan models, have been used to study biological re-

cession. This is probably because neither the classical Fisher–KPP or Porous–

Fisher models ever give rise to receding populations. Given that the recession

of population fronts is often observed, this limitation of the commonly–used

Fisher–KPP and Porous–Fisher models is important and often overlooked.

The ability of these three single–species models to support invading or re-

ceding travelling wave solutions is illustrated schematically in Figure 3.2. At

this point it useful to provide a physical interpretation of what we mean by

the invading travelling wave. If we consider a fixed position, x = X, a mono-

tone invading travelling wave means that the density at that point, u(X, t),

increases with time, ∂u(X, t)/∂t > 0. In contrast, a monotone receding trav-

elling wave leads to the opposite behaviour where ∂u(X, t)/∂t < 0 at a fixed

position x = X. This simple interpretation is useful because it holds regard-

less of the spatial orientation of the travelling wave. For example, in this work

we always consider moving fronts with the spatial orientation shown in Figure

3.1(c). Here, invasion is associated with movement in the positive x–direction

and recession is associated with movement in the negative x–direction. All

results and definitions in this work hold when we consider fronts with the op-

posite spatial orientation, where invasion is associated with movement in the

negative x–direction, and recession is associated with movement in the positive

x–direction. For convenience we adopt the usual convention shown in Figure

3.1(c), but it is useful to remember that all results hold for the travelling waves

with the opposite spatial orientation.

In this work, we focus on the Fisher–Stefan model to study biological in-

vasion and recession. As just mentioned, unlike the classical Fisher–KPP and
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Figure 3.2: Travelling wave schematic. (a) Travelling wave solution of the
Fisher-KPP model supports invasion but not recession. (b) Travelling wave solution
of the Porous–Fisher model supports invasion but not recession. (c) Travelling wave
solution of the Fisher–Stefan model supports invasion and recession.

Porous–Fisher models, the Fisher–Stefan model can be used to simulate both

biological invasion and recession. One way of interpreting this difference is that

the Fisher–Stefan model could be thought of as being more versatile than the

more commonly–used Fisher–KPP or Porous–Fisher models. As we will show,

travelling wave solutions of the Fisher–Stefan model can be used to represent

biological invasion with a positive travelling wave speed, c > 0, as well as being

able to model biological recession with a negative travelling wave speed, c < 0.

We explore these travelling wave solutions using full time–dependent numer-

ical solutions of the governing PDE, phase plane analysis, and perturbation

approximations. A regular perturbation approximation around c = 0 pro-

vides insight into both slowly invading and receding travelling waves, whereas

a matched asymptotic expansion in the limit as c → −∞ provides insight

into rapidly receding waves. These perturbation solutions provide simple re-

lationships between κ and c. For example, we show that slowly invading or

receding travelling wave solutions of the Fisher-Stefan model move with speed

c ∼ κ/
√
3 as κ→ 0, whereas rapidly receding travelling wave solutions of the

Fisher-Stefan model move with speed c ∼ 2−1(κ + 1)−1/2 as κ → −1+. Such

relationships are useful because estimates of κ are not available in the liter-

ature, whereas experimental measurements of c are relatively straightforward

to obtain [Maini et al. 2004a,Maini et al. 2004b,Simpson et al. 2007].
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3.3 Mathematical model

In this work all dimensional variables and parameters are denoted with a cir-

cumflex and nondimensional quantities are denoted using regular symbols.

The Fisher–Stefan model is a reformulation of the classical Fisher–KPP equa-

tion to include a moving boundary,

∂û

∂t̂
= D̂

∂2û

∂x̂2
+ λ̂û

(
1− û

K̂

)
, 0 < x̂ < L̂(t̂), (3.1)

where û(x̂, t̂) ≥ 0 is the population density that depends upon position, x̂,

and time, t̂ > 0. Individuals in the population move according to a linear

diffusion mechanism with diffusivity D̂ > 0, the proliferation rate is λ̂ > 0 and

the carrying capacity density is K̂ > 0.

We consider the Fisher–Stefan model on 0 < x̂ < L̂(t̂), with a zero flux

condition at the origin. The sharp front is modelled by setting the density to

be zero at the leading edge, giving

∂û(0, t̂)

∂x̂
= 0, û(L̂(t̂), t̂) = 0. (3.2)

The evolution of the domain is controlled by a classical one–phase Stefan

condition that relates the speed of the moving front to the spatial gradient of

the density profile at the moving boundary,

dL̂(t̂)

dt̂
= − κ̂

∂û

∂x̂

∣∣∣∣
x̂=L̂(t̂)

, (3.3)

where κ̂ is a constant to be specified [Crank 1987, Dalwadi et al. 2020, Hill

1987,Mitchell and O’Brien 2014]. While it is possible to consider different,

potentially more complicated conditions at the moving boundary [Crank 1987,

El-Hachem et al. 2020, Gaffney and Maini 1999, Hill 1987], here we restrict

our attention to the classical one–phase Stefan condition.

In the context of cell invasion, typical values of D̂ are approximately 100–

3000 µm2/h [Johnston et al. 2015, Johnston et al. 2016, Jin et al. 2016];

typical values λ̂ are approximately 0.04–0.06 /h [Johnston et al. 2015, Jin

et al. 2016]; and typical values of the carrying capacity density are 0.001–0.003

cells/µm2 [Johnston et al. 2015, Jin et al. 2016]. To simplify our analysis we

will now nondimensionalise the Fisher–Stefan model.
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3.3.1 Nondimensional model

Introducing dimensionless variables, x = x̂

√
λ̂/D̂, t = λ̂t̂, u = û/K̂, L(t) =

L̂(t̂)

√
λ̂/D̂ and κ = κ̂/D̂, the Fisher–Stefan model can be simplified to give

∂u

∂t
=
∂2u

∂x2
+ u (1− u) , 0 < x < L(t), (3.4)

∂u(0, t)

∂x
= 0, u(L(t), t) = 0, (3.5)

dL(t)

dt
= −κ∂u(L(t), t)

∂x
, (3.6)

so that we only need to specify one parameter, κ together with initial condi-

tions for u and L. As mentioned previously, estimates of diffusivity, prolifera-

tion rate and carrying capacity in the context of cell invasion are available in

the literature [Jin et al. 2016,Maini et al. 2004a]. In contrast, estimates of κ

are not. Therefore, one of the aims of this work is to provide mathematical

insight into how estimates of κ can be obtained, and we will provide more

discussion on this point later.

In all cases where we consider time–dependent solutions of Equations (3.4)–

(3.6) we always choose the initial condition to be

u(x, 0) = α (1−H[x− L(0)]) , (3.7)

where α > 0 is a positive constant and H[·] is the Heaviside function, so that

u(x, 0) = α for x < L(0) and u(x, L(0)) = 0.

To solve Equations (3.4)–(3.7) numerically, we transform the governing

equations from an evolving domain, 0 < x < L(t) to a fixed domain, 0 < ξ < 1

by setting ξ = x/L(t). The transformed equations on the fixed domain are spa-

tially discretised using a uniform finite difference mesh and standard central

finite difference approximations. The resulting system of nonlinear ordinary

differential equations (ODE) is integrated through time using an implicit Eu-

ler approximation. Newton–Raphson iteration and the Thomas algorithm are

used to solve the resulting system of nonlinear algebraic equations [Simpson

et al. 2005]. Full details of the numerical method are given in the Supple-

mentary Material; MATLAB implementation of the algorithm is available on

GitHub.
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3.4 Results and Discussion

We begin our analysis of the Fisher–Stefan model by presenting some time–

dependent solutions of Equations (3.4)–(3.7) before analysing these solutions

using the phase plane and perturbation techniques.

3.4.1 Time–dependent partial differential equation solutions

Results in Figure 3.3 show a suite of numerical solutions of Equations (3.4)–

(3.7) plotted at regular time intervals. Similar to our previous work [El-

Hachem et al. 2019], the results in Figure 3.2(a)–(d) suggest that the initial

condition evolves into invading travelling waves for κ > 0. However, unlike

our previous work, the results in Figure 3.2(e)–(h) show that we obtain reced-

ing travelling waves for κ < 0. To obtain these solutions we specify a value

of κ, as indicated in each subfigure, and then measure the eventual speed of

the travelling wave, c, by estimating dL(t)/dt using the numerical solution

of the PDE as described in the Supplementary Material. Therefore, in this

approach to studying the travelling wave solutions, we treat κ as an input to

the numerical algorithm, and c is an output. In fact, in generating results in

Figure 3.2 we took great care to choose κ so that our resulting estimates of c

are clean values, such as c = 0.25, 0.50, 0.75 and 1.00. We will explain how to

make this choice later, in Section 3.4.2.

All results in Figure 3.3 correspond to the initial condition (3.7) with

α = 0.5. Additional results in the Supplementary Material show similar results

for different initial conditions by varying the choice of α = 0.25, 0.75 and 1.00.

These additional results strongly suggest that the time-dependent solutions

of Equations (3.4)–(3.7) always approaches the same travelling wave solution

with the same speed, c, regardless of the choice of α.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 3.3: Late-time numerical solutions of the Fisher–Stefan model.
Numerical solutions of Equations (3.4)–(3.7) are given at t = 0, 10, 20 and 30. The
initial condition is given by Equation (3.7) with α = 0.5 and L(0) = 200. Results in
(a)–(d) lead to invading travelling waves with c = 0.25, 0.50, 0.75 and 1.00, respec-
tively. These travelling waves are obtained by choosing κ = 0.5859, 1.6879, 3.9823
and 9.5315, respectively. Results in (e)–(h) lead to receding travelling waves with
c = −0.50,−1.00,−2.00 and −2.99, respectively. These receding travelling waves are
obtained by choosing κ = −0.5387,−0.7529,−0.9036 and −0.9510, respectively. Our
estimates of c correspond are obtained at late time, here t = 30. Note that estimates
of κ are reported in the caption to four decimal places, whereas the estimates given
in the subfigures are reported to two decimal places to keep the figure neat.
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Results in Figure 3.3 show that c is an increasing function of κ. The

density profile at the leading edge is sharp in all cases and indeed the slope

of u at x = L(t) decreases as κ decreases. The shape of the density profile

differs depending on whether we consider an invading or receding travelling

wave, since the receding travelling waves are much steeper than the invading

travelling waves. These numerical results in Figure 3.2 are interesting since

neither the Fisher–KPP nor the Porous–Fisher can be used to simulate this

range of behaviours. The feature of the Fisher–Stefan model which enables us

to simulate both invasion and retreat is the choice of κ. We will now explore

the relationship between c and κ by studying the travelling wave solutions in

the phase plane.

Interpreting the Stefan condition, Equation (3.6), in terms of the underly-

ing biology is an open question that is very interesting. In essence, the Stefan

condition states that the time rate of change of the right-most position of the

boundary is proportional to the spatial gradient of the density at that point,

dL(t)/dt ∝ ∂u(L(t), t)/∂x. There are many ways to interpret this widely–used

boundary condition. In the usual geometry, shown in Figure 3.1(a), we have

∂u(L(t), t)/∂x < 0, and setting the coefficient of proportionality to be nega-

tive leads to the standard case where L(t) increases. One way of interpreting

this is that the position of the boundary evolves so that L(t) moves down the

spatial gradient of u(x, t) at x = L(t). In the same situation as in Figure

3.1(a), where ∂u(L(t), t)/∂x < 0, setting the coefficient of proportionality to

be positive leads to L(t) decreasing. One way of interpreting this is that the

position of the boundary evolves so that L(t) moves up the spatial gradient

of u(x, t) at x = L(t). Of course, this theoretical interpretation is not tested

or confirmed biologically, but this distinction between invasion and recession,

dictated by the sign of the proportionality coefficient in the Stefan condition,

is analogous to the distinction between chemoattraction and chemorepulsion

in bacterial and cellular chemotaxis [Edelstein-Keshet 2005,Keller and Segal

1971,Murray 2002]. In practical terms we provide a description of how κ could

be estimated using simple experiments in the Discussion section.
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3.4.2 Phase plane analysis

To analyse travelling wave solutions of the Fisher–Stefan model in the phase

plane we consider Equation (3.4) in terms of the travelling wave coordinate,

z = x− ct and we seek solutions of the form u(x, t) = U(z) which leads to the

following ODE,

d2U

dz2
+ c

dU

dz
+ U(1− U) = 0, −∞ < z < 0, (3.8)

with boundary conditions

U(−∞) = 1, U(0) = 0, (3.9)

c = −κdU(0)

dz
, (3.10)

where we choose z = 0 to correspond to the moving boundary.

To study Equation (3.8) in the phase plane we rewrite this second order

ODE as a first order dynamical system

dU

dz
= V, (3.11)

dV

dz
= −cV − U(1− U), (3.12)

with the equilibrium points (0, 0) and (1, 0). Equations (3.11)–(3.12) are

the well–known dynamical system associated with travelling wave solutions

of the classical Fisher–KPP model [Canosa 1973,Edelstein-Keshet 2005,Mur-

ray 2002]. Therefore, many previous results for this system also apply here

to the Fisher–Stefan model. For example, linear stability analysis shows that

(1, 0) is a saddle point for all values of c, whereas (0, 0) is a stable node if

c ≥ 2; a stable spiral if 0 < c < 2; a centre if c = 0; an unstable spiral

if −2 < c < 0; and, an unstable node if c ≤ −2. Typically, in the regular

analysis of the Fisher–KPP model the possibility of travelling wave solutions

with c < 0 (and ∂u/∂x < 0) is never considered because time–dependent

numerical solutions of the Fisher–KPP model only ever evolve into invading

travelling waves with positive wave speed. Further, in the regular analysis of

the Fisher–KPP model, the possibility of travelling waves with c < 2 is dis-

regarded because linear stability analysis shows that (0, 0) is a stable spiral,

implying that U(z) < 0 for various intervals in z [Murray 2002]. Our previous
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work has shown that this caution is not required for the Fisher–Stefan model

as these often–neglected trajectories in the phase plane are, in fact, associated

with physically–relevant travelling wave solutions [El-Hachem et al. 2019].

To explore these ideas will now visualise the phase plane for each travelling

wave shown previously in Figure 3.3. To show trajectories in the phase plane

we solve Equations (3.11)–(3.12) numerically using Heun’s method. A Matlab

implementation of our algorithm to visualise these phase planes is available on

GitHub. Unlike the full time–dependent solution of the PDE model where we

treat κ as the input and c as the output of the numerical algorithm, here in the

phase plane we treat c as the input into the numerical algorithm to generate

the phase plane trajectory and we use this trajectory to estimate κ, as we will

now explain. Phase planes for c = 0.25, 0.50, 0.75 and 1.00 are given in Figure

3.4(a)–(d), respectively. Similarly, phase planes for c = −0.50,−1.00,−2.00

and −2.99 are given in Figure 3.4(e)–(f), respectively. Each phase plane in

Figure 3.4 corresponds to the particular PDE solution in Figure 3.3.

The phase planes in Figure 3.4(a)–(d) correspond to invading fronts with

various values of 0 < c < 2. As we previously describe [El-Hachem et al. 2019],

these phase plane trajectories are usually neglected in the usual analysis of the

Fisher–KPP model since they leave near (1, 0) and eventually spiral into (0, 0)

as z → ∞, implying that U(z) < 0 for certain intervals along the trajectory.

In contrast, the travelling wave solution of the Fisher–Stefan model must also

satisfy the Stefan condition at U(z) = 0, which means that we truncate the

trajectory at z = 0 and only focus on that part of the trajectory in the fourth

quadrant of the phase plane where U(z) > 0. Each trajectory in Figure 3.4(a)–

(d) intersects the V (z) axis at a special point, (0, V ∗), which corresponds

to the Stefan condition where U = 0 and c = −κV ∗. Estimating V ∗ from

the numerically–generated phase plane trajectory allows us to estimate κ.

Following this approach we obtain estimates of κ for each value of c, and

these estimates compare very well with the estimates used to generate the

time–dependent PDE solutions in Figure 3.3. These phase planes explain

why invading travelling waves for the Fisher–Stefan model are restricted to

0 < c < 2 since setting c > 2 means that the origin is a stable node and

the heteroclinic orbit between (1, 0) and (0, 0) never intersects the V (z) axis,

giving c→ 2− as κ→ ∞ [Du and Lin 2010,El-Hachem et al. 2019].
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 3.4: Phase plane for travelling wave solutions of the Fisher–Stefan
model. Equilibrium points are shown as black discs, and the point at which the
trajectory intersects the V (z) axis are shown as pink discs. The numerical solution
of the dynamical system, Equations (3.11)–(3.12) is shown in dashed orange and the
travelling wave solution obtained from the numerical time–dependent PDE solutions,
Equations (3.4)–(3.7) is superimposed in solid purple for the invading travelling waves
in (a)–(d) and in solid green for the receding travelling waves in (e)–(h). The flow
associated with the dynamical system is shown with blue vectors obtained using
Matlab’s quiver function.
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For completeness we also show the remaining portion of the phase plane

trajectory in Figure 3.4(a)–(d) that eventually spirals into (0, 0) as z → ∞.

Further, for each phase plane in Figure 3.3(a)–(d) we take the late time PDE

solution from Figure 3.3(a)–(d) and transform these PDE solutions into a

(U(z), V (z)) phase plane trajectory, and superimpose these curves in the phase

planes in Figure 3.4(a)–(d). In each case the trajectory obtained by solving

the dynamical system numerically is visually indistinguishable, at this scale,

from the trajectory obtained by plotting the PDE solutions in the phase plane.

The phase planes in Figure 3.4(e)–(h) correspond to receding travelling

waves with various c < 0. As we previously describe, these phase planes for

c < 0 are not normally considered for the Fisher–KPP model since receding

travelling wave solutions of the Fisher-KPP model are not possible. Here we

see that we are interested in that part of the trajectory in the fourth quadrant

that leaves (0, V ∗) and joins (1, 0) as z → ∞. Again, we can use this trajectory

to estimate κ and the estimates from the phase plane compare well with the

values used in the full time–dependent PDE solutions in Figure 3.3(e)–(h).

For completeness we take the late–time PDE solutions in Figure 3.3(e)–(h)

and superimpose these trajectories in Figure 3.4(e)–(h) where we see that the

numerical solution of the trajectory obtained from the dynamical system is

again visually indistinguishable from the trajectory obtained from the PDE

solutions. Unlike the invading travelling wave solutions where linear stability

analysis in the phase plane gives us the condition that 0 < c < 2, there is no

restriction on c in the phase plane so that the Fisher–Stefan model gives rise

to receding travelling waves with −∞ < c < 0.

Now we have shown that both invading and receding travelling wave so-

lutions of the Fisher–Stefan model can be studied in the phase plane, we will

analyse the governing equations in the phase plane to provide more detailed

insight into the relationship between κ and c. This will be important because

estimates of κ are not available in the literature, whereas estimates of c are

easier to obtain experimentally [Maini et al. 2004a,Maini et al. 2004b,Simpson

et al. 2007].
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3.4.3 Analysis

3.4.3.1 Exact solution for stationary waves

Here we solve for the shape of the stationary travelling wave when c = 0 by

re–writing Equations (3.11)–(3.12) as

dV

dU
=

−cV − U(1− U)

V
, (3.13)

where it is clear that an exact solution for V (U) can be obtained when c = 0.

This solution can be written as

V (U) = ±
√
−U2 +

2U3 + 1

3
, (3.14)

where, we are primarily interested in the negative solution since V < 0 at the

leading edge. Equation (3.14) with U(0) = 0 can be integrated to give the

shape of the stationary wave,

U(z) =
3

2

tanh(z
2
− arctanh

√
3

3

)2

− 1

 . (3.15)
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(a) (b)

Figure 3.5: Exact solution for the stationary travelling wave, c = 0. (a)
Comparison of the exact solution, Equation (3.15), in dashed blue with the numerical
solution of Equations (3.4)–(3.7) with κ = 0 in solid green. The initial condition for
the numerical solution of the PDE is in orange. (b) Comparison of the exact solution
of the phase plane trajectory, Equation (3.14), in dashed blue, with the trajectory
obtained by plotting the PDE solution in the phase plane in solid green. Equilibrium
points in the phase plane are shown with black discs.

Results in Figure 3.5 compare these exact solutions for c = 0 with various

numerical solutions. Firstly, in Figure 3.5(a) we show a time–dependent solu-

tion of Equations (3.4)–(3.7) with κ = 0 which evolves into a stationary wave

that is visually indistinguishable from the exact solution, Equation (3.15), at

this scale. The phase plane in Figure 3.5(b) shows the late–time PDE solution

from Figure 3.5(a) plotted as a trajectory in the (U(z), V (z)) phase plane. In

this phase plane we superimpose the exact solution, Equation (3.14), which

forms a homoclinic orbit in the shape of a teardrop. The part of the homoclinic

orbit in the fourth quadrant of the phase plane corresponds to the stationary

wave, and we see that the numerical trajectory and the exact solution are

indistinguishable at this scale. Just as we observed for the invading travelling

waves in Figure 3.4, the stationary wave here corresponds to just one part

of a trajectory in the phase plane. This is different to the usual phase plane

analysis for either the Fisher-KPP or Porous–Fisher models where travelling

wave solutions correspond to a complete trajectory, rather than just part of a

trajectory.
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3.4.3.2 Perturbation solution for slowly invading or receding trav-

elling waves

Results in Section 3.4.3.1 show that we have an exact solution when c = 0.

We now seek a perturbation solution for |c| ≪ 1 by writing [Murray 1984],

V (U) = V0(U) + cV1(U) + c2V2(U) +O(c3). (3.16)

Substituting Equation (3.16) into Equation (3.13) gives,

dV0
dU

V0 + U(1− U) = 0, V0(1) = 0, (3.17)

dV1
dU

V0 +
dV0
dU

V1 + V0 = 0, V1(1) = 0, (3.18)

dV2
dU

V0 +
dV0
dU

V2 + V1

(
dV1
dU

+ 1

)
= 0, V2(1) = 0. (3.19)

The solutions of these differential equations are

V0(U) =

√
3(2U + 1)

3
(U − 1), (3.20)

V1(U) =
−(U − 2)(1 + 2U)3/2 − 3

√
3

5(U − 1)
√
1 + 2U

, (3.21)

V2(U) =
−18

√
3

25(2U + 1)3/2(U − 1)(
√
6U + 3− 3)2(

√
6U + 3 + 3)2

×

(
− 2U3(6U2 − 15U + 20) + 15U(U + 2) + 31

+
√
6U + 3 [(2U + 1)(6U + 3)− 30U − 15]

+(60U3 − 90U2 + 30) ln

[
(
√
6U + 3 + 3)(U − 1)

6(
√
6U + 3− 3)

])
.

(3.22)

Maple code to generate these solutions is available on GitHub. These three

solutions can be used to truncate Equation (3.16) at different orders, and in

doing so we will make use of the O(1), O(c) and O(c2) perturbation solutions.

Given our various approximate perturbation solutions for V (U), we can ei-

ther directly plot these solution in the phase plane and compare them with

numerically–generated phase plane trajectories, or we can integrate these per-

turbation solutions numerically to give an approximation for the shape of the

travelling wave, U(z). To estimate the shape of the travelling wave we inte-

grate the perturbation solution for V (U) using Heun’s method with U(0) = 0,

and we integrate from z = 0 to z = −Z, where Z is taken to be sufficiently
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large.

We now compare various perturbation solutions with phase plane trajecto-

ries and time–dependent PDE solutions for both invading and receding travel-

ling waves. Figure 3.6 focuses on invading travelling wave with c > 0. Results

in Figure 3.5(a)–(c) show the phase plane for c = 0.25, 0.50 and 0.75, respec-

tively. The numerical solution of the dynamical system is shown in green,

and is superimposed on the O(c) and O(c2) perturbation solutions in yellow

and blue, respectively. In these results there is a visual difference between

the numerically–generated phase plane trajectories and the O(c) perturbation

solutions, however the O(c2) perturbation solution compares very well with

the numerically–generated phase plane trajectories.
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(a)

(f)

(b) (e)

(c)

(d) (g)

(h)

(i)

Figure 3.6: Perturbation solutions for slow invading travelling waves. (a)–(c) show the phase plane for c = 0.25, 0.50 and 0.75, respectively. Equilibrium
points are shown with black discs. The numerical solution of Equations (3.11)–(3.12) are shown in green and the point at which these trajectories intersect the
V (z) axis are shown with a green disc. The O(c) and O(c2) perturbation solutions are shown in yellow and blue, respectively. The intersection of the V (z) for
the O(c) and O(c2) perturbation solutions are shown in a yellow and blue disc, respectively. Results in (d)–(f) compare the shape of the travelling wave profile,
U(z), obtained using the numerical solution of the phase plane trajectory (green) with the O(c) and O(c2) perturbation solutions in yellow and blue, respectively.
Results in (g)–(i) show magnified comparison of the three solutions in the regions highlighted by the dashed boxes in (d)–(f).
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Results in Figure 3.6(d)–(f) compare the shape of the travelling wave,

U(z), using the numerical solution of the dynamical system in the phase plane

with the results obtained from the O(c) and O(c2) perturbation solutions.

For the numerical solution of the dynamical system we deliberately show the

invasion profile using the trajectory from z = −15 to z = 5, which includes

the unphysical part of the trajectory, z > 0, where U(z) is oscillatory. To

make a clear distinction between the physical and unphysical parts of the

invading profile we include a horizontal line at U(z) = 0. The horizontal

line emphasise the fact that U(z) > 0 for z < 0, and U(z) is oscillatory for

z > 0. All three solutions are visually indistinguishable at the scale shown in

Figure 3.6(d) where c = 0.25. For c = 0.50 and c = 0.75 we see a visually–

distinct difference between the profiles from the phase plane trajectory and

the O(c) perturbation solutions, whereas the O(c2) perturbation solution gives

an excellent approximation for these larger speeds. Results in Figure 3.6(g)–

(i) show magnified comparisons of the shape of U(z) corresponding to the

dashed inset regions in Figure 3.6(d)–(f) where it is easier to see the distinction

between the three solutions.

Results in Figure 3.7 for the receding travelling wave are presented in the

exact same format as those in Figure 3.6. Here, in Figure 3.6 we consider

c = −0.5,−0.75 and −1.00 and we see that the O(c2) perturbation solution

provides a very accurate approximation of both the phase plane trajectory

and the shape of the receding travelling wave.
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(a)

(f)

(b) (e)

(c)

(d) (g)

(h)

(i)

Figure 3.7: Perturbation solutions for slow receding travelling waves. (a)–(c) show the phase plane for c = −0.50,−0.75 and −1.00, respectively.
Equilibrium points are shown with black discs. The numerical solution of Equations (3.11)–(3.12) are shown in green and the point at which these trajectories
intersect the V (z) axis are shown with a green disc. The O(c) and O(c2) perturbation solutions are shown in yellow and blue, respectively. The intersection of
the V (z) for the O(c) and O(c2) perturbation solutions are shown in a yellow and blue disc, respectively. Results in (d)–(f) compare the shape of the travelling
wave profile, U(z), obtained using the numerical solution of the phase plane trajectory (green) with the O(c) and O(c2) perturbation solutions in yellow and blue,
respectively. Results in (g)–(i) show magnified comparison of the three solutions in the regions highlighted by the dashed boxes in (d)–(f).
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As we pointed out previously, one of the key conceptual limitations of using

the Fisher–Stefan model is that, unlike applications in physical and material

sciences [Crank 1987, Dalwadi et al. 2020, Hill 1987, Mitchell and O’Brien

2014], estimates of κ are not available. One way to address this limitation

is to use our analysis to provide a relationship between κ and c, since the

wave speed is relatively straightforward to measure [Maini et al. 2004a,Maini

et al. 2004b, Simpson et al. 2007] and could be used to infer an estimate

of κ. As noted previously, all travelling wave solutions of the Fisher–Stefan

model satisfy κ = −c/V (0), where V = V (U). When |c| ≪ 1 we can estimate

V (0) using our perturbation solutions and this provides various relationships

between κ and c depending on the order of the perturbation solution for V (0),

O(1) : κ =
−c
V0(0)

, (3.23)

O(c) : κ =
−c

V0(0) + cV1(0)
, (3.24)

O(c2) : κ =
−c

V0(0) + cV1(0) + c2V2(0)
. (3.25)

Substituting expressions for V0(0), V1(0) and V2(0) and expanding the resulting

expressions for |c| ≪ 1 gives

O(1) : κ(c) =
√
3c+O(c2), (3.26)

O(c) : κ(c) =
√
3c− 3

5
(2− 3

√
3)c2 +O(c3), (3.27)

O(c2) : κ(c) =
√
3c− 3

5
(2− 3

√
3)c2

− 9
√
3

50

[
10 ln

(
6

2 +
√
3

)
+ 12

√
3− 31

]
c3 +O(c4),

(3.28)

which provides a simple way to relate c and κ for |c| ≪ 1. To explore the

accuracy of these approximations we use numerical solutions in the phase

plane to estimate κ in the interval −1 < c < 1 and show the numerically–

determined relationship between c and κ in Figure 3.7. We also superimpose

the various approximations, given by Equations (3.26)–(3.28) in Figure 3.7,

where we see that Equation (3.28) is particularly accurate for |c| ≪ 0.5.
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Figure 3.8: Relationship between c and κ for |c| ≪ 1. The numerical estimate of
κ as a function of c is given in solid green. Various perturbation approximations given
by Equation (3.26)–(3.28) are given in dashed red, dashed yellow and dashed blue,
respectively. The various relationships between c and κ are shown in two insets. The
first inset, for −0.3 < c < 0.1, is outlined in black. The second inset, for 0.2 < c < 0.3,
is outlined in pink.

3.4.3.3 Perturbation solution for fast receding travelling waves

As noted in Section 3.4.1, preliminary numerical simulations of receding trav-

elling waves in Figure 3.3(e)–(h) suggest the formation of a boundary layer as

the speed c decreases. The second order boundary value problem governing

the shape of these travelling waves can be written as

1

c

d2U

dz2
+

dU

dz
+

1

c
U(1− U) = 0, −∞ < z < 0, (3.29)

which is singular as c→ −∞. Therefore, we will construct a matched asymp-

totic expansion [Murray 1984] by treating 1/c as a small parameter. The

boundary conditions for this problem are U(0) = 0 and U(z) = 1 as z → −∞.

Setting 1/c = 0 and solving the resulting ODE gives the outer solution,

U(z) = 1, (3.30)
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which matches the boundary condition as z → −∞. To construct the inner

solution near z = 0 we rescale the independent variable ζ = zc. Therefore, in

the boundary layer we have

d2U

dζ2
+

dU

dζ
+

1

c2
U(1− U) = 0, −∞ < ζ < 0. (3.31)

Now expanding U(ζ) in a series we obtain

U(ζ) = U0(ζ) +
1

c2
U1(ζ) +

1

c4
U2(ζ) +O

(
1

c6

)
, (3.32)

which we substitute into Equation (3.31) to give a family of boundary value

problems,

d2U0

dζ2
+

dU0

dζ
= 0, U0(0) = 0, U0 → 1 as ζ → −∞, (3.33)

d2U1

dζ2
+

dU1

dζ
+ U0(1− U0) = 0, U1(0) = 0, U1 → 0 as ζ → −∞, (3.34)

d2U2

dζ2
+

dU2

dζ
+ U1(1− 2U0) = 0, U2(0) = 0, U2 → 0 as ζ → −∞. (3.35)

The solution of these boundary value problems are

U0(ζ) = (1− e−ζ), (3.36)

U1(ζ) =

(
−1

2
+ ζ

)
e−ζ +

1

2
e−2ζ , (3.37)

U2(ζ) =
e−ζ

12

[
11− e−ζ

(
9 + 2e−ζ

)]
− ζe−ζ

(
e−ζ +

1

2
ζ +

1

2

)
; (3.38)

Maple code to generate these solutions is available on GitHub. Combining the

inner and outer solution leads to U(z) = U0(z)+c
−2U1(z)+c

−4U2(z)+O(c−6),

where U0(z), U1(z), U2(z) correspond to Equations (3.36)–(3.38), respectively,

written in terms of the original variable z = ζ/c. By truncating this series at

different orders we are able to compare O(1), O(c−2) and O(c−4) perturbation

solutions.

Results in Figure 3.9 compare the numerical solutions of Equations (3.4)–

(3.7) with various perturbation solutions for fast receding travelling waves.

Results in Figure 3.9(a)–(c) show late–time numerical solutions of the PDE

model in blue with c = −2.00,−2.49 and −2.99, respectively. In each subfig-

ure, the O(1) and O(c−2) perturbation solutions are plotted, in red and yellow,
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respectively. For these results we have not plotted the O(c−4) perturbation

solution in order to keep Figure 3.9 easy to interpret. As expected we see

that the match between the numerical and perturbation solutions improves

as c decreases, and we see that the O(c−2) perturbation solutions are more

accurate than the O(1) perturbation solutions. Results in Figure 3.9(d)–(f)

show a magnified comparison of the three solutions and the regions shown are

highlighted in the dashed box in Figure 3.9(a)–(c).

(c)

(b)

(a) (d)

(e)

(f)

Figure 3.9: Perturbation solutions for slow receding travelling waves. (a)–
(c) show plots of the shape of the travelling waves for c = −2.00,−2.49 and −2.99,
respectively. Late time numerical solutions of Equations (3.4)–(3.7) are shown in
blue, and the O(1) and O(c−2) perturbation solutions are plotted in red and yellow,
respectively. (d)–(f) show the magnified regions highlighted by the dashed boxes in
(a)–(c), respectively.
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For all travelling wave solutions we have κ = −c/V (0). As c → −∞ we

can estimate V (0) using our perturbation solutions to provide insight into the

relationship between κ and c. We achieve this by evaluating the following

expressions,

O(1) : κ =
−c

dU0(0)

dz

, (3.39)

O
(

1

c2

)
: κ =

−c
dU0(0)

dz
+

1

c2
dU1(0)

dz

, (3.40)

O
(

1

c4

)
: κ =

−c
dU0(0)

dz
+

1

c2
dU1(0)

dz
+

1

c4
dU2(0)

dz

, (3.41)

where we must differentiate our expressions for U0(z), U1(z) and U2(z) with

respect to z. Substituting our perturbation solutions into Equations (3.39)–

(3.41) and then expanding the resulting terms as c→ −∞ gives

O(1) : κ(c) = −1 +O
(

1

c2

)
, (3.42)

O
(

1

c2

)
: κ(c) = −1 +

1

2c2
+O

(
1

c4

)
, (3.43)

O
(

1

c4

)
: κ(c) = −1 +

1

2c2
− 2

3c4
+O

(
1

c6

)
, (3.44)

which provides us with a simple way to relate κ and c as c→ −∞. To explore

the accuracy of these approximations we use numerical solutions in the phase

plane to estimate κ in the interval −10 < c < −2 and show the numerically–

determined relationship between c and κ in Figure 3.10. We also superimpose

the various approximations, given by Equations (3.42)–(3.44) in Figure 3.10,

where we see that κ → −1+ as c → −∞, and that Equation (3.44) gives an

excellent approximation of κ for c < −2.
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Figure 3.10: Relationship between c and κ near c → −∞. The numerical
estimate of κ as a function of c is given in solid green. Various perturbation approxi-
mations given by Equation (3.42)–(3.44) are given in dashed red, dashed yellow and
dashed blue, respectively. Various relationships between c and κ are shown in an
inset, for −6 < c < −4.

In summary, in Sections 3.4.3.1–3.4.3.3 we provide analysis for the case

of c = 0, |c| ≪ 1 (slowly invading or slowly receding) and −c ≫ 1 (fast

receding), respectively. It is also possible to analyse the special case where

c = −
√
5/6, where the solution can be written in terms of Weierstrass elliptic

functions [McCue et al. 2021a].

3.5 Conclusion and Outlook

In this work we discuss approaches for modelling biological invasion and re-

cession. The most commonly–used model to mimic biological invasion is the

Fisher–KPP model [Edelstein-Keshet 2005,Murray 2002], and generalisations

of the Fisher–KPP model, such as the Porous–Fisher model [Murray 2002,Wi-

telski 1995]. While these single–species PDE models have been used to sim-

ulate biological invasion in various contexts, they cannot be used to simulate

biological recession. As an alternative, we explore the Fisher–Stefan model [Du

and Lin 2010,El-Hachem et al. 2019], which is a different generalisation of the
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Fisher–KPP model obtained by reformulating the classical model as a moving

boundary problem.

There are both advantages and disadvantages of reformulating the Fisher–

KPP model as a moving boundary problem. One advantage of using the

Fisher–Stefan model is that it involves a well–defined sharp front and it has

the ability to model both biological invasion and recession. These advantages

are both attractive because experimental observations of biological invasion

typically report well–defined sharp fronts [Maini et al. 2004a, Maini et al.

2004b] and it is well–known that motile and proliferative populations can

both invade and recede. The Fisher–KPP model cannot describe either of

these observed features. A disadvantage of using the Fisher–Stefan model is

the need to specify the constant, κ. While estimates of these kinds of param-

eters are well–known in the heat and mass transfer literature for modelling

physical processes [Crank 1987, Dalwadi et al. 2020, Hill 1987,Mitchell and

O’Brien 2014], there are no such estimates for these parameters in a biolog-

ical or ecological context that we are aware of. Part of the motivation for

the analysis in this work is to provide numerical and approximate analytical

insight into the relationship between κ and c. We are motivated to do this

because measurements of c are often reported [Maini et al. 2004a,Maini et al.

2004b,Simpson et al. 2007] and so understanding how to interpret an estimate

of c in terms of κ is of interest. In summary, we show that slowly invading or

receding travelling wave solutions of the Fisher-Stefan model move with speed

c ∼ κ/
√
3 as κ→ 0, whereas rapidly receding travelling wave solutions of the

Fisher-Stefan model move with speed c ∼ 2−1(κ+ 1)−1/2 as κ→ −1+.

In this work we compare the Fisher–KPP model and the Fisher–Stefan

model and it is interesting to consider how these models can be used to inter-

pret experimental observations. As discussed, experimental estimates of c are

the most straightforward measurement to obtain in cell biology experiments.

For example, Maini et al. [Maini et al. 2004a] use a scratch assay to obtain an

estimate of ĉ, whereas Simpson et al. [Simpson et al. 2007] report estimates

of ĉ using observations of cell invasion within intact embryonic tissues. With

these measurements of ĉ, it is possible to estimate the product of the diffu-

sivity and the proliferation rate since ĉ = 2
√
λ̂D̂ for the Fisher–KPP model.

A standard practice is to infer λ̂ by assuming that a typical doubling time is,
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say, 24 h, giving λ̂ = ln(2)/24 /h. These two pieces of information can be used

to estimate D̂ by assuming that travelling wave solutions of the Fisher–KPP

model are relevant and ĉ = 2
√
λ̂D̂. This approach was followed by Maini et

al. [Maini et al. 2004a,Maini et al. 2004b] and Simpson et al. [Simpson et al.

2007]. Unfortunately this simple approach does not provide any certainty that

the Fisher–KPP model is actually valid. Indeed, with more experimental effort

it is possible to carefully analyse a cell proliferation assay to provide a separate

estimate of λ̂ [Browning et al. 2017], and to either track individual cells [Cai

et al. 2007] or to chemically–inhibit proliferation [Simpson et al. 2013] to

obtain an independent estimate of D̂. If these more careful experiments are

performed, it is then possible to examine if the relationship ĉ = 2
√
λ̂D̂ is

indeed true. If this classical relationship does not hold and ĉ < 2
√
λ̂D̂, the

Fisher–Stefan model provides a better explanation of the data since it is al-

ways possible to choose a value of κ̂ to match independent estimates of D̂, λ̂

and ĉ.

In conclusion we would like to mention that all of the models discussed in

this work make the very simple but extremely common assumption that the

proliferation of individuals is given by a logistic source term. This assumption

is widely invoked in many single species models of invasion, including the

Fisher–KPP model [Maini et al. 2004a, Maini et al. 2004b, Simpson et al.

2007], the Porous–Fisher model [Buenzli et al. 2020, Sherratt and Murray

1990,Witelski 1995] and the Fisher–Stefan model [Du and Lin 2010,El-Hachem

et al. 2019], as well as many more complicated multiple species analogues of

these models [Chaplain et al. 2020, Painter and Sherratt 2003, Painter et al.

2015]. We acknowledge that there are other classes of models where different

source terms are used, such as the bistable equation and various models that

describe Allee effects [Courchamp et al. 2008,Fadai and Simpson 2020b,Fife

1979,Johnston et al. 2017,Lewis and Kareiva 1993,Taylor and Hastings 2005].

These models are similar to the classical Fisher–KPP model except that the

quadratic source term is generalised to a cubic source term, and it is well–

known that such single species models can be used to simulate both biological

and invasion and retreat by changing the shape of the cubic source term. In

this work we have deliberately not focused on Allee–type models so that we do

not conflate models of Allee effects with the Fisher–Stefan model. Of course, it
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would be very interesting to consider an extension of the Fisher–Stefan model

with a more general source term [Browning et al. 2017,Tsoularis and Wallace

2002], such as an Allee effect. We anticipate many of the numerical, phase

plane and perturbation tools developed in this work would also play a role

in the analysis of a Fisher–Stefan–type model with a generalised source term.

We leave this extension for future consideration.
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3.6 Additional Material

3.6.1 Numerical methods

3.6.1.1 Partial differential equation

To obtain numerical solutions of the Fisher–Stefan equation

∂u

∂t
=
∂2u

∂x2
+ u(1− u), (3.45)

for 0 < x < L(t) and t > 0, we first use a boundary fixing transformation

ξ = x/L(t) so that we have

∂u

∂t
=

1

L2(t)

∂2u

∂ξ2
+

ξ

L(t)

dL(t)

dt

∂u

∂ξ
+ u(1− u), (3.46)

on the fixed domain, 0 < ξ < 1, for t > 0. Here L(t) is the length of the

domain that we will discuss later. To close the problem we also transform the

boundary conditions giving

∂u

∂ξ
= 0 at ξ = 0, (3.47)

u = 0 at ξ = 1. (3.48)

We spatially discretise Equations (3.46)–(3.48) with a uniform finite dif-

ference mesh, with spacing ∆ξ, approximating the spatial derivatives using a

central finite difference approximation, giving

uj+1
i − uji
∆t

=
1

(Lj)2

(
uj+1
i−1 − 2uj+1

i + uj+1
i+1

∆ξ2

)

+
ξ

Lj

(
Lj+1 − Lj

∆t

)(
uj+1
i+1 − uj+1

i−1

2∆ξ

)
+ uj+1

i (1− uj+1
i ), (3.49)

for i = 2, . . . ,m− 1, where m = 1/∆ξ+1 is the total number of spatial nodes

on the finite difference mesh, and the index j represents the time index so that

uji ≈ u(ξ, t), where ξ = (i − 1) ∆ ξ and t = j∆t.

Discretising Equations (3.47)–(3.48) leads to

uj+1
2 − uj+1

1 = 0, (3.50)

uj+1
m = 0. (3.51)
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To advance the discrete system from time t to t+∆t we solve the system of

nonlinear algebraic equations, Equations (3.49)-(3.51), using Newton-Raphson

iteration. During each iteration of the Newton–Raphson algorithm we estimate

the position of the moving boundary using the discretised Stefan condition,

Lj+1 = Lj − ∆tκ

Lj

(
uj+1
m − uj+1

m−1

∆ξ

)
. (3.52)

Within each time step the Newton–Raphson iterations continue until the max-

imum change in the dependent variables is less than the tolerance ϵ. All

results in this work are obtained by setting ϵ = 1 × 10−8, ∆ξ = 1 × 10−6

and ∆t = 1 × 10−2, and we find that these values are sufficient to produce

grid–independent results. However, we recommend that care be taken when

using the algorithms on GitHub when considering larger values of κ, which

can require a much denser mesh to give grid–independent results.

We use the time–dependent solutions to provide an estimate of the travel-

ling wave speed c∗. The estimated wave speed is computed using the discre-

tised position of the moving boundary such as c∗ = (Lj+1 − Lj)/∆t.

3.6.1.2 Phase plane

To construct the phase planes we solve Equations (3.11)–(3.12) numerically

using Heun’s method with a constant step size dz. In most cases we are

interested in examining trajectories that either enter or leave the saddle (1, 0)

along the stable or unstable manifold, respectively. Therefore, it is important

that the initial condition we chose when solving Equations (3.11)–(3.12) are

on the appropriate stable or unstable manifold and sufficiently close to (1, 0).

To choose this point we use the MATLAB eig function [Mathworks 2021]

to calculate the eigenvalues and eigenvectors for the particular choice of c of

interest. The flow of the dynamical system are plotted on the phase planes

using the MATLAB quiver function [Mathworks 2021].
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3.6.2 Time–dependent PDE solutions with different initial con-

ditions

Results in Figure 3.3 show a family of time–dependent solutions of the Fisher-

Stefan model that lead to both invading and receding travelling waves for dif-

ferent choices of κ, but the same choice of initial condition, Equation (7) with

α = 0.5. Here, in Figures 3.11–3.13 we present analogous results except we

change the initial condition by choosing α = 0.25, 0.75 and 1.00, respectively.

Comparing the shape of the long-time travelling wave solutions in Figure 3

with those here in Figures 3.11–3.13 confirms that the eventual travelling wave

solutions are independent of the initial condition. Here, the time-dependent

solution at t = 30 is sufficient to see this. For example, in Figure 3(g) with

κ = −0.9, we eventually see that a receding travelling wave with c = −2.00

forms by t = 30. Results in Figure 3.11(g), Figure 3.12(g) and Figure 3.13(g)

confirm that we obtain the same travelling wave, with the same long time wave

speed, regardless of the initial condition. Of course, should the reader wish to

experiment with other choices of initial condition, or if they wish to explore

the time–dependent solutions in Figure 3 or Figures 3.11–3.13 for a longer

duration of time, say t = 40, they may do so by downloading and running the

MATLAB code provided on GitHub.
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(e)

(f)

(g)

(h)

(a)

(b)

(c)

(d)

Figure 3.11: Late-time numerical solutions of the Fisher–Stefan model.
Numerical solutions of Equations (3.4)–(3.7) are given at t = 0, 10, 20 and 30. The
initial condition is given by Equation (3.7) with α = 0.25 and L(0) = 200. Results
in (a)–(d) lead to invading travelling waves with c = 0.25, 0.50, 0.75 and 1.00, respec-
tively. These travelling waves are obtained by choosing κ = 0.5859, 1.6879, 3.9823
and 9.5315, respectively. Results in (e)–(h) lead to receding travelling waves with
c = −0.50,−1.00,−2.00 and −2.99, respectively. These receding travelling waves are
obtained by choosing κ = −0.5387,−0.7529,−0.9036 and −0.9510, respectively. Our
estimates of c correspond are obtained at late time, here t = 30. Note that estimates
of κ are reported in the caption to four decimal places, whereas the estimates given
in the subfigures are reported to two decimal places to keep the figure neat.
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Figure 3.12: Late-time numerical solutions of the Fisher–Stefan model.
Numerical solutions of Equations (3.4)–(3.7) are given at t = 0, 10, 20 and 30. The
initial condition is given by Equation (3.7) with α = 0.75 and L(0) = 200. Results
in (a)–(d) lead to invading travelling waves with c = 0.25, 0.50, 0.75 and 1.00, respec-
tively. These travelling waves are obtained by choosing κ = 0.5859, 1.6879, 3.9823
and 9.5315, respectively. Results in (e)–(h) lead to receding travelling waves with
c = −0.50,−1.00,−2.00 and −2.99, respectively. These receding travelling waves are
obtained by choosing κ = −0.5387,−0.7529,−0.9036 and −0.9510, respectively. Our
estimates of c correspond are obtained at late time, here t = 30. Note that estimates
of κ are reported in the caption to four decimal places, whereas the estimates given
in the subfigures are reported to two decimal places to keep the figure neat.
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Figure 3.13: Late-time numerical solutions of the Fisher–Stefan model.
Numerical solutions of Equations (3.4)–(3.7) are given at t = 0, 10, 20 and 30. The
initial condition is given by Equation (3.7) with α = 1.00 and L(0) = 200. Results
in (a)–(d) lead to invading travelling waves with c = 0.25, 0.50, 0.75 and 1.00, respec-
tively. These travelling waves are obtained by choosing κ = 0.5859, 1.6879, 3.9823
and 9.5315, respectively. Results in (e)–(h) lead to receding travelling waves with
c = −0.50,−1.00,−2.00 and −2.99, respectively. These receding travelling waves are
obtained by choosing κ = −0.5387,−0.7529,−0.9036 and −0.9510, respectively. Our
estimates of c correspond are obtained at late time, here t = 30. Note that estimates
of κ are reported in the caption to four decimal places, whereas the estimates given
in the subfigures are reported to two decimal places to keep the figure neat.
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Results in Figures 3.3, 3.11–3.13 show late time–dependent solutions of the

Fisher-Stefan model where the density profiles have reached a constant shape,

recognisable visually, and a constant speed, computed numerically. Here, in

Figure 3.14, we show solutions of the Fisher-Stefan model at early times, where

the shape of the density profiles could be seen changing at each time step and

where the calculated speed is still increasing or decreasing, for different initial

conditions corresponding to Figures 3.3, 3.11–3.12.

(d)(a)

(e)(b)

(f)(c)

Figure 3.14: Time-dependant solutions of the Fisher–Stefan model at early
times. Numerical solutions of Equations (3.4)–(3.7) are given at t = 0, 1, 2, 3, 4 and 5.
The initial condition is given by Equation (3.7) where L(0) = 200 and where α = 0.25
in (a) and (d), α = 0.5 (b) and (e), and α = 0.75 in (c) and (f), corresponding to initial
condition of Figures 3.3, 3.11 and 3.12. The time-dependant solutions are obtained
by choosing κ = 9.5315 in (a)–(c) and κ = −0.9510 in (d)–(f). Note that estimates
of κ are reported in the caption to four decimal places, whereas the estimates given
in the subfigures are reported to two decimal places to keep the figure neat.
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Chapter 4

Non-vanishing sharp-fronted

travelling wave solutions of

the Fisher-Kolmogorov model
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4.1 Abstract

The Fisher-KPP model, and generalisations thereof, involve simple reaction-

diffusion equations for biological invasion that assume individuals in the pop-

ulation undergo linear diffusion with diffusivity D, and logistic proliferation

with rate λ. For the Fisher-KPP model, biologically-relevant initial condi-

tions lead to long-time travelling wave solutions that move with speed c =

2
√
λD. Despite these attractive features, there are several biological limi-

tations of travelling wave solutions of the Fisher-KPP model. First, these

travelling wave solutions do not predict a well-defined invasion front. Second,

biologically-relevant initial conditions lead to travelling waves that move with

speed c = 2
√
λD > 0. This means that, for biologically-relevant initial data,

the Fisher-KPP model can not be used to study invasion with c ̸= 2
√
λD, or

retreating travelling waves with c < 0. Here, we reformulate the Fisher-KPP

model as a moving boundary problem and show that this reformulated model

alleviates the key limitations of the Fisher-KPP model. Travelling wave so-

lutions of the moving boundary problem predict a well-defined front that can

propagate with any wave speed, −∞ < c < ∞. Here, we establish these re-

sults using a combination of high-accuracy numerical simulations of the time-

dependent partial differential equation, phase plane analysis and perturbation

methods. All software required to replicate this work is available on GitHub.

4.2 Introduction

The Fisher-Kolmogorov model, also known as the Fisher-KPP model, is a

widely-used one-dimensional reaction-diffusion model that describes the spa-

tial and temporal evolution of a population of motile and proliferative individ-

uals with density u(x, t) [Fisher 1937,Kolmogorov et al. 1937]. Individuals in

the population are assumed to undergo diffusion with diffusivity D and logistic

proliferation with proliferation rate λ, and have a carrying capacity density

K.

The Fisher-KPP model and various extensions have been used to study

a range of biological phenomena including various applications in cell biol-

ogy [Sherratt and Murray 1990, Swanson et al. 2003, Painter and Sherratt

2003, Gatenby and Gawlinski 1996, Landman and Pettet 1998, Maini et al.
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2004a,Maini et al. 2004b, Jin et al. 2016, Bitsouni et al. 2018,Warne et al.

2019] and ecology [Shigesada et al. 1951, Skellam 1951, Steel et al. 1998,Kot

2003]. From a mathematical point of view, the Fisher-KPP model is of high

interest because it supports travelling wave solutions that have been widely

studied using a range of mathematical techniques [Canosa 1973, El-Hachem

et al. 2019,Murray 2002,Aronson and Weinberg 1978]. Despite the immense

interest in travelling wave solutions of the Fisher-KPP model, there are various

features of these solutions that are biologically unsatisfactory. For example,

travelling wave solutions of the Fisher-KPP model are smooth and without

compact support, and u(x, t) → 0 as x→ ∞. This means that these travelling

wave solutions do not provide a clear way to model the motion of a well-

defined invasion front [Maini et al. 2004a,Maini et al. 2004b]. Furthermore,

travelling wave solutions of the Fisher-KPP model that evolve from initial

conditions with compact support lead to long-time travelling waves that move

with speed c = 2
√
λD [Canosa 1973, Murray 2002]. Despite the fact that

constant speed travelling wave-type behaviour can be observed and measured

experimentally [Maini et al. 2004a, Maini et al. 2004b], simply observing

travelling wave-type behaviour does not verify the relationship c = 2
√
λD.

Another limitation of the Fisher-KPP model is that travelling wave solutions

always lead to invading fronts with c > 0 and ∂u(x, t)/∂t > 0. In contrast,

various applications in biology and ecology involve retreating fronts with c < 0

and ∂u(x, t)/∂t < 0 [El-Hachem et al. 2021a], and these processes cannot be

modelled using the Fisher-KPP model.

Various mathematical extensions have been proposed to overcome the bi-

ologically unsatisfactory features of the Fisher-KPP model. Perhaps the most

widely known is to generalise the linear diffusion term in the Fisher-KPP

model to a degenerate nonlinear diffusion term, giving rise to a model that is

often called the Porous-Fisher model [Murray 2002,Sengers et al. 2007,Sánchez

Garduño and Maini 1994,Sánchez Garduno and Maini 1995,Witelski 1994,Wi-

telski 1995,McCue et al. 2019]. The Porous-Fisher model lead to sharp-fronted

travelling wave solutions that can be used to model the motion of a well-

defined front, such as those that are often observed experimentally [Maini

et al. 2004a, Maini et al. 2004b]. With a nonlinear degenerate diffusivity

D(u) = Du, time-dependent solutions of the Porous-Fisher model with initial
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conditions that have compact support leads to travelling waves that move with

speed c =
√
λD/2. Again, experimental measurements of the wave speed do

not confirm the relationship c =
√
λD/2. Similar to the Fisher-KPP model,

the Porous-Fisher model cannot be used to study retreating fronts [El-Hachem

et al. 2021a]. A second, less common approach to overcome the biologically

unsatisfactory features of the Fisher-KPP model is to reformulate the model

as a moving boundary problem on x < s(t), where the density vanishes on

the moving front, u(s(t), t) = 0, meaning that this moving boundary problem

gives rise to a well-defined front that is consistent with experimental observa-

tions. This model, where the motion of s(t) is driven by a classical one-phase

Stefan condition ds(t)/dt = −κ∂u(s(t), t)/∂x [Crank 1987, Hill 1987, Gupta

2017], has been called the Fisher-Stefan model [Du and Lin 2010, Du et al.

2014a,Du et al. 2014b,El-Hachem et al. 2019]. While moving boundary prob-

lems of this type are most often used to study certain physical and industrial

phenomena [Mitchell and O’Brien 2014, Brosa Planella et al. 2019, Dalwadi

et al. 2020,Brosa Planella et al. 2021], they are also used to study biological

processes, such as tumour spheroid growth and wound healing [Ward and King

1997,Ward and King 1999,Gaffney and Maini 1999,Kimpton et al. 2013,Fadai

and Simpson 2020a,Jin et al. 2021]. Setting κ > 0 in the Fisher-Stefan model

can lead to travelling wave solutions with 0 < c < 2
√
λD. Unlike either the

Fisher-KPP or Porous-Fisher models, the Fisher-Stefan model can be used

to model retreating travelling waves with c < 0 simply by setting κ < 0 [El-

Hachem et al. 2021a]. In summary, the Fisher-Stefan model can be used to

study a wide range of travelling wave solutions with −∞ < c < 2
√
λD. From

this point of view, the Fisher-Stefan model is much more flexible than either

the classical Fisher-KPP or Porous-Fisher models.

In this work we propose and analyse a generalisation of the Fisher-Stefan

model that enables us to study travelling wave solutions with any wave speed,

−∞ < c < ∞. This flexibility arises by generalising the boundary condition

at the moving front, x = s(t). The usual Fisher-Stefan model involves setting

u(s(t), t) = 0 so that the solution vanishes at x = s(t). Here, we set u(s(t), t) =

uf, where uf ∈ [0, 1). The density at the moving front is non-vanishing when

uf ∈ (0, 1), whereas the density at the moving front vanishes when we set

uf = 0, in which case our model simplifies to the usual Fisher-Stefan model.
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There are two different ways of motivating this kind of boundary condi-

tion, illustrated schematically in Figure 4.1 in the context of cellular invasion.

First, in Figure 4.1(a)–(c), we think of a population of motile and proliferative

cells that give rise to an invading front moving into an existing background

population of cells ahead of the moving boundary with u(s(t), t) = uf. Recall

that the Fisher-KPP model is often used to model the invasion of one popula-

tion of cells, such as a tumour cell population, into a surrounding population

of healthy cells by simply modelling the invading population [Sherratt and

Murray 1990, Swanson et al. 2003,Maini et al. 2004a,Maini et al. 2004b, Jin

et al. 2016, Bitsouni et al. 2018,Warne et al. 2019] rather than explicitly

modelling both populations [Gatenby and Gawlinski 1996,Landman and Pet-

tet 1998,Painter and Sherratt 2003,El-Hachem et al. 2020,El-Hachem et al.

2021b]. Our approach can be thought of as a hybrid approach where we deal

only with a PDE for the invading population, but we explicitly model the

impact of the surrounding tissue by varying uf. Another way in which we can

interpret the schematic in Figure 4.1(a)–(c) is in terms of modelling wound

healing. Here the main cell type of interest, such as fibroblast cells, could be

invading a partial wound in which there is an existing population of fibroblasts

at lower density. This existing population could be appropriate in the model

when it is assumed the act of creating the partial wound does not remove all

of the epidermal cells entirely.

The second way of motivating our mathematical model, shown schemat-

ically in Figure 4.1(d)–(f), is to think about modelling simple two-dimensional

scratch assays, such as the experimental images reported by Jin et al. (2016) [Jin

et al. 2016] in Figure 2(a)–(c) in their study. In these experiments the field-of-

view is divided into vertical strips and the cell density is measured by counting

the number of cells in each strip and dividing by the area of the strip. The cell

density well–behind the front approaches some carrying capacity density and

the cell density well ahead of the front is zero. Right at the front, however,

the density is some intermediate density uf, leading to a boundary condition

u = uf in the continuum model.

Regardless of which biological scenario is used to motivate our mathemat-

ical model, the one-phase Stefan condition at x = s(t) implies there is a local

loss of the invading population at the leading edge. Regardless of the motiva-
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tion for this model, our interest is in modelling the behaviour of the invading

population in the region x < s(t). While the schematic in Figure 4.1 is pre-

sented in terms of an invading front with c > 0, a similar schematic with very

similar interpretations can be drawn for a retreating front with c < 0.

(a)

ce
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position

(b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.1: Schematic showing two interpretations of the non-vanishing
Stefan model of invasion. (a)–(c) Evolution of a motile and proliferative cell
population leading to an invading front moving into an initially occupied region. (d)–
(f) Evolution of a motile and proliferative cell population leading to an invading front
moving into an initially-vacant region. (g)–(i) Both schematics lead to an evolving
density profile, moving in the positive x-direction with a non-vanishing, sharp-front
density profile. Each column, from left-to-right, shows snapshots at different values
of time, t = 0, t1 and t2, with 0 < t1 < t2, and the position of the moving front,
x = s(t), is shown with three dashed vertical lines.

This work is organised as follows. We first introduce time-dependent so-

lutions of the partial differential equation (PDE) model and we demonstrate

that late-time numerical solutions give rise to a range of invading and re-

treating travelling waves. Following this numerical motivation, we show how

these late-time PDE solutions are related to various trajectories in the classi-

cal Fisher-KPP phase plane [Murray 2002]. Focusing on the phase plane, we

then obtain a range of solutions describing various travelling wave phenomena,

including exact solutions for stationary waves, c = 0, and exact solutions for

which the ordinary differential equation (ODE) governing the phase plane has

the Painlevé property, c = ±5/
√
6 [Ablowitz and Zeppetella 1979,Kaliappan

1984,McCue et al. 2021a]. Building on these exact results, we then obtain
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various approximate perturbation solutions that allow us to study: (i) slowly

invading or retreating travelling waves, |c| ≪ 1; (ii) fast retreating travelling

waves, −c ≫ 1; and, (iii) fast invading travelling waves, c ≫ 1. At the out-

set, we acknowledge that one of the weaknesses of the Fisher-Stefan model

is the lack of biological interpretation of the parameter κ and a absence of

methods for measuring this parameter. Our analysis helps to overcome this

limitation since our exact and perturbation solutions allow us to relate κ to

the wave speed, c. This is a useful outcome because experimental measure-

ments of c are relatively straightforward to obtain and so our analysis allows

us to interpret such measurements of c in terms of κ, given that the density

uf of the population at the interface could also be inferred from experimental

measurements [Jin et al. 2016].

4.3 Results and discussion

4.3.1 Mathematical model

We begin by studying the numerical solutions of the following non-dimensional

moving boundary problem [Du and Lin 2010,Du et al. 2014a,Du et al. 2014b]

∂u

∂t
=
∂2u

∂x2
+ u (1− u) , 0 < x < s(t), (4.1)

∂u(0, t)

∂x
= 0, u(s(t), t) = uf ,

ds(t)

dt
= −κ∂u(s(t), t)

∂x
, (4.2)

where u(x, t) ≥ 0 is the population density [El-Hachem et al. 2019]. The

length of the domain, s(t), is determined as part of the solution through the

classical one-phase Stefan condition. As we described in the Introduction, the

key novelty here is to consider a non-vanishing boundary condition u(s(t), t) =

uf ∈ [0, 1), which means that our model simplifies to the Fisher-Stefan model

in the special case where uf = 0. While our travelling wave analysis is valid

on an infinite domain, we study time-dependent travelling waves by working

with a sufficiently large finite domain, 0 < x < s(t). For all time-dependent

PDE solutions we consider the initial condition ,

u(x, 0) =


1, 0 < x < β,

(1− uf)

(s(0)− β)
(s(0)− x) + uf , β < x < s(0),

(4.3)
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which is a ramp-shaped function for which we must specify values of β > 0

and s(0). While this work focuses on this linear ramp function, there are many

other options for u(x, 0). The key property of u(x, 0) is that we have u(x, 0) =

1 near x = 0, and u(s(0), 0) = uf at the front. Our choice of a linear ramp

function is the simplest choice of initial condition to meet these properties,

however other functional forms are possible, such as a nonlinear function of

position. Preliminary numerical experimentation (not shown) indicates that

the long–time travelling wave solutions of the mathematical model do not

depend on these details. Note that when we study invading travelling waves

we choose s(0) = 1, whereas when we study retreating travelling waves we

choose s(0) ≫ 1 [McCue et al. 2021b]. Full details of the numerical method to

solve this moving boundary problem are given in Appendix A, and MATLAB

software to implement these algorithms are available on GitHub.

4.3.2 Time dependent PDE solutions

Numerical results in Figure 4.2 show the evolution of u(x, t) for various choices

of κ. In all cases we see that the initial condition rapidly evolves into a

constant speed, constant shape travelling wave solution. Results in the left

column of Figure 4.2 are for uf = 0.25 while the results in the right column

involve uf = 0.75. We see in all cases that the density is non-vanishing at

the front of the profile, x = s(t). Results in Figure 4.2(a)–(f) involve setting

κ > 0 meaning that the time-dependent PDE solutions evolve to invading

travelling wave solutions with c > 0. It is interesting to note that results in

Figure 4.2(e)–(f) involve travelling wave solutions with c = 0.50, which is not

possible with the usual nondimensional Fisher-KPP or Porous-Fisher models

since travelling wave solutions for those models never move with such a slow

wave speed [Murray 2002]. Results in Figure 4.2(g)–(h) involve κ < 0 and so

lead to retreating travelling waves with c < 0. Again, neither of these results

are possible using the Fisher-KPP or Porous-Fisher models [El-Hachem et al.

2021a]. Now that we have provided numerical evidence of this range of late-

time travelling wave behaviour in terms of the time-dependent PDE solutions,

we will analyse these travelling wave solutions using the phase plane.
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(c) (d)

(a) (b)

(e) (f)

(g) (h)

Figure 4.2: Time-dependant solutions of Equations (4.1)–(4.3). Density
profiles u(x, t) (blue) at times t = 5, 10, 15 and 20, evolving from the initial condition
(red) with s(0) = 1 and β = 0 in (a)–(f), and s(0) = 200 and β = 195 in (g)–(h).
Results in (a), (c) and (e) evolve into invading travelling wave solutions with c =
2.50, 2.00 and 0.50, respectively. Profiles in (a), (c) and (e) correspond to uf = 0.25
while profiles in (b), (d) and (f) correspond to uf = 0.75. Results in (g) and (h) evolve
into retreating travelling wave solutions, both with c = −1.00. Profiles in (g) and (h)
correspond to uf = 0.25 and uf = 0.75, respectively. The values of κ are given in each
subfigure.
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4.3.3 Phase plane analysis

In the usual way, we analyse travelling wave solutions by re-writing Equation

(4.1) in terms of the travelling wave coordinate, z = x − ct [Canosa 1973,

Murray 2002]. We seek solutions of the form u(x, t) = U(z) which leads to

d2U

dz2
+ c

dU

dz
+ U(1− U) = 0, −∞ < z < 0, (4.4)

with boundary conditions

U(−∞) = 1, U(0) = uf , c = −κdU(0)

dz
, (4.5)

where, for convenience, we have chosen z = 0 to correspond to the moving

boundary.

To proceed, we re-write Equation (4.4) as a first order dynamical system

dU

dz
= V, (4.6)

dV

dz
= −cV − U(1− U), (4.7)

which defines the well-known phase plane associated with travelling wave so-

lutions of the Fisher-KPP model [Canosa 1973, Murray 2002]. Full details

of how we obtain numerical trajectories in the phase plane are given in Ap-

pendix A. This phase plane involves two equilibrium points (Ū , V̄ ) = (0, 0)

and (Ū , V̄ ) = (1, 0). Linearisation shows that (Ū , V̄ ) = (0, 0) is a stable spiral

if c2 < 4, and a stable node if c2 > 4, whereas (Ū , V̄ ) = (1, 0) is a saddle for

all c. Normally, in standard phase plane analysis of the Fisher-KPP model

we reject travelling wave solutions with c2 < 4 on physical grounds since the

local behaviour about the origin implies that the density goes negative as the

heteroclinic trajectory between (1, 0) and (0, 0) spirals into the origin. Here,

we find that no such restriction is necessary as we will now explain.

Results in Figure 4.3(a), (c), (e) and (g) show the phase plane for c =

2.5, 2, 0.5 and −1, respectively. In each case the heteroclinic orbit between

(1, 0) and (0, 0) is shown in dashed pink. In Figure 4.3(a) and (b) the hete-

roclinic orbit enters (0, 0) along the dominant eigenvector of the saddle node.

In contrast, in Figure 4.3(e) we see the heteroclinic orbit spiraling into (0, 0),

which is consistent with the linear analysis. Each phase plane is superimposed
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with a vertical line at U(z) = uf = 0.5, and that part of the heteroclinic orbit

where U(z) < uf is shown as a thick blue line since this is the physically-

relevant part of the trajectory corresponds to the travelling wave solution.

In contrast, that part of the trajectory where U(z) < uf is nonphysical, and

does not form part of the travelling wave solution [El-Hachem et al. 2019].

Therefore, the travelling wave solutions correspond to a truncated heteroclinic

orbit, and this truncation explains why the usual conditions relating to the

linearisation about the origin are irrelevant when we consider working in a

moving boundary framework.

The role of the Stefan condition in the phase plane is related to the point

where the heteroclinic orbit intersects the vertical line where U(z) = uf . In

the phase plane, the Stefan condition corresponds to c = −κdU(0)/dz, which

is equivalent to c = −κV (0). This means that if the intersection point of the

heteroclinic orbit and the vertical line at uf is (U(0), V (0)), then κ = −c/V (0),

which allows us to calculate κ from the phase plane. For completeness, results

in Figure 4.3(b), (d), (f) and (h) show U(z) corresponding to the heteroclinic

orbits in Figure 4.3(a), (c), (e) and (g), respectively. In these plots we show

U(z) superimposed with horizontal lines at U = 0 (black) and U = uf (pink).

The physical part of the travelling wave for U > uf and z < 0 is shown in solid

blue, whereas the nonphysical part of the travelling wave for z > 0 is shown in

dashed pink. Indeed, the unphysical part of the U(z) profile in Figure 4.3(f)

oscillates around U = 0 as z → ∞. In all cases we superimpose a pink disc on

the point U = 0 at z = 0, since this is the point where the Stefan condition

applies.
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(a) (c)

(b)

(e)

(f)(d) (h)

(g)

Figure 4.3: Phase planes for invading travelling waves with uf = 0.5. Phase planes in (a), (c), (e) and (g) show the trajectories corresponding to travelling
wave U(z), for c = 2.5, 2, 0.5 and −1 respectively (dashed orange), obtained by solving the dynamical system (4.6)–(4.7). Each trajectory is superimposed with
a solid blue curve that is obtained from the late-time PDE solutions from Figure 4.2. In each phase plane we show the equilibrium points (black disc) and the
point at which the trajectory intersects with the vertical line U = uf (pink disc). Results in (b), (d), (f) and (h) show U(z) for each phase plane in (a), (c), (e)
and (g) respectively. These results are shifted so that the moving boundary is at z = 0. Horizontal lines at U(z) = 0 and U(z) = uf are superimposed, and the
location at which the U(z) curve intersects with uf are highlighted (pink disc).
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Before proceeding, it is useful to remember the similarities and differences

between the time-dependent PDE solutions and the phase plane analysis. To

solve the time-dependent PDE model (4.1)–(4.3) we treat κ as an input pa-

rameter and the late-time PDE solutions allow us to estimate the wave speed,

c, which is an output of the model. In contrast, when we study the hetero-

clinic orbit in the phase plane, we treat c as an input parameter into (4.6)–

(4.7), and we use the resulting numerical phase plane trajectory to estimate

κ = −c/V (0), which is an output of the phase plane. Now that we have demon-

strated the relationship between the time-dependent PDE solutions and the

phase plane analysis for a range of c and uf , we will now explore some exact

results for special values of c and then develop some insightful perturbation

approximations for limiting values of c.

4.3.4 Stationary wave, c = 0.

The exact shape of the stationary travelling wave for c = 0 can be obtained

by re-writing Equations (4.6)–(4.7) as

dV

dU
=

−cV − U(1− U)

V
, (4.8)

which can be solved when c = 0, giving

V (U) = ±(1− U)

√
2U + 1

3
. (4.9)

To proceed, we focus on V (U) < 0. Integrating Equation (4.9) with U(0) = uf

gives an expression for the shape of the stationary wave,

U(z) =
3

2

[
tanh

(
z

2
− arctanh

[√
2uf + 1

3

])]2
− 1

2
, (4.10)
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Results in Figure 4.4(a) compare the exact stationary travelling wave solu-

tion, Equation (4.10), with a late-time numerical solution of Equations (4.1)–

(4.3) with κ = 0 and uf = 0.5, showing that the exact result is visually

indistinguishable at this scale. The phase plane for c = 0 in Figure 4.4(b)

shows the homoclinic orbit defined by Equation (4.9), where for completeness

we show both the positive and negative branches. In this phase plane we show

a vertical line at uf = 0.5, and we also superimpose the late-time numerical

solution of Equations (4.1)–(4.3) plotted in the phase plane coordinate. Here

we see that the late-time PDE solution is indistinguishable from the truncated

homoclinic orbit where U(z) > uf and V (z) < 0.

(a) (b)

Figure 4.4: Exact solution for c = 0 with uf = 0.5. (a) Comparison of the exact
solution, Equation (4.10), (blue) with a late time numerical solution of Equations
(4.1)–(4.3) (dashed orange) with κ = 0 and an initial condition with s(0) = 10 and
β = 1. (b) Exact phase plane trajectory, Equation (4.9) (blue) superimposed with the
trajectory obtained by plotting the late-time PDE solution in the phase plane (dashed
orange). The exact homoclinic orbit is given (dashed blue), equilibrium points are
highlighted (black discs) along with the vertical line at U(z) = uf (pink).

4.3.5 Solutions with the Painlevé property, c = ±5/
√
6.

While exact analytic solutions of Equation (4.4) are unknown for arbitrary

values of c, it is well known that exact solutions can be written for values of

c for which Equation (4.4) has the Painlevé property, c = ±5/
√
6. In these

cases the solution of Equation (4.4) can be written in terms of the Weierstaß

p-function [Ablowitz and Zeppetella 1979,McCue et al. 2021a], and in the

case of c = 5/
√
6 it is remarkable that this solution can be written very simply

in terms of exponential functions [Kaliappan 1984,Murray 2002],

U(z) =

[
1 +

(
−1 +

√
1

uf

)
ez/

√
6

]−2

, (4.11)
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which corresponds to

V (U) = −2U3/2

√
6

(√
1

U
− 1

)
. (4.12)

These two expressions allow us to plot the heteroclinic orbit in the phase plane

and to derive an expression for κ = −c/V (uf), namely

κ =
5

2u
3/2
f

(√
1

uf
− 1

) . (4.13)

Results in Figure 4.5(a) show the exact travelling wave solution for c = 5/
√
6

and uf = 0.5 superimposed on a late-time PDE solution to make the point

that the two travelling wave profiles are indistinguishable at this scale. The

corresponding phase plane in Figure 4.5(b) compares the exact heteroclinic

orbit with the physically-relevant part of that orbit where U > uf from the late-

time PDE solution. The match between the exact result and the numerically-

generated phase plane trajectory is excellent. We note that Equation (4.13)

allows us to explore how κ varies with uf , for example setting uf = 0.5 leads

to κ = 5(2 +
√
2) ≈ 17.071.

For c = −5/
√
6 the exact solution can be written in terms of the Weierstaß

p-function [McCue et al. 2021a],

U(z) = e2z/
√
6℘
(
ez/

√
6 − k; 0; g3

)
, (4.14)

giving

V (z) =
1√
6
e2z/

√
6
[
2℘
(
ez/

√
6 − k; 0; g3

)
+ ez/

√
6℘′
(
ez/

√
6 − k; 0; g3

)]
,

(4.15)

where the two constants k and g3 are obtained by solving Equation (4.14) with

U(0) = uf and −2πkg
1/6
3 = Γ(1/3) [Ablowitz and Zeppetella 1979], where Γ(x)

is the Gamma function. Results in Figure 4.5(c) show the exact travelling

wave solution for c = −5/
√
6 and uf = 0.5 superimposed on a late-time PDE

solution, and we see the two profiles are indistinguishable at this scale. The

corresponding phase plane in Figure 4.5(d) compares exact phase plane trajec-

tory with the physically-relevant part of the numerically-generated trajectory

where U > uf . Again the match between the exact result and numerical result
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is excellent. As before, the exact solution provides insight into the relation-

ship between κ and uf by setting U(α) − uf = 0 for α and then calculating

κ = −5/[
√
6V (α)]. For example, with uf = 0.5 we have κ = −1.7351.

(a) (b)

(c) (d)

Figure 4.5: Exact solution for c = ±5/
√
6 with uf = 0.5. (a) and (c) Compare

exact solutions given by Equations (4.11) and (4.14) for c = ±5/
√
6 respectively

(blue), with a late time numerical solution of Equations (4.1)–(4.3) (dashed orange)
with κ = 17.0710 and κ = −1.7351, respectively. (b) and (d) Compare the exact
trajectories in the phase plane, Equations (4.12) and (4.14)-(4.15) for c = ±5/

√
6,

respectively, superimposed with the trajectories obtained by plotting the late-time
PDE solution in the phase plane (dashed orange). The phase plane trajectories are
given (dashed blue), equilibrium points are highlighted (black discs) along with the
vertical line at U(z) = uf (pink).

4.3.6 Slow travelling waves

We now build upon the previous results for the stationary wave, c = 0, to de-

velop insightful approximations for slowly invading or slowly retreating travel-

ling wave solutions. Seeking a perturbation solution for |c| ≪ 1, we substitute

V (U) ∼
∞∑
n=0

cnVn(U) as c→ 0 into Equation (4.8) to give,

dV0
dU

V0 + U(1− U) = 0, (4.16)

d

dU
(V1V0) + V0 = 0, (4.17)

d

dU
(V2V0) + V1

(
dV1
dU

+ 1

)
= 0, (4.18)
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with boundary conditions V0(1) = V1(1) = V2(1) = 0. The solutions of these

differential equations are

V0(U) =

√
3(2U + 1)(U − 1)

3
, (4.19)

V1(U) =
−(U − 2)(2U + 1)3/2 − 3

√
3

5(U − 1)
√
2U + 1

, (4.20)

V2(U) =

 −18
√
3

25(2U + 1)3/2(U − 1)
(√

3(2U + 1)− 3
)2 (√

3(2U + 1) + 3
)2


([
(U − 1)2(2U + 1)

2

]
ln

(U − 1)
(√

3(2U + 1) + 3
)

6
(√

3(2U + 1)− 3
)


− 2U3(6U2 − 15U + 20) + 15U(U + 2) + 31

+ 6(U − 2)(2U + 1)
√

3(2U + 1)

)
.

(4.21)

(a) (b)

(d)(c)

Figure 4.6: Perturbation solutions for |c| ≪ 1. (a)–(d) show phase planes for
c = ∓0.25 and ∓1.00, respectively. Numerical solution of Equations (4.6)–(4.7) (blue)
are superimposed on the perturbation solutions (orange). The intersection of the
perturbation solutions with vertical lines at U(z) = uf = 0.25 and U(z) = uf = 0.75
are highlighted (green and pink discs). Equilibrium points are shown with black discs.
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We now compare the accuracy of this O(c3) perturbation solutions in Fig-

ure 4.6 for c = ±0.25 and c = ±1. The numerical solution of the dynamical

system in each phase plane is shown in blue, whereas the perturbation solution

is shown in orange. In all cases we include vertical lines at uf = 0.75 (pink) and

uf = 0.25 (green) to illustrate the fact that the accuracy of the perturbation

solution depends upon uf as well as c. For example, in Figure 4.6(d) for c = 1

we see that the numerically-generated phase plane trajectory and the pertur-

bation solution are visually indistinguishable for U > 0.75 meaning that the

perturbation solution is very accurate for uf = 0.75. In contrast, we see some

visual discrepancy between the numerically-generated phase plane trajectory

and the perturbation solution for smaller values of U , which means that the

accuracy of the perturbation solution is reduced for uf = 0.25. Nonetheless,

for all values of c in Figure 4.6 the perturbation solution is very close to the

numerically-generated phase plane trajectories. For completeness we compare

O(c), O(c2) and O(c3) perturbation solutions for c = ±0.25 and c = ±1 in

Appendix B.

(c) (d)

(a) (b)

Figure 4.7: Perturbation solutions for slowly invading and retreating trav-
elling waves. The shape of travelling wave profile, U(z), obtained using the nu-
merical solution of the phase plane trajectory (blue) is compared with perturbation
solution in dashed orange, for c = 0.5 and 1 in (a)–(b) and c = −0.5 and −1 in
(c)–(d).
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A comparison of the two solutions in terms of the shape of U(z), where we

have numerically integrated the approximate V (U) trajectories in the phase

plane, is made in Figure 4.7. Here we compare the numerically-generated

phase plane trajectory and the perturbation solution by numerically integrat-

ing V (U) using the trapezoid rule. Plotted in this way, we see that the shape

of the travelling wave obtained from the perturbation solution is indistin-

guishable from the shape of the travelling wave solution derived from the

numerically-generated phase plane trajectory for |c| ≤ 1.

Another way to test the accuracy of the perturbation solution is by com-

paring our numerical phase plane estimate κ with the result obtained from the

perturbation solution, κp. Evaluating our O(c3) perturbation approximation

at U = uf , and then expanding the expression κ = −c/V (uf) in a series gives

κp =
3√

3(2uf + 1)(1− uf)
c+

3

5

[(
2u2f − 3uf − 2

) (√
2uf + 1

)
+ 3

√
3

(2uf + 1)3/2(1− uf)3

]
c2

−

(
18
√
3

25 (2uf + 1)5/2
(√

3
√
2uf + 1 + 3

)2 (√
3
√
2uf + 1− 3

)2
(1− uf)

3

)

+

(
90(2uf + 1)(1− uf)

2 ln

(uf − 1)
(√

3(2uf + 1) + 3
)

6
(√

3(2uf + 1)− 3
)


+ 12u5f − 30

(
u4f + 6uf

3
)
+ 5

(
39u2f + 42uf

)
+ 279

+ 54(2uf + 1)(uf − 2)
√

3(2uf + 1)

)
c3 +O

(
c4
)
,

(4.22)

which can be used to estimate κ provided we have experimental estimates of

c and uf .

(a) (b) (c)

Figure 4.8: κ as a function of c and uf for |c| ≪ 1. (a) Heat map showing
κ as a function of c and uf where estimates of κ are obtained by solving Equations
(4.6)–(4.7) in the phase. (b) Heat map showing κp from the perturbation solution,
Equation (4.22). (c) Difference between the phase plane and perturbation estimates
of κ, δκ = κ− κp.
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Figure 4.8(a) shows a heat map of κ as a function of c and uf in the interval

−2 < c < 1 obtained from the phase plane. The heat map in Figure 4.8(b)

shows the same result obtained from the perturbation solution (4.22). The

numerically-generated phase plane estimates are difficult to distinguish from

the perturbation results, so we plot a heat map of δκ = κ−κp in Figure 4.8(c)

showing that the difference is small everywhere except for near uf = 0.

4.3.7 Fast retreating travelling waves

We now examine fast retreating travelling wave solutions, −c ≫ 1, by re-

writing the governing boundary value problem as

1

c

d2U

dz2
+

dU

dz
+

1

c
U(1− U) = 0, −∞ < z < 0, (4.23)

which is singular as c→ −∞. To address this problem we construct a matched

asymptotic expansion by treating 1/c as a small parameter [Murray 1984].

The boundary conditions for this problem are U(0) = uf and U(z) → 1 as

z → −∞. Setting 1/c = 0 and solving the resulting ODE gives the outer

solution U(z) = 1, which matches the boundary condition as z → −∞. To

construct the inner solution near z = 0, we rescale the independent variable

ζ = zc. Therefore, in the boundary layer we have

d2U

dζ2
+

dU

dζ
+

1

c2
U(1− U) = 0, 0 < ζ <∞. (4.24)

Substituting U(ζ) ∼
∞∑
n=0

c−2nUn(ζ) as c→ −∞ into Equation (4.24) gives

d2U0

dζ2
+

dU0

dζ
= 0, (4.25)

d2U1

dζ2
+

dU1

dζ
+ U0(1− U0) = 0, (4.26)

d2U2

dζ2
+

dU2

dζ
+ U1(1− 2U0) = 0, (4.27)

d2U3

dζ2
+

dU3

dζ
+ U2(1− 2U0)− U2

1 = 0, (4.28)

where U0(0) = uf and U1(0) = U2(0) = U3(0) = 0, and U0(ζ) → 1, U1(ζ) → 0,

U2(ζ) → 0, and U3(ζ) → 0 as ζ → ∞. The solution of these boundary value
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problems are

U0(ζ) = (uf − 1)e−ζ + 1, (4.29)

U1(ζ) =

(
uf − 1

2

)[
(uf − 1)e−2ζ + (−2ζ − uf + 1)e−ζ

]
, (4.30)

U2(ζ) =

(
uf − 1

12

)([
6ζ(ζ + 1 + uf) + 4u2f + 7uf − 11

]
e−ζ

+(uf − 1)
[
−3(4ζ + 2uf + 3)e−2ζ + 2(uf − 1)e−3ζ

])
,

(4.31)

U3(ζ) =

(
uf − 1

144

)[(
−24ζ3 − 108ζ2 − 12uf(3ζ

2 + 13ζ)− 4(12u2f + 21)ζ

−37u3f − 133u2f − 145uf + 315
)
e−ζ

+
([

3
(
4
[
12
(
ζ2 + ufζ

)
+ 30ζ + 19(uf + 1)

]
+ 22u2f

)]
e−2ζ

+
[
−4(9(2ζ + uf) + 20)e−3ζ + 7(uf − 1)e−4ζ

]
(uf − 1)

)
(uf − 1)

]
.

(4.32)

(a) (b) (c)

Figure 4.9: Perturbation solution for fast retreating travelling waves,
c → −∞. (a)–(c) Perturbation solutions showing the shape of travelling waves for
c = −2.5,−2 and −1.75, respectively (dashed orange) superimposed on late-time nu-
merical solutions of Equations (4.1)–(4.3) (blue).

We now compare the accuracy of this O(c−8) perturbation solution in

Figure 4.9 for c = −2.5,−2 and −1.75 where we superimpose a late-time

numerical solution of Equations (4.1)–(4.3) onto the perturbation solution

in terms of the re-scaled variable, z = ζ/c. For this comparison we choose

uf = 0.5, and we see that the numerical and perturbation solutions are visually

indistinguishable for c = −2.5. Results for c = −2 and −1.75 show some

small discrepancy between the numerical and perturbation profiles. Again, for

completeness we compare O(c−2), O(c−4), O(c−6) and O(c−8) perturbation

solutions for c = −2.5,−2 and −1.75 in Appendix B.

Again, we provide a further comparison between the accuracy of the per-

turbation solution in terms of estimating κ from the phase plane and the
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perturbation solution, which gives

κp =

−
[
1− uf + 1

2c2
+

5u2f + 11uf + 8

12c4
+

−57u3f − 197u2f − 281uf − 185

144c6

]
1− uf

+O
(

1

c8

)
,

(4.33)

which again allows us to estimate κ provided we have experimental estimates

of c and uf .

(c)(b)(a)

Figure 4.10: κ as a function of c and uf for c→ −∞. (a) Heat map showing κ as
a function of c and uf where estimates of κ are obtained by solving Equations (4.6)–
(4.7) in the phase plane. (b) Heat map showing κp from the perturbation solution,
Equation (4.33). (c) Difference between the phase plane and perturbation estimates
of κ, δκ = κ− κp.

Heat maps in Figure 4.10(a)–(b) compare numerical estimates of κ from the

phase plane with the perturbation result (4.33). The heat map of δκ = κ−κp in

Figure 4.10(c) shows that the O(c−8) perturbation solutions leads to extremely

accurate solutions for κ for c < −2 for all uf . Equation (4.33) reveals further

information about the existence of travelling wave solutions for this model

since we have κ = −1/(1− uf) as c → −∞. Indeed, solving Equations (4.1)–

(4.3) with κ < −1/(1 − uf) does not lead to constant speed, constant shape

travelling wave solutions. Instead, for these cases the time-dependent solutions

appear to undergo a form of finite-time blow-up, as explored in [McCue et al.

2021b].

4.3.8 Fast invading travelling waves

In Section 4.3.7 we saw that retreating travelling waves become increasingly

steep as c → −∞. In this section we make use of the fact that, as noted by

Murray [Murray 2002], invading travelling waves become increasingly flat as

c→ ∞. This means that V → 0 as c→ ∞. Following Canosa [Canosa 1973],
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we re-write Equation (4.8) in terms of the re-scaled variable, Ṽ = cV , giving

Ṽ

c2
dṼ

dU
+ Ṽ + U(1− U). (4.34)

Assuming a solution of the form Ṽ (U) ∼
∞∑
n=0

c−2nṼn(U) as c→ ∞ we obtain

Ṽ0(U) = U2 − U, (4.35)

Ṽ1(U) = −Ṽ0(U)
dṼ0(U)

dU
= −(2U3 − 3U2 + U), (4.36)

Ṽ2(U) = −Ṽ0(U)
dṼ1(U)

dU
− Ṽ1(U)

dV0(U)

dU
= −2(5U4 − 10U3 + 6U2 − U),

(4.37)

which can also be written in terms of the original variable by remembering

that V = Ṽ /c.

(a) (b) (c)

Figure 4.11: Phase plane perturbation solutions for fast retreating trav-
elling waves, c → −∞. (a)–(c) Phase plane for c = 1.75, 2.5 and 3.25. Numerical
solutions of Equations (4.6)–(4.7) (blue) are superimposed on the perturbation so-
lutions (dashed orange). The intersection of the perturbation trajectory with the
vertical line at U(z) = uf = 0.5 is highlighted (pink disc) and the equilibrium points
also highlighted (black discs).

Results in Figure 4.11 compare numerically-generated phase plane trajec-

tories with theO(c−6) perturbation solution in the phase plane for c = 1.75, 2.5

and 3.25. Here we see that the perturbation solution is very accurate for the

two faster travelling wave speeds, but we see a visual discrepancy between the

numerically-generated phase plane trajectory and the perturbation solution

for c = 1.75.

As before, another test of the accuracy of the perturbation solution is

to compare numerically-generated phase plane estimates of κ with the value
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implied by the perturbation solution, which can be written as

κp =

(
c2 + 2uf − 1− 14uf(1− uf)− 3

c2
+

(2uf − 1)[24uf(uf − 1) + 5]

c4

)
uf(1− uf)

+O
(

1

c6

)
.

(4.38)

(a) (b) (c)

Figure 4.12: κ as a function of c and uf for c → ∞. (a) Heat map showing
κ as a function of c and uf where estimates of κ are obtained by solving Equations
(4.6)–(4.7) in the phase. (b) Heat map showing κp from the perturbation solution,
Equation (4.38). (c) Difference between the phase plane and perturbation estimates
of κ, δκ = κ− κp.

Heat maps in Figure 4.12(a)–(b) show κ and κp as a function of c and uf

using the phase plane and perturbation approaches, respectively. Visually we

see no obvious distinction between the numerical and perturbation approxi-

mation of κ, and this is quantitatively confirmed in Figure 4.12(c) where we

show a heat map of δκ which is very close to zero for all c ≥ 2.

To solve for the shape of the travelling wave as c → ∞ we again follow

Canosa [Canosa 1973] and write Equation (4.4) in terms of the re-scaled co-

ordinate ξ = z/c,

1

c2
d2U

dξ
+

dU

dξ
+ U(1− U) = 0, −∞ < ξ < 0. (4.39)

Assuming U(ξ) ∼
∞∑
n=0

c−2nUn(ξ) as c → ∞, and substituting this expansion

into Equation (4.39) we obtain

dU0

dξ
+ U0(1− U0) = 0, (4.40)

dU1

dξ
+

d2U0

dξ2
+ U1(1− 2U0) = 0, (4.41)

with U0(0) = uf and U1(0) = 0, and U0(ξ) = 1 and U1(0) = 0 as ξ → −∞.
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The solutions of these differential equations are

U0(ξ) =
uf

(1− uf)eξ + uf
, (4.42)

U1(ξ) =
uf(1− uf)e

ξ
(
ξ − ln

[
(1− uf)e

ξ + uf
]2)

[(1− uf) eξ + uf ]
2 . (4.43)

(a) (b) (c)

Figure 4.13: Perturbation solution for fast invading travelling waves, c →
∞. (a)–(c) Perturbation solutions showing the shape of travelling waves for c = 1.5, 2
and 3, respectively (dashed orange) superimposed on late-time numerical solutions of
Equations (4.1)–(4.3) (blue).

Results in Figure 4.13 show late-time numerical solutions of Equations

(4.1)–(4.3) for c = 1.5, 2 and 3, each with uf = 0.5 in this case. These numer-

ical travelling wave solutions are superimposed on the O(c−4) perturbation

solution derived in this Section and we see that the shape of the travelling

waves from perturbation solution provides an excellent approximation of the

late-time PDE solutions for all c considered. This accuracy is remarkable

given that the perturbation solutions are valid as c→ ∞, yet they match the

numerical solutions extremely well for a value as small as c = 1.5. We note

that all perturbation results here simplify to those given in our previous work

for uf = 0 [El-Hachem et al. 2021a] in the limit uf → 0.

4.4 Conclusions and future work

Despite the widespread popularity of the Fisher-KPP model as a prototype

mathematical model of biological invasion, there are some key limitations of

travelling wave solutions of this model that are inconsistent with experimental

observations of invasive phenomena. For example, travelling wave solutions of

the Fisher-KPP model do not give rise to a well-defined invasion front that

arises naturally in many biological scenarios [Maini et al. 2004a,Maini et al.

2004b]. Further, biologically-relevant initial conditions lead to a very restric-
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tive wave speed. In this work we show how to reformulate the Fisher-KPP

model as a moving boundary problem on x < s(t) with a classical one-phase

Stefan condition defining the speed of the moving front. This approach leads

to travelling wave solutions that involve a well-defined sharp front without

the complication of introducing a degenerate nonlinear diffusivity. Further-

more, this moving boundary reformulation of the Fisher-KPP model gives

rise to a wide range of travelling wave solutions that move with any speed,

−∞ < c < ∞. This is a very interesting result since previous research fo-

cusing on retreating travelling wave solutions with c < 0 often involves the

complication of working with a coupled systems of nonlinear reaction-diffusion

equations [Painter and Sherratt 2003,El-Hachem et al. 2020,El-Hachem et al.

2021b], whereas here in the moving boundary framework we can simulate re-

treating travelling wave solutions in a single reaction-diffusion equation.

The important feature in our model (4.1)–(4.2) that leads to a family of

travelling wave solutions for all −∞ < c <∞ is the boundary condition u = uf

at x = s(t). In previous studies of this Fisher-Stefan model, the parameter

uf was fixed to be uf = 0, whereas here we focus on uf ∈ (0, 1). For the

case uf = 0, the wave speeds were restricted to c < 2, with the limiting

value c = 2 corresponding to the well-known travelling wave solution to the

traditional Fisher-KPP model. In our model (4.1)–(4.2) with uf ∈ (0, 1),

the speed c = 2 plays no special role at all. Another important difference

between the cases uf = 0 and uf ∈ (0, 1) is that for uf = 0 there is the

possibility of population extinction for sufficiently small s(0), leading to the

so-called spreading-extinction dichotomy [Du and Lin 2010, Simpson 2020].

For uf ∈ (0, 1), this complication is not present.

A key limitation of reformulating the Fisher-KPP model as a moving

boundary problem (4.1)–(4.2) is the interpretation and estimation of κ, which

is a leakage parameter that describes how the population is lost (κ > 0) or

gained (κ < 0) at the moving boundary. Here we seek to address this issue

by using a range of exact and approximate perturbation solutions to estimate

κ as a function of c, which is useful because the travelling wave speed is rel-

atively straightforward to measure [Maini et al. 2004a,Maini et al. 2004b].

Our analysis gives three exact values for κ when c = ±5
√
6 and c = 0, and

our perturbation solutions give expressions for κ in various limits. Compar-

123



ing our perturbation approximations with numerical estimates from the phase

plane, our approximations for κ are accurate across the entire range of po-

tential travelling wave speeds, −∞ < c < ∞. While we have compared our

perturbation solutions with numerical results, it is possible that further work

could be completed to extend their validity by, for example, introducing a

Padé approximant [Van Dyke 1975].

While our analysis here focuses on invasion phenomena in one-dimensional

geometries where we can obtain several exact and approximate perturbation

solutions, future work could involve examining numerical solutions in two-

dimensional geometries [King et al. 1999,McCue et al. 2003,McCue et al.

2005] since this would provide a more realistic description of populations of

cells that invade outward from an initially-confined region [Treloar et al. 2014]

as well as hole-closing problems that describe the closure of an initial gap in

an otherwise uniform population [McCue et al. 2019].
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4.5 Additional material

4.5.1 Numerical methods

4.5.1.1 Partial differential equations

To obtain numerical solutions of the Fisher–Stefan equation (4.1), we use a

boundary fixing transformation ξ = x/s(t) so that we have

∂u

∂t
=

1

s2(t)

∂2u

∂ξ2
+

ξ

s(t)

ds(t)

dt

∂u

∂ξ
+ u(1− u), (4.44)

on the fixed domain, 0 < ξ < 1. Here s(t) is the time–dependent length of the

domain, and we will explain how we solve for this quantity later. To close the

problem we also transform the boundary conditions giving

∂u

∂ξ
= 0 at ξ = 0, (4.45)

u = uf at ξ = 1. (4.46)

The key to obtaining accurate numerical solutions of equation (4.1) is to

take advantage of the fact that for many problems we consider u(x, t) varies

rapidly near x = s(t), whereas u(x, t) is approximately constant near x = 0.

Motivated by this we discretize equation (4.44) using a variable mesh where

the mesh spacing varies geometrically from δξmin = ξN − ξN−1 = 1 − ξN−1

at ξ = 1, to δξmax = ξ2 − ξ1 = ξ2 − 0 at ξ = 0. All results in this work are

computed with N = 5001 mesh points with δξmin = 1 × 10−6. With these

constraints we solve for the geometric expansion factor 1.01 using MATLABs

fsolve function which gives δξmax = 1.457× 10−3.

We spatially discretise equation (4.44) on the non-uniform mesh. At the

ith internal mesh point we define h+i = ξi+1 − ξi and h−i = ξi − ξi−1. For

convenience we define αi = 1/(h−[h+ + h−]), γi = −1/(h−h+) and δi =

1/(h+[h+ + h−]), which gives

uj+1
i − uji
∆t

=
2

(sj)2

[
αiu

j+1
i−1 + γiu

j+1
i + δiu

j+1
i+1

]
+
ξi
sj

(
sj+1 − sj

∆t

)[
−αih

+uj+1
i−1 + γi(h

− − h+)uj+1
i + δih

−uj+1
i+1

]
+ uj+1

i (1− uj+1
i ), (4.47)
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for i = 2, . . . , N−1, where N is the total number of spatial nodes in the mesh,

and index j represents the time index so that uji ≈ u(ξi, j∆t).

Discretising the boundary conditions (4.45)–(4.46) gives

uj+1
2 − uj+1

1 = 0, (4.48)

uj+1
N = uf . (4.49)

To advance the discrete system from time t to t+∆t we solve the system

(4.47)-(4.49), using Newton-Raphson iteration. During each iteration we esti-

mate the position of the moving boundary using the discretised Stefan condi-

tion. Here we define h+N = ξN−ξN−1, h
−
N = ξN−1−ξN−2, αi = 1/(h−[h++h−]),

γi = −1/(h−h+) and δi = 1/(h+[h+ + h−]), which gives

sj+1 = sj − ∆tκ

sj

[
−αih

+uj+1
N−2 + γi(h

− − h+)uj+1
N−1 + δih

−uf

]
. (4.50)

Within each time step Newton-Raphson iterations continue until the maximum

change in the dependent variables is less than the tolerance ϵ. All results in

this work are obtained by setting ϵ = 1 × 10−10, and ∆t = 1 × 10−3, and

we find that these values are sufficient to produce grid–independent results.

MATLAB software is available on GitHub so that these algorithms can be

implemented to explore different choices of δξmin, δξmax, N , δt and ϵ. For

certain problems in this work we the time–dependent solutions to provide an

estimate of the velocity of the moving front, v. The estimated velocity is

computed as v = (sj+1 − sj)/∆t, and we find that v approaches as constant

travelling wave speed, c, as t becomes sufficiently large.

4.5.1.2 Phase plane

To construct the phase planes we solve equations (4.6)-(4.7) numerically using

Heun’s method with a constant step size dz. In most cases we are interested

in examining trajectories that either leave the saddle (1, 0) along the unstable

manifold. We chose the initial condition on the unstable manifold sufficiently

close to (1, 0). To choose this point we use the MATLAB eig function to

calculate the eigenvalues and eigenvectors for the particular choice of c of

interest.
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4.5.2 Additional results

Additional time-dependent solutions of the moving boundary problem are

given in Figure 4.14 where uf = 0.5. In the main document we show re-

sults in Figure 4.2 for uf = 0.25 and uf = 0.75, and here we show results for

another choice of uf for completeness.

(c) (d)

(a) (b)

Figure 4.14: Time-dependant solutions of Equations (1.1)–(1.3) for uf =
0.5. Density profiles u(x, t) are illustrated in blue at times t = 5, 10, 15, 20. The initial
condition is illustrated in red, where s(0) = 1 and β = 0 in (a)–(c), and s(0) = 200
and β = 195 in (d). Positive wave speeds c = 0.50, 2.00 and 2.50 are obtained by
κ = 1.715, 16.417 and 25.293 and Negative wave speed c = −1.00 is obtained by
κ = −1.350.
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(a) (b)

(c) (d)

Figure 4.15: Additional perturbation solutions for |c| ≪ 1. (a)–(d) show
phase planes for c = ∓0.25 and ∓1.00, respectively. Numerical solution of Equations
(4.6)–(4.7) (blue) are superimposed on various perturbation solutions: O(c) in solid
green; O(c2) in solid yellow; and, O(c3) in dashed orange. Equilibrium points are
shown with black discs.

Results in Sections 4.3.6–4.3.7 compare several numerical trajectories in

the phase plane with our various perturbation solutions. These comparisons

do not explore the effect of truncation of the perturbation solutions since we

always worked with the most terms possible. Additional results in Figure

4.15 replicate those in Figure 4.6 except here we show various perturbation

solutions of different order: O(c) in solid green; O(c2) in solid yellow; and,

O(c3) in dashed orange. For these particular choices of c we observe the

importance of taking higher order terms in the perturbation solutions since

the O(c) perturbation solution is relatively inaccurate in all cases considered.
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(a)

(b)

(c)

Figure 4.16: Additional perturbation solution for fast retreating travel-
ling waves, c → −∞. (a)–(c) Perturbation solutions of different order of accuracy
superimposed on late-time numerical solutions of Equations (4.1)–(4.3) in solid blue.
Perturbation solutions include: O(c−2) in solid green; O(c−4) in solid yellow; O(c−6)
in solid purple; and, O(c−8) in dashed orange. Results are compared for c = −2.5,−2
and −1.75, respectively, as indicated.

Results in Figure 4.16 replicate those in Figure 4.11 except here we show

various perturbation solutions of different order: O(c−2) in solid green; O(c−4)

in solid yellow; O(c−6) in solid purple; and, O(c−8) in dashed orange. Just

like the comparisons in Figure 4.15, for these choices of c here we observe

the importance of taking higher order terms in the perturbation solutions

since the O(c−2) perturbation solution is relatively inaccurate, particularly

for c = −1.75.

129





Chapter 5

A sharp-front moving

boundary model for

malignant invasion
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5.1 Abstract

We analyse a novel mathematical model of malignant invasion which takes

the form of a two-phase moving boundary problem describing the invasion of

a population of malignant cells into a population of background tissue, such

as skin. Cells in both populations undergo diffusive migration and logistic

proliferation. The interface between the two populations moves according to

a two-phase Stefan condition. Unlike many reaction-diffusion models of malig-

nant invasion, the moving boundary model explicitly describes the motion of

the sharp front between the cancer and surrounding tissues without needing

to introduce degenerate nonlinear diffusion. Numerical simulations suggest

the model gives rise to very interesting travelling wave solutions that move

with speed c, and the model supports both malignant invasion and malignant

retreat, where the travelling wave can move in either the positive or negative

x-directions. Unlike the well-studied Fisher-Kolmogorov and Porous-Fisher

models where travelling waves move with a minimum wave speed c ≥ c∗ > 0,

the moving boundary model leads to travelling wave solutions with |c| < c∗∗.

We interpret these travelling wave solutions in the phase plane and show that

they are associated with several features of the classical Fisher-Kolmogorov

phase plane that are often disregarded as being nonphysical. We show, numer-

ically, that the phase plane analysis compares well with long time solutions

from the full partial differential equation model as well as providing accurate

perturbation approximations for the shape of the travelling waves.

5.2 Introduction

Populations of motile and proliferative cells can give rise to moving fronts that

are associated with cancer progression and malignant invasion [Swanson et al.

2003,Gatenby and Gawlinski 1996,Roose et al. 2007,Byrne 2010]. Similar in-

vasive phenomena are associated with wound healing [Maini et al. 2004a,Maini

et al. 2004b,Simpson et al. 2013], development [Simpson et al. 2007,Sengers

et al. 2007] and ecology [Skellam 1951,Kot 2003,Bradshaw-Hajek and Broad-

bridge 2004]. Mathematically, these fronts are often studied using reaction-

diffusion equations that are based upon the well-known Fisher-Kolmogorov

model or extensions [Fisher 1937,Kolmogorov et al. 1937,Canosa 1973,Sher-
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ratt and Murray 1990,Murray 2002]. While such models are able to capture

certain important features, such as the formation of constant speed travelling

wave solutions, there are other features of the standard Fisher-Kolmogorov

model that are inconsistent with biological observations. For example, classi-

cal travelling wave solutions of the Fisher-Kolmogorov model on −∞ < x <∞

do not involve a well-defined front because the travelling wave solutions do not

have compact support and the cell density is always positive, with u(x, t) → 0

as x→ ∞. Solutions of the Fisher-Kolmogorov model on −∞ < x <∞ always

lead to travelling waves for initial conditions with compact support, and these

travelling waves lead to the colonisation of initially-vacant regions without

ever retreating. These two features are inconsistent with many experimental

observations.

Experimental images in Figure 5.1(a)–(b) show key features of malignant

invasion. Here a population of motile and proliferative melanoma cells is placed

onto the surface of human skin tissues (Figure 5.1(a)) that are maintained at

an air-liquid interface to mimic the in vivo environment. At various times

during these experiments, vertical cross sections through the skin tissues are

imaged to show the melanoma cell population invading vertically downward

into the surrounding skin cells. These images show the formation of a clear

sharp front between the two subpopulations [Haridas 2017,Haridas et al. 2018].

The sharp front, highlighted by the arrow in Figure 5.1(b), shows that there

is a particular depth at which the melanoma cell density vanishes. In reality,

such malignant fronts can either invade into, or retreat from, the surrounding

tissues [Hanahan and Weinberg 2000]. Neither of these biological features are

consistent with travelling wave solutions of the classical Fisher-Kolmogorov

model.

One way to extend the Fisher-Kolmogorov model to produce a well-defined

front is to introduce nonlinear degenerate diffusion [Sengers et al. 2007,Mur-

ray 2002,Sherratt and Murray 1990,Sánchez Garduño and Maini 1994,Sánchez

Garduno and Maini 1995,Witelski 1994,Witelski 1995,Sherratt and Marchant

1996, Harris 2004, Jin et al. 2016,Warne et al. 2019, McCue et al. 2019].

Such models, including the Porous-Fisher model, give rise to travelling wave

solutions with a well-defined sharp front that always lead to advancing trav-

elling waves that never retreat. One potential weakness of this approach is
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Figure 5.1: Experimental motivation and model schematic. (a) Experimental
protocol where a population of motile and proliferative melanoma cells are placed onto
the surface of human skin tissues kept at an air-liquid interface to simulate the in vivo
environment. Scale bar is 6 mm. (b) Vertical cross section through the tissues in (a)
highlighting the vertical downward invasion of melanoma cells (dark) into surrounding
skin tissue (light). The sharp front separating the invading malignant population
from the surrounding tissues is visually distinct and highlighted in the red rectangle.
Images in (a)-(b) are reproduced from Haridas [Haridas 2017] with permission. (b)
Schematic solution of a one-dimensional partial differential equation solution showing
the spatial distribution of a population of cancer cells and skin cells separated by a
sharp front. The cancer cells have density u(x, t), diffusivity Du and proliferation rate
λu. The skin cells have density v(x, t), diffusivity Dv and proliferation rate λv.

that the introduction of nonlinear degenerate diffusion leads to additional

model parameters that can be difficult to estimate and interpret [Sherratt and

Murray 1990,Warne et al. 2019,McCue et al. 2019, Simpson et al. 2011].

Another way to introduce a sharp front into the Fisher–Kolmogorov model

is to recast the problem as a moving boundary problem [Crank 1987, Hill

1987,Gupta 2017,McCue et al. 2008]. This approach involves studying the

Fisher-Kolmogorov model on 0 < x < L(t), and specifying that u(L(t), t) = 0

to give a well-defined front. In this approach a Stefan-condition is applied

to determine the speed of the moving front [Crank 1987, Hill 1987, Gupta

2017,McCue et al. 2008]. Such models, sometimes called the Fisher-Stefan

model [El-Hachem et al. 2019,Simpson 2020,Fadai and Simpson 2020a], have

been extensively studied using rigorous analysis [Du and Lin 2010, Du and

Guo 2011,Bunting et al. 2012,Du and Guo 2012,Du et al. 2014a,Du et al.

2014b,Du and Lou 2015] but have received far less attention in terms of how

the solutions of such free boundary problems relate to biological observations.

Interestingly, while free boundary problems are routinely used to study many

problems in industrial and applied mathematics [Font et al. 2013, Mitchell

and O’Brien 2014,Mitchell 2015,Dalwadi et al. 2020], they are less frequently

encountered in the mathematical biology literature [Friedman 2008,Friedman

2014,Perthame et al. 2014,Perthame and Vauchelet 2015].

Of course, a key difference between the classical Fisher-Kolmogorov model
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and the kinds of applications in Figure 5.1(a)-(b) is that the usual Fisher-

Kolmogorov model deals with just one population of cells, whereas malignant

invasion involves one population of cells invading into another population of

cells. To model such applications, the Fisher-Kolmogorov model can be ex-

tended to a system of partial differential equations to represent the different

cell types present [Gatenby and Gawlinski 1996,Landman and Pettet 1998,Pe-

rumpanani et al. 1999,Painter and Sherratt 2003,Simpson et al. 2006,Brown-

ing et al. 2019]. While the Fisher-Kolmogorov and Porous-Fisher models have

been extended to deal with multiple interacting populations, the underlying is-

sues associated with the single population models, described above, also apply

to the multiple population analogue [Simpson et al. 2006].

In this work we study a mathematical model of cell invasion that in-

volves describing two populations of cells as a moving boundary problem.

A schematic of this model in Figure 5.1(c) shows that we consider two cell

populations, such as a population of cancer cells invading into a population of

skin cells, which is consistent with the experimental images in Figure 5.1(a)-

(b). Cells in both populations undergo linear diffusion and proliferate lo-

gistically. The motion of the sharp front is governed by a two-phase Stefan

condition [Crank 1987, Hill 1987, Gupta 2017, McCue et al. 2008, Mitchell

and Vynnycky 2014, Mitchell 2015, Mitchel and Vynnycky 2016, Chang and

Chen 2013,Yang 2015]. As we will show, various properties of the solutions of

this model are consistent with experimental observations. Namely, this model

leads to a well-defined front and travelling wave solutions that represent ei-

ther malignant advance or retreat [Chang and Chen 2013, Yang 2015]. It is

interesting that the travelling wave analysis of this model is intimately related

with the classical phase plane associated with travelling wave solutions of the

Fisher-Kolmogorov model. However, for our model we make use of certain

trajectories in the classical phase plane that are normally discarded on the

grounds of being nonphysical. Here, in the context of a moving boundary

problem, these normally-discarded features play key roles in determining the

travelling wave solutions.
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5.3 Results and Discussion

From this point forward all dimensional variables and parameters are denoted

with a circumflex, whereas nondimensional quantities are denoted using regu-

lar symbols.

5.3.1 Mathematical model

We consider a reaction-diffusion model of a population of cancer cells with

density û(x̂, t̂), and a population of skin cells with density v̂(x̂, t̂). The system

of equations can be written as

∂û

∂t̂
= D̂u

∂2û

∂x̂2
+ λ̂uû

(
1− û

K̂u

)
, −L̂u < x̂ < ŝ(t̂), (5.1)

∂v̂

∂t̂
= D̂v

∂2v̂

∂x̂2
+ λ̂vv̂

(
1− v̂

K̂v

)
, ŝ(t̂) < x̂ < L̂v, (5.2)

where the densities are functions of position, x̂, and time, t̂. Cancer cells un-

dergo diffusive migration with diffusivity D̂u > 0, and proliferate logistically

with rate λ̂u > 0 and carrying capacity density K̂u > 0. Similarly, skin cells

undergo diffusive migration with diffusivity D̂v > 0 and proliferate logistically

with rate λ̂v > 0 and carrying capacity density K̂v > 0. The model is defined

on the L̂u < x̂ < L̂v, with a moving boundary x̂ = ŝ(t̂) separating the pop-

ulation of cancer cells, x̂ < ŝ(t̂), from the population of skin cells, x̂ > ŝ(t̂).

Typical values of a cell diffusivity are approximately 100-1000 µm2/h [John-

ston et al. 2015,Jin et al. 2016], whereas typical values of a cell proliferation

rate are approximately 0.04-0.06 /h [Johnston et al. 2015,Jin et al. 2016].

Since we are interested in cell invasion we focus on travelling wave solutions

of Equations (5.1)-(5.2) by setting L̂u and L̂v to be sufficiently large to model

an infinite domain problem. The boundary conditions we consider are

∂û

∂x̂

∣∣∣∣
x̂=−L̂u

= 0,
∂v̂

∂x̂

∣∣∣∣
x̂=L̂v

= 0, (5.3)

û(ŝ(t̂), t̂) = 0, v̂(ŝ(t̂), t̂) = 0. (5.4)

This means that we have no flux of cancer cells at the left-most boundary

and no flux of skin cells at the right-most boundary, and the density of both

populations is zero at the moving boundary, as in Figure 5.1(a).
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We describe the motion of the moving boundary by a two-phase Stefan

condition,
dŝ(t̂)

dt̂
= −κ̂u

∂û

∂x̂

∣∣∣∣
x̂=ŝ(t̂)

− κ̂v
∂v̂

∂x̂

∣∣∣∣
x̂=ŝ(t̂)

. (5.5)

Here the speed of the moving boundary is the sum of two terms: the first

term on the right of Equation (5.5) is proportional to the spatial gradient

of the cancer cell density at the moving boundary, x̂ = ŝ(t̂), and the second

term on the right of Equation (5.5) is proportional to the spatial gradient

of the skin cell density at the moving boundary, x̂ = ŝ(t̂). The constants of

proportionality, κ̂u and κ̂u, play an important role in relating the shape of the

density profiles to the speed of the interface. We will consider the relationship

between these constants and the speed of the interface later.

In this work we consider initial conditions given by

û(x̂, 0) = ϕ̂(x̂) on − L̂u < x̂ < ŝ(t̂), (5.6)

v̂(x̂, 0) = ψ̂(x̂) on ŝ(t̂) < x̂ < L̂v, (5.7)

such that ϕ̂(ŝ(0)) = ψ̂(ŝ(0)) = 0.

Real tumours are not one-dimensional, as is clear in Figure 5.1. Regard-

less, we expect the main features of this one-dimensional model to inform

higher-dimensional versions. For example, travelling wave speeds may inform

reasonable estimates of the speed of the moving boundary in more complex

geometries. Alternatively, conditions for extinction (Section 5.3.7) should also

inform two- and three-dimensional versions of the model. Therefore, we re-

strict our work here to focus on a one-dimensional model since working in this

simpler geometry enables us to analyse the model more thoroughly than would

be possible in a more general coordinate system. Further, as discussed, many

important mathematical models of tumour growth and invasion provide im-

portant insight by working in a one-dimensional Cartesian geometry [Breward

et al. 2002,Browning et al. 2019].

5.3.2 Nondimensional model

We nondimensionalise the dependent variables by writing u = û/K̂u and v =

v̂/K̂v, and we nondimensionalise the independent variables by writing x =

x̂

√
λ̂u/D̂u and t = λ̂ut̂. In this nondimensional framework our model can be
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written as

∂u

∂t
=
∂2u

∂x2
+ u(1− u), −Lu < x < s(t), (5.8)

∂v

∂t
= D

∂2v

∂x2
+ λv(1− v), s(t) < x < Lv, (5.9)

where the boundary conditions are given by

∂u

∂x

∣∣∣∣
x=−Lu

= 0,
∂v

∂x

∣∣∣∣
x=Lv

= 0, (5.10)

u(s(t), t) = 0, v(s(t), t) = 0, (5.11)

ds(t)

dt
= −κu

∂u

∂x

∣∣∣∣
x=s(t)

− κv
∂v

∂x

∣∣∣∣
x=s(t)

. (5.12)

The nondimensional model has four parameters,

D =
D̂v

D̂u

, λ =
λ̂v

λ̂u
, κu =

κ̂uK̂u

D̂u

, κv =
κ̂vK̂v

D̂u

. (5.13)

In this framework, D is a relative diffusivity, and setting D = 1 means that

the cancer cells and skin cells are equally motile. In contrast, setting D > 1

means that skin cells are more motile than cancer cells, while setting D < 1

models the situation where skin cells are less motile than cancer cells. Similar

interpretations can be made for the relative proliferation rate λ.

We consider numerical solutions of Equations (5.8)-(5.9) on a domain with

Lu = 0 and Lv = L, where L is chosen to be sufficiently large to facilitate the

numerical simulation of travelling wave solutions. We chose piecewise initial

conditions given by

u(x, 0) = ϕ(x) =


α, 0 < x < β,

α

(
1− x− β

s(0)− β

)
, β < x < s(0),

(5.14)

v(x, 0) = ψ(x) =


α

(
x− s(0)

L− β − s(0)

)
, s(0) < x < L− β,

α, L− β < x < L,

(5.15)

where the parameters α > 0 and β > 0 control the shape of the piecewise

initial density profile. These initial conditions correspond to an initial density

of α when we are well away from the interface, x = s(0). Near the interface we

set the density to be a linear function of position. Typical initial conditions
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in Figure 5.2 show how varying α, β and s(0) affects the shape of the initial

condition.

(a) (b) (c)

Figure 5.2: Initial condition. Three initial conditions on 0 < x < 60 are shown
for: (a) α = 0.5, β = 20 and s(0) = 30; (b) α = 0.25, β = 10 and s(0) = 30; and (c)
α = 1, β = 10 and s(0) = 20.

5.3.3 Numerical solution

To solve Equations (5.8)-(5.9) we use boundary fixing transformations to recast

the moving boundary problem on two fixed domains. These transformations,

ξ = x/s(t) and η = (x − s(t))/(L − s(t)) + 1, allow us to re-write Equations

(5.8)-(5.9) as,

∂u

∂t
=

1

s2(t)

∂2u

∂ξ2
+

ξ

s(t)

ds(t)

dt

∂u

∂ξ
+ u(1− u), 0 < ξ < 1, (5.16)

∂v

∂t
=

D

(L− s(t))2
∂2v

∂η2
+

(
2− η

L− s(t)

)
ds(t)

dt

∂v

∂η
+ λv(1− v), 1 < η < 2,

(5.17)

so that we now have u(ξ, t) on 0 < ξ < 1 and v(η, t) on 1 < η < 2. The

transformed boundary conditions are

∂u

∂ξ

∣∣∣∣
ξ=0

= 0,
∂v

∂η

∣∣∣∣
η=2

= 0, (5.18)

u(1, t) = 0, v(1, t) = 0, (5.19)

ds(t)

dt
= − κu

s(t)

∂u

∂ξ

∣∣∣∣
ξ=1

− κv
L− s(t)

∂v

∂η

∣∣∣∣
η=1

. (5.20)

Equations (5.16)-(5.17) and the associated boundary conditions can now be

solved numerically using a standard central difference approximation for the

transformed spatial derivatives and a backward Euler approximation for the

temporal derivatives. These details are given in the Additional Material.
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5.3.4 Travelling wave solutions

Typically, we find that numerical solutions of Equations (5.8)-(5.12) evolve

into constant speed, constant shape travelling waves, such as those shown in

Figure 5.3(a). In this case we have D = λ = 1 so that the cancer cells and

skin cells are equally motile and proliferative. The travelling wave profiles

in Figure 5.3(a) are generated by choosing particular values of κu and κv

that leads to an invading malignant population moving with positive speed,

c = 0.2. In contrast, choosing different values of κu and κv can lead to a

retreating malignant front, as in Figure 5.3(e), where we have a travelling

wave with c = −0.2. These two numerical travelling wave solutions in Figure

5.3(a) and (e) are interesting, especially when we compare the properties of

these travelling waves with the more familiar properties of the travelling wave

solutions of the Fisher-Kolmogorov model where there are three important

differences:

1. The moving boundary model (5.8)-(5.12) supports travelling wave so-

lutions with well-defined sharp front whereas the Fisher-Kolmogorov

model does not;

2. Travelling wave solutions of the moving boundary model (5.8)-(5.12) can

either advance or retreat, whereas analogous travelling wave solutions of

the Fisher-Kolmogorov model only ever advance;

3. Travelling wave solutions of the nondimensional moving boundary model

(5.8)-(5.12) move with speed |c| < 2 whereas travelling wave solutions of

the nondimensional Fisher-Kolmogorov model always lead to c ≥ 2.

To provide further insight into the properties of the travelling wave solutions

of Equations (5.8)-(5.9) we now use phase plane analysis.
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(f)(e)

(a)

(f)

(b) (c)

(g)

(d)

(h)

Figure 5.3: Travelling wave solutions for D = λ = 1. All partial differential equation solutions are obtained with L = 60, β = 1, α = 0.5, s(0) = 30. Results
in (a) correspond to κu = 1.2195 and κv = 0.5. Results in (e) correspond to κu = 0.5 and κv = 1.2195. Results in (a)-(d) correspond to c = 0.2 and results in
(e)-(h) correspond to c = −0.2. Solutions of Equations (5.8)-(5.9) in (a) and (e) show u(x, t) in solid yellow and v(x, t) in solid green, at t = 20, 30 and 40. Phase
planes in (b) and (f), and (c) and (g) show the trajectories corresponding to the U(z) and V (z) travelling waves, respectively. Relevant trajectories in (b)-(c)
and (f)-(g) are shown in dashed lines upon which we superimpose the solid lines from the numerical solution of Equations (5.8)-(5.9) transformed into travelling
wave coordinates. Results in (d) and (h) show U(z) and V (z) as a function of z where results from the phase plane are given in dashed lines superimposed upon
the solutions of Equations (5.8)-(5.9) shifted so that the moving boundary is at z = 0. In the phase planes the equilibrium points are shown with a black disc
and the intersection of the phase plane trajectory with the vertical axis is shown with a pink disc.
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5.3.5 Phase plane analysis

To study travelling wave solutions of the moving boundary model we re-write

the governing equations in the travelling wave coordinate, z = x − ct, and

seek solutions of the form U(z) = u(x − ct) and V (z) = v(x − ct). Writing

Equations (5.8)-(5.9) in the travelling wave coordinates leads to

d2U

dz2
+ c

dU

dz
+ U(1− U) = 0, −∞ < z < 0, (5.21)

D
d2V

dz2
+ c

dV

dz
+ λV (1− V ) = 0, 0 < z <∞, (5.22)

where the relevant boundary conditions are

U(−∞) = 1, U(0) = 0, (5.23)

V (0) = 0, V (∞) = 1, (5.24)

c = −κv
dV (0)

dz
− κu

dU(0)

dz
. (5.25)

The travelling wave solution for the cancer population, U(z), is described by

Equations (5.21) and (5.23), while the travelling wave solution for the skin

population, V (z), is described by Equations (5.22) and (5.24). This means

that the travelling wave solutions for U(z) and V (z) can be studied in two

separate phase planes, and these two phase planes are coupled by Equation

(5.25), which is associated with the Stefan condition at the moving interface.

To simplify our study of these two phase planes we note that Equation

(5.21) for U(z) is identical to Equation (5.22) for V (z) when D = λ = 1.

Therefore, it is sufficient for us to study Equation (5.22) for V (z) and to recall

that settingD = λ = 1 means that our analysis of this phase plane corresponds

to U(z). To make progress we re-write Equation (5.22) as a first-order system

dV

dz
= X, (5.26)

dX

dz
= − c

D
X − λ

D
V (1− V ). (5.27)

At this point we remark that Equation (5.26)-(5.27) defines a two-dimensional

phase plane for (V (z), X(z)) that is identical to the phase plane associated

with the well-studied travelling wave solutions of the Fisher-Kolmogorov model [Canosa

1973,Murray 2002]. Therefore, all the well-known properties of that phase
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plane will play a role here in our study of Equations (5.8)-(5.9). In partic-

ular, the equilibrium points are (0, 0) and (1, 0). Linear stability shows that

(1, 0) is a saddle for all c whereas (0, 0) is a stable node if c ≥ 2
√
λD or a

stable spiral for c < 2
√
λD. Normally, when considering travelling wave so-

lutions of the Fisher-Kolmogorov model, we are interested in the heteroclinic

trajectory between (1, 0) and (0, 0), and the heteroclinic trajectory associated

with the stable spiral at (0, 0) when c < 2
√
λD is ruled out on the basis of

requiring V (z) > 0. This classical argument gives rise to the well-known con-

dition that c ≥ 2
√
λD for travelling wave solutions of the Fisher-Kolmogorov

model [Canosa 1973, Murray 2002]. In contrast, for our moving boundary

model we have a very different situation where, for example, the travelling

wave in Figure 5.3(a) leads to c = 0.2 < 2
√
λD.

To explore these solutions we show the phase plane corresponding to the

travelling wave in Figure 5.3(a) in Figure 5.3(b)-(c) for the U(z) and V (z)

population, respectively. In all phase planes, we generate the trajectories nu-

merically using techniques described in the Additional Material. Figure 5.3(b)

shows the (U(z),W (z)) phase plane, where W (z) = dU(z)/dz and c = 0.2 to

correspond with the travelling waves in Figure 5.3(a). The equilibrium points

at (1, 0) and (0, 0) are highlighted, and the heteroclinic trajectory that leaves

(1, 0) and spirals into (0, 0) is shown with a dotted line. Normally, when

considering travelling wave solutions of the Fisher-Kolmogorov model, this

heteroclinic trajectory would be regarded as nonphysical since it implies that

U(z) < 0 for certain values of z along that trajectory. However, instead of

rejecting this trajectory, the travelling wave solution for U(z) in our moving

boundary model simply corresponds to the portion of that heteroclinic trajec-

tory in the fourth quadrant where U(z) ≥ 0. The point where the trajectory

intersects the U(z) = 0 axis corresponds to the slope of the travelling wave

at the moving boundary, (0,W ∗(z)). This point of intersection is important

because it plays a role in satisfying Equation (5.25). To provide an additional

check on our phase plane in Figure 5.3(b) we take the u(x, t) travelling wave

profile in Figure 5.3(a) and superimpose the (U(z),W (z)) profile calculated

from that travelling wave as a solid line in the phase plane. This exercise

shows that this solid curve is visually indistinguishable from the first part of

the heteroclinic trajectory where U(z) ≥ 0.
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Figure 5.3(c) shows the (V (z), X(z)) phase plane associated with the v(x, t)

travelling wave profile in Figure 5.3(a). Again, we highlight the equilibrium

points at (1, 0) and (0, 0) and we show the trajectory moving towards the

saddle point at (1, 0) along the stable manifold. In the usual study of the

Fisher-Kolmogorov model this trajectory is not normally considered because

it is not associated with a heteroclinic trajectory, and indeed the phase plane

in Figure 5.3(c) indicates that this trajectory originates far away from the rele-

vant region of the phase plane. However, we find that part of the trajectory in

the first quadrant where V (z) ≥ 0, corresponds to the travelling wave solution

for the v(x, t) population. The point at which this trajectory intersects the

V (z) = 0 axis, (0, X∗(z)), corresponds to the slope of the travelling wave at

the moving boundary. Taking the two phase planes in Figure 5.3(b)-(c) to-

gether, the two intersection pointsW ∗(z) and X∗(z) are such that they satisfy

Equation (5.25), c = −κvX∗(z)− κuW
∗(z). Therefore, these two intersection

points play a critical role in relating the speed of the travelling wave solution

with the constants κu and κv.

To summarise the results in Figure 5.3(a)-(c), and to make an explicit

connection between the physical solutions of the partial differential equation

model and the nonphysical features of the phase plane trajectories, we super-

impose various solutions in Figure 5.3(d). The solid green and solid yellow

lines in Figure 5.3(d) show long time solutions of Equations (5.8)-(5.12) that

are shifted so that the moving boundary is at z = 0. The dashed lines in

Figure 5.3(d) shows the U(z) and V (z) associated with the relevant phase

plane trajectories from Figure 5.3(b)-(c), respectively. In the case of the U(z)

trajectory we see that the shape of the trajectory matches the solution from

Equations (5.8)-(5.9) where z ≤ 0 and U(z) ≥ 0. The phase plane trajectory

of U(z) for z > 0 is nonphysical since U(z) oscillates about U(z) = 0 and this

does not correspond to any part of the solution of Equations (5.8)-(5.9). In

the case of the V (z) profile we see that the shape of the phase plane trajectory

matches the solution from Equations (5.8)-(5.9) where z ≥ 0 and V (z) ≥ 0.

The phase plane trajectory of V (z) for z < 0 is nonphysical since part of that

trajectory involves V (z) < 0.

All results in Figure 5.3(a)-(d) correspond to choices of κu and κv that lead

to c = 0.2. Results in Figure 5.3(e)-(h) correspond to different choices of κu
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and κv such that the travelling wave leads to a receding front with c = −0.2.

Numerical solutions of Equations (5.8)-(5.9) in Figure 5.3(e) show the travel-

ling wave solutions and the phase planes in Figure 5.3(f)-(g) show the phase

plane trajectories associated with the U(z) and V (z) travelling waves. Again,

a summary comparing the physical travelling wave solutions from Equations

(5.8)-(5.9) with the phase plane trajectories is given in Figure 5.3(h). This

comparison shows that the travelling wave solutions of Equations (5.8)-(5.9)

compare very well with the physical portion of the phase plane trajectories in

Figure 5.3(f)-(g).

The first set of travelling wave solutions we report in Figure 5.3 correspond

to the simplest possible case where D = λ = 1 so that the skin and cancer cells

are equally motile and equally proliferative. Additional results are presented

in Figures 5.4-5.5 for D ̸= 1 and λ = 1, and for D = 1 and λ ̸= 1, respectively.

Results in Figure 5.4-5.5 are presented in the exact same format as in Figure

5.3 where we consider results for c > 0 and c < 0 separately in both cases. In

all cases we find that the travelling wave solutions from Equations (5.8)-(5.9)

compare very well with the physical portion of the phase plane trajectories

and that the nonphysical portion of the phase plane trajectories do not play

any role in the travelling wave solutions.

Experimenting with the numerical solutions of Equations (5.8)-(5.9) sug-

gests that for a fixed choice of D and λ, the travelling wave speed depends

on the choice of κu and κv. We find that numerical solutions of Equations

(5.8)-(5.9) lead to travelling wave solutions with −2 < c < 2. For example,

for any fixed positive κv, we find that c → 2− as κu → ∞ whereas c → −2+

as κu → −∞.
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(f) (h)

(a) (b) (c)

(g)

(d)

(h)(e) (f)

Figure 5.4: Travelling wave solutions for D ̸= 1 and λ = 1. All partial differential equation solutions are obtained with L = 60, β = 1, α = 0.5, s(0) = 30.
Results in (a) correspond to D = 0.5, κu = 1.1151 and κv = 0.5. Results in (e) correspond to D = 2, κu = 0.5 and κv = 1.1180. Results in (a)-(d) correspond to
c = 0.1 and results in (e)-(h) correspond to c = −0.1. Solutions of Equations (5.8)-(5.9) in (a) and (e) show u(x, t) in solid yellow and v(x, t) in solid green, at
t = 20, 30 and 40. Phase planes in (b) and (f), and (c) and (g) show the trajectories corresponding to the U(z) and V (z) travelling waves, respectively. Relevant
trajectories in (b)-(c) and (f)-(g) are shown in dashed lines upon which we superimpose the solid lines from the numerical solution of Equations (5.8)-(5.9)
transformed into travelling wave coordinates. Results in (d) and (h) show U(z) and V (z) as a function of z where results from the phase plane are given in dashed
lines superimposed upon the solutions of Equations (5.8)-(5.9) shifted so that the moving boundary is at z = 0. In the phase planes the equilibrium points are
shown with a black disc and the intersection of the phase plane trajectory with the vertical axis is shown with a pink disc.
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(a)
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Figure 5.5: Travelling wave solutions for D = 1 and λ ̸= 1. All partial differential equation solutions are obtained with L = 60, β = 1, α = 0.5, s(0) = 30.
Results in (a) correspond to λ = 2, κu = 1.0502 and κv = 0.5. Results in (e) correspond to λ = 0.5, κu = 0.5 and κv = 1.2164. Results in (a)-(d) correspond to
c = 0.1 and results in (e)-(h) correspond to c = −0.1. Solutions of Equations (5.8)-(5.9) in (a) and (e) show u(x, t) in solid yellow and v(x, t) in solid green, at
t = 20, 30 and 40. Phase planes in (b) and (f), and (c) and (g) show the trajectories corresponding to the U(z) and V (z) travelling waves, respectively. Relevant
trajectories in (b)-(c) and (f)-(g) are shown in dashed lines upon which we superimpose the solid lines from the numerical solution of Equations (5.8)-(5.9)
transformed into travelling wave coordinates. Results in (d) and (h) show U(z) and V (z) as a function of z where results from the phase plane are given in dashed
lines superimposed upon the solutions of Equations (5.8)-(5.9) shifted so that the moving boundary is at z = 0. In the phase planes the equilibrium points are
shown with a black disc and the intersection of the phase plane trajectory with the vertical axis is shown with a pink disc.
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5.3.6 Perturbation solution for |c| ≪ 1

All results in Figures 5.3–5.5 rely on numerical solutions of Equations (5.26)-

(5.27) to explore trajectories in the phase plane. We now provide analytical

insight by constructing approximate perturbation solutions to complement

these numerical explorations. First we re-write Equations (5.26)-(5.27) as

dX

dV
=

−cX − λV (1− V )

DX
, (5.28)

for which we seek a perturbation solution about c = 0. Substituting the

expansion X(V ) = X0(V ) + cX1(V ) +O(c2) into Equation (5.28) leads to

dX0

dV
= −λV (1− V )

DX0
, (5.29)

dX1

dV
=
λX1V (1− V )

DX2
0

− 1

D
, (5.30)

which can be solved exactly to give expressions for X0(V ) and X1(V ). With

initial conditionsX0(1) = 0 andX1(1) = 0, the two-term perturbation solution

can be written as

X(V ) = ±

√
λ

D

(
−V 2 +

2V 3

3
+

1

3

)
− c

(2− V )(1 + 2V )3/2 − 3
√
3

5D(1− V )
√
1 + 2V

+O(c2).

(5.31)

Retaining just the first term on the right of Equation (5.31) gives us an approx-

imation that we refer to as an O(1) perturbation solution whereas retaining

both terms on the right of Equation (5.31) gives us an approximation that

we refer to as an O(c) perturbation solution. We will now explore both these

solutions.

Results in Figure 5.6(a)-(b) show the (U(z),W (z)) and (V (z), X(z)) phase

planes for c = 0.05, respectively. The numerically-generated trajectories are

compared with both the O(1) and O(c) perturbation solutions. Here we see

that the O(1) perturbation solution is a teardrop-shaped homoclinic trajec-

tory to (1, 0). In Figure 5.6(a) we see that the O(1) perturbation solution

provides a reasonably accurate approximation of the numerical trajectory in

the fourth quadrant for U(W ). Similarly, in Figure 5.6(b) we see that the

O(1) perturbation solution is a reasonably accurate approximation of the nu-

merical trajectory in the first quadrant for V (X). We also superimpose the
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(a)

(c) (d)

(b)

Figure 5.6: Perturbation solution in the phase plane when c > 0 and
D = λ = 1. Phase planes in (a)-(b), (c)-(d) compare numerical phase plane tra-
jectories and perturbation solutions for c = 0.05 and c = 0.5, respectively. Numerical
estimates of the U(W ) and V (X) trajectories are shown in dashed red and dashed
green respectively. The O(1) and O(c) perturbation solutions are shown in solid yel-
low and solid purple, respectively. Equilibrium points are shown with black discs.
The points at which the various solutions intersect the vertical axis are shown with
various coloured discs corresponding to the colour of the particular trajectory.

O(c) perturbation solution in Figures 5.6(a)-(b) but it is difficult to visually

distinguish between the O(1) and O(c) solutions for c = 0.05.

Results in Figure 5.6(c)-(d) show the (U(z),W (z)) and (V (z), X(z)) phase

planes for c = 0.5, respectively. In both cases we see that the O(1) pertur-

bation solutions do not provide an accurate approximation of the numerical

trajectories, whereas the O(c) perturbation solutions compare very well with

the physical part of the phase plane trajectories in both cases. The compar-

ison of the numerical phase plane trajectories and the perturbation solutions

in Figure 5.6 is given for the most fundamental case where D = λ = 1 and

c > 0. Additional comparisons for other choices of D, λ and c are provided in

the Additional Material.

The comparison of the numerical phase plane trajectories with the pertur-

bation solutions in Figure 5.6 shows the shape ofW (U) and X(V ) in the phase

plane. To explore how these solutions compare in the z plane, we integrate

both sides of Equation (5.31) with respect to z numerically using a forward

150



(b)(a)

(d)(c)

Figure 5.7: Perturbation solution for the shape of the travelling waves for
D = λ = 1. Comparison of U(z) and V (z) from theO(c) perturbation solution (purple
solid) with numerical estimates of the travelling wave obtained by solving Equations
(5.8)-(5.9) and shifting the profiles so that U(0) = V (0) = 0. Numerical estimates
of U(z) and V (z) are shown in dashed yellow and dashed green lines, respectively.
Results are shown for: (a)–(b) c = ±0.05, and (c)–(d) ±c = −0.5.

Euler approximation with constant step size, dz = 1 × 10−3. This numerical

integration leads to estimates of the shape of the travelling waves that can

be compared with the shapes of the travelling wave obtained from long-time

numerical solutions of Equations (5.8)-(5.9). Figure 5.7 compares the shape of

both V (z) and U(z) obtained from the O(c) perturbation solution with those

obtained from Equations (5.8)-(5.9), where we see that the shape of both the

V (z) and U(z) profiles compare extremely well for c = ±0.05, as expected. It

is also pleasing that the shape of the profiles compare quite well even for much

larger values, c = ±0.5. All results in Figure 5.7 correspond to the simplest

case where D = λ = 1 and additional comparisons for other choices of D and

λ and are provided in the Additional Material.

5.3.7 Qualitatively different long time behaviour

All solutions in Figures 5.3-5.5 correspond to particular choices of u(x, 0),

v(x, 0), κu and κv that lead to long time travelling wave solutions. However,
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we note that numerical simulations and more rigorous analysis of the simpler

single-phase Fisher-Stefan moving boundary problems gives rise to a spreading-

vanishing dichotomy, whereby certain initial conditions and parameter values

lead to population extinction as t → ∞ [El-Hachem et al. 2019, Simpson

2020,Du and Lin 2010,Du and Guo 2011, Bunting et al. 2012,Du and Guo

2012,Du et al. 2014a,Du et al. 2014b,Du and Lou 2015]. The main focus of

our current work is to study travelling wave solutions since we are interested

in situations where both populations are present, such as the images in Figure

5.1(a)-(b). To complement these solutions in Figure 5.3–5.7 we now briefly

consider additional numerical solutions of Equations (5.8)-(5.9) where similar

extinction behaviour occurs in the two-phase problem.
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(a) (b) (c)

(e) (f)(d)

(g) (h) (i)

(k)(j) (l)

Figure 5.8: Additional solutions with qualitatively different long time be-
haviour. Four additional numerical solutions of Equations (5.8)–(5.9). Each solution
corresponds to D = 1, λ = 1, with L = 30, s(0) = 1, β = 0.5, α = 0.5. Results in each
row correspond to different values of κu and κv: (a)–(c) corresponds to κu = 2.2976
and κv = 0.1946; (d)–(f) corresponds to κu = 0.5 and κv = 0; (g)–(i) corresponds to
κu = 0.5 and κv = 0.1946; and (j)–(l) corresponds to κu = 0.0001 and κv = 0.1946.
The profiles in (a)-(b), (d)-(e) and (g)-(h) are shown at t = 0, 4, 8, 12 and 16. The
density profiles in (i)-(j) are shown at t = 0, 3, 6, 9 and 12. Profiles in the left column
show the evolution of the solutions on 0 < x < 60; profiles in the middle column show
the details of these solutions on 0 < x < 10, and profiles in the right column show
the evolution of s(t).

Figure 5.8 shows results for various initial conditions and/or values of κu

and κv. The first set of results in Figure 5.8(a)–(c) shows a case in which s(0) =

1. Here we see the solution evolving to travelling wave profile with positive

speed of the type we have discussed in some detail. An important point to

make here is that s(0) < π/2, which is a critical length in the corresponding

one-phase problem [El-Hachem et al. 2019, Simpson 2020]. Based on the

previously reported studies of the one-phase problem, our interpretation of

the solution in Figure 5.8(a)–(c) is that even though s(0) < π/2, travelling
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wave solutions are still possible provided the initial mass
∫ s(0)
0 u(x, 0) dx is

sufficiently large to overcome mass lost at the moving boundary. On the

other hand, in Figure 5.8(d)–(f) the solution has the same parameter values

as in Figure 5.8(a)–(c), except that κu and κv are now reduced. In this case

the moving boundary x = s(t) moves to the right and approaches a steady

state value which is less than the critical length π/2, while the left population

u(x, t) goes extinct as t → ∞. The extinction is caused by the fact that the

rate at which mass associated with the u(x, t) population is lost at x = s(t)

exceeds the rate at which the mass of u(x, t) is gained by proliferation. These

two examples are consistent with the spreading-vanishing dichotomy in the

one-phase problem [El-Hachem et al. 2019,Simpson 2020].

Additional results in Figures 5.8(g)–(i) and (j)–(l) show two further so-

lutions with different choices of κu and κv. In both these cases we see that

the u(x, t) profile eventually becomes extinct, whereas the v(x, t) profile even-

tually forms a travelling wave solution with c = −0.1. Subtle differences,

highlighted in Figure 5.8(i) and (l), show the temporal behaviour in terms of

the movement of the interface, s(t). The case in Figure 5.8(l) leads to a mono-

tonically decreasing s(t), whereas the case in Figure 5.8(i) leads to s(t) that

is initially increasing before eventually decreasing at later time. This kind of

nonmonotone behaviour of s(t) is very interesting because the standard single

phase Fisher-Stefan model appears to only lead to monotone s(t), whereas our

two-phase analogue leads to more interesting and nuanced behaviours.

5.4 Conclusion

In this work we consider a novel mathematical model of cell invasion which

takes the form of a two-phase moving boundary problem. This modelling

strategy is both biologically relevant and mathematically novel. The moving

boundary model leads to travelling wave solutions with a clearly defined mov-

ing front. This is advantageous over the classical Fisher–Kolmogorov model

and extensions because travelling wave solutions of those models do not have

this property. From a biological point of view, our model describes the mi-

gration and proliferation of two populations of cells, u(x, t) and v(x, t), and

this allows us to model a population of cancer cells, u(x, t), invading into a

population of surrounding cells, v(x, t). This scenario is relevant to melanoma
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cells invading into surrounding skin cells, as shown in Figure 5.1(a)-(b). Inter-

estingly, the moving boundary model leads to travelling wave solutions that

move in either the positive or negative direction, meaning that we can simu-

late malignant invasion as well as malignant retreat. This is very different to

travelling wave solutions of the Fisher-Kolmogorov and Porous-Fisher models

because those models only ever predict malignant advance and never predict

malignant retreat.

The two-phase moving boundary model is also very interesting mathemat-

ically. In this work we analyse travelling wave solutions where we show that

the U(z) = u(x − ct) and V (z) = v(x − ct) travelling waves can be analysed

in two separate phase planes. These two phase planes are identical to the

phase plane that arises in the classical analysis of travelling wave solutions of

the Fisher-Kolmogorov model. There are two equilibria: (i) (1, 0) is a saddle

for all c; and (ii) (0, 0) is a stable node if c ≥ 2
√
λD or a stable spiral for

c < 2
√
λD. Normally, in the case of travelling waves solutions of the Fisher–

Kolmogorov model we are interested in a heteroclinic trajectory between these

two equilibria and so we require c ≥ 2
√
λD to avoid the nonphysical negative

densities that arise from spirals in the phase plane. In contrast, travelling

wave solutions of our moving boundary model have c < 2
√
λD and so these

normally-discarded trajectories turn out to be very useful.

For our two-phase moving boundary model we use numerical simulations

and perturbation methods to confirm that the travelling wave solutions for

U(z) and V (z) are associated with trajectories in the classical Fisher–Kolmogorov

phase plane that are normally disregarded as being nonphysical. In the cases

we consider with c > 0, the U(z) travelling wave is associated with the hetero-

clinic trajectory that leaves (1, 0) along the unstable manifold and eventually

spiralling into (0, 0). Here we have the restriction that the travelling wave so-

lution is only associated with the first part of that trajectory where U(z) > 0.

Similarly, the V (z) travelling wave is associated with the trajectory that ap-

proaches (1, 0) along the stable manifold. Here we have the restriction that the

travelling wave is associated with part of the trajectory where V (z) > 0. For

travelling wave solutions with c < 0, it is the other way around: the U(z) trav-

elling wave is associated with the trajectory that eventually moves into (1, 0)

from infinity, whereas the V (z) travelling wave is associated with the trajectory
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that eventually spirals into (0, 0). It is very interesting that both these tra-

jectories come from the phase plane for the well–studied Fisher–Kolmogorov

equation, except that these trajectories are not normally considered in any

detail. While certain aspects have been studied more rigorously [Chang and

Chen 2013, Yang 2015], these previous studies do not provide visualisations

of numerical solutions of the partial differential equation models, nor do they

make use of traditional phase plane analysis or perturbation methods to pro-

vide approximate expressions for the solutions of the models.

There are many ways that our study could be extended to incorporate

additional features. For example, from a practical point of view, all work

presented here involves applying these models in a standard one-dimensional

Cartesian geometry and it would also be interesting to apply these models

in a radial geometry to study the outward invasion of a spherical tumour or

the closure of a disc-shaped wound [Treloar et al. 2014]. Another practi-

cal consideration is that it is relatively straightforward to make experimental

measurements of the invasion speed c [Maini et al. 2004a,Maini et al. 2004b],

the cell diffusivity [Johnston et al. 2015] and cell proliferation rates [John-

ston et al. 2015]. With this information, our model could be used to provide

estimates of the coefficients κu and κv. Further considerations could be to

explicitly model how malignant cells produce proteases and other chemical

signals and to explore how such signals can be incorporated into the evolution

equation for the moving boundary [Smallbone et al. 2005,Holder et al. 2014].

From a more mathematical point of view, additional questions of interest are

to precisely study under which conditions solutions go to travelling waves or

become extinct, to relax the assumption that the contact point corresponds

to zero cell density, and to study the limit t→ ∞ with care to determine how

quickly travelling wave solutions develop.

5.5 Additional material

5.5.1 Numerical methods

Liberally commented MATLAB implementations of all numerical algorithms

used to generate the solutions of the differential equations in this work are

available on GitHub.
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5.5.1.1 Partial differential equation

As we explained in the main document, the partial differential equation models

are transformed to a fixed domain, Equations (5.8)-(5.9) on 0 ≤ ξ ≤ 1 and 1 ≤

η ≤ 2, respectively. To solve these transformed partial differential equations

we discretize the ξ and η domains uniformly. In principle we use m equally-

spaced mesh points for ξ, m = 1/∆ξ + 1, and n equally-spaced mesh points

for η, n = 1/∆η+1. In practice we usually implement the numerical solution

with m = n by setting ∆ξ = ∆η. This is convenient, but not necessary.

Using a central difference approximation for the transformed spatial vari-

able and an implicit Euler approximation for the temporal derivatives [Simp-

son et al. 2005,Simpson et al. 2007], at the central nodes on both meshes we

have

uj+1
i − uji
∆t

=

(
uj+1
i+1 − 2uj+1

i + uj+1
i−1

)
(sj+1∆ξ)2

+
ξi
(
sj+1 − sj

) (
uj+1
i+1 − uj+1

i−1

)
2sj+1∆t∆ξ

+ uj+1
i

(
1− uj+1

i

)
, i = 2, . . . ,m− 1,

(5.32)

vj+1
i − vji
∆t

=
D
(
vj+1
i+1 − 2vj+1

i + vj+1
i−1

)
((L− sj+1)∆η)2

+
(2− ηi)

(
vj+1
i+1 − vj+1

i−1

) (
sj+1 − sj

)
2∆t∆η (L− sj+1)

+ λvj+1
i

(
1− vj+1

i

)
, i = 2, . . . , n− 1,

(5.33)

where the subscript i denotes the mesh point and the superscript j denotes

the time, where t = j∆t.

To enforce the boundary conditions we set ∂u/∂ξ = 0 at ξ = 0 and ∂v/∂η =

0 at η = 2, further we set u = v = 0 at the moving boundary where ξ = η = 1,

leading to

uj+1
2 = uj+1

1 , vj+1
n = vj+1

n−1, uj+1
m = vj+1

1 = 0. (5.34)

To advance the discrete system from time t to t+∆t we solve the system of

nonlinear algebraic equations, Equations (5.32)-(5.34), using Newton-Raphson

iteration [Burden and Faires 2011]. During each iteration of the Newton-

Raphson algorithm we estimate the position of the moving boundary using
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the discretised Stefan condition,

sj+1 − sj

∆t
= −κu

uj+1
m − uj+1

m−1

sj+1∆ξ
− κv

vj+1
2 − vj+1

1

(L− sj+1)∆η
. (5.35)

Within each time step the Newton-Raphson iterations continue until the max-

imum change in the dependent variables is less than the tolerance ϵ. All results

in this work are obtained by setting ϵ = 1× 10−8, ∆ξ = ∆η = 2.5× 10−4 and

∆t = 1 × 10−3, and we find that these values are sufficient to produce grid-

independent results. However, we recommend that care be taken when using

the algorithms on GitHub for different choices of parameters, especially when

considering larger values of κu and κv, which can require a much denser mesh

to give grid-independent results.

5.5.1.2 Phase plane

To construct the phase planes we solve Equations (5.26)–(5.27) numerically

using Heun’s method with a constant step size dz. In most cases we are

interested in examining trajectories that either enter or leave the saddle (1, 0)

along the stable or unstable manifold, respectively. Therefore, it is important

that the initial condition we chose when solving Equations (5.26)–(5.27) are

on the appropriate stable or unstable manifold and sufficiently close to (1, 0).

To choose this point we use the MATLAB eig function [Mathworks 2021] to

calculate the eigenvalues and eigenvectors for the particular choice of c, D

and λ of interest. The flow of the dynamical system are plotted on the phase

planes using the MATLAB quiver function [Mathworks 2021].
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5.5.2 Additional results

Results in Figure 6 are presented for D = λ = 1 and c > 0 only. Similarly,

results in Figure 7 are presented for D = λ = 1 only. In Section 5.5.2.1 we

present additional results where D ̸= 1, λ ̸= 1 and c < 0. Similarly in Section

5.5.2.2 we present additional results where D ̸= 1 and λ ̸= 1. In all cases we

have a good match between the perturbation solutions and numerical solutions

provided that the wavespeed is sufficiently close to zero, as expected.

5.5.2.1 Additional perturbation results in the phase plane

(a)

(c) (d)

(b)

Figure 5.9: Perturbation solution for the phase plane trajectories when
c < 0 and D = λ = 1. Phase planes in (a)-(b), (c)-(d) compare numerical phase
plane trajectories and perturbation solutions for c = −0.05 and c = −0.5, respectively.
Numerical estimates of the U(W ) and V (X) trajectories are shown in dashed red and
dashed green respectively. The O(1) and O(c) perturbation solutions are shown in
solid yellow and solid purple, respectively. Equilibrium points are shown with black
discs. The points at which the various solutions intersect the vertical axis are shown
with various coloured discs corresponding to the colour of the particular trajectory.
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(a) (b)

(c) (d)

Figure 5.10: Perturbation solution for the phase plane trajectories when
c > 0, D = 0.5 and λ = 1. Phase planes in (a)-(b), (c)-(d) compare numerical phase
plane trajectories and perturbation solutions for c = 0.05 and c = 0.5, respectively.
Numerical estimates of the U(W ) and V (X) trajectories are shown in dashed red and
dashed green respectively. The O(1) and O(c) perturbation solutions are shown in
solid yellow and solid purple, respectively. Equilibrium points are shown with black
discs. The points at which the various solutions intersect the vertical axis are shown
with various coloured discs corresponding to the colour of the particular trajectory.
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(a) (b)

(c) (d)

Figure 5.11: Perturbation solution for the phase plane trajectories when
c < 0, D = 0.5 and λ = 1. Phase planes in (a)-(b), (c)-(d) compare numerical phase
plane trajectories and perturbation solutions for c = −0.05 and c = −0.5, respectively.
Numerical estimates of the U(W ) and V (X) trajectories are shown in dashed red and
dashed green respectively. The O(1) and O(c) perturbation solutions are shown in
solid yellow and solid purple, respectively. Equilibrium points are shown with black
discs. The points at which the various solutions intersect the vertical axis are shown
with various coloured discs corresponding to the colour of the particular trajectory.
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(a) (b)

(c) (d)

Figure 5.12: Perturbation solution for the phase plane trajectories when
c > 0, D = 2 and λ = 1. Phase planes in (a)-(b), (c)-(d) compare numerical phase
plane trajectories and perturbation solutions for c = 0.05 and c = 0.5, respectively.
Numerical estimates of the U(W ) and V (X) trajectories are shown in dashed red and
dashed green respectively. The O(1) and O(c) perturbation solutions are shown in
solid yellow and solid purple, respectively. Equilibrium points are shown with black
discs. The points at which the various solutions intersect the vertical axis are shown
with various coloured discs corresponding to the colour of the particular trajectory.
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(a) (b)

(c) (d)

Figure 5.13: Perturbation solution for the phase plane trajectories when
c < 0, D = 2 and λ = 1. Phase planes in (a)-(b), (c)-(d) compare numerical phase
plane trajectories and perturbation solutions for c = −0.05 and c = −0.5, respectively.
Numerical estimates of the U(W ) and V (X) trajectories are shown in dashed red and
dashed green respectively. The O(1) and O(c) perturbation solutions are shown in
solid yellow and solid purple, respectively. Equilibrium points are shown with black
discs. The points at which the various solutions intersect the vertical axis are shown
with various coloured discs corresponding to the colour of the particular trajectory.
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(a) (b)

(c) (d)

Figure 5.14: Perturbation solution for the phase plane trajectories when
c > 0, D = 1 and λ = 0.5. Phase planes in (a)-(b), (c)-(d) compare numerical phase
plane trajectories and perturbation solutions for c = 0.05 and c = 0.5, respectively.
Numerical estimates of the U(W ) and V (X) trajectories are shown in dashed red and
dashed green respectively. The O(1) and O(c) perturbation solutions are shown in
solid yellow and solid purple, respectively. Equilibrium points are shown with black
discs. The points at which the various solutions intersect the vertical axis are shown
with various coloured discs corresponding to the colour of the particular trajectory.
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(a) (b)

(c) (d)

Figure 5.15: Perturbation solution for the phase plane trajectories when
c < 0, D = 1 and λ = 0.5. Phase planes in (a)-(b), (c)-(d) compare numerical phase
plane trajectories and perturbation solutions for c = −0.05 and c = −0.5, respectively.
Numerical estimates of the U(W ) and V (X) trajectories are shown in dashed red and
dashed green respectively. The O(1) and O(c) perturbation solutions are shown in
solid yellow and solid purple, respectively. Equilibrium points are shown with black
discs. The points at which the various solutions intersect the vertical axis are shown
with various coloured discs corresponding to the colour of the particular trajectory.
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(a)

(c)

(b)

(d)

Figure 5.16: Perturbation solution for the phase plane trajectories when
c > 0, D = 1 and λ = 2. Phase planes in (a)-(b), (c)-(d) compare numerical phase
plane trajectories and perturbation solutions for c = 0.05 and c = 0.5, respectively.
Numerical estimates of the U(W ) and V (X) trajectories are shown in dashed red and
dashed green respectively. The O(1) and O(c) perturbation solutions are shown in
solid yellow and solid purple, respectively. Equilibrium points are shown with black
discs. The points at which the various solutions intersect the vertical axis are shown
with various coloured discs corresponding to the colour of the particular trajectory.
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(a)

(c)

(b)

(d)

Figure 5.17: Perturbation solution for the phase plane trajectories when
c < 0, D = 1 and λ = 2. Phase planes in (a)-(b), (c)-(d) compare numerical phase
plane trajectories and perturbation solutions for c = −0.05 and c = −0.5, respectively.
Numerical estimates of the U(W ) and V (X) trajectories are shown in dashed red and
dashed green respectively. The O(1) and O(c) perturbation solutions are shown in
solid yellow and solid purple, respectively. Equilibrium points are shown with black
discs. The points at which the various solutions intersect the vertical axis are shown
with various coloured discs corresponding to the colour of the particular trajectory.
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5.5.2.2 Additional perturbation results presented in the z coordi-

nate

(b)(a)

(d)(c)

Figure 5.18: Perturbation solution for the shape of the travelling waves
when D = 0.5 and λ = 1. Comparison of U(z) and V (z) from the O(c) perturbation
solution (purple solid) with numerical estimates obtained by solving Equations (16)-
(17) that are shifted so that U(0) = V (0) = 0. Numerical estimates of U(z) and V (z)
are shown in dashed yellow and dashed green lines, respectively. Results are shown
for: (a) c = 0.05; (b) c = −0.05; (c) c = 0.5; and (d) c = −0.5.
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(b)(a)

(d)(c)

Figure 5.19: Perturbation solution for the shape of the travelling waves
when D = 2 and λ = 1. Comparison of U(z) and V (z) from the O(c) perturbation
solution (purple solid) with numerical estimates obtained by solving Equations (16)-
(17) that are shifted so that U(0) = V (0) = 0. Numerical estimates of U(z) and V (z)
are shown in dashed yellow and dashed green lines, respectively. Results are shown
for: (a) c = 0.05; (b) c = −0.05; (c) c = 0.5; and (d) c = −0.5.
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(b)(a)

(d)(c)

Figure 5.20: Perturbation solution for the shape of the travelling waves
when D = 1 and λ = 0.5. Comparison of U(z) and V (z) from the O(c) perturbation
solution (purple solid) with numerical estimates obtained by solving Equations (16)-
(17) that are shifted so that U(0) = V (0) = 0. Numerical estimates of U(z) and V (z)
are shown in dashed yellow and dashed green lines, respectively. Results are shown
for: (a) c = 0.05; (b) c = −0.05; (c) c = 0.5; and (d) c = −0.5.
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(b)(a)

(d)(c)

Figure 5.21: Perturbation solution for the shape of the travelling waves
when D = 1 and λ = 2. Comparison of U(z) and V (z) from the O(c) perturbation
solution (purple solid) with numerical estimates obtained by solving Equations (16)-
(17) that are shifted so that U(0) = V (0) = 0. Numerical estimates of U(z) and V (z)
are shown in dashed yellow and dashed green lines, respectively. Results are shown
for: (a) c = 0.05; (b) c = −0.05; (c) c = 0.5; and (d) c = −0.5.

171





Chapter 6

Travelling wave analysis of

cellular invasion into

surrounding tissues

173



 

 
 

Statement of Contribution of Co-Authors for 
Thesis by Published Paper 

 
The following is the suggested format for the required declaration provided at the start of any 

thesis chapter which includes a co-authored publication. 
 

The authors listed below have certified that: 
 

1. they meet the criteria for authorship and that they have participated in the conception, execution, 
or interpretation, of at least that part of the publication in their field of expertise; 

2. they take public responsibility for their part of the publication, except for the responsible author 
who accepts overall responsibility for the publication; 

3. there are no other authors of the publication according to these criteria; 
4. potential conflicts of interest have been disclosed to (a) granting bodies, (b) the editor or 

publisher of journals or other publications, and (c) the head of the responsible academic unit, and 
5. they agree to the use of the publication in the student’s thesis and its publication on the  QUT’s 

ePrints site consistent with any limitations set by publisher requirements. 
 

In the case of this chapter 6: 
 

Please state the publication title and date of publication or status: 
 

El-Hachem M, McCue SW, Simpson MJ, 2021. Travelling wave analysis of cellular invasion into surrounding 
tissues. Physica D: Nonlinear Phenomena 428, 133026. Published on December 2021.  
 

Contributor Statement of contribution* 
Maud El-Hachem  

Conceived and designed the study, performed all numerical and 
symbolic calculations, drafted the article, and gave final approval for 
publication.  

 

 
Scott W McCue 

 

Conceived and designed the study, gave final approval for publication.  

 
Matthew J Simpson 

 

 Conceived and designed the study, gave final approval for publication.  

 
 

 
 

 

Graduate Research Centre, Level 4, 88 Musk Ave, Kelvin Grove Qld 4059  Page 1 of 1 
Current @ 20/02/2020 CRICOS No. 00213J 

Principal Supervisor Confirmation 
 
I have sighted email or other correspondence from all Co-authors confirming their certifying authorship. 
(If the Co-authors are not able to sign the form please forward their email or other correspondence confirming the 
certifying authorship to the GRC). 

Name Signature Date 
Professor Matthew Simpson 16/11/2021

15/11/2021

174



6.1 Abstract

Single-species reaction-diffusion equations, such as the Fisher-KPP and Porous-

Fisher equations, support travelling wave solutions that are often interpreted

as simple mathematical models of biological invasion. Such travelling wave

solutions are thought to play a role in various applications including develop-

ment, wound healing and malignant invasion. One criticism of these single-

species equations is that they do not explicitly describe interactions between

the invading population and the surrounding environment. In this work we

study a reaction-diffusion equation that describes malignant invasion which

has been used to interpret experimental measurements describing the invasion

of malignant melanoma cells into surrounding human skin tissues [Browning

et al. 2019]. This model explicitly describes how the population of cancer

cells degrade the surrounding tissues, thereby creating free space into which

the cancer cells migrate and proliferate to form an invasion wave of malig-

nant tissue that is coupled to a retreating wave of skin tissue. We analyse

travelling wave solutions of this model using a combination of numerical simu-

lation, phase plane analysis and perturbation techniques. Our analysis shows

that the travelling wave solutions involve a range of very interesting prop-

erties that resemble certain well-established features of both the Fisher-KPP

and Porous-Fisher equations, as well as a range of novel properties that can be

thought of as extensions of these well-studied single-species equations. Matlab

software to implement all calculations is available at GitHub.

6.2 Introduction

The Fisher-KPP model [Fisher 1937,Kolmogorov et al. 1937] is a very sim-

ple prototype mathematical model of biological invasion that describes the

spatial and temporal evolution of a population where individuals undergo mi-

gration by linear diffusion and proliferation via logistic growth. The Porous-

Fisher model is an extension of the Fisher-KPP model where the linear dif-

fusion term is generalised to a nonlinear degenerate diffusion term with a

power law diffusivity [Murray 2002, Sánchez Garduño and Maini 1994, Wi-

telski 1994,Witelski 1995, McCue et al. 2019]. Such single species partial

differential equation (PDE) models have had a major influence on the study
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of biological populations, both in cell biology [Sherratt and Murray 1990,Maini

et al. 2004a, Swanson et al. 2003, Sengers et al. 2007,Gerlee and Nerlander

2012, Jin et al. 2020, Lagergren et al. 2021a, Largergren et al. 2021b] and

in ecology [Skellam 1951, Lewis and Kareiva 1993,Holmes et al. 1994, Shige-

sada et al. 1951, Steel et al. 1998, Kot 2003, Levin et al. 2003], since these

models gives rise to travelling wave solutions that are thought to represent

invasion waves [Canosa 1973,Murray 2002]. While influential, an obvious lim-

itation of such single species models is that they focus on the properties of the

invading population alone, and neglect interactions between the invasive pop-

ulation and the environment, or interactions between the invasive population

and other populations of interest. To overcome this limitation, a number of

extended multi-species models that explicitly describe coupling between the

invasive population and the environment or other populations of interest have

been proposed, for example [Painter and Sherratt 2003, Byrne and Preziosi

2003, Byrne et al. 2003]. While this work is focused on models of invasion

in the context of cancer biology, similar continuum mathematical models are

developed and deployed in the ecology literature [Amor and Fort 2010,Amor

et al. 2017,Fort 2012,Muller et al. 2014].

(a) (b) (c)

position

ce
ll 

de
ns

ity

 OverlapCancer Skin I II III

Figure 6.1: Experimental motivation and mathematical model schematic.
(a) Cross section through human skin tissues showing the invasion of melanoma cells
(dark brown) into surrounding skin tissue (light brown). The direction of invasion
is shown with the arrow. This image is reproduced from Haridas [Haridas 2017]
with permission. (b) Schematic solution of a one-dimensional PDE model showing
the spatial distribution of cell populations during invasion. To be consistent with
the experiments in (a), the density of cancer cells (brown) moves in the direction
of the black arrow, and this invasion is associated with the retreat of the density
of surrounding skin tissues (blue). The overlap region involves a visually-distinct
region where both populations are present at the same location. (c) Shows travelling
wave solutions for the cancer cell density U(z), and the skin cell density V (z), on
−∞ < z < ∞. In this work we will refer to three different regions of the domain:
(i) region I is the invaded region where U(z) → 1 and V (z) → 0 as z → −∞; (ii)
region II is the overlap region where U(z) > 0 and V (z) > 0; and, (iii) region III is
the uninvaded region where U(z) → 0 and V (z) → V as z → ∞.
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One area of research where coupled mathematical models of invasion have

played an important role is in the study of cancer biology where the invasion

of a population of malignant cells is tightly coupled to the degradation of sur-

rounding tissues. The experimental image in Figure 6.1(a) shows a population

of highly aggressive melanoma cells growing within and invading into human

skin tissues [Haridas 2017, Haridas et al. 2018]. During these experiments,

melanoma cells simultaneously migrate and proliferate to form an invading

front, and this invasion is tightly coupled to the biochemical breakdown of

the surrounding tissues by proteases released by the melanoma cells. From

a mathematical modelling point of view, this kind of process leads to con-

ceptual models like that shown in Figure 6.1(b) where we think of a density

profile of invading cancer cells that is coupled to the retreat of a population

of surrounding skin cells. In this schematic we identify three regions: region

I is the invading region; region II is the overlap region; and, region III is the

uninvaded region. Throughout this work we refer to the density of invading

cells as û and the density of surrounding tissues as v̂.

One of the first mathematical models of cellular invasion was proposed by

Gatenby and Gawlinski [Gatenby and Gawlinski 1996], who present a coupled

system of PDEs that described the spatial and temporal development of tu-

mour tissue, normal tissue and excess hydrogen ion concentration. Numerical

exploration and phase plane analysis suggested the formation of a pH gradient

across the tumour-host interface, leading to a hypocellular interstitial gap at

the tumour-host interface. This gap was then verified using both in vitro and

in vivo data. A similar model of cellular migration coupled to the degrada-

tion of surrounding tissues in the context of developmental biology was later

proposed by Landman and Pettet [Landman and Pettet 1998]. In this case

the simpler mathematical model was solved exactly to reveal details of the

coupling between the invading population and the degradation of surrounding

tissues. Since these first two mathematical models were proposed and analysed

in the late 1990s, a range of more detailed mathematical models have since

studied to examine different aspects of cellular invasion [Perumpanani et al.

1999,Marchant et al. 2000,Smallbone et al. 2005,Landman et al. 2008,Ander-

son and Quaranta 2008,Astanin and Preziosi 2009,Fasano et al. 2009,Byrne

2010,Tindall et al. 2012,Holder et al. 2014,Holder and Rodrigo 2015].
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Despite the fact that mathematical models of cellular invasion into sur-

rounding tissues had been considered for over twenty years, it was not until

2019 that one of these models was first quantitatively calibrated to experimen-

tal data. In 2019, Browning and co-workers [Browning et al. 2019] examined a

simplified model based on Gatenby and Gawlinski’s earlier, more general mod-

elling framework [Gatenby and Gawlinski 1996]. In this work, Browning took

experimental data describing time-series measurements of melanoma invasion

into human tissues (Figure 1(a)) and used a Bayesian sequential learning ap-

proach to estimate the diffusivity of the melanoma cells, the proliferation rate

of the melanoma cells and the rate at which melanoma cells degraded the sur-

rounding skin tissues [Browning et al. 2019]. This 2019 study was different to

many previous mathematical studies of cellular invasion since Browning did

not consider any travelling wave solutions or travelling wave analysis. In the

present study we re-visit the model proposed by Browning and explore vari-

ous travelling wave solutions of that model. Using a combination of numerical

methods to solve the full time-dependent PDE model, phase plane analysis and

perturbation methods, we reveal several novel features of the travelling wave

solutions of this model. In particular we unearth many important parallels and

differences between the travelling wave solutions of the invasion model and the

very well-studied Fisher-KPP model. There are two aspects of our analysis

that are of particular interest. First, we show that travelling wave solutions

of the invasion model that involves three dimensional phase space can be ap-

proximated using the simpler Fisher-KPP phase plane. Second, we show that

Browning’s model of invasion leads to travelling wave solutions that are rem-

iniscent of travelling wave solutions of a moving boundary type model [Ward

and King 1997,Byrne and Chaplain 1997,Gaffney and Maini 1999].

6.3 Mathematical model and preliminary simula-

tions

6.3.1 Browning’s model of cellular invasion

In 2019, Browning and co-workers [Browning et al. 2019] proposed the follow-

ing simple dimensional model to describe the invasion of melanoma cells into
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surrounding skin tissue,

∂û

∂t̂
= D̂

∂

∂x̂

[(
1− v̂

K̂

)
∂û

∂x̂

]
+ λ̂û

(
1− û+ v̂

K̂

)
, 0 < x̂ <∞, (6.1)

∂v̂

∂t̂
= −γ̂ûv̂, 0 < x̂ <∞, (6.2)

where û(x̂, t̂) > 0 is the density of melanoma cells, and v̂(x̂, t̂) > 0 is the

density of skin cells. Throughout this work we use a circumflex to indicate

dimensional parameters and variables.

Equation (6.1) governs the evolution of the cell density, and we see that the

melanoma cells move according to a nonlinear diffusion term, with diffusivity

D̂ > 0 [µm2 h−1]. The nonlinear diffusivity function decreases linearly with

the skin density such that the diffusion of melanoma cells vanishes if the skin

density reaches the carrying capacity density, v̂(x̂, t̂) = K̂ > 0. Further,

equation (6.1) specifies that the melanoma cells grow logistically, with rate

λ̂ > 0 [h−1], such that the net proliferation rate is a linearly decreasing function

of the total cell density, û(x̂, t̂)+v̂(x̂, t̂). Equation (6.2) governs the evolution of

the skin density such that melanoma cells degrade skin cells at a rate governed

by γ̂ ≥ 0 [µm2cells−1h−1]. This two-species PDE model is a simplification of a

three-species PDE extension that is fully described in the Additional Material

document reported by Browning et al. [Browning et al. 2019].

Since we are interested in travelling wave solutions we pose Equations

(6.1)–(6.2) on 0 < x̂ < ∞, however when we generate numerical solutions

we take the usual approach and examine solutions on a truncated domain,

0 < x̂ < L̂. For all numerical solutions, we specify no-flux boundary conditions

for û(x̂, t̂), so that ∂û(0, t̂)/∂x̂ = ∂û(L̂, t̂)/∂x̂ = 0. Note that since Equation

(6.2) does not involve any spatial derivatives, we do not need to specify any

boundary conditions for v̂(x̂, t̂). The choice of L̂ is unimportant provided that

it is chosen to be sufficiently large [El-Hachem et al. 2021a]. Matlab software

on GitHub can be used to explore different choices of L̂ for all problems that

we consider, and full details of the numerical algorithms are outlined in the

Appendix.
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The mathematical model is nondimensionalised by introducing u = û/K̂,

v = v̂/K̂, x = x̂

√
λ̂/D̂, t = λ̂t̂, and γ = K̂γ̂/λ̂, which gives

∂u

∂t
=

∂

∂x

[
(1− v)

∂u

∂x

]
+ u(1− u− v), 0 < x <∞ (6.3)

∂v

∂t
= −γuv, 0 < x <∞, (6.4)

which means that the nondimensional PDE model requires the specification

of just one model parameter, γ ≥ 0.

For the first part of the study, we specify initial conditions such that the

initial distribution of skin density is a constant, and the initial distribution of

melanoma cells has compact support,

u(x, 0) = α [1−H(x− β)] , (6.5)

v(x, 0) = V, (6.6)

where H(x) is the usual Heaviside function and β > 0 is a constant so that

we have u(x, 0) = α for x < β and u(x, 0) = 0 for x > β. The initial

density of skin, 0 ≤ V ≤ 1, is set to be a constant that does not depend upon

position. In summary, the non-dimensional invasion model involves one model

parameter, γ ≥ 0, and when we specify the initial conditions we introduce

another parameter, 0 ≤ V ≤ 1, that we will study. In general, we interpret γ

as the rate at which cancer cells degrade skin tissues, and V is the density of

skin tissues in the far field ahead of the invading front. Most of our analysis

will be concerned with how varying γ and V influence the shape and speed

of the resulting travelling wave solutions. Setting the upper value of V = 1

implies that the maximum density of skin cells is the same as the maximum

density of cancer cells. This assumption may be biologically realistic as skin

cells and cancer cells are often similar in shape and size [Haridas 2017].

The first part of this work focuses on travelling wave solutions of the

invasion model that arise from initial conditions given by Equations (6.5)–

(6.6) since this form of initial condition with compact support is biologically-

relevant [Haridas 2017,Haridas et al. 2018]. Once we have characterised this

first family of travelling wave solutions, we will then study another family of

travelling wave solutions where u(x, 0) decays to zero as x → ∞. While this
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second family of travelling wave solutions are mathematically interesting, the

fact that these travelling wave solutions that arise from exponentially decaying

initial conditions means that this second set of travelling waves are more dif-

ficult to interpret biologically since this kind of special initial condition is not

relevant in practice. To study this second family of travelling wave solutions

we work with an initial condition given by

u(x, 0) =


α, x < β,

α exp[−a(x− β)], x ≥ β,

(6.7)

v(x, 0) = V, (6.8)

where a > 0 is a constant that we vary so that we can understand how travel-

ling wave solutions of the invasion model depend upon the initial spatial decay

of u.

One of the main themes of our work is to highlight surprising similarities

and differences between the invasion model (6.3)–(6.4) and some well-studied

single-species models. For example, setting V = 0 reduces the invasion model

to the well-known Fisher-KPP model [Fisher 1937, Kolmogorov et al. 1937,

Murray 2002],
∂u

∂t
=
∂2u

∂x2
+ u(1− u). (6.9)

As we pointed out in Section 6.2, the Fisher-KPP model is a simplified math-

ematical model of biological invasion that ignores any interaction between the

invading population and the local environment. In this work, we study trav-

elling wave solutions of Equations (6.3)–(6.4) and we find there are important

similarities and differences with travelling wave solutions of the Fisher-KPP

model, so it is useful to explicitly note the connection between these two

mathematical models at the outset. There are also interesting, but perhaps

less obvious, connections between the invasion model and the Porous-Fisher

model [Murray 2002,Sánchez Garduño and Maini 1994,Witelski 1994,Witelski

1995,McCue et al. 2019],

∂u

∂t
=

∂

∂x

[
u
∂u

∂x

]
+ u(1− u). (6.10)

We will now begin to explore these relationships.
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6.3.2 Time-dependant solutions

We begin our study of the invasion model by computationally exploring various

travelling wave solutions of (6.3)–(6.4) to develop an intuitive understanding of

how their shape and speed depend upon the choice of γ and V. Full details of

the numerical method used to solve the PDE model is given in the Appendix,

and MATLAB software to study time-dependent solutions of (6.3)–(6.4) is

available on GitHub.

In the first instance we focus on travelling wave solutions with initial con-

dition given by Equations (6.5)–(6.6) so that the initial cancer density profile

has compact support. Time-dependent solutions are shown in Figure 6.2(a)–

(d) for V = 0.5 for a range of γ. Additional time-dependent solutions are

shown in Figure 6.2(e)–(h) for V = 1 for a range of γ. In all cases we see that

the time-dependent solutions of Equations (6.3)–(6.4) evolve to constant-speed

travelling wave solutions, and in each subfigure we give a numerical estimate

of the travelling wave speed, c.
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(f)(e) (g) (h)

(a) (b) (c) (d)

Figure 6.2: Time-dependant solutions of Equations (6.3)–(6.4) for different γ and V. Results in (a)–(d) correspond to V = 0.5, while results in (e)–(h)
correspond to V = 1. Solutions in (a) and (e), (b) and (f), (c) and (g), and (d) and (h) correspond to γ = 0.1, 1, 10 and 100, respectively. Density profiles for
u(x, t) are shown in brown, and profiles of v(x, t) are shown in blue. Results in (a)–(d) are shown at t = 0, 100, 110, 120 and the invasion front moves in the
positive x-direction, whereas results in (e)–(h) are shown at t = 0, 40, 80, 120. For each solution we show the initial condition in dashed lines, and the subsequent
solutions for t > 0 are shown in solid lines. All PDE solutions are obtained using ∆x = ∆t = 1× 10−3.
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Results in Figure 6.2(a)–(d) highlight several interesting properties of these

travelling wave solutions, especially when we compare them with the well-

known travelling wave solutions of the Fisher-KPP model (6.9). Each trav-

elling wave solution in Figure 6.2(a)–(d) leads to profiles for u(x, t) that are

smooth since they are differentiable everywhere on the domain, and they do

not have compact support since they decay to zero in the far field, u(x, t) → 0+

as x→ ∞. In this regard, the shape of these travelling wave solutions is simi-

lar to those for the Fisher-KPP model [Murray 2002,Canosa 1973]. However,

in the invasion model we see that the speed of the travelling wave depends

upon the decay rate, γ, in a rather unexpected way. First, results in Figure

6.2(a)–(b) suggest that for sufficiently small γ < γc, the speed of the travelling

wave is independent of γ. Second, results in Figure 6.2(c)–(d) indicate that

for sufficiently large γ > γc, the travelling wave speed increases with γ. It

is of interest to note that all values of γ considered in Figure 6.2(a)–(d) lead

to travelling wave solutions with c < 2. This is very different to travelling

wave solutions of the dimensionless Fisher-KPP model that evolve from ini-

tial conditions with compact support since these travelling waves always have

c = 2 [Murray 2002,Canosa 1973].

Results in Figure 6.2(e)–(h) for V = 1 show that the invasion model leads

to non-smooth travelling wave solutions that have compact support. These

solutions are non-smooth since they contain a well defined front and u(x, t) is

not differentiable at the location of the front, x = X (sometimes called the

contact point). These solutions have compact support since u(x, t) > 0 for

x < X, and u(x, t) = 0 for x ≥ X. From this point of view, the shape of the

travelling wave solutions in Figure 6.2(e)–(h) is reminiscent of the shape of

travelling wave solutions of the Porous-Fisher model (6.10). Comparing the

speeds of the travelling wave solutions in Figure 6.2(e)–(h) indicates that c

increases with γ but, unlike the results in Figure 6.2(a)–(d), we do not see

any evidence that the wave speed is independent of γ for any of the values

considered. As with Figure 6.2(a)–(d), all values of γ explored in Figure 6.2(e)–

(h) lead to travelling wave solutions with c < 2, which, again, is very different

to travelling wave solutions of the dimensionless Fisher-KPP equation (6.9).

In summary, preliminary numerical explorations reveal that we obtain

smooth travelling wave solutions of the invasion model for V < 1 whereas
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Figure 6.3: Relationship between the minimum travelling wave speed cmin,
γ and V. Numerical estimates of cmin are obtained by solving Equations (6.3)–(6.4)
with initial conditions (6.5)–(6.6), with α = 1 and β = 10. Numerical solutions of the
PDE model are obtained with ∆x = ∆t = 1× 10−2, for 1× 10−3 ≤ γ ≤ 1× 106 and
V = 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8 and 1.

we obtain non-smooth travelling waves with compact support when V = 1.

While the former are similar in shape to the travelling wave solutions of the

Fisher-KPP model and the latter are similar in shape to the travelling wave

solutions of the Porous-Fisher model, the speed of the travelling waves of the

invasion model are very different to the well-known bounds on travelling wave

solutions of the Fisher-KPP and Porous-Fisher models. The relationship be-

tween c, γ and V is summarised in Figure 6.3 where we estimate the long time

travelling wave speed c from a large number of simulations where u(x, 0) has

compact support, given by Equations (6.5)–(6.6. As we will establish later in

Section 6.6, this means that these estimates of c correspond to the minimum

wave speed, cmin. Remembering that the Fisher-KPP model has a very simple

minimum wave speed, cmin = 2 [Murray 2002,Canosa 1973], here we see that

the minimum wave speed for the invasion model is a relatively complicated

function of V and γ and we will devote much of this work to understanding

this relationship in different limiting cases. As noted in Section 6.3.1, setting

V = 0 means that the invasion model simplifies to the Fisher-KPP model and
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so we obtain c = cmin = 2 regardless of γ. Interestingly, for all choices of γ and

V > 0 we observe travelling wave solutions with a minimum wave speed that is

less than the minimum travelling wave speed for the Fisher-KPP model, and

we will return to this point later. For intermediate values of 0 < V < 1 we see

that cmin is a decreasing function of V, but independent of γ provided that

γ is sufficiently small. In contrast for intermediate values of 0 < V < 1 we

see that cmin increases with γ, and approaches cmin = 2 for large γ. Finally,

for V = 1, there appears to be no positive value of γ where the wave speed

is independent of γ, meaning that we have with cmin → 0+ as γ → 0+, and

cmin → 2− as γ → ∞. The key features of the travelling wave solutions of the

invasion model, and their relationship to the well-studied travelling wave so-

lutions of the Fisher-KPP and Porous-Fisher models are summarised in Table

6.1.

Table 6.1: Comparing key features of travelling wave solutions of the invasion model
with travelling wave solutions of the Fisher-KPP model and the Porous-Fisher model.

Fisher-KPP (6.9) Porous-Fisher (6.10)
Invasion model

V < 1 V = 1

Smooth Sharp-fronted Smooth Sharp-fronted
No compact support Compact support No compact support Compact support

cmin = 2 cmin =
1√
2

cmin = 2(1− V), γ < γc lim
γ→0+

cmin = 0+

lim
γ→∞

cmin = 2− lim
γ→∞

cmin = 2−
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6.4 Travelling wave analysis

We now attempt to formalise these preliminary numerical results by analysing

travelling wave solutions of Equations (6.3)–(6.4) in the phase-space.

6.4.1 Preamble

To study the travelling wave solutions of Equations (6.3)–(6.4) we seek so-

lutions in the form u(x, t) = U(z) and V (x, t) = V (z), where z is the usual

travelling wave variable, z = x − ct. Re-writing the governing equations in

terms of the travelling wave coordinate gives

d

dz

[
(1− V )

dU

dz

]
+ c

dU

dz
+ U(1− U − V ) = 0, −∞ < z <∞, (6.11)

c
dV

dz
− γUV = 0, −∞ < z <∞, (6.12)

with boundary conditions U(z) → 1 and V (z) → 0 as z → −∞, and U(z) → 0

and V (z) → V as z → ∞. At this point it is worthwhile to observe that if the

solution U(z) is known, we can solve Equation (6.12) to give,

V (z) = V exp

{(
γ

c

∫ ∞

z
U(ξ) dξ

)}
. (6.13)

To study this boundary value problem in phase space we re-write Equations

(6.11)–(6.12) as a first order system

dU

dz
=W, (6.14)

dV

dz
=
γUV

c
, (6.15)

dW

dz
=

1

(1− V )

[
γUVW

c
− cW − U(1− U − V )

]
, (6.16)

with boundary conditions U → 1, V → 0 and W → 0 as z → −∞, and

U → 0, V → V and W → 0 as z → ∞. There are two equilibrium points of

this dynamical system: (i) (Ū , V̄ , W̄ ) = (1, 0, 0) corresponding to z → −∞;

and, (ii) (Ū , V̄ , W̄ ) = (0,V, 0) for V < 1, corresponding to z → ∞. Before

we proceed it is useful to remark that the dynamical system is singular when

V = 1, whereas there is no such singularity for V < 1. Therefore, just like we

did in Section 6.3, we will treat these two cases separately.
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6.4.2 V < 1

Setting V < 1 leads to smooth travelling wave solutions that we will analyse

in phase space. Since the travelling wave solutions are smooth the phase plane

is non-singular. We refer to this as a traditional phase space since we do not

have to consider any nonsingularities, and we proceed by analysing Equations

(6.14)–(6.16) directly. Eigenvalues of the linearised dynamical system about

(Ū , V̄ , W̄ ) = (1, 0, 0) are given by the roots of λ3−(γ−c2)λ2/c−(1+γ)λ+γ/c =

0, so that we have λ1 = γ/c and λ2,3 = (−c±
√
c2 + 4)/2). These eigenvalues

are all real with λ1 > 0, λ2 > 0 and λ3 < 0, which means that the equilibrium

point (Ū , V̄ , W̄ ) = (1, 0, 0) is a three-dimensional saddle for all values of c and

γ [Wiggins 2003]. Note that the analogous phase plane analysis for travelling

wave solutions of the Fisher-KPP model (6.9) involves an equilibrium point

corresponding to the invaded region that is a two-dimensional saddle for all

c [Murray 2002].

Eigenvalues of the linearised dynamical system about (Ū , V̄ , W̄ ) = (0,V, 0)

are given by the roots of λ3 + cλ2/(V − 1) + λ = 0, so that we have λ1 = 0

and λ2,3 = (−c±
√
c2 − 4(1− V)2)/[2(1−V)]. In this case λ2 and λ3 are real

negative numbers when c ≥ 2(1 − V), whereas they are complex conjugates

when c < 2(1 − V). This means that the equilibrium point associated with

the uninvaded region is a non-hyperbolic stable node when c ≥ 2(1 − V) and

a non-hyperbolic stable spiral when c < 2(1 − V). Since we are interested in

travelling waves with U(z) > 0, this condition defines a minimum wave speed,

cmin = 2(1 − V). Again, note that the analogous phase plane analysis of the

Fisher-KPP model also involves the equilibrium point corresponding to the

uninvaded region bifurcating from a stable node to a stable spiral, and this

defines an analogous minimum wave speed, cmin = 2 [Murray 2002].

The phase space analysis leading to a minimum wave speed condition,

cmin = 2(1−V) is consistent with our numerical results in Figure 6.3 computed

with initial conditions with compact support. In particular, for sufficiently

small γ < γc we have travelling wave solutions that move with the minimum

wave speed, cmin = 2(1−V), and this speed is independent of γ. For large γ >

γc our numerical results lead to travelling wave solutions with c > cmin = 2(1−

V), which is again consistent with the phase space analysis. Unfortunately,

this analysis provides no insight into the behaviour of the wave speed for
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sufficiently large γ, nor the critical value, γc, where the wave speed dependence

upon γ changes. Alternatively, simply set γ = 0 in Equations (6.3)–(6.4)

uncouples the system. Seeking travelling wave solutions of this uncoupled

system leads to Fisher-KPP-like phase plane analysis, giving cmin = 2(1− V)

which corroborates our previous result. Unfortunately, this simpler approach

provides no insight when γ > 0.

Biologically, setting V < 1 corresponds to the situation where the density

of the skin tissue ahead of the invading front of is lower than the carrying

capacity of the invading population. Intuitively, we might anticipate that

the speed of the invading front would decrease with V and increase with γ.

While the first of these intuitive expectations is consistent with our analy-

sis and numerical observations, the second point highlights the value of our

mathematical analysis and numerical explorations since our finding that the

minimum wave speed is independent of γ, for sufficiently small γ < γc, is not

at all obvious. The implication of this finding is that interventions seeking to

reduce the decay rate to zero would not stop the invasion since cmin > 0 when

γ = 0.

6.4.3 V = 1

Setting V = 1 leads to nonsmooth travelling wave solutions and a singularity in

Equations (6.14)–(6.16). We proceed by defining a new independent variable ζ

, (1−V )d(·)/dz = d(·)/dζ [Murray 2002], so that the desingularised dynamical

system is given by

dU

dζ
=W (1− V ), (6.17)

dV

dζ
=

(
γUV

c

)
(1− V ), (6.18)

dW

dζ
=

(
γUV − c2

c

)
W − U(1− U − V ), (6.19)

with boundary conditions U → 1,W → 0 and V → 0 as ζ → −∞, and

U → 0,W → 0 and V → V as ζ → ∞. Similar to before, given U(ζ), the

solution for V (ζ) can be written as

V (ζ) =
1

A exp

{(
−γ
c

∫ ∞

ζ
U(η) dη

)}
+ 1

, (6.20)
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where A is an integration constant.

Eigenvalues of the linearised dynamical system around (Ū , V̄ , W̄ ) = (1, 0, 0)

are roots of λ3 − (γ − c2)λ2/c − (1 + γ)λ + γ/c = 0, leading to λ1 = γ/c,

λ2,3 = (−c ±
√
c2 + 4)/2). This means that λ2 and λ3 are real numbers

with opposite sign, and so (Ū , V̄ , W̄ ) = (1, 0, 0) is a saddle. The eigenval-

ues of the linearised dynamical system around (Ū , V̄ , W̄ ) = (0, 1, 0) are roots

of cλ2 + λ3 = 0, leading to λ1 = −c, λ2 = λ3 = 0, which means that the

uninvaded equilibrium point is always a degenerate stable node. Unlike the

previous case where V < 1, here there is no restriction on a minimum wave

speed to ensure U(ζ) > 0. One way of interpreting this result is that cmin = 0

which is consistent with the numerical results in Figure 6.3 where we have

c > cmin = 0 when V = 1.

Biologically, setting V = 1 corresponds to the situation where the density of

the skin tissue ahead of the invading front is identical to the carrying capacity

of the invading population. In this situation we see that cmin → 0+ as γ → 0+,

such that γc = 0 and there is no interval of γ for which the minimum wave

speed is independent of γ. The implication of this finding is that interventions

seeking to reduce the decay rate to γ = 0 would eventually stop the invasion

since cmin → 0+ as γ → 0+.

6.5 Limiting cases

As we pointed out in Section 6.3.1, we are primarily interested in understand-

ing how travelling wave solutions of the invasion model (6.3)–(6.4) depend

upon choices of γ and V. We will start by considering limits of fast and slow

decay, γ ≫ 1 and γ ≪ 1, respectively, and consider differences between V = 1

and V < 1 as appropriate.

6.5.1 Fast decay: γ ≫ 1

Preliminary numerical results in Figure 6.2 indicate that the width of the

overlap region (region II) decreases with γ. This trend is evident in Figure

6.2(a)–(d) for V < 1 as well as in Figure 6.2(e)–(h) where V = 1. One way

to interpret this observation is that the overlap between the U(z) and V (z)

profiles becomes negligible as γ increases.

Given our previous discussion in Section 6.3.1 where we observed that
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setting V = 0 means that the evolution equation for u(x, t) simplifies to the

Fisher-KPP model (6.9), we anticipate that the solution of the dynamical

system associated with travelling wave solutions of the invasion model for

γ ≫ 1 can be approximated by the solution of the dynamical system associated

with travelling wave solutions of the Fisher-KPP model,

d2U

dz2
+ c

dU

dz
+ U(1− U) = 0, (6.21)

with boundary conditions U → 1 as z → −∞, and U → 0 as z → ∞. In

the usual way, this second-order boundary value problem can be re-written in

terms of a first order system

dU

dz
=W, (6.22)

dW

dz
= −cW − U(1− U), (6.23)

with boundary conditions U → 1 and W → 0 as z → −∞, and U → 0 and

W → 0 as z → −∞. There are two equilibrium points: (i) (Ū , W̄ ) = (1, 0)

that is associated with the invaded region; and, (ii) (Ū , W̄ ) = (0, 0) that is

associated with the uninvaded region.
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(a)

(d)

(b)

(e) (f)

(c)

Figure 6.4: Travelling wave solutions of the invasion model with γ ≫ 1 and V < 1. (a) and (d) show late-time numerical solutions of Equations
(6.3)–(6.4) with γ = 10 and γ = 1000, respectively. The solution for U(z) is shown in solid brown and the solution for V (z) is shown in solid blue. The
approximate solution for U(z) obtained from the Fisher-KPP phase plane is shown in dashed green. (b) and (c) show a projection of the (U, V,W ) phase space
for the invasion model projected onto the (U,W ) plane together with the projection of the three-dimensional heteroclinic orbit in solid brown. The trajectory
from Fisher-KPP phase plane is shown in dashed green. (c) and (f) show magnified regions near the origin in (b) and (e), respectively.
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In this section we demonstrate a relationship between the three-dimensional

dynamical system and phase space for the invasion model with the far simpler

two-dimensional dynamical system and phase plane for the simpler Fisher-

KPP model. To motivate this we compare various solutions for γ = 10 and

1000 with V = 0.5 in Figure 6.4, and a separate set of comparisons are made

for γ = 10 and 1000 with V = 1 in Figure 6.5.

Results in Figure 6.4(a) and (d) show the long-time numerical solutions

of the invasion model (6.3)–(6.4) with γ = 10 and γ = 1000, respectively.

Comparing the shapes of these two travelling wave solutions confirms that the

width of region II decreases with γ. In particular, the travelling wave profile

in Figure 6.4(d) confirms that the overlap between the invading cancer den-

sity and the retreating skin density is barely noticeable at this scale. These

travelling wave profiles in Figure 6.4(a) and (d) are first generated and plot-

ted in the three-dimensional (U, V,W ) phase space, and a projection of this

phase space and the trajectory is plotted in the (U,W ) plane. This projection

looks like a two-dimensional heteroclinic orbit between (Ū , W̄ ) = (1, 0) and

(Ū , W̄ ) = (0, 0). To make the connection with the simpler Fisher-KPP model

explicit, we superimpose a numerical trajectory obtained from the Fisher-

KPP phase plane (6.22)–(6.23) for the appropriate value of c obtained from

the long-time numerical solutions of (6.3)–(6.4). In both cases we see that

the projection of the trajectory associated with the invasion model and the

trajectory associated with the simpler Fisher-KPP model compare very well,

particularly in Figure 6.4(e) where γ = 1000. The main discrepancy between

the trajectories is near the origin. Additional comparisons in Figure 6.4(c) and

(f) to show details of the trajectories near the origin where the differences are

clear. Indeed, in both cases we see that the trajectory for the simpler Fisher-

KPP model spirals into the origin, whereas the trajectory for the invasion

model does not [Murray 2002].

Overall, the results in Figure 6.4 reveal a novel application of the well-

known phase plane for travelling wave solutions of the Fisher-KPP model

since we show that trajectories in this phase plane provide a good approx-

imation to projections of the three-dimensional trajectories associated with

travelling wave solutions of the more complicated invasion model (6.3)–(6.4).

This comparison is mathematically interesting since standard phase plane
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analysis of travelling wave solutions to the Fisher-KPP model are limited to

c ≥ 2, given, the heteroclinic trajectories for c < 2 are disregarded on physical

grounds [Murray 2002], but here we find that these trajectories provide a good

approximation for the shape of travelling wave solutions to the more compli-

cated invasion model. To highlight the value of this approximation, we take

the (U,W ) trajectory from the Fisher-KPP phase plane and plot the profile as

a function of z in Figure 6.4(a) and (d), where we see that the profile obtained

from the simpler Fisher-KPP model approximates the shape of travelling wave

profile for the full invasion model. This approximation is particularly accurate

in Figure 6.4(d) for γ = 1000. In contrast, while the Fisher-KPP approxima-

tion in Figure 6.4(a) is quite reasonable where z < 2, it is relatively poor in

the region 2 < z < 5 because of the more pronounced oscillation.
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(a)

(d)

(b)

(e) (f)

(c)

Figure 6.5: Travelling wave solutions of the invasion model with γ ≫ 1 and V = 1. (a) and (d) show late-time numerical solutions of Equations
(6.3)–(6.4) with γ = 10 and γ = 1000, respectively. The solution for U(z) is shown in solid brown and the solution for V (z) is shown in solid blue. The
approximate solution for U(z) obtained from the Fisher-KPP phase plane is shown in dashed green. (b) and (c) show a projection of the (U, V,W ) phase space
for the invasion model projected onto the (U,W ) plane together with the projection of the three-dimensional heteroclinic orbit in solid brown. The trajectory
from Fisher-KPP phase plane is shown in dashed green. (c) and (f) show magnified regions near the origin in (b) and (e), respectively.
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Results in Figure 6.5 are presented in the exact same format as the results

in Figure 6.4, except that here we have V = 1 so we have sharp-fronted trav-

elling wave solutions. Comparing the shape of the travelling wave solutions in

Figure 6.5(a) and (d) again confirms that the width of the overlap region de-

creases with γ. The projections of the three-dimensional phase space onto the

(U,W ) plane in Figure 6.5(b) and (e) take the form of a two-dimensional het-

eroclinic orbit between (Ū , W̄ ) = (1, 0) and (Ū , W̄ ) = (0, 0). Comparing the

projections of the three-dimensional trajectory with the numerical trajectory

obtained from the Fisher-KPP model (6.22)–(6.23), confirms that the simpler

dynamical system provides a good approximation to the three-dimensional dy-

namical system when γ is large, with only small discrepancies near the origin,

as shown in Figure 6.5(c) and (f). In this case, comparing the U(z) profiles

in Figure 6.5(d) shows that the entire shape of the travelling wave is approxi-

mated very well when γ = 1000, but we see a more clear discrepancy in Figure

6.5(a) for γ = 10 since this leads to c = 0.68 and more pronounced oscillations

about U = 0 at the front of the travelling wave.

6.5.2 Slow decay: γ ≪ 1

We now turn our attention to the limit where cancer cells consume skin cells

very slowly, γ ≪ 1. In this limit we find that it is necessary to treat the cases

V < 1 and V = 1 separately, as we will now illustrate.

6.5.2.1 γ ≪ 1 and V < 1

Preliminary numerical results in Figure 6.2(a)–(d) show that the width of

region II, the overlap region, increases as γ → 0. To analyse this behaviour

we seek a perturbation solution by treating γ as a small parameter, and it is

useful to recall from Section 6.3 that when V < 1 we have c = cmin = 2(1−V)

for γ < γc so that we take c = cmin in our small γ analysis. Re-scaling the

dependent variable z̃ = γz gives

γ2
d

dz̃

[
(1− V )

dU

dz̃

]
+ cminγ

dU

dz̃
+ U(1− U − V ) = 0, −∞ < z̃ <∞, (6.24)

cmin
dV

dz̃
− UV = 0, −∞ < z̃ <∞. (6.25)
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We now seek perturbation solutions of the form

U(z̃) = U0(z̃) + γU1(z̃) +O(γ2), (6.26)

V (z̃) = V0(z̃) + γV1(z̃) +O(γ2). (6.27)

Substituting these expansions into Equation (6.24) shows that we have U0(1−

U0 − V0) = 0 at leading order, so that V0(z̃) + U0(z̃) = 1. The differential

equations governing the terms in the perturbation solution are therefore given

by

cmin
dU0

dz̃
+ U0(1− U0) = 0, (6.28)

cmin
dU0

dz̃
− U0(U1 + V1) = 0, (6.29)

cmin
dV1
dz̃

− V1(2U0 − 1) + V 2
0 = 0. (6.30)

with boundary conditions U0 → 1, V0 → 0, U1 → 0, V1 → 0 as z̃ → −∞,

U0 → 0, V0 → V, U1 → 0, V1 → 0 as z̃ → ∞.

We solve these differential equations using the following strategy. Equa-

tion (6.28) can be solved for U0(z̃) directly using separation of variables, and

from this we can evaluate V0(z̃) = 1 − U0(z̃). Given the O(1) solutions, we

simply rearrange Equation (6.29) to obtain U1(z) directly, and the solution

of Equation (6.29) is obtained using an integrating factor. In summary, the

solutions of these differential equations are

U0(z̃) =
1

1 +

(
V

1− V

)
exp

{(
z̃

cmin

)} ,
V0(z̃) =

1

1 +

(
1− V
V

)
exp

{(
− z̃

cmin

)} , (6.31)

U1(z̃) =

−V exp

{
z̃

cmin

}
(
V
[
exp

{(
z̃

cmin

)}
− 1

]
+ 1

)2 ,

V1(z̃) =

V2

[
1− exp

{(
z̃

cmin

)}]
exp

{(
− z̃

cmin

)}
[
exp

{(
− z̃

cmin

)}
(V − 1)− V

]2 . (6.32)

where we have evaluated the constants of integration by setting V (0) = V/2.
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Results in Figure 6.6 show long-time solutions of (6.3)–(6.4) in (a), (d) and

(g) for γ = 0.1, 0.01 and 0.005, respectively. Comparing the shapes of these

travelling waves confirms that the width of the overlap region increases as γ

decreases. Results in Figure 6.6(b), (e) and (h) compare the shape of the late-

time PDE solutions with the O(γ) perturbation solutions, and we see that the

accuracy of the approximate perturbation solutions improves as γ decreases, as

expected. Results in Figure 6.6(c), (f) and (i) compare the numerical solutions

and the perturbation solutions within the regions highlighted by the dashed

rectangles in Figure 6.6(b), (e) and (h). Again, we see the accuracy of the

perturbation solution increases as γ decreases, and the perturbation solution

captures the sharp transition region reasonably accurately as γ → 0.

198



(d) (e)

(g)

(b)(a) (c)

(f)

(h) (i)

Figure 6.6: Comparison of PDE solutions with perturbation solution when γ ≪ 1 and V = 0.5. Travelling wave solutions U(z) and V (z) obtained
from PDE with ∆x = ∆t = 1 × 10−2, γ = 0.1 in (a)–(c), γ = 0.01 in (d)–(f) and γ = 0.005 in (g)–(i) are illustrated in solid brown and solid blue for U(z) and
V (z) respectively. O(ε) perturbation solution is illustrated in dashed yellow respectively for U(z) and in dashed red for V (z). Solutions shown in (c),(f) and (i)
are magnification of region of interest in (b),(e) and (h) respectively.
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6.5.3 γ ≪ 1 and V = 1

To analyse the shape of the travelling wave for γ ≪ 1 with V = 1 we consider

the desingularised system

d2U

dζ2
+ c

dU

dζ
+ U(1− V )(1− U − V ) = 0, (6.33)

dV

dζ
− γUV

c
(1− V ) = 0, (6.34)

with boundary conditions U → 1, V → 0 as ζ → −∞, U → 0, V → 1 as

ζ → ∞.

Numerical results in Figure 6.2 show that when V = 1 we have c → 0 as

γ → 0, so we write c = c̃γ so that c̃ is O(1). Like in the previous section, we

re-scale the independent variable ζ̃ = γζ to give

d2U

dζ̃2
+ c̃γ

dU

dζ̃
+ U(1− U − V )(1− V ) = 0, −∞ < ζ̃ <∞ (6.35)

c̃
dV

dζ̃
− UV (1− V ) = 0, −∞ < ζ̃ <∞, (6.36)

with boundary conditions U → 1, V → 0 as ζ̃ → −∞, U → 0, V → 1 as

ζ̃ → ∞.

Seeking a perturbation solution of the form

U(ζ̃) = U0(ζ̃) + γU1(ζ̃) +O(γ2), (6.37)

V (ζ̃) = V0(ζ̃) + γV1(ζ̃) +O(γ2), (6.38)

leads to a system of coupled differential equations for the leading order terms,

d2U0

dζ̃2
+ U0(1− U0 − V0)(1− V0) = 0, (6.39)

c̃
dV0

dζ̃
− U0V0(1− V0) = 0, (6.40)

with boundary conditions U0 → 1, V0 → 0 as ζ̃ → −∞, U0 → 0, V0 → 1

as ζ̃ → ∞. Unfortunately we are unable to obtain a closed-form solution of

Equations (6.39)–(6.40) and we do not proceed further with this approach.
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6.6 Fast travelling waves, c > cmin

Our focus so far has been on the long-time limit of the time-dependent so-

lutions of (6.3)–(6.4) with initial conditions given by Equations (6.5)–(6.6)

so that u(x, 0) has compact support. This leads to travelling wave solutions

with the minimum wave speed, cmin. We now examine travelling wave solu-

tions of the same model but with initial conditions given by Equations (6.7)–

(6.8), where a > 0 controls the far-field decay rate of u(x, 0). Results in

Figure 6.7 summarise the numerically-observed travelling wave speed, c, for

a = 0.1, 0.25, 0.5 and 1, as a function of V and γ as indicated. Comparing

these results with those in Figure 6.3 for initial conditions with compact sup-

port, we see that some general features of the relationship between c, V and γ

are maintained, while other features are different. In general we see that c is a

decreasing function of a, and that all results suggest that c is independent of

γ for sufficiently small γ when V < 1. As γ increases, we see that c increases

with γ, but that the limiting value of c as γ → ∞ depends upon the decay

rate, a. Careful comparison of the results in Figure 6.7(d) for a = 1 shows that

different choices of γ and V lead to the exact same travelling wave speed as in

Figure 6.3 for initial conditions with compact support, which can be thought

of as letting a→ ∞ in (6.7)–(6.8). We will now explain some of these observed

trends analytically. To understand the relationship between the decay rate of

the initial condition and the asymptotic wave speed, c, we examine the leading

edge of the travelling wave where u≪ 1, giving

∂ũ

∂t
= (1− ṽ)

∂2ũ

∂x2
+ (1− ṽ)ũ, (6.41)

∂ṽ

∂t
= −γũṽ. (6.42)

Assuming the travelling wave solution takes the form ũ ∼ exp[−a(x− ct)] for

large x, substituting this into Equation (6.41) gives

c = (1− V)
(
a+

1

a

)
. (6.43)

This dispersion relationship is similar to the analogous result for the Fisher-

KPP model [Murray 2002]. This simple relationship explains some of the

observations in Figure 6.7 where we see that c is independent of γ for γ <
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γc. Indeed, this constant speed is given by Equation (6.43). Unfortunately,

this dispersion relationship does not provide any insight into the relationship

between c, V and γ for γ > γc, nor any insight into the shape of the resulting

travelling waves.
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(a)

(c) (d)

(b)

Figure 6.7: Relationship between c, γ and V for slowly decaying initial
u(x, 0). Numerical estimates of c are obtained from long-time solutions of Equations
(6.3)–(6.4) with the initial condition given by Equations (6.7)–(6.8). Results are
presented with β = 10 and a = 0.1, 0.25, 0.5 and 1, as indicated. Time-dependent
PDE solutions are obtained using ∆x = ∆t = 1 × 10−2, for 1 × 10−3 ≤ γ ≤ 1 × 106

and V = 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8 and 1.
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To address the shape of the travelling waves for c > cmin we extend the

approach of Canosa [Canosa 1973] who noted that travelling wave solutions

of the Fisher-KPP model become increasingly wide as c→ ∞. Our numerical

simulation results suggest that travelling wave solutions of the invasion model

behave similarly, so we explore this behaviour by re-scaling the independent

variable, z = z/c, giving

dU

dz
+

1

c2
d

dz

[
(1− V )

dU

dz

]
+ U(1− U − V ) = 0, −∞ < z <∞, (6.44)

dV

dz
− γUV = 0, −∞ < z <∞, (6.45)

with boundary conditions U(z) → 1 and V (z) → 0 as z → −∞, and U(z) → 0

and V (z) → V as z → ∞. In this re-scaled coordinate we seek perturbation

solutions in terms of the small parameter ε = 1/c2,

U(z) = U0(z) + εU1(z) +O(ε2), (6.46)

V (z) = V0(z) + εV1(z) +O(ε2). (6.47)

Substituting Equations (6.46)–(6.47) into (6.44)–(6.45) leads to

dU0

dz
+ U0(1− U0 − V0) = 0, (6.48)

dV0
dz

− γU0V0 = 0, (6.49)

with boundary conditions U0(z) → 1 and V0(z) → 0 as z → −∞, U0(z) → 0

and V0(z) → V as z → ∞. Unlike Canosa [Canosa 1973], these differential

equations for the O(1) terms in the perturbation solution do not have a closed-

form solution. Nevertheless, we make progress by re-writing Equations (6.48)–

(6.49) as
dU0

dV0
= −1− U0 − V0

γV0
, (6.50)

with U0(V) = 0. The solution of this problem is given by

U0(V0) =
1

(γ − 1)

(V0 + γ − 1)− (V + γ − 1)

(
V0
V

)(1
γ

) . (6.51)
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For the special case γ = 1, this solution can be written as

U0(V0) = 1 +

(
V0
V

)(
V log

[
V0
V

]
− 1

)
. (6.52)

(b)(a)

(e) (f)

(c) (d)

(g) (h)

Figure 6.8: Comparison of numerical and perturbation solutions for c ≥
ccmin. The O(1) perturbation solution shown in dashed green is compared to solution
U(V ) from PDE shown in solid pink, in (a), (c), (e) and (g). Solutions U(z) and V (z)
from PDE are shown in solid brown and in solid blue respectively in (b), (d), (f)
and (h). Perturbation solution is shown in dashed yellow as U(z) by using V0 = V (z)
from PDE solution. The initial conditions (6.7)–(6.8) with β = 10 are used in (a)–(d),
where a = 0.1, and in (e)–(f) where a = 0.27. The initial conditions with compact
support are used in (g)–(h).

Results in Figure 6.8 compare travelling wave solutions with various c with
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the O(1) perturbation solution (6.51). Results in the left column of Figure

6.8 show U as a function of V , as explicitly defined by Equation (6.51) super-

imposed on curves obtained from long-time numerical solutions of Equations

(6.3)–(6.4) that are plotted in the same format. Results in the right column

of Figure 6.8 show the late time solutions of Equations (6.3)–(6.4) plotted in

the travelling wave coordinate, z, superimposed with the perturbation solu-

tion. Results in Figure 6.8(a)–(d) show perturbation results for c = 5.1 and

different choices of γ. At this scale the perturbation solution is visually indis-

tinguishable from the numerical solutions. Results in Figure 6.8(e)–(f) show

that the perturbation solution performs well for c = 2, but that we can begin

to see some discrepancy between the perturbation and numerical results. In-

terestingly, the perturbation solution in Figure 6.8(g)–(h) leads to reasonably

accurate solutions for c = 1, despite the fact that Equation (6.51) is valid in

the limit c→ ∞.

6.7 Conclusion and Outlook

In this work we study travelling wave solutions of a model of cellular invasion,

(6.3)–(6.4), where the migration and proliferation of the invasive population is

coupled to the degradation of surrounding skin tissues [Browning et al. 2019].

Time-dependent numerical solutions of the governing PDEs show that there

is a complicated relationship between the travelling wave speed c and: (i)

γ, the rate at which the invasive population degrades the surrounding skin

tissues; and, (ii) V, the far field density of surrounding tissues. Numerical

exploration shows that long-time travelling wave solutions are smooth without

compact support for V < 1, or sharp-fronted with compact support with V = 1.

The relationship between c and the parameters in the model are partially

established in this work. Numerical simulations and phase space analysis show

that for initial conditions with compact support, we have c = 2(1−V), which

is independent of γ for γ < γc. Further numerical simulations show that c

increases with γ for γ > γc, with c→ 2− as γ → ∞, but the precise details of

this relationship are not revealed through standard phase space analysis. Of

great interest is the fact that we always have c < 2 for the invasion model for

initial conditions with compact support; this is very different to the standard

Fisher-KPP model where c ≥ 2. We also show that time-dependent PDE
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solutions for initial conditions without compact support lead to travelling wave

solutions with larger wave speed.

Analysis of the invasion model for fast decay, γ ≫ 1, indicates that the

width of the overlap region decreases with γ. This means that the density of

the invading population becomes uncoupled from the density of the surround-

ing skin tissues, and suggests that the shape of the invading density profile is

related to the shape of the travelling wave solution of the Fisher-KPP model.

This is intriguing since the invasion model is associated with travelling waves

with c < 2 whereas the Fisher-KPP model is associated with c ≥ 2. Indeed,

our results show that the well-known phase plane associated with travelling

wave solutions of the Fisher-KPP model provides a novel approximation to

the shape of the travelling wave solution of the invasion model for fast decay.

This observation is mathematically interesting because standard analysis of

the Fisher-KPP model disregards the phase plane for c < 2 [Murray 2002],

whereas here we find that this previously disregarded phase plane is closely

related to our model of invasion.

Overall, our analysis and numerical exploration shows how a simple math-

ematical model of invasion can generate biological hypotheses that can be

further studied experimentally or clinically. For example, our model predicts

that when the cancer population shares the exact same carrying capacity that

the normal tissue and V=1, the resulting invasion front is sharp and has com-

pact support. Conversely, when the cancer population has a different carrying

capacity and can grow to a larger density than the surrounding tissues the

resulting invasion is smooth and without compact support. The differences

between invasion fronts having compact support or being smooth is very im-

portant when considering surgical intervention, since it is always possible to

completely remove an invasive population with compact support by excising

tissue ahead of the invading front. In contrast, it is theoretically impossible

to completely remove an invasive population by excising tissue when the front

is smooth and without compact support.

Our observation that the normally-disregarded phase plane associated with

travelling wave solutions of the Fisher-KPP model for c < 2 can be used to

approximate the shape of the travelling wave solutions of the invasion model

leads us to an interesting and previously unnoticed link with a very different
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type of mathematical model of invasion, the Fisher-Stefan model [Du and

Lin 2010, Du and Guo 2011, Du and Guo 2012, Du et al. 2014b, El-Hachem

et al. 2019,El-Hachem et al. 2020,El-Hachem et al. 2021a,El-Hachem et al.

2021c]. The Fisher-Stefan model involves studying the Fisher-KPP model on

a moving boundary, 0 < x < L(t). In this model the density vanishes on the

moving boundary, u(x, L(t)) = 0, and the speed of the moving boundary is

driven by a one-phase Stefan condition, dL(t)/dt = −κ∂u(L(t), t)/∂x. Here,

κ > 0 is a constant that relates the speed of the moving boundary to the

spatial gradient of density at the moving boundary. For both the invasion

model and the Fisher-Stefan model it has been shown that time-dependent

PDE solutions eventually evolve to travelling wave solutions with c < 2 [Du

and Lin 2010,Du and Guo 2011,Du and Guo 2012,Du et al. 2014b,El-Hachem

et al. 2019,El-Hachem et al. 2020,El-Hachem et al. 2021a,El-Hachem et al.

2021c] and the shape of the invading profiles in both cases is given by the

normally-disregarded phase plane of the well-known Fisher-KPP model. This

is very interesting because the normally-disregarded phase plane trajectories

imply U(z) < 0 for certain intervals in z. However, here and in the Fisher-

Stefan model, the profile of interest is given by a truncated trajectory in the

phase plane where U(z) > 0.

There are many opportunities to extend the work presented in this study.

There are several assumptions in the mathematical model (6.3)–(6.4), that

could be relaxed or varied. Such extensions could involve working with dif-

ferent nonlinear diffusivity functions in (6.3), such as a power law [McCue

et al. 2019]. Another extension of interest would be to explore the impact of

using a different nonlinear source term in (6.3) to model the proliferation of

cells [Sánchez Garduño and Maini 1994]. One of the limitations of our study

is that we have not been able to arrive at a mathematical expression for γc,

and it would be of great interest to arrive at some approximate expression for

this critical decay rate, or to place some bound on that value. Further exten-

sions could involve working in a different geometry since models of melanoma

invasion in both two and three-dimensions with radial symmetry are of great

interest for studying malignant invasion, e.g [Ward and King 1997,Ward and

King 1999, Jin et al. 2021]. Finally, we acknowledge that all analysis here is

limited to dealing with a continuum mathematical model only. One of the
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limitations of working within a continuum framework is that it ignores the

role of stochasticity. An alternative approach to study invasion is to consider

individual based stochastic models, e.g. [Deutsch and Dormann 2005,Haridas

et al. 2018], which explicitly describe variations between individual cells in

the population.
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6.8 Additional material

6.8.1 Numerical methods

We solve Equations (6.3)–(6.4) on 0 < x < L by uniformly discretising the

domain with N mesh points, with spacing ∆x. We approximate the spa-

tial derivatives in Equations (6.3)–(6.4) using a central difference approxima-

tion, and solve the resulting system of coupled ordinary differential equation

through time using an implicit Euler approximation, giving

uj+1
i − uji
∆t

=
1

2∆x2

([
2−

(
vj+1
i+1 + vj+1

i

)](
uj+1
i+1 − uj+1

i

)
−
[
2−

(
vj+1
i + vj+1

i−1

)](
uj+1
i − uj+1

i−1

))
+ uj+1

i

(
1− uj+1

i − vj+1
i

)
, (6.53)

vj+1
i − vji
∆t

= −γuj+1
i vj+1

i , (6.54)

where ∆t is the time step, i is the spatial finite difference mesh index and j

is the temporal index so that uji ≈ u(x = (i − 1)∆x, j∆t). Discretising the

boundary conditions for u(x, t) leads to

uj+1
2 − uj+1

1 = 0, uj+1
N − uj+1

N−1 = 0. (6.55)

Note that there are no boundary conditions for v, so the spatial index on the

discretisation for v is i = 1, 2, . . . , N . This discretisation leads to a coupled

system of nonlinear algebraic equations for uj+1
i and vj+1

i , which are solved

sequentially to take advantage of the tridiagonal structure of the discretised

equations. The nonlinear equations are solved using Newton-Raphson iter-

ations that continue until the maximum change in the dependent variables

falls below some tolerance ϵ in each time step. For all problems considered

we always check that our choices of ∆x, ∆t and ϵ lead to grid-independent

results. Matlab software to implement these numerical solutions is available

on GitHub.

To estimate the travelling wave speed from our time-dependent PDE so-

lutions we specify a contour value, u(x, t) = U . At the end of each time step

in we use linear interpolation to find the value of X such that u(X, t) = U .

At the end of each time step we have estimates of both X(t+∆t) and X(t),

210

https://github.com/ProfMJSimpson/Cellular_Invasion_ElHachem_2021


allowing us to estimate the speed at which the contour moves

c =
X(t+∆t)−X(t)

∆t
. (6.56)

Evaluating Equation (6.56) at each time step leads to a time series of estimates

of c, and we find that these estimates asymptote to some positive constant

value as t becomes sufficiently large. For all results presented we set U = 0.5,

but we find that our estimates of c are independent of this choice of density

contour.

To construct phase planes for Fisher-KPP equation, we solve Equation

(6.21) numerically using Heun’s method with a constant step size dz. Since

we are interested in examining trajectories that leave the saddle (1, 0) along the

unstable manifold we choose the initial location on the trajectory to be on the

appropriate unstable manifold and sufficiently close to (1, 0). Matlab software

to generate these phase planes and associated trajectories are available on

GitHub.
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Chapter 7

A continuum mathematical

model of substrate-mediated

tissue growth
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7.1 Abstract

We consider a continuum mathematical model of biological tissue formation

inspired by recent experiments describing thin tissue growth in 3D–printed

bioscaffolds. The continuum model involves a partial differential equation de-

scribing the density of tissue, û(x̂, t̂), that is coupled to the concentration of

an immobile extracellular substrate, ŝ(x̂, t̂). Cell migration is modelled with a

nonlinear diffusion term, where the diffusive flux is proportional to ŝ, while a

logistic growth term models cell proliferation. The extracellular substrate ŝ is

produced by cells, and undergoes linear decay. Preliminary numerical simula-

tions show that this mathematical model, which we call the substrate model, is

able to reconstitute key features of recent tissue growth experiments, includ-

ing the formation of sharp fronts. To provide a deeper understanding of the

model we then analyse travelling wave solutions of the substrate model, show-

ing that the model supports both sharp–fronted travelling wave solutions that

move with a minimum wave speed, c = cmin, as well as smooth–fronted trav-

elling wave solutions that move with a faster travelling wave speed, c > cmin.

We provide a geometric interpretation that explains the difference between

smooth– and sharp–fronted travelling wave solutions that is based on a slow

manifold reduction of the desingularised three–dimensional phase space. In

addition to exploring the nature of the smooth– and sharp–fronted travelling

waves, we also develop and test a series of useful approximations that describe

the shape of the travelling wave solutions in various limits. These approxi-

mations apply to both the sharp–fronted travelling wave solutions, and the

smooth–fronted travelling wave solutions. Software to implement all calcula-

tions is available at GitHub.
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7.2 Introduction

Over the last decade, tissue engineering has been revolutionised through the

use of 3D printing technologies that produce 3D bioscaffolds upon which

in vitro tissues can be grown in biologically realistic geometries [Ambrosi et al.

2019,Dzobo et al. 2018]. In vitro tissues grown on 3D scaffolds are more re-

producible and more biologically realistic than tissues grown in traditional

two–dimensional tissue culture [Lanaro et al. 2021]. The experimental images

in Figure 7.1(a) show the evolution of thin 3D tissues that are produced by

seeding a 3D–printed scaffold with osteoblast precursor cells [Buenzli et al.

2020, Browning et al. 2021]. In this experiment, cells are seeded onto the

perimeter of 3D–printed square shaped pores, where each pore has sides of

approximately 300 µm in length. Each subfigure in Figure 7.1(a) shows four

adjacent pores. As the experiment proceeds, individual cells migrate off the

scaffold into the pore, and then combined cell migration and cell proliferation

leads to the formation of a sharp-fronted tissue profile that invades into the

pore. This process eventually forms a thin tissue that closes or bridges the

pore after approximately 14 days [Buenzli et al. 2020,Browning et al. 2021]. A

notable feature of these experiments is the fact that tissue formation involves

a well–defined moving front that is very obvious in Figure 7.1(a). Closer in-

spection of these experimental images shows that cells not only migrate and

proliferate during the pore bridging process, but cells also produce an extra-

cellular medium that is laid down onto the surface of the pore [Lanaro et al.

2021].
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Figure 7.1: Experimental and simulated osteoblast tissue formation within a square–shaped 3D–printed pore. (a) Composite fluorescence
microscopy images of pore bridging experiments [Buenzli et al. 2020,Browning et al. 2021]. Cell nuclei are shown in blue, tissue and cytoskeleton are shown in
green. Each subfigure shows four adjacent square pores, each with side length of L̂ = 300 µm, and images are shown at various times, t̂ = 4, 7, 10 and 14 days,
as indicated. For clarity, in each subfigure we outline the border of the upper–left pore (red dashed). Experimental images are reproduced from [Buenzli et al.
2020] with permission. (b)–(c) Numerical solution of Equations (7.1)–(7.2) on a square domain with side length L̂ = 300 µm. (b) Evolution of û. (c) Evolution of

ŝ. Each column of the figure corresponds to t̂ = 4, 7, 10 and 14 days, as indicated. Parameter values for the mathematical model are D̂ = 300 µm2/day, λ̂ = 0.6
/day, K̂u = 1 cells/µm2, K̂s = 1 mol/µm2, r̂1 = 1 mol/(cells day), r̂2 = 1 /day. The numerical solution of (7.1)–(7.2) is obtained on a 101 × 101 mesh, and
temporal integration is performed with uniform time steps of duration ∆t̂ = 1× 10−2 day.
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Continuum mathematical models of tissue formation have a long history,

with many early models based on the classical Fisher–KPP model [Ablowitz

and Zeppetella 1979,Canosa 1973,Fisher 1937,Kolmogorov et al. 1937]. The

Fisher–KPP model describes cell migration using a one dimensional linear

diffusion term, and cell proliferation is modelled using a logistic source term.

Many different types tissue formation experiments have been successfully mod-

elled using the Fisher–KPP model [Maini et al. 2004a, Jin et al. 2016,Warne

et al. 2019] or two–dimensional extensions of the Fisher–KPP model [Sherratt

and Murray 1990,Swanson et al. 2003]. While these studies show that simple

mathematical models based on the Fisher-KPP framework successfully capture

certain features of tissue formation, there are several well–known limitations

of the Fisher–KPP model that can be addressed by considering extensions

of that model [Murray 2002]. One such criticism is that the linear diffusion

term in the Fisher–KPP model leads to smooth density profiles that do not

represent well–defined fronts, such as those we see in Figure 7.1(a).

One way to overcome this limitation is to work with the Porous–Fisher

model where the linear diffusion term is generalised to a degenerate nonlinear

diffusion term with a power law diffusivity [Fadai and Simpson 2020a,Sánchez

Garduño and Maini 1994, Sengers et al. 2007,Witelski 1994,Witelski 1995].

While the Porous–Fisher model leads to sharp–fronted density profiles, this

approach introduces a separate complication of having to justify the choice

of the exponent in the power law diffusivity [Jin et al. 2016, McCue et al.

2019, Sherratt and Murray 1990, Simpson et al. 2011,Warne et al. 2019]. A

further weakness of both the Fisher–KPP and Porous–Fisher models is that

they deal with a single species, such as a density of cells, and do not explicitly

describe how the population of cells invades into surrounding cells, or interacts

with the surrounding environment. This second limitation has been addressed

by introducing more complicated mathematical models, such as the celebrated

Gatenby–Gawlinski model of tumour invasion [Gatenby and Gawlinski 1996],

that explicitly describes how a population of tumour cells degrades and in-

vades into a population of surrounding healthy tissue by explicitly modelling

both populations and their interactions. Since the Gatenby–Gawlinski frame-

work was proposed in 1996, subsequent studies have since analyzed the rela-

tionship between individual–level mechanisms and the resulting population–
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level continuum descriptions [Painter and Sherratt 2003], calibrating these

mathematical models to match experimental measurements of melanoma in-

vasion [Browning et al. 2019], as well as analysing travelling wave solutions

of these types of multi–species mathematical models [Colson et al. 2021,El-

Hachem et al. 2021b,Gallay and Mascia 2021].

In this work we study a continuum mathematical model of cell invasion

that is motivated by the experimental images in Figure 7.1(a). The math-

ematical model explicitly describes the evolution of the cell density, û(x̂, t̂),

and the density of substrate produced by the cells, ŝ(x̂, t̂), giving rise to a cou-

pled system of nonlinear partial differential equations (PDE). We first explore

numerical solutions of the mathematical model in two spatial dimensions to

mimic the same patterns of tissue development that we see in the experimental

images in Figure 7.1(a).

Within this modelling framework, it is natural for us to ask how the du-

ration of time required for the pore to close is affected by the dynamics of

substrate deposition and decay. We address this question by nondimension-

alising the mathematical model, and numerically exploring travelling wave

solutions in one dimension. Not only does travelling wave analysis of the

mathematical model have a direct link to the application in question, we note

that travelling wave analysis provides mathematical insight into various mod-

els of invasion with applications including tissue engineering [Landman and

Cai 2007], directed migration [Krause and Van Gorder 2020], disease pro-

gression [Strobl et al. 2020] and various applications in ecology [Hogan and

Myerscough 2017, El-Hachem et al. 2021a]. Our preliminary numerical ex-

plorations suggest that, similar to the well–known Porous–Fisher model, the

substrate model supports both sharp–fronted and smooth travelling wave so-

lutions. Working in three–dimensional phase space, we show that travelling

wave solutions exist for all wave speeds c ≥ cmin, where cmin > 0 is some

minimum wave speed, and we provide a geometric argument based on a slow

manifold reduction to distinguish between sharp–fronted travelling wave solu-

tions that move with the minimum speed cmin, from smooth travelling wave

solutions that move faster than the minimum speed, c > cmin. The three–

dimensional phase space arguments are supported by some analysis of the

time–dependent PDE problem where we show how the long–time travelling
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wave speed relates to the initial decay rate of the cell density. All phase–

space and time–dependent PDE analysis throughout this work are supported

by detailed numerical simulations of the full time–dependent PDE model. For

completeness we also present various perturbation solutions that give accurate

mathematical expressions describing the shape of the travelling waves profiles

in various limits.

Overall, we show that the substrate invasion model can be viewed as bridge

between the relatively simple Porous–Fisher model and more detailed math-

ematical models of biological invasion. The substrate model supports various

types of travelling wave solutions that are reminiscent of travelling wave so-

lutions of the Porous–Fisher model, but the analysis of these travelling wave

solutions is quite different, as we shall now explore.

7.3 Results and Discussion

In this work all dimensional variables and parameters are denoted with a

circumflex, and nondimensional quantities are denoted using regular symbols.

7.3.1 Biological motivation

Following Buenzli et al. [Buenzli et al. 2020], we consider the following minimal

model of cell invasion

∂û

∂t̂
= D̂∇ ·

(
ŝ

K̂s

∇û

)
+ λ̂û

(
1− û

K̂u

)
, x̂ ∈ Ω, (7.1)

∂ŝ

∂t̂
= r̂1û− r̂2ŝ, x̂ ∈ Ω, (7.2)

where û(x̂, t̂) ≥ 0 is the density of cells, ŝ(x̂, t̂) ≥ 0 is the substrate concen-

tration, D̂ > 0 is the cell diffusivity and λ̂ > 0 is the cell proliferation rate.

This model assumes that cells produce an adhesive and immobile substrate at

rate r̂1 > 0, and that the substrate decays at a rate r̂2 > 0. We assume that

the carrying capacity density of cells is K̂u > 0, and that a typical maximum

substrate density is K̂s > 0. The key feature of this mathematical model is

that the diffusive flux of cells is proportional to the substrate density, ŝ. This

assumption couples the cell density to the substrate concentration in a way

that the diffusive flux vanishes when ŝ = 0. In this model the evolution of

the cell density is affected by the substrate through the cell migration term,
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without any direct coupling in the cell proliferation term. This assumption

is consistent with recent two–dimensional studies that explored how different

surface coatings affect combined cell migration and cell proliferation in wound

healing assays [Jin et al. 2020]. This work showed that different surface coat-

ings have a dramatic impact on cell migration, whereas cell proliferation is less

sensitive.

In this modelling framework we make use of the fact that the tissues pro-

duced in the experiments in Figure 7.1(a) are thin; the horizontal length scale

is approximately 300 µm whereas the depth of tissue is approximately one cell

diameter only, which is around 10−20 µm. In this setting it is appropriate and

accurate to use a depth–averaged modelling framework where variations in the

vertical direction are implicit, rather than being explicitly described [Simpson

2009].

We begin by considering Equations (7.1)–(7.2) on a two–dimensional square–

shaped domain, Ω = {(x̂, ŷ) : 0 ≤ x̂ ≤ L̂, 0 ≤ ŷ ≤ L̂} to match the geometry of

the experiments in Figure 7.1(a). For simplicity we work with Dirichlet bound-

ary conditions by setting û = K̂u and ŝ = r̂1K̂u/r̂2 along all boundaries, with

spatially uniform initial conditions û = ŝ = 0, at t̂ = 0. A numerical solution

of Equation (7.1)–(7.2) in Figure 7.1(b)–(c) shows the evolution of û and ŝ,

respectively. Full details of the numerical methods used to solve Equations

(7.1)–(7.2) are given in the Supplementary Material. The evolution of û in

Figure 7.1(b) shows that the model predicts the sharp–fronted tissue growth

that qualitatively matches the spatial and temporal patterns observed in the

experiment. The evolution of ŝ in Figure 7.1(c) shows that the invading cell

density profile is associated with an invading substrate profile. The coupling

between the spatial and temporal distribution of the tissue and the underlying

substrate is similar to that observed in the experiments [Lanaro et al. 2021].

Given this experimental motivation we will now set about analysing the math-

ematical model to provide insight into how the substrate dynamics affect the

speed of invasion.

7.3.2 One-dimensional numerical exploration

For the purpose of studying travelling wave solutions of the substrate model

we re–write Equations (7.1)–(7.2) in the one–dimensional Cartesian coordinate
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system. Introducing the following dimensionless quantities: u = û/K̂u, s =

ŝ/K̂s, x = x̂

√
λ̂/D̂, t = λ̂t̂, r1 = r̂1K̂u/(λ̂K̂s) and r2 = r̂2/λ̂, gives the

following non–dimensional model

∂u

∂t
=

∂

∂x

(
s
∂u

∂x

)
+ u(1− u), 0 < x <∞ (7.3)

∂s

∂t
= r1u− r2s, 0 < x <∞, (7.4)

∂u(0, t)

∂x
= 0, and u(x, t) → 0, x→ ∞. (7.5)

This dimensionless model involves just two free parameters that relate to the

rate of substrate production and the rate of substrate decay, r1 and r2, re-

spectively. Note that Equation (7.4) does not involve any spatial derivatives

so there is no need to specify any boundary conditions for s.

In this study we will consider two different types of initial conditions:

(i) a biologically–realistic initial condition describing the situation where the

initial cell population occupies a particular region, and the cell density vanishes

outside of this region [Maini et al. 2004a, Sengers et al. 2007]; and, (ii) a

mathematically insightful, but less biologically–realistic initial condition where

the initial cell density decays exponentially as x → ∞. For the biologically–

realistic initial conditions we always consider

u(x, 0) = 1−H(β), (7.6)

s(x, 0) = 0, (7.7)

on 0 < x < ∞, where H(x) is the usual Heaviside function and β > 0 is a

constant describing the initial length of the domain that is occupied at t = 0.

For the mathematically interesting initial condition we always consider

u(x, 0) =


1, x < β,

exp[−a(x− β)], x > β,

(7.8)

s(x, 0) = 0, (7.9)

on 0 < x <∞, where a > 0 is the decay rate. For all results, we set β = 10.

We focus on long–time numerical solutions of Equations (7.3)– (7.4) in

order to explore travelling wave solutions. Details of the numerical method we
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use to solve the governing equations are given in the Supplementary Material.

Of course, the travelling wave analysis of this model is relevant on the infinite

domain, 0 < x < ∞, but numerically we must always work with a truncated

domain 0 < x < X, where X is chosen to be sufficiently large that the late–

time numerical solutions are unaffected by the choices of X. All algorithms

required to re–create the results in this work are available on GitHub.

Before we present and discuss particular travelling wave solutions, it is

convenient to state at the outset that we find the substrate invasion model

leads to two types of travelling wave solutions, shown schematically in Figure

7.2. The travelling wave solution in Figure 7.2(a) arises from the biologically–

relevant initial conditions (7.6)–(7.7), where we see that there is a well–defined

sharp front with u = s = 0 ahead of the front, and u→ 1− and s→ R− well–

behind the travelling wave front as x→ 0−. In this case, as we will show, the

travelling wave solution corresponds to the minimum wave speed, c = cmin,

that depends on the value of r1 and r2. In contrast, the travelling wave solution

in Figure 7.2(b) arises from the mathematically interesting initial conditions

(7.8)–(7.9). In this second type of travelling wave we have the same behaviour

well–behind the wave front as in Figure 7.2(a), since u → 1− and s → R− as

x→ 0−. However, in this case we have a smooth travelling wave with u→ 0+

and s → 0+ as x → ∞. Further, as we will show, these smooth–fronted

travelling wave solutions move with a faster travelling wave speed, c > cmin.

(a) (b)

Figure 7.2: Schematic showing sharp and smooth–fronted travelling wave
solutions. (a) Schematic showing a sharp-fronted travelling wave. (b) Schematic
showing a smooth-fronted travelling wave. Arrows show the direction of movement.

The fact that the substrate model gives rise to both smooth and sharp–

fronted travelling wave solutions is very interesting and worthy of exploration.

Throughout this work we will explore parallels between the substrate model

223

https://github.com/ProfMJSimpson/Substrate_Mediated_Invasion


and the Porous–Fisher model, and an obvious point of similarity is that

both these models support smooth and sharp–fronted travelling wave solu-

tions [Murray 2002,Sánchez Garduño and Maini 1994,Sherratt and Marchant

1996]. As we will explore in this work, however, the differences between the

smooth and sharp–fronted travelling waves in the substrate model are more

subtle than the Porous–Fisher model, and we must use different methods of

analysis to understand these differences.

In addition to the schematic solutions in Figure 7.2, we present a range

of time–dependent PDE solutions in Figure 7.3 where we explore the role of

varying the substrate dynamics by choosing different values of r1 and r2.

Results in Figure 7.3(a)–(c) for the sharp–fronted travelling wave solutions

show that the long–time minimum travelling wave speed, cmin, depends on r1

and r2. In particular, comparing the results in (a)–(d) show that cmin appears

to increase with r1. In contrast, the smooth–fronted travelling wave solutions

in Figure 7.3(e)–(h) lead to travelling wave solutions where the wave speed

c > cmin appears to be independent of r1 and r2. These numerical solutions

show that the value of s well–behind the travelling wave front depends on the

choice of r1 and r2, and motivates us to define

R =
r1
r2
, (7.10)

so that we have s → R− as x → 0−, which is consistent with the schematics

in Figure 7.2.
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(a) (b) (c) (d)

(g) (h)(f)(e)

Figure 7.3: Time-dependant PDE solutions showing smooth and sharp–fronted travelling wave solutions. Sharp-fronted travelling wave solutions
in (a)–(d) are obtained by solving Equations (7.3)–(7.5) with (7.6)–(7.7). Smooth–fronted travelling wave solutions in (e)–(h) are obtained by solving Equations
(7.3)–(7.5) with (7.8)–(7.9) and a = 1/2. Values of r1 and r2 are indicated on each subfigure, and the long-time estimate of the travelling wave speed c is also
given to two decimal places. Each subfigure shows profiles for u(x, t) (blue) and s(x, t) (green) at t = 20, 40 and 60, with the arrow showing the direction of
increasing t. All numerical solutions correspond to ∆x = 1× 10−2, ∆t = 1× 10−3 and ϵ = 1× 10−10.
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Now we have established that the long–time travelling wave speed for the

sharp–fronted travelling wave solutions depends upon r1 and r2, we generate

a suite of sharp–fronted travelling wave solutions numerically, and estimate

cmin as a function of r1 and r2, as reported in Figure 7.4(a). This heat map

suggests that holding r2 constant and increasing r1 leads to an increase in cmin.

In contrast, holding r1 constant and increasing r2 reduces cmin. To further

explore this relationship we superimpose three straight lines on the heat map

in Figure 7.4(a). These straight lines correspond to R = 0.5 (yellow), R = 1

(red) and R = 2 (blue). Plotting cmin as a function of r1 for these three

fixed values of R in Figure 7.4(b) suggest that cmin →
√
R/2

−
for fixed R, as

r1 → ∞. As we will explain later in Section 7.3.6, this numerical observation

is related to the fact that the substrate model simplifies to the Porous–Fisher

model when r1 and r2 are sufficiently large [Buenzli et al. 2020].

a) b) c)

Figure 7.4: Numerical exploration of the relationship between cmin, r1
and r2. (a) heat map of cmin as a function of r1 and r2 obtained by solving (7.3)–
(7.5) with (7.6)–(7.7). The three straight lines superimposed on (a) correspond to
R = 0.5 (yellow), R = 1 (red) and R = 2 (blue), and the relationship between cmin

and r1 for these fixed values of R is given in (b), showing that cmin →
√
R/2

−
as

r1 → ∞. (c) shows cmin as a function of r1 for R = 0.5, 1 and 2, suggesting that
cmin ∼ A

√
r1 as r1 → 0, for some constant A > 0. All numerical solutions correspond

to ∆x = 1× 10−2, ∆t = 1× 10−2 and ϵ = 1× 10−10.

Results in Figure 7.4(b) explore the fast substrate production limit, r1 →

∞ for fixed R, whereas results in Figure 7.4(c) explore the small substrate

production limit, r1 → 0. In this case we plot cmin as a function for r1, for

R = 0.5, 1 and 2, and we see that the results for different values of R are

identical, suggesting that cmin is independent of r2 as r1 → 0. Furthermore,

the straight line relationship on the log–log plot in Figure 7.4(c) suggests that

we have cmin ∼ A
√
r1 as r1 → 0 for some constant A > 0.

In summary, results in Figure 7.4 summarise the numerically–determined

relationship between cmin, r1, and r2 for sharp–fronted travelling wave solu-

tions of the substrate model. These numerical results are of interest because
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some results are consistent with well–known results for the Porous–Fisher

model as we further explore in Section 7.3.6. In contrast, we also observe

different behaviour that is inconsistent with the Porous–Fisher model. For

example, the non-dimensional Porous-Fisher model has a positive minimum

wavespeed cmin = 1/
√
2 ≊ 0.71, whereas the substrate–mediated invasion

model supports sharp–fronted travelling wave solutions with vanishingly small

minimum wave speed, cmin → 0 as r1 → 0. Table (7.1) summarises the differ-

ences and similarities between travelling wave solutions of the Porous–Fisher

model and the substrate model. While some of these results have only been

numerically explored so far, in later sections we will provide more thorough

evidence to support these numerically–based observations.

Table 7.1: Key features of travelling wave solutions of the substrate–mediated inva-
sion model with travelling wave solutions of the Porous–Fisher model.

Porous-Fisher Substrate–mediated model

Smooth front Sharp front Smooth front Sharp front

c =


1

a
a <

√
2

1√
2

a ≥
√
2

cmin =
1√
2

c =
1

a

lim
r1→∞
r2→∞

c =

√
R

2

−

lim
r1→0+

cmin = 0+

lim
r1→∞
r2→∞

cmin =

√
R

2

−

Given the numerical evidence developed in this section, we will now use

phase space techniques to understand the differences between the sharp–fronted

and smooth–fronted travelling wave solutions of the substrate model.

7.3.3 Phase space analysis for smooth travelling wave solutions

In the usual way, we seek to study travelling wave solutions of Equations (7.3)–

(7.4) by writing u(x, t) = U(z) and S(x, t) = S(z), where z is the travelling

wave variable, z = x− ct [Murray 2002] to give

d

dz

(
S
dU

dz

)
+ c

dU

dz
+ U(1− U) = 0, −∞ < z <∞, (7.11)

c
dS

dz
+ r1U − r2S = 0, −∞ < z <∞. (7.12)

Boundary conditions for the smooth travelling wave solutions are U(z) → 1

and S(z) → R as z → −∞, and U(z) → 0 and S(z) → 0 as z → ∞. Given

such a smooth–fronted travelling wave solution for U(z), we can solve Equation
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(7.12) to give

S(z) =
r1
c
exp

[r2z
c

] ∫ ∞

z
exp

[
−r2y
c

]
U(y) dy. (7.13)

We will make use of this result later.

Following the usual approach to studying smooth travelling wave solutions,

we re–write Equations (7.11)–(7.12) as a first order system

dU

dz
=W, (7.14)

dS

dz
= −

(
r1U − r2S

c

)
, (7.15)

dW

dz
=W

(
r1U − r2S − c2

cS

)
− U(1− U)

S
. (7.16)

There are two equilibrium points of the phase space: (i) (Ū , S̄, W̄ ) = (1, R, 0)

as z → −∞, which corresponds to the invaded boundary; and, (ii) (Ū , S̄, W̄ ) =

(0, 0, 0) as z → ∞, which corresponds to the uninvaded boundary.

To explore the possibility of a heteroclinic orbit connecting the two equilib-

rium points in the three–dimensional phase space, the Jacobian of this system

is 
0 0 1

−r1
c

r2
c

0

r1W̄ − c(1− 2Ū)

cS̄

(−r1Ū + c2)W̄ + cŪ(1− Ū)

cS̄2

−r2S̄ + r1Ū − c2

cS̄

 .

(7.17)

We see immediately that we cannot follow the usual practice of evaluating

the Jacobian at the uninvaded equilibrium point since it is not defined at

(Ū , S̄, W̄ ) = (0, 0, 0) and so linearisation is not useful here. In contrast, the

Jacobian at the invaded equilibrium point (Ū , S̄, W̄ ) = (1, R, 0) is


0 0 1

−r1
c

r2
c

0

r2
r1

0 −cr2
r1

 . (7.18)

The eigenvalues of this Jacobian are λ1 = r2/c and λ2,3 = (−c±
√
c2 + 4R)/(2R).

Since these eigenvalues are all real valued, with λ1,2 > 0 and λ3 < 0, the in-
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vaded equilibrium point is a three–dimensional saddle point.

As just mentioned, linearisation about the uninvaded equilibrium point is

not possible, and so we revisit the dynamical system (7.14)–(7.16) as z → ∞

in more detail in Section 7.3.5 below. For now, we suppose that a smooth

travelling wave U(z) decays exponentially, say

U(z) ∼ Cexp (−bz) z → ∞, (7.19)

where b > 0. Under this assumption it follows from (7.13) that

S(z) ∼ r1
bc+ r2

U(z), (7.20)

W (z) ∼ −bU(z), (7.21)

suggesting that S(z) and W (z) both decay to zero exponentially, at the same

rate as U(z), as z → ∞. Further, to leading order as z → ∞, (7.16) gives

dW

dz
∼ (bc− 1)

(
bc+ r2
r1

)
as z → ∞. (7.22)

At first glance this results appears inconsistent with our arguments so far, since

for smooth travelling wave solutions we expect dW/dz → 0 as z → ∞, but

here we have dW/dz approaching a constant. However, by choosing c = 1/b

we avoid this inconsistency. This choice implies that the speed of the smooth–

fronted travelling wave is related to the far–field decay rate of U(z). We have

tested this hypothesis numerically and found and excellent match between

(7.19)–(7.21) and the shape of the smooth–fronted travelling waves for different

choices of r1, r2 and c, with one example discussed in the Supplementary

Material. In addition, we provide further evidence for this far–field behaviour

in Section 7.3.5.

7.3.4 Dispersion relationship

We now explore how the decay rate of the initial condition, a in Equation (7.8),

affects the long–time travelling wave speed for smooth–fronted travelling wave

solutions. To be consistent with our observations in Section 7.3.3, we assume

that smooth–fronted travelling wave solutions for U(z) and S(z) decaying at

the same rate, and we seek solutions of the form ũ(x, t) ∼ C exp [a(x − ct)]
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and s̃(x, t) ∼ D exp [a(x − ct)] as x → ∞. Substituting these solutions into

Equation (7.3), and focusing on the leading edge of these solutions where

ũ(x, t) ≪ 1, we obtain

c =
1

a
, (7.23)

which relates the long–time speed of the travelling wave solution to the decay

rate of the initial condition, u(x, 0).
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(a) (b) (c)

Figure 7.5: Dispersion relationship. (a)–(c) shows c as a function of the initial decay rate, a, for R = 0.5, 1 and 2, respectively. Numerical travelling wave
speeds are estimated from long–time numerical solutions of Equations (7.3)–(7.5) with the initial condition given by Equations (7.8)–(7.9) with various values
of a. The dispersion relationship, Equation (7.23), is plotted (solid blue) and results for r1 = 1, 5, 10 and 20 are shown in orange discs, yellow squares, purple
triangles and green triangles, respectively. Each plot shows a horizontal line at

√
R/2, which is an upper bound for the wavespeed for large a. All numerical PDE

solutions correspond to ∆x = 1× 10−2, ∆t = 1× 10−3 and ϵ = 1× 10−10.
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Results in Figure 7.5 explore the validity of Equation (7.23) by taking time–

dependent PDE solutions with initial conditions (7.8)–(7.9) and varying the

decay rate of u(x, 0) for various values of r1 and r2. In particular, we generate

travelling wave solutions for r1 = 1, 5, 10 and 20, for fixed R = 0.5, 1 and 2.

Results in Figure 7.5(a)–(c) corresponding to R = 0.5, 1 and 2, respectively,

show that for sufficiently small a, we see that the long–time travelling wave

speed matches Equation (7.23) regardless of r1 and r2. These results are

consistent with the initial explorations in Figure 7.3(e)–(h) where we saw

that the wave speed of certain smooth–fronted travelling wave solutions was

independent of r1 and r2. As a increases, however, we see that c behaves

differently. For large a > acrit we see that c approaches a constant value cmin

that is independent of a. Our numerical evidence suggests that this limiting

constant value depends on r1 and r2. For completeness, on each subfigure we

plot a horizontal line at c =
√
R/2, and we note that this value appears to be

an upper–bound for c as a becomes large.
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(a)

(c)

(e)

(b)

(d)

(f)

(g) (h)

Figure 7.6: Smooth-fronted travelling wave solutions. Travelling wave so-
lutions U(z) and S(z) are obtained by considering long–time numerical solutions of
Equations (7.3)–(7.5) with initial conditions given by Equations (7.8)–(7.9) with vari-
able decay rate, a. All results correspond to r1 = r2 = 1, and results in (a)–(b),
(c)–(d), (e)–(f) and (g)–(h) correspond to a = 1, 2, 10/3 and 5, respectively, as in-
dicated. Results in the left–most column show the various travelling wave solutions
plotted on the usual scale with 0 ≤ U(z), S(z) ≤ 1. Results in the right–most column
show a magnification of the leading edge of the travelling waves.

The transition from c = 1/a for a < acrit to constant c for a > acrit in

Figure 7.5 is further explored in Figure 7.6 for r1 = r2 = 1. The long–time

travelling wave solution in Figure 7.6(a)–(b) evolves from an initial condition
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with decay rate a = 1. This solution evolves into a smooth travelling wave

with c = 1.00, which is consistent with the dispersion relationship, Equation

(7.23). Although it is clear that the travelling wave solution in Figure 7.6(a)

is smooth at this scale, we also plot a magnification of the leading edge of

that travelling wave in Figure 7.6(b). We now explore a series of travelling

wave solutions as a increases to visualise the transition reported in Figure

7.5. The long–time travelling wave solution in Figure 7.6(c)–(d) evolves from

an initial condition with a faster decay rate, a = 2, leading to a smooth–

fronted travelling wave with c = 0.50. Again, this result is consistent with

the dispersion relationship, and the magnification of the density profiles near

the leading edge in Figure 7.6(d) confirms that the travelling wave solution is

smooth. The travelling wave solution in Figure 7.6(e) for a = 10/3 leads to

a travelling wave solution with c = 0.29. This estimate from the long–time

numerical solution of the PDE is close to the travelling wave speed predicted

by the dispersion relationship. At the scale shown in Figure 7.6(e) it might

seem, at first glance, that the travelling wave is sharp, but the magnification

in Figure 7.6(f) confirms that this travelling wave is indeed smooth–fronted.

Finally, the travelling wave solution in Figure 7.6(g) for a = 5 evolves to a

travelling wave solution with c = 0.29, which is much larger than the speed

predicted by the dispersion relationship that would give c = 1/5 = 0.2. Again,

while the travelling wave solution in Figure 7.6(g) appears to be sharp at this

scale, the magnification of the solution in Figure 7.6(h) confirms that this

solution is indeed smooth–fronted.

In summary, the dispersion relationship suggests that long–time speed of

smooth–fronted travelling wave solutions is given by c = 1/a, where a is far-

field the decay rate of u(x, 0). Our numerical explorations in Figures 7.5–7.6

confirms that this result holds for sufficiently small decay rates, a < acrit.

As the decay rate increases, a > acrit, we observe an interesting transition

for smooth–fronted travelling waves where c becomes independent of a, and

greater than the speed predicted by the dispersion relationship. While these

travelling wave solutions remain smooth–fronted as a increases, it becomes in-

creasingly difficult to draw a visual distinction between these smooth–fronted

travelling wave solutions and sharp–fronted travelling wave solutions that

evolve from initial conditions with compact support, such as those travelling

234



waves in Figure 7.3(a)–(d). We now seek to provide a geometric interpreta-

tion of the differences between these two classes of travelling wave solutions

by returning to the phase space.

7.3.5 Desingularised phase space and slow manifold reduction

We now return to the phase space for travelling wave solutions and introduce

a change of variables

ζ(z) =

∫ z

0

dy

S(y)
, (7.24)

which removes the singularity in Equation (7.16) when S(z) = 0. A similar

transformation to desingularise the phase plane is often used in the analysis of

sharp–fronted travelling wave solutions of the Porous–Fisher model [Murray

2002]. The desingularised system is given by

dU

dζ
= SW, (7.25)

dS

dζ
= −S

(
r1U − r2S

c

)
, (7.26)

dW

dζ
=W

(
r1U − r2S − c2

c

)
− U(1− U). (7.27)

There are two equilibrium points of the desingularised phase space: (i) (Ū , S̄, W̄ ) =

(1, R, 0) as ζ → −∞, corresponding to the invaded boundary; and, (ii) (Ū , S̄, W̄ ) =

(0, 0, 0) as ζ → ∞, corresponding to the uninvaded boundary. It is important

to point out that the phase space analysis in Section 7.3.3 was relevant only

for smooth–fronted travelling wave solutions, whereas the desingularised phase

space is appropriate for both the sharp–fronted and smooth–fronted travelling

wave solutions. The Jacobian of this system is


0 W̄ S̄

−r1S̄
c

−r1Ū + 2r2S̄

c
0

r1W̄ − c(1− 2Ū)

c
−r2W̄

c

−r2S̄ + r1Ū − c2

c

 . (7.28)

We can now consider both equilibrium points (Ū , S̄, W̄ ) = (1, R, 0) and (Ū , S̄, W̄ ) =

(1, 0, 0).
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The Jacobian at the invaded equilibrium point, (Ū , S̄, W̄ ) = (1, R, 0), is


0 0

r1
r2

−r
2
1

r2

r1
c

0

1 0 −c

 . (7.29)

The eigenvalues of this Jacobian are λ1 = r1/c and λ2,3 = (−c±
√
c2 + 4R)/2.

Since λ1,2 > 0 and λ3 < 0, the uninvaded equilibrium point is a three–

dimensional saddle. These expressions are identical to the corresponding

expressions in Section (7.3.3), which is not surprising since ζ = z near the

invaded equilibrium point, z → −∞.

The Jacobian at the uninvaded equilibrium point, (Ū , S̄, W̄ ) = (0, 0, 0), is


0 0 0

0 0 0

−1 0 −c

 . (7.30)

The eigenvalues are λ1 = −c and λ2 = λ3 = 0, which means that (Ū , S̄, W̄ ) =

(0, 0, 0) is a non-hyperbolic equilibrium point suggesting that the dynamics

near this point take place on a slow manifold [Wiggins 2003]. To explore these

local dynamics near (Ū , S̄, W̄ ) = (0, 0, 0) we apply the centre manifold theory

to identify the slow manifold. To proceed we rotate the coordinate system

using a transformation defined by the eigenvectors [−c, 0, 1]⊤, [0, 1, 0]⊤ and

[0, 0, 1]⊤ that are associated with λ1, λ2 and λ3, respectively. The relationship

between the original unrotated coordinate system (U, S,W ) and the rotated

coordinate system (U ,S ,W ) is given by the transformation [Maclaren 2020],


U

S

W

 =


−c 0 0

0 1 0

1 0 1




U

S

W

 , (7.31)

and the associated inverse transformation
U

S

W

 =
1

c


−1 0 0

0 c 0

1 0 c



U

S

W

 . (7.32)
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These transformations allow us to re-write the dynamical system in the fol-

lowing format


dU

dζ
dS

dζ
dW

dζ

 =


0 0 0

0 0 0

0 0 −c




U

S

W



+
1

c


− [S (U + W )]

[S (r1cU + r2S )][
(U + W ) [−r1cU + (1− r2)S ] + c2U (1 + cU )

]

 . (7.33)

To find the slow manifold we take the usual approach of writing the fast

dynamics associated with λ1 as a function of the slow dynamics that are

associated with the zero eigenvalues by assuming that slow manifold can be

locally expressed as a quadratic in U and V . Equating coefficients with the

tangency condition [Wiggins 2003] gives the slow manifold,

W (U ,S ) =
1

c2
[
c(c2 − r1)U

2 + (1− r2)U S
]
, (7.34)

and the dynamics on the slow manifold are given by

dU

dζ
= − 1

c3
[
c(c2 − r1)U

2S + (1− r2)U S 2 + c2S U
]
, (7.35)

dS

dζ
=

1

c

[
r2S

2 + r1cU S
]
. (7.36)

We can now re–write the slow manifold and the dynamics on the slow manifold

in the original, unrotated coordinate system, giving

W (U, S) =
1

c3
[
(c2 − r1)U

2 − (1− r2)US − c2U
]
, (7.37)

and

dU

dζ
=

1

c3
[
(c2 − r1)SU

2 − (1− r2)US
2 − c2SU

]
, (7.38)

dS

dζ
=

1

c

[
r2S

2 − r1US
]
. (7.39)

With these tools we may now plot the phase space including the two equilib-
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rium points, and superimpose the slow manifold and the heteroclinic orbit ob-

tained be re-writing the long–time PDE solution in terms of the (U(ζ), S(ζ),W (ζ))

coordinates. This information is summarised in Figure 7.7 for two smooth–

fronted travelling waves and one sharp–fronted travelling wave, each with

r1 = r2 = 1. Before considering Figure 7.7 in detail, note that a small S

and U analysis of (7.38)–(7.39) shows that the heteroclinic orbit must have

U ∼ (r2 + 1)S/r1 as S → 0+, meaning that the slope of the heteroclinic

orbit is r1/(r2 + 1) in the US–plane near the origin, and U ∼ Aexp(−z/c)

and S ∼ Bexp(−z/c), for some constants A > 0, B > 0, as z → ∞ for

smooth–fronted travelling wave solutions. These results for the flow on the

slow manifold confirm (7.19)–(7.20) with c = 1/b.
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(c)

(f)

(b)

(d)

(e)

(a)

Figure 7.7: Desingularised phase space and slow manifold reduction. All
results correspond to r1 = r2 = 1. Results in: (a)–(b) correspond to a smooth–fronted
travelling wave with c2 = 10; (c)–(d) correspond to a smooth–fronted travelling wave
with c1 = 1; and, (e)–(f) correspond to a sharp–fronted travelling wave with cmin =
0.29. Results in the left–most column show the three–dimensional desingularised
phase space with the invaded equilibrium point (green dot), the uninvaded equilibrium
point (blue dot) and the slow manifold (grey surface). Results in the right–most
column show the vector field on the slow manifold, superimposed with several solution
trajectories, including the heteroclinic orbit (blue) and several unphysical trajectories
(red). The heteroclinic orbit is obtained by solving Equations (7.3)–(7.5) numerically
with appropriate initial conditions. For (a)–(b) and (c)–(d) the initial conditions are
given by Equations (7.8)–(7.9) with a = 1/10 and a = 1, respectively. For (e)–(f) the
initial conditions are given by Equations (7.6)–(7.7). All numerical PDE solutions
correspond to ∆x = 1× 10−4, ∆t = 1× 10−3 and ϵ = 1× 10−4.
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Figure 7.7(a) shows the three–dimensional desingularised phase space to-

gether with the invaded equilibrium point in green, the uninvaded equilibrium

point in blue, the heteroclinic orbit in solid blue and the slow manifold in

grey. In this case we have c2 = 10 and we see that, as expected, the hete-

roclinic orbit enters the uninvaded equilibrium point after moving along the

slow manifold. In Figure 7.7(b) we plot the slow manifold locally around the

uninvaded equilibrium point together with the vector field defined by Equa-

tions (7.38)–(7.39). The heteroclinic orbit from the long–time PDE solution

is shown in blue. We see that the heteroclinic orbit is tangential to the vector

field and enters the uninvaded equilibrium point. For completeness we also

solve Equations (7.38)–(7.39) numerically to show a number of other solution

trajectories on the slow manifold in red. While these other solution curves

are valid solutions of Equations (7.38)–(7.39), they are unphysical in the sense

that they are not associated with the travelling wave solution since they do not

form a heteroclinic orbit joining the invaded and uninvaded equilibrium points.

Figure 7.7(b)–(c) shows a similar set of results to those in Figure 7.7(a)–(b)

for a different smooth–fronted travelling wave, this time with c1 = 1. Again

we see that the heteroclinic orbit moves into the uninvaded equilibrium point

along the slow manifold in Figure 7.7(c), with additional details shown on

the slow manifold in Figure 7.7(d). Interestingly, results in Figure 7.7(e)–(f),

for a sharp–fronted travelling wave with cmin = 0.29 are quite different to the

smooth–fronted travelling waves in Figure 7.7(a)–(d). Here the heteroclinic or-

bit joining the invaded and uninvaded equilibrium points enters the uninvaded

equilibrium point directly, without moving along the slow manifold. This dif-

ference is highlighted in Figure 7.7(d) where we see that there is no component

of the heteroclinic orbit on the slow manifold. These results in Figure 7.7 are

for one particular choice of r1 = r2 = 1, and similar results for different choices

of r1 and r2 show the same qualitative behaviour (Supplementary Material).

In summary, these results show us that we can make a simple geomet-

ric distinction between smooth–fronted travelling waves and sharp–fronted

travelling waves using the slow manifold reduction. Smooth–fronted trav-

elling waves involve a heteroclinic orbit joining (Ū , S̄, W̄ ) = (1, R, 0) and

(Ū , S̄, W̄ ) = (0, 0, 0), such that the heteroclinic orbit enters (0, 0, 0) along the

slow manifold, given by Equation (7.37). In contrast, sharp–fronted travelling
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waves involve a heteroclinic orbit joining the same two equilibrium points,

with the difference being that the heteroclinic orbit enters (0, 0, 0) directly,

without moving along the slow manifold. These differences are summarised

schematically in Figure 7.8.

(a) (b)

Figure 7.8: Schematic distinction between smooth–fronted and sharp–
fronted travelling wave solutions. The schematic in (a) corresponds to a smooth–
fronted travelling wave solution with c > cmin, where the heteroclinic orbit (blue) in
the desingularised phase space moves into the (0, 0, 0) along the slow manifold (grey
surface). The schematic in (b) corresponds to a sharp–fronted travelling wave solution
with c = cmin, where the heteroclinic orbit (blue) enters the uninvaded equilibrium
point, (0, 0, 0), without moving along the slow manifold (grey surface).

It is worth noting that the computational phase space tools in Figure

7.7(a),(c) and (e) provide physical insight into the interpretation of the min-

imum wave speed, cmin, for the substrate model. While it is not possible to

compute a long–time PDE solution with c < cmin, it is straightforward to plot

the three–dimensional phase space and integrate Equations (7.25)–(7.27) nu-

merically to explore various trajectories in the relevant octant where U ≥ 0,

S ≥ 0 and W ≤ 0. These explorations show that we can identity a unique tra-

jectory that enters the origin just like we did for c ≥ cmin, however part of this

trajectory has U < 0 which is why it can never be associated with a physically

relevant travelling wave solutions (Supplementary Material). This observation

shares similarities and differences with the phase plane analysis of the classical

Fisher-KPP model, where the exact result cmin = 2 is found by ensuring that

U > 0 near the origin [Murray 2002]. In the simpler Fisher-KPP model, the

origin is an equilibrium point and so linearisation gives us the local properties

of the phase plane, leading to this result. Similar methodology applies for

more complicated generalisations of the Fisher-KPP model [Vittadello et al.

2018]. In the case of our substrate model, it appears that cmin is also defined

by requiring that U > 0 along the heteroclinic orbit (Supplementary Mate-
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rial). Conversely, numerical explorations show that when c < cmin we observe

that U < 0 for portions of the orbit that do not pass through a neighbourhood

of the equilibrium point. This observation suggests that linearisation cannot

be used to find a mathematical expression for cmin.

For the next part of this work we attempt to understand how the shape

of the travelling wave profiles depends upon the parameters in the mathemat-

ical model. We will derive two such approximations; one for sharp–fronted

travelling wave solutions, and the other for smooth–fronted travelling wave

solutions. In both cases we test our approximations using full time–dependent

PDE solutions.

7.3.6 Approximate solution for sharp–fronted travelling waves

Numerical results in Section 7.3.2 imply a relationship between the substrate

model and the Porous–Fisher model, which we now explore further. For fast

substrate production and decay, r1 ≫ 1 and r2 ≫ 1, respectively, we anticipate

that Equation (7.4) gives approximately s = Ru, and that Equation (7.3) is

approximately

∂u

∂t
= R

∂

∂x

(
u
∂u

∂x

)
+ u(1− u), 0 < x <∞, (7.40)

which is the non–dimensional Porous–Fisher model with the diffusion term

scaled by the constant R. Therefore, we can make use of known results for

the Porous–Fisher model in this limit. In particular, sharp–fronted travelling

wave solutions of the Porous–Fisher model are known to have the closed–form

solution [Murray 2002,Sherratt and Marchant 1996]

U(z) =


1− exp

(
z − zc
2c

)
, z < zc,

0, z > zc,

(7.41)

S(z) = RU(z) −∞ < z <∞, (7.42)

where c = cmin =
√
R/2 and zc is the location of the sharp front [Murray

2002]. Note that Equation (7.42) is equivalent to substituting Equation (7.41)

into Equation (7.13) and evaluating the resulting expression in the limit that

r1 → ∞ and r2 → ∞.
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Results in Figure 7.9 examine how late–time numerical PDE solutions can

be approximated by Equations (7.41)–(7.42). Results in (a)–(c), (d)–(f) and

(g)–(i) correspond to R = 0.5, 1 and 2, respectively, and in each case we

see that Equations (7.41)–(7.42) provide a good match with the shape of the

travelling wave solution of the substrate model as r1 and r2 increase.

(g) (h) (i)

(b) (c)(a)

(d) (e) (f)

Figure 7.9: Approximate shape of sharp–fronted travelling wave solutions.
Various numerical travelling wave solutions, U(z) and S(z), obtained by solving Equa-
tions (7.3)–(7.7) are compared with the approximation given by Equations (7.41)–
(7.42), where z is shifted so that zc = 0. Results in (a)–(c), (d)–(f) and (g)–(i)
correspond to R = 0.5, 1 and 2, respectively. Each subfigure shows the appropriate
value of r1, r2 and cmin. All numerical PDE solutions correspond to ∆x = 1× 10−2,
∆t = 1× 10−3 and ϵ = 1× 10−10.
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7.3.7 Approximation solution for smooth–fronted travelling

waves

Previous results in Figure 7.8 suggest that smooth–fronted travelling waves

become less steep as c increases, implying that W (z) = dU/dz → 0 as c→ ∞.

Following the work of Canosa we make use of this observation to develop

a perturbation solution by re-scaling the independent variable, ẑ = z/c to

give [Canosa 1973],

1

c2
d

dẑ

(
S
dU

dẑ

)
+

dU

dẑ
+ U(1− U) = 0, −∞ < ẑ <∞, (7.43)

dS

dẑ
+ r1U − r2S = 0, −∞ < ẑ <∞. (7.44)

To proceed, we seek a perturbation solution in terms of the small parameter

1/c2 by expanding the dependent variables in a power series [Murray 1984],

U(ẑ) =

∞∑
n=0

c−2nUn(ẑ), S(ẑ) =

∞∑
n=0

c−2nSn(ẑ). (7.45)

Substituting these power series into Equations (7.43)–(7.44) and truncating

after the first few terms gives

dU0

dẑ
+ U0(1− U0) = 0, (7.46)

dS0
dẑ

+ r1U0 − r2S0 = 0, (7.47)

d

dẑ

(
S0

dU0

dẑ

)
+

dU1

dẑ
+ U1(1− 2U0) = 0, (7.48)

with boundary conditions U0 → 1, U1 → 0 and S0 → R as ẑ → −∞, and

U0 → 0, U1 → 0 and S0 → 0 as ẑ → ∞. It is straightforward to solve these

differential equations for U0(ẑ), U1(ẑ) and S0(ẑ), however additional terms in

the perturbation solution are governed by differential equations that do not

have closed–form solutions. Regardless, as we shall now show, these first few

terms in the perturbation solution provide accurate approximations, even for

relatively small values of c.

The solution of Equation (7.46) is

U0(z) =
1

1 + exp (ẑ)
, (7.49)
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where we have arbitrarily chosen the integration constant so that U0(0) = 1/2.

Given U0(z), we solve (7.47) using an integrating factor to give

S0(ẑ) = −r1exp (r2ẑ)
∫ ∞

ẑ

exp (−r2ẑ)
1 + exp (ẑ)

dẑ. (7.50)

If r2 is an integer we obtain

S0(ẑ) = (−1)r2exp (r2ẑ) r1

[
ln (exp [−ẑ] + 1) +

r2∑
n=1

exp (−nẑ)
n (−1)n

]
. (7.51)

If r2 is not an integer there is no closed–form expression for S0(ẑ) that we could

find. For particular integer choices of r1 the expression for S0(ẑ) is quite sim-

ple. For example, with r2 = 1 we have S0(ẑ) = r1 [1− exp (ẑ) ln(exp [−ẑ] + 1)],

whereas for r2 = 2 we have S0(ẑ) = r1 [1/2− exp (ẑ) + exp (2ẑ) ln(exp [−ẑ] + 1)].

The solution for U1(ẑ) is obtained by integrating Equation (7.48) using an in-

tegrating factor to give

U1(ẑ) =
exp (ẑ)

(1 + exp [ẑ])2

∫ ∞

ẑ

d

dẑ

[
S0

exp (ẑ)

(1 + exp [ẑ])2

] [
(1 + exp [ẑ])2

exp (ẑ)

]
dẑ. (7.52)
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(a) (c)(b)

(e)(d) (f)

(g) (i)(h)

(j) (l)(k)

Figure 7.10: Approximate shape of smooth–fronted travelling wave so-
lutions. Results in (a)–(f) and (g)–(l) compare the numerical and perturbation
solutions for c = 2.00 and c = 4.00, respectively. Results in the left–most column
correspond to R = 0.5, those in the central column correspond to R = 1, and those
in the right–most column correspond to R = 2. Numerical solutions correspond to
late–time numerical solutions of Equations (7.3)–(7.5), with initial conditions given
by Equations (7.8)–(7.9) with appropriate values of a. Numerical solutions of U(z)
and S(z) are shown in blue and green, respectively. Each numerical solution is super-
imposed with an O(1) perturbation solution for S(z) and an O(1/c2) for U(z), and
these perturbation solutions are shown in yellow and purple dashed curves, respec-
tively.

Since this expression for U1(ẑ) depends upon the expression for S0(ẑ), we

can only obtain closed–form expressions for U1(ẑ) for integer values of r2. In

these cases, expressions for U1(ẑ) are relatively complicated and so we include

these expressions in the Supplementary Material. We note that care is required

when evaluating U1(ẑ) since the expression is indeterminate for large ẑ. We

address this simply by expanding U1(ẑ) in a Taylor series as ẑ → ∞ and

plotting the series expansion for large ẑ.

Results in Figure 7.10 compare the shapes of various smooth–fronted trav-
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elling wave solutions, for c = 2 and c = 4, with the O(1) perturbation solution

for S(z) and the O(c−2) perturbation solution for U(z). These comparisons

are made across a range of values of r1 and r2, and for c = 4 the perturba-

tion solutions are indistinguishable from the late–time numerical solutions. In

cases where c = 2 we begin to see a small departure between the numerical

and perturbation approximations. Given that the perturbation solutions are

valid in the limit c → ∞, the quality of match in Figure 7.10 for c = 2 and

c = 4 is quite good.

7.4 Conclusion and Future Work

In this study we investigate a minimal model of cell invasion that couples cell

migration, cell proliferation and cell substrate production and decay. A key

feature of the mathematical model is that the diffusive flux is proportional to

the substrate density so that the flux vanishes when the substrate is absent.

This feature leads to predictions of tissue formation involving the propagation

of well–defined sharp fronts, and two–dimensional numerical simulations of

the mathematical model reconstitute key features of recent experiments that

involved the formation of thin tissues grown on 3D–printed scaffolds [Lanaro

et al. 2021]. To gain a deeper understanding of how the rate of substrate pro-

duction and decay affects the rate of tissue production, the focus of this work

is to study solutions of the substrate model in a one–dimensional geometry.

Preliminary numerical simulations of the substrate model in one dimen-

sion indicate that the mathematical model supports two types of travelling

wave solutions. As we show, sharp–fronted travelling waves that propagate

with a minimum wave speed, cmin, evolve from initial conditions with com-

pact support, whereas smooth–fronted travelling waves that move with a faster

wave speeds, c > cmin, evolve from initial conditions where the density decays

exponentially with position. These numerical features are reminiscent of es-

tablished features of travelling wave solutions of the well–known Porous–Fisher

model.

Much of our analysis focuses on exploring the relationships between smooth–

fronted and sharp–fronted travelling wave solutions, and here key features

of the analysis of the substrate model are very different to the analysis of

the Porous–Fisher model. For example, there are three equilibrium points in
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the desingularised phase plane for the Porous–Fisher model whereby smooth–

fronted travelling wave solutions are characterised by a heteroclinic orbit that

enters (Ū , V̄ ) = (0, 0), whereas sharp–fronted travelling wave solutions in-

volves a heteroclinic orbit that enters (Ū , V̄ ) = (0,−c). In contrast, the

desingularised phase space for the substrate model involves two equilibrium

points only. This means that both smooth–fronted and sharp–fronted travel-

ling waves correspond to heteroclinic orbits that enter (Ū , S̄, W̄ ) = (0, 0, 0),

which is fundamentally different to the Porous–Fisher model. We provide a

geometric interpretation that explains the difference between sharp–fronted

and smooth–fronted travelling wave solutions since smooth–fronted travelling

wave solutions are associated with a heteroclinic orbit that enters the origin in

the desingularised phase space by moving along a slow manifold. In contrast,

sharp–fronted travelling wave solutions are associated with a heteroclinic or-

bit that enters the origin of the desingularised phase space directly, without

moving along the slow manifold. Additionally, we also develop and test useful

closed–form expressions that describe the shape of the travelling wave solu-

tions in various limits. In particular, we provide accurate approximations for

the shape of sharp–fronted travelling waves for sufficiently large r1 and r2, as

well as accurate approximation of the shape of the smooth–fronted travelling

wave solutions relevant for large c.

There are many avenues for extending the current work, and these options

include further analysis of the current model as well as conducting parallel

analysis for related mathematical models. In terms of the current model, our

analysis has not provided any relationship between cmin and the two parame-

ters in the nondimensional model, r1 and r2. For simpler mathematical models,

such as the Fisher-KPP model, the relationship between the minimum wave

speed and the parameters in the model arises by linearising about the leading

edge of the travelling wave [Murray 2002]. As we have shown, an interesting

feature of the substrate model is that standard techniques to linearise about

the leading edge do not apply. Another possibility for extending the analysis

of this model would be to consider the mathematical model in two-dimensions,

such as describing the late–time dynamics of hole–closing phenomena [McCue

et al. 2019].

A different class of extensions of this work would be to consider generalising
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the nonlinear diffusion term in the substrate model, such as

∂u

∂t
=

∂

∂x

(
D(s)

∂u

∂x

)
+ u(1− u), 0 < x <∞ (7.53)

∂s

∂t
= r1u− r2s, 0 < x <∞. (7.54)

This generalised substrate model involves a nonlinear diffusivity function,

D(s). We anticipate that nonlinear diffusivity functions with the property

D(0) = 0 will support sharp–fronted travelling wave solutions, and there are

many such candidate functions. One option of interest is a power–law diffu-

sivity D(s) = sn, where n is some exponent. It would be interesting to explore

how different choices of n affect various qualitative and quantitative features

of the travelling wave solutions that have been established in the present study

for n = 1. We hope to return to address these open questions in future re-

search.
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7.5 Additional material

7.5.1 Numerical methods

7.5.1.1 Two–Dimensional partial differential equations

Numerical solutions of the substrate model in two–dimensions are obtained by

re-writing Equations (1)–(2) as

∂u

∂t
=

∂

∂x

[
D(s)

∂u

∂x

]
+

∂

∂y

[
D(s)

∂u

∂y

]
+ f(u), (7.55)

∂s

∂t
= g(u, s), (7.56)

where we have written the mathematical model in terms of a general nonlinear

diffusivity function D(s), and general source terms, f(u) and g(u, s). To be

consistent with our dimensional model we have D(s) = Ds/Ks, f(u) = λu(1−

u/Ku) and g(u, s) = r1u − r2s, but our numerical method can deal with

other functional forms if required. Our aim is to obtain numerical solutions of

Equations (7.55)–(7.56) on the square domain Ω = {(x, y), 0 < x < L, 0 < y <

L}. For convenience we assume that the origin is at the lower left corner of

the domain and we discretise Ω on a spatially uniform finite difference mesh

with mesh spacing ∆x = ∆y > 0. We index the mesh in the usual way so

that the coordinates of each mesh point are (xi, yj), with i = 0, 1, 2, . . . , I and

j = 0, 1, 2, . . . , J . Since we always consider a square mesh we have I = J . All

numerical results correspond to a 101 × 101 mesh which, with L = 300 µm,

gives ∆x = 3 µm. We found that solutions obtained on a finer mesh gave

visually indistinguishable results for the parameter values that we considered.

We solve Equations (7.55)–(7.56) using a standard method of lines ap-

proach so that at each internal mesh point we have

dui,j
dt

=
1

2∆x2
[(D(si,j) +D(si+1,j)) (ui+1,j − ui,j )

− (D(si,j) +D(si−1,j)) (ui,j − ui−1,j)]

+
1

2∆x2
[(D(si,j) +D(si,j+1)) (ui,j+1 − ui,j)

− (D(si,j) +D(si,j−1)) (ui,j − ui,j−1)] + f(ui,j), (7.57)

dsi,j
dt

= g(ui,j , si,j), (7.58)

where we have approximated the internode diffusivity with an arithmetic av-
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erage. These discretised equations are valid at central nodes, i = 1, 2, . . . , I−1

and j = 1, 2, . . . , I − 1, and we implement Dirichlet boundary conditions for

both dependent variables along all boundaries. We explored various tempo-

ral integration methods and found that all standard approaches led to grid–

independent results when ∆x and the temporal step size are sufficiently small.

For simplicity all results in the main document correspond to the simplest

forward Euler temporal integration with constant time steps of duration ∆t.

7.5.1.2 One–dimensional partial differential equations

To solve Equations (7.3)–(7.5) we consider a domain 0 < x < L that we

discretise into m equally–sized intervals with spacing ∆x. We approximate

Equations (7.3)–(7.4) using a central difference approximation for the spatial

derivative. Since we use this algorithm to study long–time travelling wave

solutions we approximate the temporal derivative with an implicit Euler ap-

proximation, giving

uj+1
i − uji
∆t

=
1

2∆x2

[
(sj+1

i+1 + sj+1
i )(uj+1

i+1 − uj+1
i )− (sj+1

i + sj+1
i−1 )(u

j+1
i − uj+1

i−1 )
]

+ uj+1
i

(
1− uj+1

i

)
, (7.59)

sj+1
i − sji
∆t

= r1u
j+1
i − r2s

j+1
i , (7.60)

for i = 2, . . . ,m−1, where m = 1/h+1 is the total number of spatial nodes on

the finite difference mesh, and the index j represents the time index so that

uji ≈ u(x, t) and sji ≈ s(x, t), where x = (i−1)∆x and t = j∆t. The boundary

conditions for u are discretized to give

uj+1
2 − uj+1

1 = 0, uj+1
m = 0. (7.61)

We solve the resulting system of nonlinear algebraic equations for u using

Newton-Raphson algorithm with convergence tolerance ϵ. Once we have the

updated solutions for uj+1
i , updated estimates of sj+1

i are given by Equation

(7.60).
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7.5.2 Numerical estimate of the travelling wave speed c

We estimate the travelling wave speed by specifying a particular contour value,

u(x, t) = u∗ and use linear interpolation to estimate x∗ such that u(x∗, t) = u∗

at each time step. With this data we then calculate

c =
x∗(t+∆t)− x∗(t)

∆t
, (7.62)

at each time step, which we find settles to a constant value for sufficiently

large t. Given this time series of estimates for c we fit a straight line to the

late–time data to provide an estimate of c. All results in this work correspond

to u∗ = 0.5, but we find that our results are insensitive to this choice and

other values of u∗ ∈ (0, 1) give the same results provided that δt and h are

chosen to be sufficiently small.

7.5.2.1 Phase plane on the slow manifold

We solve Equations (7.38)–(7.39) numerically to estimate trajectories on the

slow manifold using Heun’s method with a constant step size dζ. The vec-

tor field of the dynamical system is plotted on the phase planes using the

MATLAB quiver function [Mathworks 2021].

7.5.3 Additional results and discussion

7.5.3.1 Far–field behaviour of smooth–fronted travelling waves

Here we provide numerical evidence to test the hypothesis that the shape of

smooth–fronted travelling waves are given by Equations (7.19)–(7.21). Results

in Figure 7.11(a) show a smooth–fronted travelling wave with c = 2.00 for

r1 = r2 = 1. Using our long–time numerical PDE solution we plot U(z),

S(z) and W (z) at the leading edge of the travelling wave in Figure 7.11(b).

The profiles in Figure 7.11(b) are a magnified view of the region contained

within the purple rectangle in Figure 7.11(a). At the scale shown in Figure

7.11(b) we clearly see U(z), S(z) and W (z) decaying to zero with z, and each

numerical profile is superimposed with the expressions given by Equations

(7.19)–(7.21) which match the numerical results extremely well. To further

illustrate this point we show an inset in Figure 7.11(b) comparing the shape

of U(z), S(z) and W (z) from the late–time PDE solutions with our proposed
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asymptotic expressions (7.19)–(7.21) for even larger values of z, and again we

see an excellent match. While the comparison in Figure 7.11 is made for one

particular choices of r1, r2 and c, we also made similar comparisons for different

choice of r1, r2 and c, and in each case we found an excellent match between

Equations (7.19)–(7.21) and the shape of the smooth–fronted travelling waves

as z → ∞ (not shown).

(b)(a)

Figure 7.11: Shape of the leading edge for smooth–fronted travelling waves
as z → ∞. (a) late time numerical solutions of (7.3)–(7.5), with initial conditions
(7.8)–(7.9) and a = 1/2. The profile for u(x, t) is shown in blue, and the profile for
s(x, t) is shown in green. Parameters in the PDE model are r1 = r2 = 1 and the
long–time speed of the smooth–fronted travelling wave is c = 2.00. (b) shows the
far-field behaviour of U(z) (blue), S(z) (green) andW (z) (yellow) estimated from the
late–time PDE solution superimposed with the solutions given by Equations (7.19)–
(7.21) in dashed red, dashed purple and dotted red, respectively, for 0 ≤ z ≤ 11. The
constant C in Equation (7.19) is obtained by matching the PDE solution with the
exponentially decaying solution at U = 1 × 10−2. The solutions in (b) correspond
to that part of the solution in (a) contained in the purple rectangle. Similarly, the
solution contained in the purple rectangle in (b) is shown as an inset in (b) where
the PDE solutions compare very well with the approximate far–field solutions. All
numerical PDE solutions correspond to ∆x = 1 × 10−2, ∆t = 1 × 10−3 and ϵ =
1× 10−10.

7.5.3.2 Phase space and slow manifold

Results in Figure 7 show the phase space and slow manifold for R = 1. Analo-

gous results for R = 0.5 and R = 2 are given here in Figures (7.11) and (7.12)

where we see that the same trends persist for different values of R.
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7.5.3.3 Phase space

(f)(e)

(b)(a)

(c) (d)

Figure 7.12: Desingularised phase space and slow manifold reduction. All
results correspond to R = 0.5 (r1 = 1, r2 = 2). Results in: (a)–(b) correspond to a
smooth–fronted travelling wave with c2 = 10; (c)–(d) correspond to a smooth–fronted
travelling wave with c1 = 1; and, (e)–(f) correspond to a sharp–fronted travelling
wave with cmin = 0.27. Results in the left–most column show the three–dimensional
desingularised phase space with the invaded equilibrium point (green dot), the un-
invaded equilibrium point (blue dot) and the slow manifold (grey surface). Results
in the right–most column show the vector field on the slow manifold, superimposed
with several solution trajectories, including the heteroclinic orbit (blue) and several
unphysical trajectories (red). The heteroclinic orbit is obtained by solving Equations
(7.3)–(7.5) numerically with appropriate initial conditions. For (a)–(b) and (c)–(d)
the initial conditions are given by Equations (7.8)–(7.9) with a = 1/10 and a = 1,
respectively. For (e)–(f) the initial conditions are given by Equations (7.6)–(7.7).
All numerical PDE solutions correspond to ∆x = 1 × 10−4, ∆t = 1 × 10−3 and
ϵ = 1× 10−4.
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(a) (b)

(c) (d)

(f)(e)

Figure 7.13: Desingularised phase space and slow manifold reduction. All
results correspond to R = 2 (r1 = 1, r2 = 0.5). Results in: (a)–(b) correspond to a
smooth–fronted travelling wave with c2 = 10; (c)–(d) correspond to a smooth–fronted
travelling wave with c1 = 1; and, (e)–(f) correspond to a sharp–fronted travelling
wave with cmin = 0.30. Results in the left–most column show the three–dimensional
desingularised phase space with the invaded equilibrium point (green dot), the un-
invaded equilibrium point (blue dot) and the slow manifold (grey surface). Results
in the right–most column show the vector field on the slow manifold, superimposed
with several solution trajectories, including the heteroclinic orbit (blue) and several
unphysical trajectories (red). The heteroclinic orbit is obtained by solving Equations
(7.3)–(7.5) numerically with appropriate initial conditions. For (a)–(b) and (c)–(d)
the initial conditions are given by Equations (7.8)–(7.9) with a = 1/10 and a = 1,
respectively. For (e)–(f) the initial conditions are given by Equations (7.6)–(7.7).
All numerical PDE solutions correspond to ∆x = 1 × 10−4, ∆t = 1 × 10−3 and
ϵ = 1× 10−4.
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7.5.3.4 Phase space for c < cmin

In this section we explore the consequences of setting c < cmin in the phase

space. Results in Figure 7.14 show the desingularised phase spaces for r1 =

r2 = 1, where as have previously demonstrated in Figure 7 that late–time nu-

merical solutions of the time–dependent PDE model gives cmin = 0.29. Results

in Figure 7.14(a) shows the three–dimensional phase space with c = 0.40 >

cmin. The yellow trajectory is obtained by integrating (7.25)–(7.27) and care-

fully choosing an initial point to give a heteroclinic orbit that joins the invaded

and uninvaded equilibrium points. Figure 7.14(b) shows a two–dimensional

projection of this trajectory in the US plane. Results in Figure 7.14(c)–(d)

show analogous results for c = 0.29 = cmin. The most interesting results here

are in Figure 7.14 for c = 0.25 < cmin where we see that the trajectory enters

the uninvaded equilibrium point at the origin, but that this trajectory is non-

physical since it involves U < 0 along that trajectory. This transition is clear

in Figure 7.14(f) where we show the projection of the trajectory in the US

plane. This transition from having U > 0 for c > cmin to U < 0 for c < cmin

also holds for other choices of r1 and r2 (not shown).
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(a) (b)

(c) (d)

(e) (f)

Figure 7.14: Phase space for c < cmin. All results correspond to r1 = 1 and r2 =
2. Results in: (a)–(b) correspond to a smooth–fronted travelling wave with c = 0.4 >
cmin; (c)–(d) correspond to a sharp–fronted travelling wave with c = 0.29 = cmin; and,
(e)–(f) does not correspond to a travelling wave since c = 0.25 < cmin. Results in (a),
(c) and (e) are obtained by integrating (7.25)–(7.27) numerically, with a careful choice
of initial condition so that we find the unique trajectory that enters the origin. Results
in (b), (d) and (f) are obtained by projecting the three–dimensional trajectory in (a),
(c) and (e), respectively, onto the US plane. In each panel the invaded equilibrium
point, (Ū , S̄, W̄ ) = (1, R, 0), is shown with a green disc. The uninvaded equilibrium
point, (Ū , S̄, W̄ ) = (0, 0, 0), is shown with a blue disc. All trajectories are obtained
by integrating (7.25)–(7.27) using Heun’s method with dζ = 1× 10−2.

7.5.3.5 Perturbation solution for c→ ∞

In Equation (52) we left the expression for U1(ẑ) as an integral. Here, we give

present a solution for U1(ẑ) for some special choices. For r2 = 1 we obtain

U1(ẑ) =

(
r1exp(ẑ)

[1 + exp(ẑ)]2

)(
− ln[1 + exp(ẑ)]2 + 2ẑ ln[1 + exp(ẑ)]

+ 2Li2[1 + exp(ẑ)]− ln[exp(−ẑ) + 1]) ,

(7.63)
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and when r2 = 2 we obtain

U1(ẑ) =

(
r1exp(ẑ)

2[1 + exp(ẑ)]2

)(
−2 ln[1 + exp(ẑ)]2 + 4ẑ ln[1 + exp(ẑ)]

+4Li2[1 + exp(ẑ)] + [exp(2ẑ) + 4exp(ẑ)− 1] ln[exp(−ẑ) + 1]− exp(ẑ)) ,

(7.64)

where Li2(x) is a special function called the dilogarithm function that is given

by [Maple 2021]

Li2(x) =

∫ x

1

ln(t)

1− t
dt. (7.65)

Additional results in Figure (7.15) compare the O(1/c2) perturbation so-

lution for U(z) with numerical estimates from the long–time numerical PDE

solution, together with the O(1) perturbation solution for S(z) with numerical

estimates from the long–time numerical PDE solution. In this case we focus

on c = 1 for various values of r1 and r2, as indicated. Here, despite the fact we

are working with a relatively small value of c and the perturbation solutions

are valid in the limit c → ∞, the accuracy of the perturbation solutions is

remarkable.

(a) (b) (c)

Figure 7.15: Perturbation solution for smooth–fronted travelling wave so-
lutions. Travelling wave solutions U(z) and S(z) are obtained from solving Equations
(7.3)–(7.5) with initial conditions (7.8)–(7.9), where a = 1 such as the obtained wave
speed is c = 1.00, with R = 0.5, 1 and 2 in (a)–(c), respectively. Numerical solutions
U(z) and S(z) are shown in blue and green, respectively, and perturbation solutions
for U(z) and S(z) are shown in dashed yellow and purple, respectively.
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Chapter 8

Conclusion

8.1 Summary of the research

We started this work by explaining some limitations of the Fisher-KPP model,

such as the inability to mimic an invading sharp front of cell population.

The model does not support the extinction and the recession of a population.

The Fisher-KPP model consists of a single-species equation that does not

describe explicitly the interaction of the population with its environment. In

our research objectives, we aimed at removing those limitations.

In Chapter 2, we posed the Fisher-Stefan model and studied the solutions

of the model. We compared the features of the travelling wave solutions of the

Fisher-KPP and the Fisher-Stefan models. The differences between the two

models are due to different boundary conditions. The Fisher-KPP equation is

defined on an infinite domain where the population vanishes only at infinity.

The Fisher-Stefan model is characterised by a moving boundary, governed by

a Stefan condition. The first major difference between both models appears

in the shape and the speed of the travelling wave solutions: the Fisher-KPP

solution is smooth without compact support while the Fisher-Stefan travelling

wave solution has a sharp-front with compact support. This difference can

also be seen in the phase plane: the physical solutions of the Fisher-KPP

model correspond to minimum speed cmin = 2 and Fisher-Stefan travelling

solutions correspond to wave speeds 0 < c < 2, that are usually discarded in

the Fisher-KPP model. The Stefan condition in the phase plane removes the

non-physical part of the trajectory, where the density falls below zero. The

second major difference between both models is that the initial population
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of Fisher-KPP model always evolve to a travelling solution while some initial

conditions in the Fisher-Stefan model lead to extinction. For κ < κcrit, the

solution eventually goes extinct depending if the initial population occupies a

domain smaller than the critical length, Lcrit = π/2. Using phase plane and

perturbation analysis, we provided a practical relationship between the wave

speed of the Fisher-Stefan model and the parameter κ of the Stefan condition.

In Chapter 3, we extended the Fisher-Stefan model to support travelling

solutions representing invasion and recession. The model gives rise to invading

travelling wave solution with c → 2− when κ → ∞ and to receding travelling

wave solutions with c → −∞ when κ → −1. Using perturbation analysis,

we showed that slowly invading or receding travelling wave solutions of the

Fisher-Stefan model move with speed c ∼ κ/
√
3 as κ → 0, whereas rapidly

receding travelling wave solutions of the Fisher-Stefan model move with speed

c ∼ 2−1(κ+ 1)−1/2 as κ→ −1+.

In Chapter 4, we proposed a generalisation of the Fisher-Stefan model that

enables us to study travelling wave solutions with any wave speed, −∞ < c <

∞. We modified the Stefan condition in the Fisher-Stefan model to set the

density of population uf ∈ [0, 1), at the moving boundary. With the previous

Fisher-Stefan model, where uf = 0, the wave speeds were restricted to c < 2.

In the generalised Fisher-Stefan model with uf ∈ [0, 1), the speed c = 2 does

not represent any special limit. We used phase plane and perturbation analysis

to give a practical relationship of the wave speed c, in function of κ and uf, for

slow (|c| ≪ 1) invading and receding travelling waves solutions, fast invading

(c→ ∞) and fast receding (c→ −∞) travelling waves solutions.

In Chapter 5, we extended the Fisher-Stefan model to a two-phase moving

boundary model. The two-phase model describes two populations of cells

migrating and proliferating, as when cancer cells invade into surrounding skin

cells. The moving boundary model gives rise to travelling wave solutions that

move in either the positive or negative direction, meaning that the model

can simulate malignant invasion or recession. We used numerical simulations

and perturbation methods to show that the travelling wave solution for each

population is associated with a different trajectory in the phase plane, that is

normally disregarded as being non physical in the classical Fisher-KPP model.

We presented the steady states behind and ahead of the moving front, for each
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population, in either the positive or negative direction, and we showed how

the invasion of cancer into skin is symmetrical to the invasion of the skin into

cancer. Finally, we explored qualitatively other possible solutions, such as

stalling or extinction.

In Chapter 6, we studied two coupled differential equations that describe

the dynamics of acid-mediated invasion of cancer into surrounding skin tis-

sues. We used time-dependent numerical solutions of the governing partial

differential equations to illustrate how the travelling wave speed c depends on

γ, the rate of degradation of skin by cancer cells, and on V, the far field density

of surrounding tissues. We obtained smooth-fronted travelling wave solutions

when V < 1 and sharp-fronted travelling wave solutions when V = 1. Numeri-

cal simulations were useful to establish that the minimal speed cmin = 2(1−V)

was independent of γ for γ < γc and that the invading speed c increases with

γ for γ > γc, with c → 2− as γ → ∞. We also deduced the dispersion rela-

tionship using linearisation and numerical results from initial conditions where

the density decays exponentially with position. We studied the role of γ, the

decay rate of the skin. Analysis of the invasion model for γ ≫ 1 indicates

that the width of the overlap region decreases while γ is increasing, implying

that both densities of population become decoupled. Comparison of travelling

wave solution when γ ≫ 1 to the disregarded trajectory of Fisher-KPP model

in the phase plane showed an interesting similarity.

In Chapter 7, we studied two coupled differential equations that describe

the dynamics of substrate-mediated invasion. Time-dependent numerical so-

lutions of the governing partial differential equations from the substrate model

evolves to two types of travelling wave solutions, depending of the initial con-

ditions. Sharp-fronted travelling waves solutions with c = cmin evolve from

initial conditions with compact support while smooth-fronted travelling waves

solutions with c > cmin evolve from initial conditions with exponential decay.

We compared the features of travelling wave solutions of the substrate model

to travelling wave solutions of the Porous-Fisher model in the limit where

r1 ≫ 1 and r2 ≫ 1. We used a desingularised phase space and the slow mani-

fold reduction to show the differences between travelling waves with minimum

speed and fast travelling waves. We provided accurate approximations for the

shape of sharp-fronted travelling waves when r1 ≫ 1 and r2 ≫ 1, and for the
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shape of smooth-fronted travelling wave solutions when c≫ 1.

8.2 Future work

8.2.1 Fisher-Stefan model

In Chapters 2 to 4, we generalised the Fisher-Stefan model to support reced-

ing and invading travelling wave solutions, with wave speed −∞ < c <∞. In

chapter 4, we studied the two-phase moving boundary problem where the pop-

ulation dynamics are described by the Fisher-KPP model. The Fisher-Stefan

model has been studied only for one dimension, regardless of the number of

populations. Realistic biological models requires simulations in two or three

dimensions, to represent the shape of tumours for example [Byrne and Chap-

lain 1997, Swanson et al. 2003]. The extension of the one and two-phase

Fisher-Stefan model for two or three dimensions is an important future work,

if the model is to be applied to real biological systems.

We have shown that we can estimate the travelling wave speed c from the

parameter κ, and inversely we can obtain the parameter κ from the wave speed

c. We have not provided a sufficient exhaustive biological interpretation of the

parameter κ in the Stefan condition. Typical values of diffusivity, proliferation

rate and carrying capacity density are obtained from experiments [Johnston

et al. 2015, Johnston et al. 2016, Jin et al. 2016] and are used to confirm

the relationship c = 2
√
λD. In the same way, there is a crucial work to be

done to confirm experimentally the relationship between κ and wave speed c,

either by calculating the wave speed from the relationship c = 2
√
λD and then

deducing the typical range for κ, or by setting an experiment to measure the

loss of population at the boundary.

The Fisher-Stefan model that we studied was built on the Fisher-KPP

model that describes the proliferation of cells using a logistic growth function.

It would be interesting to include a general source term [Tsoularis and Wallace

2002] in the Fisher-Stefan model. For example, including a source term that

describes a strong Allee effect [Fadai and Simpson 2020b] can lead to the

extinction of the population, without the need to define a moving boundary.

It would be interesting to see what modifications would be brought to the

outcomes of the model with an Allee effect by adding a moving boundary.
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8.2.2 Models of invasion with coupled differential equations

Finally in chapter 5, we added a second population to the moving boundary

model. We used a single-species equation for each population, thereby we

limited the interaction between both populations to the interface governed by

a two-phase Stefan condition. The speed of the moving boundary is related

to the flux of density of each population at the boundary. Measuring the loss

or the gain of density for each population at the boundary is not an easy task

in the context of a biological experiment. The Stefan condition is coupled to

a system of differential equations that yields a travelling wave. Therefore, the

loss or the gain of population at the moving boundary described by the Stefan

condition is related to the shape and the speed of the travelling wave. Each

term in the Stefan condition may not be explicitely related to a measurement in

a laboratory experiment. We suggest to parametrise the model by measuring

the speed of the moving front. In the same manner as for one population, the

parameter κ can deduced from the speed of the invading or retreating front.

The observation that we have two parameters κ to estimate does not cause

any supplementary challenge, as one parameter could be estimated relatively

to the other parameter, set to be one.

The cancer and the skin population are not coupled in the two-phase

boundary model that we studied. As shown Figure 8.1(a), the populations are

separated by an interface at the moving boundary. A model that describes the

interactions between the two populations would require two coupled differen-

tial equations, where each population occupies a domain well-defined with a

moving boundary as in Figure 8.1(b). Each moving boundary would evolve

following a Stefan condition and the domain occupied by one population could

overlap on the domain occupied by the other population.

Chapter 6 studied a model of cancer cells invading into surrounding skin

tissues. The model uses two coupled differential equations where the prolifer-

ation of cancer follows a logistic growth. A obvious extension is to study other

types of function for the proliferation term [Tsoularis and Wallace 2002]. It

would be interesting to find a mathematical expression for the critical value

γc beyond which the minimal speed depends on γ.

Chapter 7 studied a continuum model of coupled partial differential equa-

tions to simulate the growth of tissues on bioscaffolds, where the cells produced
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Figure 8.1: Adding another moving boundary to the two-phase model. (a)
Populations of skin and cancer are separated by a moving boundary at x = L(t),
represented by a black disc. (b) Each population has a domain defined by a moving
boundary. Lc(t) and Ls(t) correspond to the moving boundaries of the domain of
the populations of cancer and skin, respectively, and are represented by red and blue
discs.

a substrate composed of an extracellular matrix of macromolecules. The de-

cay due to the natural process of degradation of the substrate is a linear term

in the differential equation that describes the rate of change of the substrate.

The advantage of keeping a linear term is to simplify the work to be done when

estimating the parameter of the decay rate. A future work could consider a

quadratic decay or a more complicated term. The diffusion of the tissue cells

was described by a nonlinear term, where the diffusion of cells would increase

with the density of the substrate. It would be pertinent to study different

power law functions to describe the nonlinear diffusion. Finally, the growth of

tissue on bioscaffolds is replicated in experiments in two or three dimensions.

It is natural to verify if the travelling wave analysis that we effectuated for the

model in one dimension still holds in two or three dimensions.
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Birkhäuser, Boston. (doi:/10.1007/0-8176-4415-6 3)

Du Y, Lin Z (2010) Spreading-vanishing dichotomy in the diffusive logistic

model with a free boundary. SIAM Journal on Mathematical Analysis 42,

377–405. (doi:10.1137/090771089)

Du Y, Guo Z (2011) Spreading-vanishing dichotomy in a diffusive logistic

model with a free boundary, II. Journal of Differential Equations 250, 4336–

4366. (doi:10.1016/j.jde.2011.02.011)

268

https://doi.org/10.1007/s00285-019-01391-y
https://arxiv.org/abs/2107.11106v1
https://doi.org/10.1007/s11538-020-00718-x
https://doi.org/10.1137/19M1275875
https://doi.org/10.1007/0-8176-4415-6_3
http://doi.org/10.1137/090771089
http://doi.org/10.1016/j.jde.2011.02.011


Du Y, Guo Z. 2012. The Stefan problem for the Fisher-KPP equation. Journal

of Differential Equations 253, 996–1035.

Du Y, Lou B (2015) Spreading and vanishing in nonlinear diffusion prob-

lems with free boundaries. Journal of the European Mathematical Society

17, 2673–2724. (doi:10.4171/JEMS/568)

Du Y, Matano H, Wang K (2014) Regularity and asymptotic behavior of

nonlinear Stefan problems. Archive for Rational Mechanics and Analysis 212,

957–1010. (doi:10.1007/s00205-013-0710-0)

Du Y, Matsuzawa H, Zhou M (2014) Sharp estimate of the spreading speed

determined by nonlinear free boundary problems. SIAM Journal on Mathe-

matical Analysis 46, 375–396. (doi:10.1137/130908063)

Dzobo K, Thomford NE, Senthebane DA, Shipanga H, Rowe A, Dandara

C, Pillay M, Motaung KSCM (2018) Advances in regenerative medicine and

tissue engineering: Innovation and transformation of medicine. Stem Cells

International 2018, 2495848. (doi:10.1155/2018/2495848)

Edelstein-Keshet L (2005) Mathematical models in biology. SIAM, Philadel-

phia. (doi:10.1137/1.9780898719147).

El-Hachem M, McCue SW, Jin W, Du Y, Simpson MJ (2019) Revisiting the

Fisher-Kolmogorov-Petrovsky-Piskunov equation to interpret the spreading-

extinction dichotomy. Proceedings of the Royal Society A : Mathematical,

Physical and Engineering Sciences 475, 20190378. (10.1098/rspa.2019.0378)

El-Hachem M, McCue SW, Simpson MJ (2020) A sharp-front moving bound-

ary model for malignant invasion. Physica D: Nonlinear Phenomena 412,

132639. (doi:10.1016/j.physd.2020.132639)

El-Hachem M, McCue SW, Simpson MJ (2021) Invading and reced-

ing sharp-fronted travelling waves. Bulletin Mathematical Biology 83, 35.

(doi:10.1007/s11538-021-00862-y)

El-Hachem M, McCue SW, Simpson MJ (2021) Travelling wave analysis of

cellular invasion into surrounding tissues. Physica D: Nonlinear Phenomena

428, 133026. (doi:10.1016/j.physd.2021.133026)

269

http://doi.org/10.4171/JEMS/568
http://doi.org/10.1007/s00205-013-0710-0
https://doi.org/10.1137/130908063
https://doi.org/10.1155/2018/2495848
https://doi.org/10.1137/1.9780898719147
https://doi.org/10.1098/rspa.2019.0378
https://doi.org/10.1016/j.physd.2020.132639
https://doi.org/10.1007/s11538-021-00862-y
https://doi.org/10.1016/j.physd.2021.133026


El-Hachem M, McCue SW, Simpson MJ (2021) Non-vanishing sharp-fronted

travelling wave solutions of the Fisher-Kolmogorov model. Accepted for pub-

lication in Mathematical Medecine and Biology. (arXiv:2107.05210v2)

Fadai NT, Simpson MJ (2020) Population dynamics with threshold effects

give rise to a diverse family of Allee effects. Bulletin of Mathematical Biology

82, 74. (doi:10.1007/s11538-020-00756-5)

Fadai NT, Simpson MJ (2020) New travelling wave solutions of the Porous-

Fisher model with a moving boundary. Journal of Physics A: Mathematical

and Theoretical 53, 095601. (10.1088/1751-8121/ab6d3c).

Fasano A, Herrero MA, Rodrigo MR (2009) Slow and fast invasion waves

in a model of acid-mediated tumour growth. Mathematical Biosciences 220,

45–56. (doi:10.1016/j.mbs.2009.04.001)

Fife PC (1979) Long time behavior of solutions of bistable nonlinear dif-

fusion equations. Archive for Rational Mechanics and Analysis 70, 31–36.

(doi:10.1007/BF00276380)

Fisher RA. 1937. The wave of advance of advantageous genes. Annals of

Eugenics 7, 355–369. (doi:10.1111/j.1469-1809.1937.tb02153.x)

Flegg JA, Menon SN, Byrne HM, McElwain DLS (2020) A current perspec-

tive on wound healing and tumour-induced angiogenesis. Bulletin of Mathe-

matical Biology 82, 43. (doi:10.1007/s11538-020-00696-0)

Font F, Mitchell SL, Myers TG (2013) One-dimensional solidification of su-

percooled melts. International Journal of Heat and Mass Transfer 62, 411–

421. (doi:10.1016/j.ijheatmasstransfer.2013.02.070)

Forbes L. 1997. A two-dimensional model for large-scale bushfire spread.

Journal of the Australian Mathematical Society. Series B, Applied mathe-

matics. 39, 171–194. (doi:10.1017/S0334270000008791)

Fort J (2012) Synthesis between demic and cultural diffusion in the Neolithic

transition in Europe. Proceedings of the National Academy of Sciences 109,

18669–18673. (doi:10.1073/pnas.1200662109)

Friedman A (2008) A multiscale tumour model. Interfaces and Free Bound-

aries 10, 245–262. (doi:10.4171/ifb/188)

270

https://arxiv.org/abs/2107.05210
https://doi.org/10.1007/s11538-020-00756-5
https://doi.org/10.1088/1751-8121/ab6d3c
https://doi.org/10.1016/j.mbs.2009.04.001
https://doi.org/10.1007/BF00276380
http://doi.org/10.1111/j.1469-1809.1937.tb02153.x
https://doi.org/10.1007/s11538-020-00696-0
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.02.070
http://doi.org/10.1017/S0334270000008791
https://doi.org/10.1073/pnas.1200662109
https://doi.org/10.4171/ifb/188


Friedman A (2014) Free boundary problems in biology. Proceedings of the

Royal Society A: Mathematical, Physical and Engineering Sciences 373,

20140368. (doi:10.1098/rsta.2014.0368)

Gaffney EA, Maini PK (1999) Modelling corneal epithelial wound closure in

the presence of physiological electric fields via a moving boundary formalism.

IMA Journal of Mathematics Applied in Medicine and Biology 16, 369–393.

(doi:10.1093/imammb/16.4.369)

Gallay T, Mascia C (2021). Propagation fronts in a simplified model of tumor

growth with degenerate cross-dependent self-diffusivity. Nonlinear Analysis:

Real World Applications 63, 103387. (doi:10.1016/j.nonrwa.2021.103387)

Gatenby RA, Gawlinski ET (1996) A reaction-diffusion model of cancer in-

vasion. Cancer Research 56, 5745–5753. (doi:10.1007/s00285-013-0665-7)

Gerlee P, Nerlander S (2012) The impact of phenotypic switching on

glioblastoma growth and invasion. PLoS Computational Biology 8, e1002556.

(doi:0.1371/journal.pcbi.1002556)

Griffith B, Michael Scott J, Carpenter JW, Reed C (1989) Translocation

as a species conservation tool: status and strategy. Science 245, 477–480.

(doi:10.1126/science.245.4917.477)

Grindrod P (2007) Patterns and waves. Oxford: Oxford University Press.

Gupta SC (2017) The classical Stefan problem. Basic concepts, modelling

and analysis with quasi-analytical solutions and methods. Second edition.

Elsevier, Amsterdam.

Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100, 57–70.

(doi:10.1016/j.cell.2011.02.013)

Haridas P, McGovern JA, McElwain DLS, Simpson MJ (2017) Quantita-

tive comparison of the spreading and invasion of radial growth phase and

metastatic melanoma cells in a three-dimensional human skin equivalent

model. PeerJ 5, e3754. (doi:10.7717/peerj.3754)

Haridas P, Browning AP, McGovern JA, McElwain DLS, Simpson MJ (2018)

Three-dimensional experiments and individual based simulations show that

271

https://doi.org/10.1098/rsta.2014.0368
https://doi.org/10.1093/imammb/16.4.369
https://doi.org/10.1016/j.nonrwa.2021.103387
http://doi.org/10.1007/s00285-013-0665-7
https://doi.org/10.1371/journal.pcbi.1002556
http://doi.org/10.1126/science.245.4917.477
https://doi.org/10.1016/j.cell.2011.02.013
http://doi.org/10.7717/peerj.3754


cell proliferation drives melanoma nest formation in human skin tissue. BMC

Systems Biology 12, 34. (doi:10.1186/s12918-018-0559-9)

Harley K, van Heijster P, Marangell R, Pettet GJ, Wechselberger M (2015)

Numerical computation of an Evans function for travelling waves. Mathemat-

ical Biosciences 266, 36–51. (doi:10.1016/j.mbs.2015.05.009)

Harris S (2004) Fisher equation with density-dependent diffusion: special

solutions. Journal of Physics A: Mathematical and Theoretical 37, 6267.

(10.1088/0305-4470/37/24/005)

Hill JM (1987) One-dimensional Stefan problems: an introduction. First Edi-

tion, Longman Scientific & Technical, Harlow.

Hogan AB, Myerscough MR (2017) A model for the spread of an invasive

weed Tradescantia fluminensis. Bulletin of Mathematical Biology 79, 1201–

1217. (doi:10.1007/s11538-017-0280-7)

Holder AB, Rodrigo MR (2015) Model for acid-mediated tumour inva-

sion with chemotherapy intervention II: Spatially heterogeneous populations.

Mathematical Biosciences 270, 10–29. (doi:10.1016/j.mbs.2015.09.007)

Holder AB, Rodrigo MR, Herrero MA (2014) A model for acid-mediated

tumour growth with nonlinear acid production term. Applied Mathematics

and Computation 227, 176–198. (doi:10.1016/j.amc.2013.11.018)

Holmes EE, Lewis MA, Banks JE, Veit RR (1994) Partial differential equa-

tions in ecology: spatial interactions and population dynamics. Ecology 74,

17–29. (doi:10.2307/1939378)

Horgan FG (2009) Invasion and retreat: shifting assemblages of dung beetles

amidst changing agricultural landscapes in central Peru. Biodiversity and

Conservation 18, 3519. (doi:10.1007/s10531-009-9658-7)

Ibrahim K, Sourrouille P, Hewitt GM (2000) Are recession populations of the

desert locust (Schistocerca gregaria) remnants of past swarms? Molecular

Ecology 9, 783–791. (doi:10.1046/j.1365-294x.2000.00932.x)

Jin W, Shah ET, Penington CJ, McCue SW, Chopin LK, Simpson MJ (2016)

Reproducibility of scratch assays is affected by the initial degree of confluence:

272

https://doi.org/10.1186/s12918-018-0559-9
http://doi.org/10.1016/j.mbs.2015.05.009
http://dx.doi.org/10.1088/0305-4470/37/24/005
https://doi.org/10.1007/s11538-017-0280-7
https://doi.org/10.1016/j.mbs.2015.09.007
https://doi.org/10.1016/j.amc.2013.11.018
http://dx.doi.org/10.2307/1939378
https://doi.org/10.1007/s10531-009-9658-7
https://doi.org/10.1046/j.1365-294x.2000.00932.x


experiments, modelling and model selection. Journal of Theoretical Biology

390, 136–145. (doi:10.1016/j.jtbi.2015.10.040)

Jin W, Shah ET, Penington CJ, McCue SW, Maini PK, Simpson MJ (2017)

Logistic proliferation of cells in scratch assays is delayed. Bulletin of Mathe-

matical Biology 79, 1028–1050. (doi:10.1007/s11538-017-0267-4)

Jin W, Lo K-Y, Chou S-E, McCue SW, Simpson MJ (2018) The role of initial

geometry in experimental models of wound closing. Chemical Engineering

Science 179, 221–226. (doi:10.1016/j.ces.2018.01.004)

Jin W, Lo K-Y, Sun Y-S, Ting Y-H, Simpson MJ (2020) Quantifying the

role of different surface coatings in experimental models of wound healing.

Chemical Engineering Science 220, 115609. (doi:10.1016/j.ces.2020.115609)

Jin W, Spoerri L, Haass NK, Simpson MJ (2021) Mathematical model of

tumour spheroid experiments with real-time cell cycle imaging. Bulletin of

Mathematical Biology 83, 44. (10.1007/s11538-021-00878-4).

Johnston ST, Shah ET, Chopin LK, McElwain DLS, Simpson MJ (2015)

Estimating cell diffusivity and cell proliferation rate by interpreting IncuCyte

ZOOMTM assay data using the Fisher-Kolmogorov model. BMC Systems

Biology 9, 38. (doi:10.1186/s12918-015-0182-y)

Johnston ST, Ross JV, Biner BJ, McElwain DLS, Haridas P, Simp-

son MJ (2016) Quantifying the effect of experimental design choices

for in vitro scratch assays. Journal of Theoretical Biology 400, 19–31.

(doi:10.1016/j.jtbi.2016.04.012) (doi:10.1016/j.jtbi.2006.06.021)

Johnston ST, Baker RE, McElwain DLS, Simpson MJ (2017) Co–operation,

competition and crowding: a discrete framework linking allee kinetics, non-

linear diffusion, shocks and sharp–fronted travelling waves. Scientific Reports

7, 42134. (doi:10.1038/srep42134)

Kaliappan P (1983) An exact solution for travelling waves of ut = Duxx +

u − uk. Physica D: Nonlinear Phenomena 11, 368-374. (doi:10.1016/0167-

2789(84)90018-6)

Keller EF, Segel LA (1971) Model for chemotaxis. Journal of Theoretical

Biology 30, 225–234. (doi:https://doi.org/10.1016/0022-5193(71)90050-6)

273

https://doi.org/10.1016/j.jtbi.2015.10.040
https://doi.org/10.1007/s11538-017-0267-4
http://doi.org/10.1016/j.ces.2018.01.004
https://doi.org/10.1016/j.ces.2020.115609
https://doi.org/10.1007/s11538-021-00878-4
https://doi.org/10.1186/s12918-015-0182-y
https://doi.org/10.1016/j.jtbi.2016.04.012
http://doi.org/10.1016/j.jtbi.2006.06.021
https://doi.org/10.1038/srep42134
https://doi.org/10.1016/0167-2789(84)90018-6
https://doi.org/10.1016/0167-2789(84)90018-6
https://doi.org/10.1016/0022-5193(71)90050-6


Killengreen ST, Ims RA, Yoccoz NG, Br̊athen KA and Henden J–A,

Schott T (2007) Structural characteristics of a low Arctic tundra ecosys-

tem and the retreat of the Arctic fox. Biological Conservation 135, 459–472.

(doi:10.1016/j.biocon.2006.10.039)

Kimpton LS, Whiteley JP, Waters SL, King JR, Oliver JM (2013) Multiple

travelling-wave solutions in a minimal model for cell motility. Mathematical

Medicine and Biology 30, 241-272. (doi:10.1093/imammb/dqs023)

King JR, McCabe PM (2003) On the Fisher-KPP equation with fast non-

linear diffusion. Proceedings of the Royal Society A: Mathematical, Physical

and Engineering Sciences 459, 2529–2546. (doi:/10.1098/rspa.2003.1134)

King JR, Riley DS (2000) Asymptotic solutions to the Stefan problem with

a constant heat source at the moving boundary. Proceedings of the Royal

Society A: Mathematical, Physical and Engineering Sciences 456, 1163–1174.

(doi:10.1098/rspa.2000.0556)

King JR, Riley DS, Wallman AM (1999) Two-dimensional solidification in

a corner. Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences 455, 3449–3470. (doi:10.1098/rspa.1999.0460)

Kolmogorov AN, Petrovskii PG, Piskunov NS (1937) A study of the diffusion

equation with increase in the amount of substance, and its application to a

biological problem. Moscow University Mathematics Bulletin 1, 1–26.

Kot M (2003) Elements of Mathematical Ecology. Cambridge University

Press, Cambridge.

Krause AL, Van Gorder RA (2020) A non-local cross-diffusion model of pop-

ulation dynamics II: Exact, approximate and numerical traveling waves in

single- and multi-species populations. Bulletin of Mathematical Biology 82,

113. (doi:10.1007/s11538-020-00787-y)
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