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Abstract

Mathematical models are routinely used in tissue engineering to study tis-

sue growth in various types of experiments. These models can be ob-

tained using a variety of methods, such as taking a phenomenological ap-

proach based on differential equations, or constructing discrete cell-based

approaches and using coarse-graining to derive approximate differential

equations. In this thesis, we begin by interpreting a new set of experi-

ments describing thin tissue growth in 3D-printed scaffolds using a simple

partial differential equation. By calibrating the solution of the model to

match experimental observations, we explore whether rates of cell migra-

tion and cell proliferation depend upon the shape of the 3D-printed pores.

Our results suggest that rates of migration and proliferation are apparently

independent of pore shape, and this has important implications for how tis-

sue growth experiments are designed and interpreted. The second part of

the thesis involves a discrete mechanical cell-based model of epithelial tis-

sues which leads to a nonlinear diffusion equation with a nonlinear source

term, and a nonlinear moving boundary condition. While the continuum

limit model has been derived and validated previously, here we focus on

parameter choices where the solution of the continuum limit model does

not give a good approximation to averaged data from the discrete model.

We achieve this using equation learning methods, and our approach allows

us to derive new tissue-scale partial differential equation models, whose so-

lutions accurately capture averaged data from the corresponding discrete

model in a way that was not possible using standard coarse-graining ap-

proaches.
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Chapter 1

Introduction

1.1 Overview

Tissue engineering provides an approach for reconstructing and regenerat-

ing tissues and organs [3–5], and has been applied in a variety of contexts

such as wound healing [6–9] and bone tissue regeneration [10]. A common

experiment in tissue engineering is a tissue growth experiment, depicted

in Figure 1.1 [11–13]. In these experiments, cells are initially seeded onto

a boundary of scaffold, as shown in day 0 of Figure 1.1. These cells then

detach from the scaffold boundary and move into the pore over a short

period of time, where they then migrate and proliferate to grow the tissue

as in days 1–18 of Figure 1.1, until the pore is eventually completely closed,

as in day 28. A key quantity of interest in these experiments is the bridg-

ing time, namely the time it takes for the tissue to completely cover the

pore [13–15]. Recent advancements in 3D printing and melt electrowriting

technology for biofabrication [11, 12] have allowed for the efficient investi-

gation of tissue growth in complicated pore geometries, enabling realistic

experiments to be performed with precise control over various experimental

conditions [10,14,16–20].

The influence of pore geometry on tissue growth is well-known, but how

cellular-level mechanisms depend on pore geometry is poorly understood

[21–23]. An interesting feature of tissue growth experiments, common to

many geometries, is the appearance of a circular tissue front as tissue grows,

which has been observed previously in square, triangular, hexagonal, and

wave-like pore geometries [13, 24–26]. Two examples of a circular front

are shown in Figure 1.2, where we show snapshots of images taken from

1
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Figure 1.1: Snapshots from a series of tissue growth experiments in 3D
printed scaffolds. Each panel shows a different experiment taken at the
shown time. The image at day 0 is the initial scaffold of imaged by Scanning
Electron Microscopy, where each individual pore is of size 500 × 500 µm.
The remaining days show the tissue growth over time, depicting the cell
nuclei (red), cytoskeleton (green), and the void (black). Image adapted
from Ref. [13] with permission from Elsevier.

a tissue growth experiment on a square pore (left) and a wave-like pore

(right); the tissue growth experiments in Figure 1.2 are what we consider

in this thesis, where the cells used are murine calvarial osteoblastic cells

(MC3T3-E1) [27]. The similarities between the experiments on these ge-

ometries, namely that both the square pore and the wave-like pores both

show a circular front in Figure 1.2, invokes the question of whether the cel-

lular mechanisms driving tissue growth are independent of pore shape, and

whether we can use experimental results from one geometry to make in-

ference about, for example, bridging times on other geometries. Chapter 2

investigates these questions, where we demonstrate that the cellular mech-

anisms are independent of pore shape and show how to extrapolate results

from one geometry onto a new geometry. We demonstrate this indepen-

dence using mathematical modelling with a likelihood-based uncertainty

framework. The likelihood component of this work is crucial as it allows

us to not only estimate parameters, denoted by θ, describing the cellular

mechanisms using a likelihood function, but it enables us to make predic-

tions with uncertainty so that we can make informed predictions between

different geometries. In particular, using the recent work of Simpson and

Maclaren [28], a key component of the work in Chapter 2 is the propaga-
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tion of uncertainty in θ into some function of the parameters, q(θ), which

in this thesis describes either the density profiles themselves, or statistics

such as the bridging time.

Figure 1.2: Examples of circular fronts arising in tissue growth experiments.
The images show the scaffold pore boundary (red boundary), void (black
interior), void boundary (magenta boundary), tissue (blue/green region),
and fibres (exterior black boundary). The white outlines show the scaffold
boundaries. The blue channel in the microscope images shows the cell
nuclei (DAPI), and the green channel shows the tissue and cytoskeleton
(phalloidin). The DAPI on the right image is shown in grey.

Mathematical modelling is a crucial part of tissue engineering, as ex-

periments by themselves do not provide direct information about observed

effects, such as the cellular mechanisms [29]. Many mathematical mod-

els have been developed for modelling tissue growth [30–32]. The work in

Chapter 2 uses a Porous-Fisher model from Browning et al. [24], given by

∂u(x, t)

∂t
=

contact stimulated cell migration︷ ︸︸ ︷
D∇ ·

[
u(x, t)

K
∇u(x, t)

]
+

contact inhibited cell proliferation︷ ︸︸ ︷
λu(x, t)

[
1 − u(x, t)

K

]
, x ∈ Ω,

du(x, t)

dt
= λu(x, t)

[
1 − u(x, t)

K

]
︸ ︷︷ ︸

contact inhibited cell proliferation

, x ∈ ∂Ω,

(1.1)

where u(x, t) denotes the cell density at time t and position x, D the cell

diffusivity, λ the cell proliferation rate, K the carrying capacity density, Ω

is the pore interior bounded by the red boundaries in Figure 1.2, and ∂Ω is

the boundary of Ω shown in red. It is through the parameters D and λ in
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(1.1), together with the likelihood-based framework in Chapter 2, that we

are able to make the connection between experimental results and insights

about the individual cellular mechanisms that describe the experiments in

this thesis; without the model (1.1), we cannot directly estimate effects

related to these cellular mechanisms.

Figure 1.3: Simplifying a discrete mechanical model of cells. (a) A snapshot
from a tissue growth experiment, with the red boundary showing the void
boundary. (b) The zoomed-in region from the white rectangle in (a). The
blue dots represent individual cells, and the edges indicate connections
between cells that allow the cells to interact. Black dots show a slice
through the two-dimensional cell configuration, with the leading edge L(t)
shown by the base of a black arrow indicating the direction of L(t). (c)
Zoomed-in view of the black dots from (b), with springs showing how
cell boundaries are connected and the red dot showing the position of the
leading edge.

When considering more complicated experiments, it may be the case

that models such as (1.1) are not known, which limits the generalisability

of the framework developed in Chapter 2 since we do not have parame-

ters such as D and λ in Equation (1.1) that we can easily calibrate and

interpret according to our hypotheses. Models for such experiments are

traditionally derived through empirical reasoning [29, 33], using physical

and conservation arguments to determine what terms should be included

in the model. For example, Equation (1.1) can be derived by assuming that
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the migration of a cell depends on the cells surrounding the cell, leading

to contact stimulated cell migration, and assuming that the growth of cells

grows logistically both inside the pore and on the boundary so that we have

contacted inhibited cell proliferation [24, 32]. An alternative approach to

modelling these experiments is to use individual-based discrete mechanical

models, where we instead model individual cells rather than cell densities

[34]. Such an approach is advantageous in this situation as individual-based

models are typically easier to derive, using arguments based on Newton’s

laws [34], and since modelling cells individually allows properties such as

proliferation rates to be assigned to cells directly. In the case of experi-

ments like those shown in Figure 1.3(a), one approach could be to connect

individual cells using a network model and then allow cells to exert forces

onto other cells if they share an edge in the network [34–37], as shown

in Figure 1.3(b). The edge connections could be modelled so that, from

Hooke’s law, [34]

η
dxi

dt
=
∑

j∈Ni(t)

k (s− ∥xij(t)∥) x̂ij(t), (1.2)

where xi is the position of the ith cell, Ni(t) are the set of cells sharing an

edge with xi at the time t, η is the drag coefficient that representing the

viscosity of the surrounding medium, k is the spring constant that controls

how the cells relax, xij = xj−xi is the edge connecting cells xi and xj and

x̂ij = xij/∥xij∥ is the associated unit vector, and s is the resting spring

length that controls the long-time positions of the cells; extra effects are

also included in the model so that cell proliferation is included [34]. The

sum in (1.2) gives the total force on the ith cell. Since the void boundaries,

also called the leading edge, form circular fronts as in Figure 1.2, it is

reasonable to simplify the model (1.2) into a one-dimensional problem as

shown in Figure 1.3(c), fixing the left-most cell at x = 0 and allowing the

right-most cell at x = L(t) to be free as in Baker et al. [38]. In this work,

we consider this simplified model for modelling epithelial tissue dynamics,

although future work can consider the more complicated two-dimensional

problem as discussed in Chapter 4.

While discrete models of tissue growth are useful for studying cellular

behaviour [34,39], interpreting collective behaviour from simulations of the

models can be difficult or even computationally infeasible for large pop-
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ulations [40]. Thus, a related continuum model is often desired so that

macroscopic details can be analysed. Continuum models describing aver-

aged data from a discrete model are typically obtained by coarse-graining

using a Taylor series expansion, resulting in a partial differential equation

(PDE) model that governs the cell densities [38,41–44]. The coarse-grained

model for the one-dimensional analogue of Equation (1.2), in the context

of epithelial tissues, is given by a reaction-diffusion model with nonlinear

diffusion of the form [38,41]

∂q

∂t
=

∂

∂x

(
D(q)

∂q

∂x

)
+ R(q) 0 < x < L(t), t > 0, (1.3)

where q(x, t) is the macroscopic density at position x and time t, D(q) =

k/(ηq2) describes the mechanical relaxation of the springs, R(q) = βq(1 −
q/K) is the source term describing the cell proliferation with β the intrin-

sic proliferation rate, and there are extra terms not shown that describe

the evolution of the free boundary at x = L(t). This model (1.3) is only

accurate when the time scale of mechanical relaxation is sufficiently fast

relative to the time scale of proliferation [45]. In cases where this condition

on the time scales of mechanical relaxation and proliferation do not hold,

continuum models describing the cell dynamics are not known, and so an

alternative approach to coarse-graining is needed to derive accurate contin-

uum descriptions. Since the discrete models will still obey a conservation

principle, we expect that, even where the solution to the model (1.3) is not

accurate compared to the averaged discrete data, the macroscopic densities

will be governed by some macroscopic conservation description, such as a

generalised form of (1.3) [33,46]. Thus, one approach to learning an accu-

rate continuum model would to treat the functions in (1.3) more generally,

using the recently developed field of equation learning for learning func-

tions that better describe the macroscopic densities [47–50]. In particular,

whereas in Chapter 2 our interest is in estimating parameters, we need to

now estimate functions describing the data which is the topic of Chapter

3.

Equation learning is a means for model discovery. In the context of

PDEs, equation learning typically considers models of the form ∂q/∂t =

N (q,D,θ), where N is some nonlinear function parametrised by θ, D is

a collection of differential operators for q with respect to x, and θ are
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parameters to be learned [51], as first considered by Brunton et al. [47]

and Rudy et al. [51]. These parameters θ control the functional form N ,

and are different than traditional model parameters as in the tissue growth

model (1.1). For example, in the context of ordinary differential equations

(ODEs), Brunton et al. [47] write

dq

dt
=

p∑
i=1

θiφi(q) (1.4)

for some pre-specified library of functions φ1, . . . , φp with coefficients θi

to be estimated, i = 1, . . . , p. Brunton et al. [47] then compare both

sides of (1.4) using provided time series data to estimate (θ1, . . . , θp) using

sparse regression, giving an ODE with few terms that describes the data;

to make this point clearer, and to highlight some differences between this

approach and what we develop in Chapter 3, we give in Appendix A an

example of the approach of Brunton et al. [47]. Equation learning has

been applied to many biological problems, such as by Lagergren et al. [49]

and VandenHeuvel et al. [50] who, representing N as a conservation law

rather than as a general nonlinear function, learn models describing simple

in vitro experiments. In the context of discrete models, as considered in

this thesis, recent work has also been used to learn continuum models from

averaged discrete data by Nardini et al. [48] and Simpson et al. [52], but

thus far no work has been considered for problems with a moving boundary

as in (1.3).

In this thesis, we apply methods from equation learning to the problem

of learning continuum models, like those in (1.3), describing macroscopic

behaviours of a discrete mechanical model of epithelial tissues, especially

for cases where known continuum models are no longer accurate. The

framework in Chapter 3 we develop is simple to implement, interpretable,

modular so that models describing complex experiments to be considered,

and is generally applicable to any discrete model describing population

densities. The generalisability of our approach makes it ideal for acting

as a basis for future work that develops two-dimensional analogues of the

discrete models considered and could, for example, be used for learning

models that describe the tissue growth experiments from Chapter 2 and

for more complicated experiments in the field of tissue engineering.
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1.2 Structure of this thesis

This thesis is derived from two papers that respectively comprise Chap-

ter 2 and Chapter 3. Chapter 2 is published in the Chemical Engineering

Journal [1]. Chapter 3 is published in the Proceedings of the Royal Soci-

ety A: Mathematical, Physical and Engineering Sciences [2]. The text in

these chapters is the same as the version’s submitted to their respective

journals, with minor typesetting and formatting changes. In this section,

we summarise the layout of this thesis and the contents of these individual

chapters. In addition to what we describe below, we highlight that the

introductions in Chapter 2 and Chapter 3 each contain components of a

literature review for their respective topics, thereby omitting the need for

a literature review in this chapter.

In Chapter 2, we present a study of the affect of geometry on tissue

growth in 3D-printed scaffolds, analysing time series data of tissue growth

experiments from two geometries. We use a likelihood-based framework to

calibrate a mathematical model of tissue growth to the experimental data

for each geometry. Using the calibrated models, we show that we can ex-

trapolate predictions of tissue growth and bridging times, with uncertainty

quantification, on other geometries, and that these predictions match the

experimental results. Thus, we demonstrate that the cellular mechanisms

driving tissue growth are independent of pore geometry.

Chapter 3 is related to the problem of discovering models describing

tissue growth experiments in cases where known models are no longer ac-

curate. Using a one-dimensional discrete mechanical model of epithelial

tissues as an example, we show how we can use equation learning tech-

niques to learn continuum models describing macroscopic features of a

discrete model, especially in cases where previously known models are no

longer accurate.

We summarise our findings in Chapter 4, and discuss possibilities for

future research extending this work.
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sue growth in 3D printed scaffolds

Daniel J. VandenHeuvel, Brenna L. Devlin, Pascal R. Buenzli, Maria A.

Woodruff, Matthew J. Simpson
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Abstract

Understanding how tissue growth in porous scaffolds is influenced by ge-

ometry is a fundamental challenge in the field of tissue engineering. We in-

vestigate the influence of pore geometry on tissue growth using osteoblastic

cells in 3D printed melt electrowritten scaffolds with square-shaped pores

and non-square pores with wave-shaped boundaries. Using a reaction-

diffusion model together with a likelihood-based uncertainty quantification

framework, we quantify how the cellular mechanisms of cell migration and

cell proliferation drive tissue growth for each pore geometry. Our results

show that the rates of cell migration and cell proliferation appear to be

largely independent of the pore geometries considered, suggesting that ob-

served curvature effects on local rates of tissue growth are due to space

availability rather than directly affecting cell behaviour. This result allows

for simple squared-shaped pores to be used for estimating parameters and

making predictions about tissue growth in more realistic pores with more

realistic, complicated shapes. Our findings have important implications for

the development of predictive tools for tissue engineering and experimental

design, highlighting new avenues for future research.
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2.1 Introduction

Tissue engineering aims to regenerate damaged or diseased tissues [4]. A

key challenge in tissue engineering is to understand how various clinically-

motivated experimental conditions influence tissue growth [5]. Recent ad-

vancements in three-dimensional (3D) printing allow us to investigate tissue

growth in 3D-printed scaffolds of various shapes and sizes, enabling realis-

tic migration and proliferation behaviours to be studied in well-controlled

experimental conditions [10,16]. While the effect of pore geometry and tis-

sue curvature on tissue growth is well-known [21–23], understanding how

these effects relate to cellular-level mechanisms remains poorly understood.

Understanding these cellular mechanisms would enable the prediction and

analysis of tissue growth in complex geometries from the calibration of

mathematical models in simpler geometries, providing a valuable compu-

tational tool for screening experimental designs [53] of scaffold geometries

and providing plausible results on these new geometries. This kind of

computational tool could enable more personalised approaches to tissue

engineering, in which a specific scaffold size and shape could be tailored to

an individual patient, making use of these predictions to screen for possible

patient outcomes.

3D printing technology for biofabrication has evolved rapidly [11, 12].

Melt electrowriting, a technique for high quality 3D printing, allows for

micro- and nano-scale fibres to created, enabling great control over the fi-

bres and the pore geometry, making it possible to produce realistic scaffold

geometries with a regular array of pores for growing tissue [17–20]. These

scaffolds are designed so that cells and tissues experience a similar mechan-

ical support as they would, for example, in skin and bone tissues, enabling

realistic cell migration and cell proliferation behaviours to be observed and

measured [10]. Previous work has focused primarily on squared-shaped

pores [13, 24], although more complicated scaffolds can also be produced

[12,54]. One important factor in understanding tissue growth is curvature

[55, 56]. In the context of bone tissue, Bidan et al. [57] suggest that cell

tension can influence tissue curvature that, in turn, can stimulate tissue

growth. Callens et al. [58] discuss how cells respond to their surrounding

geometry, even across large spatial scales, and how this affects bone tissue

growth. Mathematical modelling studies performed by Alias and Buenzli

[59–61] and Hegarty-Cremer et al. [62] also investigate the role of geome-
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try and curvature on tissue growth and cell crowding in bone tissue growth

experiments.

Figure 2.1: Scaffold pore boundary (red boundary), void (black interior),
void boundary (magenta boundary), tissue (blue/green region), and fibres
(exterior black boundary). The white outlines show the scaffold bound-
aries. The blue channel in the microscope images shows the cell nuclei
(DAPI), and the green channel shows the tissue and cytoskeleton (phal-
loidin). The DAPI on the right image is shown in grey.

Tissue growth experiments in porous scaffolds are of great importance

in tissue engineering [13,14]. In these experiments, cells are seeded onto the

perimeter of a scaffold, leading to cell migration and cell proliferation that

produces an inward-growing tissue. The shape of the region that is devoid

of cell and tissue material, referred to as the void in Figure 2.1, matches

the shape of the scaffold boundary for early times, rounding off over time,

eventually forming a circular front until the void closes, which we call pore

bridging. The feature of interest in these experiments is the time that

the tissue bridges, called the bridging time [13, 14]. A circular front arises

with time in many pore scaffold geometries such as square, triangular, and

hexagonally shaped pores [13,24–26], though the precise mechanisms driv-

ing the cells into these circular fronts in general geometries remains unclear.

The most common way to report a set of pore bridging experiments is to

record snapshot images of the tissue growth process [13, 14, 24]. This ap-

proach allows us to estimate the bridging time within an interval instead of

identifying the precise time of bridging [13, 14], thereby introducing some

uncertainty into the experimental estimate of the bridging time. To in-

terpret such measurements meaningfully, we are interested in developing
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mathematical modelling tools that mechanistically capture cell migration

and cell proliferation within a framework that explicitly incorporates un-

certainty in the experimental measurements, uncertainty in the parameter

estimates in the mathematical model, and that is capable of making pre-

dictions of new experiments that incorporate these uncertainties. This will

allow us, for example, to study how variability in bridging times can be

explicitly integrated into the mathematical model, as well as interpreting

the predictions of the mathematical model.

In this work, we study mechanistic cell behaviour in pore bridging ex-

periments performed within pores on 3D-printed scaffolds made from poly-

caprolactone [12,14,16]. We consider tissue growth in two different shaped

pores, a square-shaped pore (Figure 2.1(a)) and a wave-shaped pore (Fig-

ure 2.1(b)), with the aim to understand whether the details of cell migra-

tion and cell proliferation are affected by differences in the pore geome-

try. In particular, we are interested in determining whether the cellular

mechanisms driving tissue growth in the more realistic wave-shaped pore

are indistinguishable from the cellular mechanisms driving tissue growth

in the simpler square geometry. Moreover, we are interested in obtain-

ing estimates of bridging time with uncertainty, for both pore geometries,

through probability distributions that allow a user to predict probabilities

of bridging time occurring within a specified time window for any pore

geometry. All experiments reported in this work involve tissue growth us-

ing murine calvarial osteoblastic cells (MC3T3-E1) [27]. Our group has

previously used these experiments on the square pores with different sizes

[13, 14, 24], investigating the relationship between the cell migration rate

measured in terms of the cell diffusivity D, cell proliferation rate λ, and

scaffold size. This previous work showed that the product Dλ, which con-

trols the long-time rate of tissue production, appeared to be unaffected by

the pore size, but did not consider the role of pore shape. These previous

experiments displayed variability in the time to bridge, even in well con-

trolled experiments with the same pore size. This variability motivates the

need for developing mathematical modelling tools that incorporate vari-

ability and uncertainty quantification into predictions. Hence, our analysis

uses a combination of numerical simulations from a mathematical model

and with statistical analysis that takes numerical simulations and quanti-

fies results together with uncertainty. These considerations will be used to



New computational tools and experiments reveal how geometry affects
tissue growth in 3D printed scaffolds 17

answer the following broad questions:

1. Are the cellular mechanisms driving tissue growth independent of

pore shape?

2. Can we use results on one pore shape to make predictions, with un-

certainty, on another geometry?

3. What data, and how much data, is sufficient for accurately comparing

results for different shaped pores?

We address these questions using a model-based approach, using the

Porous-Fisher partial differential equation (PDE) as a model for tissue

growth driven by combined cell migration and cell proliferation [32]. Solv-

ing this mathematical model requires parameter estimates for the cell dif-

fusivity, D, the cell proliferation rate, λ, and the initial cell density on the

scaffold boundary, u0. Estimates for D and λ cannot be obtained directly

from experimental images, hence methods that use information about the

images are needed. For each pore shape, we calibrate this mathemati-

cal model with an experimental dataset containing information about the

position of the tissue front over time. We apply a likelihood-based anal-

ysis to this dataset [63] with the aim to estimate the combined effect of

proliferation and migration rates, by estimating the product Dλ. Profile

likelihoods are used to quantify the uncertainty in Dλ, providing confi-

dence intervals for Dλ [64], and allowing us to determine what parameters

or parameter combinations can be estimated [65,66], providing insights into

the second and third research questions listed above. The confidence inter-

vals obtained on each geometry can be used to compare the tissue growth

mechanisms for each pore geometry to answer the first research question.

This analysis also enables us to make predictions with uncertainty about

the pore bridging time. By using this likelihood-based approach to make

predictions, we can take results from the square-shaped pores and esti-

mate, with uncertainty, the pore bridging times on the wave-shaped pores.

Similarly, we can use the wave-shaped pores to make predictions on the

square-shaped pores. Comparing both situations allows us to answer the

second research question. The simplest interpretation of our results is that

the cell migration and cell proliferation rates are independent of the pore

scaffold geometry.
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2.2 Materials and methods

In this section, we describe the methods used for the experiments and the

data that we collect from these experiments. Following this description,

we introduce the mathematical models we use and how we apply likelihood

analysis for performing statistical inference from these experiments.

2.2.1 Tissue growth experiments

All reagents are sourced from Thermo Fisher unless otherwise stated. Us-

ing a melt electrowriting printer described previously [14], polycaprolac-

tone (45 kDa, Sigma Aldrich) fibres of diameter 50 µm are fabricated into

a three-layer scaffold which was then biopsy punched to form a 6 mm disc.

The resultant scaffold has a thickness of approximately 150 µm. The code

used to produce the outline of each pore is adjusted to produce square-

shaped and wave-shaped pores of comparable size, both being derived from

a unit of cell of 500 µm. Prior to cell seeding, scaffolds are sterilised under

UV light overnight. The cells used are murine calvarial osteoblastic cells

(MC3T3-E1) [27] that are cultured in α-MEM, 10 % fetal bovine serum,

and 1 % penicillin-streptomycin, and are approximately 20–30 µm in diam-

eter [14]. Cells were expanded in a T75 culture flask and at 80 % confluency

were detached with TrypLE. Cells were seeded at a density of 10,000 cells

per scaffold in 48-well plates. After allowing 4 h for the cells to attach to

each scaffold after seeding, an additional 500 µL was added. Cell-seeded

scaffolds were cultured in a humidified environment at 37 ◦C in 5 % CO2 for

28 days. The media is changed every 2–3 days from day 5 to day 14, every

1–2 days from day 15 to 28. The viability of the cells are assessed at day

10, 14, and 28 using calcein-AM and ethidium homodimer-1 to stain live

and dead cells, respectively. At specific timepoints, cell-seeded scaffolds

were fixed with 4 % paraformaldehyde and stained with 4’,6-diamidino-2-

phenylindole (DAPI) and Alexa Fluor� 488 Phalloidin, which stain cell

nuclei and actin filaments, respectively. High resolution images of the cen-

tre of each scaffold are obtained using fluorescent microscopy (Zeiss, Ax-

ioObserver 7). For each pore shape and timepoint, fixation, staining, and

microscopy are repeated across two or three identically prepared replicates.

Each experimental replicate provides information of several pores, giving

information about tissue growth data from day 5 to day 28. This procedure
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gives 41 data points for the square pore, and 3 data points for the wave

pore; while this number of data points is relatively small, it is sufficient for

our analysis as we use a likelihood-based uncertainty quantification frame-

work that naturally incorporates variability associated with finite sample

sizes, as introduced in Section 2.2.4. More information on the procedure

for capturing these images is provided in [14]. These experiments lead to

a tissue composed of a monolayer of cells within the pore. The growth

of monolayers is achieved through the design of the pore geometry as the

width of the pores is large compared to the pore depth. The vertical pore

depth is approximately equal to the average cell diameter, 20–30 µm [14],

which means that we do not observe cells growing on top of each other in

the vertical direction.

2.2.2 Data and image processing

The experiments provide us with several images at four time points (days 7,

14, 25, and 28), and each image contains information about several pores.

To summarise the tissue growth processes, for each pore we calculate two

quantities:

yi,jc =
area of void

area of pore
, yi,jp =

perimeter of void

perimeter of pore
, (2.1)

where yi,jc and yi,jp denote the void coverage and normalised void perimeter,

respectively, for the jth pore at the ith time, ti. We do not collect data

from any pores that have bridged, or pores that have bridged in a way

so that the void splits into multiple disconnected regions. All images at

t = 25 day and t = 28 day show that all pores have bridged before 25 days,

so we focus on measuring (2.1) at t1 = 7 day and t2 = 14 day. A precise

description of how we compute the quantities in (2.1) from the images is

given in Appendix 2.A.

To complete the processing, we select the computational representations

for the square and wave geometries for use in the mathematical model

described Section 2.2.3 (Figure 2.2) for comparison with each data point.

In the square case, we construct this independent of the images, and simply

define a boundary for a square with its lower-left corner at the origin and

side length L = 475 µm. For the wave geometry, we take a single image from

the experiments and choose its boundary as a representative boundary for
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each experiment, which is reasonable as all scaffolds are uniformly printed.

2.2.3 Mathematical model

We use the Porous-Fisher PDE to model tissue growth, as this model ex-

plicitly describes how cell migration and cell proliferation leads to tissue

growth with sharp fronts that we observe in the experiments (Figures 2.3

and 2.4) [24, 32]. Since the pore bridging process starts after 5 days, the

PDE is solved for t > 5 day. Letting ũ(x, t) [cells/µm2] denote the density

of cells at a point x = (x, y)T and time t [day], and K̃ denoting the maxi-

mum carrying capacity density [cells/µm2], we define a normalised density

u(x, t) ∈ [0, 1] by u(x, t) = ũ(x, t)/K̃. Thus, the model for u(x, t) is given

by

∂u(x, t)

∂t
=

contact stimulated cell migration︷ ︸︸ ︷
D∇ · [u(x, t)∇u(x, t)] +

contact inhibited cell proliferation︷ ︸︸ ︷
λu(x, t) [1 − u(x, t)], x ∈ Ω, (2.2)

du(x, t)

dt
= λu(x, t) [1 − u(x, t)]︸ ︷︷ ︸

contact inhibited cell proliferation

, x ∈ ∂Ω, (2.3)

u(x, 5) =

u0 x ∈ ∂Ω,

0 x ∈ Ω.
(2.4)

where (2.2) is applied on the interior scaffold pore space Ω, the space

inside the red curves of Figure 2.2; (2.3) is applied on the boundary ∂Ω,

the red curve in Figure 2.2. We note that while our scaffolds are three-

dimensional, their thickness is small compared to their width, and so this

two-dimensional depth-averaged model (2.2)–(2.4) is reasonable [67]. This

model is characterised by three parameters (D,λ, u0), where D [µm2/day]

is the cell diffusivity that controls the rate of cell migration, λ [day−1]

is the cell proliferation rate, and u0 is the normalised density of cells on

the scaffold boundary ∂Ω at t = 5 day. We solve Equations (2.2)–(2.4)

numerically using the finite volume method with an unstructured triangular

mesh (Figure 2.2), as described in Appendix 2.B.

Solutions of Equations (2.2)–(2.4) are used to compute model predic-

tions corresponding to the data yi,jc and yi,jp from (2.1). Using the numerical

solution for u(x, t), we identify the contour u(x, t) = 1/2 to indicate the

location of the tissue front [13, 24]. We define predictions of the yi,jc and
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Figure 2.2: Schematics for triangular meshes used for numerical solutions of
Equations (2.2)–(2.4) on the (a) square-shaped pore, (b) the wave-like pore,
and (c) the cross-shaped pore considered in Section 2.3.3. Denser meshes
are used for the actual solutions. The triangles represent the mesh we
use for studying these geometries computationally, as discussed in Section
2.2.3. The red curves represent the boundary ∂Ω, and the region bounded
by these curves is the interior domain Ω.

yi,jp by

µc(t) =
1

A(Ω)

n∑
k=1

Ak(t), µp(t) =
1

ℓ(∂Ω)

n∑
k=1

ℓk(t), (2.5)

respectively, where n is the number of triangular elements in the mesh,

Ak(t) is the area of the portion of the kth element at the time t that is

inside the contour u(x, t) = 1/2, ℓk(t) is the length of the line through

the kth element at the time t that is on the contour u(x, t) = 1/2 or zero

if the contour does not go through the element, and A(Ω) and ℓ(∂Ω) are

the area and perimeter of the domain Ω, respectively. More details on

how we compute the coverage µc and normalised perimeter µp are given in

Appendix 2.C.

We remark that our definition of the PDE (2.2)–(2.4) involves working

with a nondimensional dependent variable u and nondimensional param-

eter u0, while retaining the dimensional parameters D and λ and dimen-

sional variables x, y, and t, so that spatial and temporal features can be

compared with experimental images, similar to [68]. Our interpretation of

the dependent variable, u(x, t), is different, though. While it is possible to

work with the dimensional density ũ(x, t) [24,30], this would require man-

ually counting cells to estimate cell densities in space and time [68–70].

Thus, to be consistent with the fact that we only treat the leading edge

in the experimental images for computing yi,jc and yi,jp , it makes sense to
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consider the dimensionless ratio u(x, t) = ũ(x, t)/K̃ rather than ũ(x, t)

itself.

2.2.4 Parameter estimation

We use a likelihood-based approach to estimate model parameters [28,65].

This approach takes predictions µc(t) and µp(t) from solutions of Equations

(2.2)–(2.4) and compares them with the noisy experimental observations,

yi,jc and yi,jp . We assume that these noisy experimental observations are all

independent realisations of random variables Y i
c and Y i

p , respectively, that

are defined by [24]

Y i
c ∼ N

(
µc(ti;θ), σ2

c

)
, and Y i

p ∼ N
(
µp(ti;θ), σ2

p

)
, (2.6)

where N (µ, σ2) denotes the normal distribution with mean µ and variance

σ2. These random variables in (2.6) each have a mean that depends on

θ = (D,λ, u0), and the variances σ2
c and σ2

p need to be estimated. The

values of σc and σp are treated as constants that are pre-estimated using the

sample standard deviation of the experimental data aggregated for each ti

and each j, as described in Appendix 2.C. We note that, for measurements

taken from the same experiment, there may be some dependence between

yi,jc and yi,jp , due to area and perimeter being slightly related to each other,

contradicting our assumption that Y i
c and Y i

p are independent. Typically,

falsely assuming independence might cause issues with statistical inference,

however for this type of data this will not be the case [71].

Given sufficient experimental data we could, in theory, estimate all

model parameters θ and σ2
c and σ2

p directly, however, as we will show, our

data is insufficient for this purpose. We find that our numerical simulations

of Equations (2.2)–(2.4) on the time scale of our experiments are relatively

independent of u0, and so we show results for a range of pre-specified

values of u0 rather than focusing on any single value, demonstrating this

independence. While it would be ideal to estimate both D and λ, we find

that it is difficult to treat them separately, as we show in Appendix 2.D.

[13,30]. For our purposes, though, we are mainly interested in the combined

effect Dλ, as this is the variable that affects the velocity of the tissue and

thus the bridging time [13]. Thus, rather than using θ = (D,λ, u0), we

instead re-parametrise the vector of model parameters as θ = (Dλ, λ),

omitting u0 and following [72]. With this definition, µc(ti;θ) and µp(ti;θ)
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still refer to predictions from the solution of the PDE with parameters D

and λ, and the choice of the fixed value of u0 is left implicit.

Log-likelihood function

The log-likelihood function ℓ(θ | y) is a function of the model parameters

that describes the likelihood that the model has parameter values θ given

that the data observed is y [63, 73]. In this work we have

ℓ(θ | y) =
2∑

i=1

J(i)∑
j=1

[
log ϕ

(
yi,jc ;µc (ti;θ) , σ2

c

)
+ log ϕ

(
yi,jp ;µp (ti;θ) , σ2

p

)]
,

(2.7)

where y is the vector of observations,

ϕ(x;µ, σ2) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
is the normal probability density function, and J(i) is the number of pores

included at the time ti. For the wave pore, the log-likelihood (2.7) only

includes the sum at i = 2 as there is only data at t2 = 14 day in this case.

For notational convenience we write ℓ(θ | y) as ℓ(θ). The log-likelihood

depends on the parameters θ = (Dλ, λ) and the fixed values for u0, σc,

and σp, with {D,λ, u0} governing the solution to the PDE and σp and σc

governing the measurement model.

Maximum likelihood estimation

We obtain a best-fit estimate for the parameters θ by maximising ℓ(θ).

This procedure is called maximum likelihood estimation [63], and it re-

sults in a maximum likelihood estimate (MLE) for θ, denoted θ̂. For this

maximisation, we constrain the values of D and λ so that 0 µm2/day2 <

Dλ ≤ 10 000 µm2/day2. For λ we use 0 day−1 < λ ≤ 5 day−1 in the square

and 0 day−1 < λ ≤ 10 day−1 in the wave. These bounds do not affect

the results significantly. More detail on how we perform this maximum

likelihood estimation is given in Appendix 2.E.

Uncertainty quantification

One limitation of maximum likelihood estimation is that we obtain a single

point estimate for the MLE θ̂, and the asymptotic uncertainty in this point
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estimate depends upon the curvature of the log-likelihood function [74]. To

quantify the uncertainty in this estimate, we combine two approaches. For

the first approach, we evaluate the log-likelihood function ℓ(θ) over a large

grid of Dλ and λ values. We then use this grid to find all points where

ℓ(θ)− ℓ∗ ≥ −χ2
2,1−α/2, where χ2

d,q is the qth quantile of the χ2 distribution

with d degrees of freedom and ℓ∗ = ℓ(θ̂) is the maximum likelihood, as the

resulting set of values defines a 100(1 − α)% confidence region (CR) for θ

[63, 75]. We use α = 0.05 in this work, giving −χ2
2,0.95/2 ≈ −3.

The approach above gives us a two-dimensional region representing

the uncertainty in θ. It will also be useful to reduce these regions to

confidence intervals for each parameter, and most importantly for the pa-

rameter combination Dλ, which allows us to make predictions about the

variability in tissue growth later in Section 2.2.4. We take a profile likeli-

hood approach to consider each parameter individually, specifying a range

of values for an interest parameter and using numerical optimisation, re-

ducing the log-likelihood function to a series of interpretable univariate

functions. These univariate results then provide insight into the curvature

of the log-likelihood function, and hence the uncertainty in the MLE point

estimates. The resulting univariate function results in what is known as

the profile log-likelihood function [63]. Following [24, 28, 65], we define the

profile log-likelihood in terms of the interest parameter Dλ. For a given

value of Dλ, we define the normalised profile log-likelihood:

ℓp(Dλ) = max
λ∈Λ

[ℓ(Dλ, λ)] − ℓ∗, (2.8)

where ℓ(Dλ, λ) = ℓ(θ), ℓ∗ = ℓ(θ̂), and Λ = {λ : 0 day−1 < λ ≤ 5 day−1}.

This definition gives a simple univariate function of Dλ that reaches a max-

imum of zero at the MLE, and the curvature of this function is related to

inferential precision — a profile log-likelihood function with a well-defined

peak at zero indicates a parameter that has been well estimated and identi-

fied, while a flat profile means that the data was insufficient for estimating

or obtaining any inference for that parameter [28, 76]. A useful feature of

(2.8) is that it can be used for constructing approximate confidence inter-

vals for Dλ, with an approximate 100(1 − α)% confidence interval given

by the set of all Dλ such that ℓp(Dλ) ≥ −χ2
1,1−α/2 [63]. In this work, we

use α = 0.05 so that we are constructing 95% confidence intervals, giving

c∗ = −χ2
1,0.95/2 ≈ −1.92. The procedure we use for computing profile like-
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lihoods is implemented in the Julia package ProfileLikelihood.jl [77],

and a summary of the procedure is outlined in Appendix 2.E.

Parameter-wise prediction intervals

The two-dimensional likelihood function allows us to propagate the uncer-

tainty in Dλ through to give us a prediction interval in terms of the outcome

of the mathematical model for a variable of interest, such as the bridging

time or cell density. Using the approach developed by [28,65] which builds

on basic properties of likelihood function [63], we are able to quantify the

uncertainty in the cell densities u(x, t) and the bridging time tb directly

from our likelihood function. In particular, by taking pairs of parameter

values inside of the 95% confidence region from the log-likelihood function

and computing the variable of interest at each pair, we obtain a sample of

values that gives the uncertainty in our variable of interest, as described in

Appendix 2.E. We use this method to obtain prediction intervals for yi,jc

and yi,jp over time. Moreover, we can obtain prediction intervals for the

bridging time, tb, at which µc(t) first becomes zero. We emphasise that

these prediction intervals are computed by treating the average prediction

as a predictive quantity [28], so that the uncertainty is being computed

relative to the mean prediction rather than relative to the experimental

data points themselves, although a portion of this uncertainty does come

from the data since σ2
c and σ2

p are pre-estimated using the data. Prediction

intervals using the latter approach would be wider than with our current

approach, but our approach is more useful in this work for assessing the

calibration of the model and for predicting expected quantities on other

geometries. In addition to prediction intervals, this procedure returns a

sample of bridging times, which we use to obtain probability distributions

for the bridging time via KernelDensity.jl [78]. We represent this prob-

ability distribution using a probability density function (PDF) p(tb) for the

bridging time which can be understood as [73]

p(tb)∆t ≈ P(t < tb < t + ∆t), (2.9)

where P(t < tb < t + ∆t) is the probability that the bridging time tb is

between t and t + ∆t, given the uncertainty in the parameters θ, and ∆t

is some small sufficiently interval of time. This PDF p(tb) allows us to

compute probabilities that the bridging time occurs in any given interval.
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The complete procedure for how we obtain these results is implemented in

ProfileLikelihood.jl [77], and the method that we implement is out-

lined in Appendix 2.E.

Predicting variability in tissue growth

We further extend our results to provide a more qualitative approach to

assess the uncertainty in the tissue growth on these pores. Taking values for

the parameters inside their confidence intervals from the profile likelihoods,

we can produce time series model predictions of the solution to Equations

(2.2)–(2.4), indicating the variability that we might expect in the tissue

growth. For these predictions, we take three parameter values for θ: (1)

θ̂, the MLE; (2) θ̂L, where we take Dλ to be the lower endpoint of its

confidence interval from ℓp(Dλ) and λ to be the lower endpoint of its

confidence interval from ℓp(λ); (3) θ̂U , where we take Dλ to be the upper

endpoint of its confidence interval from ℓp(Dλ) and λ to be the upper

endpoint of its confidence interval from ℓp(λ). Solving Equations (2.2)–

(2.4) with these three combinations of θ provides a simple way of giving a

visual interpretation of the uncertainty in cell density as an approximation

to the true uncertainty bounds.

2.3 Results

We now give the results from our experiments and from our likelihood

analysis. Following these results, we conclude with a description of how we

can use these results to predict future pore bridging experiments.

2.3.1 Experimental images

A subset of the results for the pore bridging experiments on the square

geometry are shown in Figure 2.3 for days 7, 14, 25, and 28, where we see

most of the pores take longer than 14 days to bridge, although there is

some significant variability in this bridging time as we can even see some

pores have completely bridged by day 14. In each pore, the growing tissue

always forms a circle before bridging. In total, we have n = 41 imaged

pores included in the dataset for the square, with 26 at day 7 and 15 at

day 14.
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The results we use for the pore bridging experiments on the wave ge-

ometry come only from day 14, and they are shown in Figure 2.4. Just as

we saw in Figure 2.3, there is significant variability in the bridging time –

while most pores appear to have bridged by day 14, some are still open,

with a few being far from closed. In these wave pores, the void appears

to initially close in as an oval before the void boundary eventually forms a

circle. Our interest is in comparing the cell migration and cell proliferation

rates between the pores of Figure 2.3 and Figure 2.4, but from these im-

ages it is not immediately clear whether these are similar or not. Section

2.3.2 shows results making this comparison using a mathematical model.

In total, we only have n = 3 pore images for the wave geometry, all at day

14, since all other pores are closed and thus no other data is available for

yi,jc and yi,jp , or parts of the scaffolds were not imaged as in the leftmost

pore in the first image of Figure 2.4. The pores used for the data are given

in the first, fourth, and sixth images in Figure 2.4.

Figure 2.3: Experimental images for the square geometry. The images
are composite fluoresence microscopy images of pore bridging experiments,
with the blue channel showing the cell nuclei (stained with DAPI); the
green channel showing the tissue and cytoskeleton (stained with phal-
loidin). Note that each image is from an independent experiment.
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Figure 2.4: Experimental images for the wave geometry on day 14 of each
experiment. The images are composite fluoresence microscopy images of
pore bridging experiments, with the blue channel showing the cell nuclei
(stained with DAPI); the green channel showing the tissue and cytoskeleton
(stained with phalloidin). Note that each image is from an independent
experiment.

2.3.2 Parameter estimation and parameter identifiability

We now consider the likelihoods, profile likelihoods, prediction intervals,

and tissue growth predictions for the square and wave pores, demonstrating

how well we can calibrate our model to the experimental data and make

predictions between the two geometries.

Square pore

Figure 2.5(a) shows that the confidence regions for (Dλ, λ) for each u0

have a similar shape, and the MLEs for Dλ are all around the same

value. The boundary of each confidence region is well-defined in Dλ but

not for λ, indicating that we are only able to obtain reliable estimates

for Dλ but not for λ as we might anticipate [13, 30]. The confidence in-

tervals we obtain from the profile log-likelihoods shown in Figure 2.5(b)

for Dλ are approximately the same for each u0, given approximately by

90 µm2/day2 < Dλ < 300 µm2/day2 for each u0. The width of this interval

is relatively small, noting that previously reported estimates of D in the lit-

erature vary across several orders of magnitude [24,79]. The predictions for

µc(t) on each geometry are shown in Figure 2.5(c)–(d). We see in (c) that

we can recover the data on the square, with the prediction intervals captur-

ing the average experimental data points, and the prediction intervals are

indistinguishable for each u0. The dashed lines show the predictions from
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Figure 2.5: Likelihood analysis results for the square pore. In (a), the lines
give the boundaries of the 95% confidence region for θ for each u0, and the
vertical dashed lines show the MLE for Dλ (see Table 2.1). The profile
log-likelihoods for Dλ for each u0 are shown in (b), with the threshold
c∗ ≈ −1.92 shown with a horizontal red line and the vertical dashed lines
show the MLEs for Dλ. In (c)–(f), predictions for µc(t) and µp(t) on each
pore geometry are shown, with the blue dots showing the experimental
data, the surrounding solid lines giving 95% prediction intervals for each
u0, and the dashed lines showing the corresponding estimates at the MLE
θ̂. The blue data points have been slightly jittered horizontally to help
distinguish them. The estimates for the PDF p(tb) of the bridging time on
each pore geometry are shown in (g)–(h). The results in (d), (f), and (h)
are predictions on the wave geometry using parameters inferred from the
square pore data.

the MLE θ̂, indicating the most likely outcome of the experiments, and

these curves too pass through the average of the experimental data points

and are indistinguishable for each u0. In contrast, we see for µc(t) on the

wave geometry that we do not capture the precise values for yi,jc , although

if we had more data points then we would likely capture more values due

to their variability, noting that the far simpler shape, the square, has high

variance. These results are also independent for u0. The corresponding

figures for µp(t) are shown in Figure 2.5(e)–(f), where we again capture

the data on the square pore but not the data from the wave pore, and

again the curves are all independent of u0. Lastly, we show the probability

distributions for the bridging time (2.9) on each pore geometry in Figure

2.5(g)–(h). These distributions have a similar shape for each u0. The mode

for tb on the square pore appears to be around tb ≈ 24 days, and the distri-

bution shows that we expect more pores to bridge between 23 to 30 days,

consistent with our experiments in Figure 2.3. Similarly, the mode for tb is



30

around 20 days on the wave geometry, with most pores bridging within 19

to 24 days. The observation that the computed results in Figure 2.5, and

in Figures 2.6–2.10, are all indistinguishable for each u0 is an important

result – it suggests that both the mean and variability in our estimates are

relatively insensitive to u0, indicating that precise measurements of u0 are

not critical.
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Figure 2.6: Model predictions for the variability in the tissue growth be-
haviour for the square geometry for u0 = 0.2 at days 7, 14, 25, and
28. The parameters used are θ̂L = (D̂L, λ̂L) = (73 µm2/day, 1.2 day−1),
θ̂ = (D̂, λ̂) = (32 µm2/day, 4.9 day−1), and θ̂L = (D̂U , λ̂U ) =
(60 µm2/day, 5 day−1). The red boundary marks the position of the void
boundary where u(x, t) = 1/2. The top row of plots shows the predictions
for each time at θ = θ̂L, the middle row of plots shows the prediction for
each time at θ = θ̂, and the bottom row of plots show the predictions for
each time at θ = θ̂U ; each individual column thus shows a rough confidence
interval for the prediction at the respective time.

Figure 2.6 shows a summary of model predictions where we explore the

variability in the behaviour of the experiments over time. In particular,

we show numerical solutions of Equations (2.2)–(2.4) at θ̂, θ̂L, and θ̂U ,

each for u0 = 0.2. In this figure, the columns show predictions for a given

time, with each row corresponding to a different value for θ. The middle
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row corresponds to θ̂, meaning the prediction that we expect to be most

likely. The first two columns show model predictions for the two days that

we use for calibrating the model, while the last two columns are genuine

predictions since our mathematical model is not calibrated to data from

these predictions. We see that there is a lot of variability in the position

of the void boundary, especially at day 14, depending on the choice of

θ̂L, θ̂, or θ̂U , which approximately matches the observed variability in the

experimental images in Figure 2.3. The numerical results on day 14 show

that, at θ = θ̂L, the void boundary is still close to the pore boundary,

but the bottom row shows that, at θ = θ̂U , the pore is half-way to being

filled. The tissue boundaries do not round off as clearly as in Figure 2.3,

although there is some rounding in the corners of these boundaries. This

lack of rounding is a limitation of how we define the void boundary as

the contour u(x, t) = 1/2, with values higher than 1/2 giving rounder

boundaries.

The model predictions of the tissue growth in Figure 2.7 show pre-

dictions of how the wave pores will evolve over time for u0 = 0.2, using

parameter estimates obtained by calibrating Equations (2.2)–(2.4) to data

from the square pores. Similar to what we noted in Figure 2.6, we do

not see the same circular voids in Figure 2.7 as we do in the experimental

images in Figure 2.4, though this is expected as the predictions average

over many curves. Similarly, we see high variability in the results, with

pores at day 14 ranging from being slightly closed to more than half-way

closed. This variability is a positive result, matching the variability in the

experimental images (Figure 2.4).

Together, these model predictions indicate that our model has been

well-calibrated to the experimental data on the square pore, as we have

captured the experimental data with our predictions and computed sensi-

ble probability distributions for the bridging time. The model predictions

applied to the wave pore are reasonable, giving evidence of the similarities

between the cell migration and cell proliferation mechanisms between the

two geometries, although this is difficult to assess with few data points.

Section 2.3.2 discusses the analogous results where we instead consider the

model predictions from the experimental data on the wave.
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Figure 2.7: Model predictions for the variability in the tissue growth be-
haviour for the wave geometry using results from the square geometry
for u0 = 0.2 at days 7, 14, 25, and 28. The parameters used are θ̂L =
(D̂L, λ̂L) = (73 µm2/day, 1.2 day−1), θ̂ = (D̂, λ̂) = (32 µm2/day, 4.9 day−1),
and θ̂L = (D̂U , λ̂U ) = (60 µm2/day, 5 day−1). The red boundary marks the
position of the void boundary where u(x, t) = 1/2. The top row of plots
shows the predictions for each time at θ = θ̂L, the middle row of plots
shows the prediction for each time at θ = θ̂, and the bottom row of plots
show the predictions for each time at θ = θ̂U ; each individual column thus
shows a rough confidence interval for the prediction at the respective time.

Wave-like pore

We now show the results obtained when we instead estimate Dλ from the

data on the wave pore. The results have greater uncertainty here than

in the square case since we have far fewer data points and only one day

is covered by the data. The confidence regions in Figure 2.8(a) are much

wider and flatter at the bottom than they were in the square case (Figure

2.5(a)), meaning the estimates for Dλ are less precise. The confidence

region is not well-defined for larger values of Dλ, indicating that we are

unable to give any estimate for an upper bound on Dλ. The corresponding

profile log-likelihoods in Figure 2.8(b) for each u0 do not intersect the
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Figure 2.8: Likelihood analysis results for the wave pore. In (a), the lines
give the boundaries of the 95% confidence region for θ for each u0, and the
vertical dashed lines show the MLE for Dλ (see Table 2.1). The profile
log-likelihoods for Dλ for each u0 are shown in (b), with the threshold
c∗ ≈ −1.92 shown with a horizontal red line and the vertical dashed lines
show the MLEs for Dλ. In (c)–(f), predictions for µc(t) and µp(t) on each
pore geometry are shown, with the blue dots showing the experimental
data, the surrounding solid lines giving 95% prediction intervals for each
u0, and the dashed lines showing the corresponding estimates at the MLE
θ̂. The blue data points have been slightly jittered horizontally to help
distinguish them. The estimates for the PDF p(tb) of the bridging time on
each pore geometry are shown in (g)–(h). The results in (d), (f), and (h)
are predictions on the square geometry using parameters inferred from the
wave pore data.

threshold c∗ ≈ −1.92, independently of u0, and so we are unable to give

any estimate for the upper limit of the confidence intervals for Dλ, as was

already suggested from Figure 2.8(a). Despite these difficulties, Figures

2.8(c)–(f) suggest that we are able to recover values for the experimental

data yi,jc and yi,jp on each pore geometry, with the predictions from the

MLEs going through the experimental data points on each geometry. The

probability distribution for the bridging time for the wave pore is shown in

Figure 2.8(g), where we see a mode for tb around 14 days, with most pores

predicted to close between 10 and 18 days, which is consistent with Figure

2.4. The corresponding probability distribution for the square geometry

is shown in Figure 2.8(h), where we see that most pores are expected to

close between 15 and 25 days, which is a shift from Figure 2.5(g) but is still

consistent with the experimental images in Figure 2.3. It is important to

emphasise that the recovery of these results on the square pore with so few

data points is remarkable, as it (1) demonstrates the similarity between the
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migration and proliferation mechanisms on the two geometries, providing

further evidence for the first research question, and (2) shows that we do

not need such detailed, or even plentiful, data to recover these cellular

mechanisms from another geometry.

Figure 2.9: Model predictions for the variability in the tissue growth be-
haviour for the wave geometry for u0 = 0.2 at days 5, 7, 14, 25, and
28. The parameters used are θ̂L = (D̂L, λ̂L) = (581 µm2/day, 0.18 day−1),
θ̂ = (D̂, λ̂) = (58 µm2/day, 7.29 day−1), and θ̂L = (D̂U , λ̂U ) =
(117 µm2/day, 10 day−1). The red boundary marks the position of the void
boundary where u(x, t) = 1/2. The top row of plots shows the predictions
for each time at θ = θ̂L, the middle row of plots shows the prediction for
each time at θ = θ̂, and the bottom row of plots show the predictions for
each time at θ = θ̂U ; each individual column thus shows a rough confidence
interval for the prediction at the respective time.

Predictions of tissue growth for the wave geometry, based on experi-

mental data on the wave geometry, are shown in Figure 2.9 for u0 = 0.2.

These model simulations are consistent with our experimental observations

in Figure 2.4. The middle row, displaying the most likely outcome, shows

that essentially all pores will be closed by 14, which matches Figure 2.4.

The model simulations at day 14 show that while some pores may be com-

pletely open at this time, some may be closed or almost closed, and we

expect this significant variability as we have so few data points.
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Figure 2.10: Model predictions for the variability in the tissue growth
behaviour for the square geometry using results from the wave ge-
ometry for u0 = 0.2 at days 7, 14, 25, and 28. The parameters
used are θ̂L = (D̂L, λ̂L) = (581 µm2/day, 0.18 day−1), θ̂ = (D̂, λ̂) =
(58 µm2/day, 7.29 day−1), and θ̂L = (D̂U , λ̂U ) = (117 µm2/day, 10 day−1).
The red boundary marks the position of the void boundary where u(x, t) =
1/2. The top row of plots shows the predictions for each time at θ = θ̂L,
the middle row of plots shows the prediction for each time at θ = θ̂, and
the bottom row of plots show the predictions for each time at θ = θ̂U ; each
individual column thus shows a rough confidence interval for the prediction
at the respective time.

The predictions we make for the tissue growth on the square geometry

using model results on the wave pore are given in Figure 2.10. We observe

significant variations in the closing time. In particular, while there could

be some pores that are only halfway bridged by day 25 or day 28, most are

close to closing by day 14 and completely closed by day 25, consistent with

Figure 2.3. The middle row shows that the most likely outcome, according

to our model, is that the majority of pores will be halfway bridged at day

14 and closed by day 25, which again matches Figure 2.3.

Overall, these model predictions indicate that, despite only having three

data points, we have been able to calibrate our mathematical model suf-

ficiently well so that we capture the original experimental data on the

wave from our model predictions and, most importantly, we can recover
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the experimental data from the square pore from our experimental data

on the wave pores. Moreover, the estimated probability distributions for

the bridging times on each geometry are a good match to the experimen-

tal images in Figures 2.3–2.4, as are the predictions of the tissue growth

from the model simulations. Thus, not only have we demonstrated the

practicality and utility of our method for obtaining these probability dis-

tributions, we have provided much stronger evidence than in Section 2.3.2

that the cellular mechanisms driving tissue growth are similar between the

two geometries.

Tabulated comparison between the two geometries

Table 2.1 compares values of Dλ and tb, for u0 = 0.2, for the two geometries;

the choice of u0 = 0.2 is not significant as the model results are relatively

insensitive to this choice. We see that, while we cannot estimate the upper

limit of the confidence interval for Dλ using the wave geometry, the lower

limits are similar between the two geometries, as are the MLEs. Note

that while the MLEs differ by a factor of three, this is an insignificant

amount when we note that estimates for D could vary by many orders

of magnitude [24]. These values for Dλ provide strong evidence that the

cellular mechanisms driving tissue growth on the two geometries are the

same. The estimates of the bridging times for each geometry are not too

dissimilar when using either the same geometry or predicting from the

other geometry.

Table 2.1: Estimates for Dλ and tb on each geometry for u0 = 0.2. The 95%
CI column gives the 95% confidence interval for the respective quantities,
and the MLE column shows the corresponding MLEs. The second row
gives predictions of the bridging time on the square geometry, while the
third row is for the bridging time on the wave geometry.

Square Wave

MLE 95% CI MLE 95% CI

Dλ [µm2/day2] 152 (90, 299) 423 (107,−)
tb (square) [day] 27 (24, 31) 19 (15, 22)
tb (wave) [day] 21 (19, 24) 15 (13, 18)

Overall, these model results support the hypothesis that the cellular

mechanisms driving the tissue growth on each geometry are similar. More-
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over, the ability to calculate reasonable estimates and probability distri-

butions for the bridging time provides evidence that the results obtained

from one geometry can be used to make predictions about tissue growth

on another geometry using the available data.

2.3.3 Prediction of tissue growth on a hypothetical geome-

try

We now take the results on the square geometry and use them to make pre-

dictions on a new geometry that is yet to be experimentally tested. The

purpose of this exercise is to demonstrate how our mathematical mod-

elling tools could be used for making predictions on a new geometry from

experimental results on a simpler geometry, such as about bridging times,

without having to conduct any (potentially expensive and time-consuming)

experiments. The geometry we consider is a cross-shaped pore. Using the

same values for Dλ as were used in making the predictions in Figures 2.6

and 2.7, we produce the model predictions for the variability in the tissue

growth in this new geometry in Figure 2.11. We see a similar variance in

the previous predictions, namely most pores are closed by day 25 but at θ̂L

there are still some pores that remain half closed. The void maintains the

symmetry of the geometry, forming a diamond shape during the early part

of the growth process. These results are also largely independent of u0, as

we find when plotting these predictions for other u0 values (not shown).

We similarly show predictions for the yi,jc and yi,jp in Figure 2.12(a)–(b)

and the hypothetical bridging time distribution p(tb) in Figure 2.12(c), all

for u0 = 0.2

An important feature of working with these predictions is that, once

the likelihood results have been obtained, producing these predictions in

Figures 2.11–2.12, or for any new geometry, is not a significantly time con-

suming task. The snapshots in Figure 2.11 take only around a minute

to compute and visualise, and the model predictions in Figure 2.12 may

take around 10 minutes to an hour, depending on the number of samples re-

quested for the prediction intervals. Thus, this type of exploratory analysis

of a new geometry can be efficiently performed in a reasonable time.
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Figure 2.11: Model predictions for the variability in the tissue growth be-
haviour for the hypothetical geometry using results from the square geom-
etry for u0 = 0.2 at days 7, 14, 25, and 28. The parameters used are θ̂L =
(D̂L, λ̂L) = (73 µm2/day, 1.2 day−1), θ̂ = (D̂, λ̂) = (32 µm2/day, 4.9 day−1),
and θ̂L = (D̂U , λ̂U ) = (60 µm2/day, 5 day−1). The red boundary marks the
position of the void boundary where u(x, t) = 1/2. The top row of plots
shows the predictions for each time at θ = θ̂L, the middle row of plots
shows the prediction for each time at θ = θ̂, and the bottom row of plots
show the predictions for each time at θ = θ̂U ; each individual column thus
shows a rough confidence interval for the prediction at the respective time.
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Figure 2.12: Predictions for the summary statistics and bridging distribu-
tions on the hypothetical geometry using results from the square geometry
in Figure 2.5 at u0 = 0.2. In (a)–(b), the dashed lines show the estimated
curve corresponding to the maximum likelihood estimate for (Dλ, λ) from
the square pore, and the curves surrounding it define a 95% uncertainty
band for the curve.
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2.4 Discussion

New experimental images and modelling predictions in Section 2.3 provide

answers to the three research questions posed in Section 2.1. The first

question, namely whether the cellular mechanisms driving tissue growth

are independent of pore shape, appears to be true for the geometries con-

sidered. The second question asks whether we can make predictions of

bridging times, with uncertainty, on a geometry from a separate geometry.

We have found that we can produce reliable predictions with uncertainty

between separate geometries, both in the form of probability distributions

and prediction intervals. The third question concerns the type and quan-

tity of data required for making predictions between geometries. We found

that the data, and the amount of data, we use for summarising the im-

ages is sufficient for making predictions of tissue growth with uncertainty,

namely information about the tissue void — even with only three data

points on the wave geometry. Interestingly, the answers to these questions

require only very simple measurements of the experiments, rather than

performing cell counting [80]. This observation agrees with previous work

that has compared methods using leading edge detection and cell counting,

demonstrating that tracking the leading edge is sufficient for estimating the

cell migration and cell proliferation rates [80]. We show in Appendix 2.F

that if we considered only void area for the analysis of the square geometry

then we would obtain the same conclusions, but both area and perimeter

are necessary for the wave geometry to answer the research questions. The

fact that both area and perimeter are required in general can be expected

since area and perimeter together give a detailed description of a shape,

but not separately.

These answers have important implications. Firstly, we have demon-

strated the ability to extrapolate from experimental results on one ge-

ometry to another geometry, making predictions with uncertainty. This

facilitates fast and inexpensive pilot studies to be performed for new pore

geometries without conducting the experiments or even fabricating the

scaffolds, as with our exploratory analysis in Section 2.3.3. Numerical sim-

ulations could be performed in a few minutes of computation on a standard

desktop computer, while conducting the necessary experiments will require

more than one month for tissue growth and a considerable amount of effort

and expense to fabricate the scaffolds with melt electrowriting. We do not
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mean to imply that these predictions can replace experimental verification,

instead we view this suite of predictive tools as complementary screening

tools that can be used to plan and interpret experiments efficiently. Sec-

ondly, the novel method we present for obtaining probability distributions

for the bridging time provides a useful tool for meeting certain needs by

helping us to understand the amount of time required for a tissue to form

and bridge the pore, and also for understanding how long tissue growth

needs to be incubated for in tissue engineering constructs. Together with

the type of exploratory analysis demonstrated in Section 2.3.3, these prob-

ability distributions can help facilitate the construction of a geometry that

is likely to bridge within some time window for certain clinical needs, and

for determining how long an experiment should be run for.

The mathematical model we use in this study is relative simple as

it involves just three parameters: D, λ, and u0. A model that better

incorporates other effects such as cell adhesion or the different phases of

tissue growth, in particular the initial phase where cells move off the scaffold

or the later phase where the pore is closing and cells overlap [26], could be

of interest to provide more biological insight. A key limitation of working

with a more detailed mathematical model, however, would be the need to

collect significantly more data so that the necessary additional parameters

can be properly estimated [28,76].

2.5 Conclusion and future work

In this study, we use a reaction-diffusion model together with a likelihood-

based uncertainty quantification framework to study how pore geometry af-

fects tissue growth, particularly in how we can make inference about tissue

growth on complicated pore geometries using data from tissue growth on

simpler square geometries, providing new tools for studying tissue growth

with uncertainty and providing probability distributions for bridging times.

We use data from pore bridging experiments to perform this analysis, con-

sidering a square geometry and a wave-like geometry.

Our combined experimental and mathematical modelling results sug-

gest that the cell migration and cell proliferation mechanisms driving tissue

growth appear to be independent of the pore geometry, giving evidence that

observed curvature effects are due to space availability rather than cellu-

lar mechanisms. We can make predictions of the bridging time on a new
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geometry in the form of a probability density function, a powerful tool for

understanding both quantitatively and qualitatively what may happen in

a pore bridging experiment on a new geometry, including the estimation of

probabilities of bridging times over a given time interval.

There are several avenues for future work based on our findings in this

study. First, our computational tools can be applied to new pore bridging

experiments involving different geometries or different cell lines since our

methods are independent of these two features. Secondly, it would be of

interest to collect more data across more time points to explore the extent

to which additional parameters, such as D and λ separately, can be esti-

mated [24]. If future works consider more than one variable, we note that

it would not be feasible to work with the plots of the log-likelihood function

as we have done, and instead the profile log-likelihood would be required to

obtain uncertainty quantification. Thirdly, the ability to make predictions

on new geometries can facilitate a systematic study of how bridging times

depend on curvature, such as by defining a geometry that depends directly

on a specified curvature and comparing the probability distributions over

many curvatures. This would provide a plausible set of outcomes to be

analysed prior to running full-scale experiments exploring these features.

Lastly, it would be worthwhile to consider more complex quantities for

summarising the experimental images for inclusion in the likelihood func-

tion (2.7), in particular quantities that capture the complicated nature of

the void boundaries better than coverage and perimeter. These quantities

could help with the calibration of our models, leading to void boundaries

that better match those in the experimental images.

The predictions made on geometries from data on a separate geometry

can be useful for facilitating a pilot study for pore bridging experiments on

the geometry, such as the geometry demonstrated in Figure 2.11 and Figure

2.12. It would be of interest to see how well these predictions can help with

preparing and investing into future experiments, for example in estimat-

ing what time scales an experiment may need to be run for by assessing

the uncertainty in the bridging times. All code and data to reproduce

this work are available on GitHub at https://github.com/DanielVandH/

PoreBridging.jl in the Julia language [81].

https://github.com/DanielVandH/PoreBridging.jl
https://github.com/DanielVandH/PoreBridging.jl
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2.A Summarising images from the experiments

Here we present the formulae for computing the area and perimeter sum-

mary statistics. As discussed in Section 2.2, for an image I(t) at time t

we identify a boundary PI(t) for the pore and a boundary VI(t) for the

void. Precisely, we identify the sets PI(t) = {pI
1(t), . . . ,pI

n(t),pI
n+1(t)} and

VI(t) = {vI
1(t), . . . ,vI

m(t),vI
m+1(t)}, where pI

n+1(t) = pI
1(t) and vI

m+1(t) =

vI
1(t) and the boundary points are arranged in counter-clockwise order. An

example of these sets is shown in Figure 2.A.1. Using these sets, the area

of the pore and the area of the void for this image I(t), denoted A[PI(t)]

and A[VI(t)], respectively, can be computed [82]

A[PI(t)] =
1

2

n∑
i=1

det
(
pI
i (t),pI

i+1(t)
)
,

A[VI(t)] =
1

2

m∑
i=1

det
(
vI
i (t),vI

i+1(t)
)
.

(2.10)

Similarly, the perimeters ℓ[PI(t)] and ℓ[VI(t)] for the pore and void bound-

aries, respectively, are simply

ℓ[PI(t)] =
n∑

i=1

∥∥pI
i+1(t) − pI

i (t)
∥∥ ,

ℓ[VI(t)] =

n∑
i=1

∥∥vI
i+1(t) − vI

i (t)
∥∥ , (2.11)

summing up each length like the one annotated in Figure 2.A.1.

42
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Figure 2.A.1: Example of the configuration of the point sets P and V,
omitting the superscript I. These are n = 19 points on the pore boundary
and m = 8 on the void boundary, with an extra point at the end of each
set to close the boundary. Note also the order of the points.
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2.B Finite volume method

In this section, we give the details for how we solve the PDE

∂u(x, t)

∂t
= D∇ · [u(x, t)∇u(x, t)] + λu(x, t) [1 − u(x, t)] , x ∈ Ω, (2.12)

du(x, t)

dt
= λu(x, t) [1 − u(x, t)] , x ∈ ∂Ω, (2.13)

u(x, ta) =

u0 x ∈ ∂Ω,

0 x ∈ Ω,
(2.14)

using the finite volume method [83]. The first step is to compute a tri-

angulation of the domain Ω, denoted T (Ω), which we accomplish using

DelaunayTriangulation.jl [84]. For some interior point xi = (xi, yi)
T ∈

T (Ω), we take the centroids of the triangles neighbouring xi and connect

these centroids to the midpoints of the associated triangle, giving a closed

polygon that we denote by ∂Ωi and show in Figure 2.B.1. The interior

of this polygon is denoted Ωi, which we call a control volume, and has

some volume Vi. This polygon is defined by a set of edges Ei, and for each

xσ ∈ Ei there is an associated length Lσ, midpoint xσ, and unit normal

n̂i,σ which is normal to σ and directed outwards to Ωi with unit length. It

is with these control volumes that we can now discretise (2.12).

(xi,yi)

Ωi

∂Ωi

ni,σ

(xσ,yσ)σ

vk1
vk2

vk3

Tk

Figure 2.B.1: Example of a control volume around a point xi = (xi, yi)
T.

The control volume is the region in green, and its boundary ∂Ωi is shown in
blue. The edge σ ∈ Ei is shown in magenta. Lastly, the cyan points show an
example counter-clockwise ordering (vk1, vk2, vk3) of a triangle Tk ∈ T (Ω).
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We integrate (2.12) over Ωi,

d

dt

∫∫
Ωi

u(x, t) dA = D

∫∫
Ωi

∇ · [u(x, t)∇u(x, t)] dA

+ λ

∫∫
Ωi

u(x, t) (1 − u(x, t)) dA . (2.15)

The first integral on the right of (2.15) can be re-written as a line integral

using the divergence theorem, and then re-written as a sum by integrating

across each edge of ∂Ωi:

D

∫∫
Ωi

∇ · [u(x, t)∇u(x, t)] dA = D

∮
∂Ωi

[u(x, t)∇u(x, t)] · n̂i,σ(x, t) ds

= D
∑
σ∈Ei

∫
σ

[u(x, t)∇u(x, t)] · n̂i,σ ds ,

(2.16)

with n̂i(x, t) the unit normal vector field on ∂Ωi. Next, defining the control

volume averages

ūi =
1

Vi

∫∫
Ωi

u(x, t) dA and R̄i =
λ

Vi

∫∫
Ωi

u(x, t) (1 − u(x, t)) dA ,

our integral formulation (2.15) becomes

dūi
dt

=
D

Vi

∑
σ∈Ei

∫
σ

[u(x, t)∇u(x, t)] · n̂i,σ ds + R̄i. (2.17)

To now approximate the integral in (2.17), we take ūi ≈ u(xi, t), R̄i ≈
λu(xi, t)[1 − u(xi, t)], and use the midpoint rule:∫

σ
[u(x, t)∇u(x, t)] · n̂i,σ ds ≈ {[u(xσ, t)∇u(xσ, t)] · n̂i,σ}Lσ.

To approximate ∇u(xσ, t), we let Ti be the set of triangles in T (Ω)

that have xi as a node, and take a triangle Tk ∈ Ti. Linearly interpolating

u over the element Tk,

u(x, t) = αk(t)x + βk(t)y + γk(t), (x, y) ∈ Tk, (2.18)

where the coefficients come from the values of u at each vertex of Tk, gives

∇u(x, t) = (αk(t), βk(t))T inside Tk. Thus, our approximation becomes,
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for each time step,

dui
dt

=
D

Vi

∑
σ∈Ei

{[(
αk(σ)(t)xσ + βk(σ)(t)yσ + γk(σ)(t)

)
(
αk(σ)(t), βk(σ)(t)

)T] · n̂i,σ

}
Lσ + λui (1 − ui) , (2.19)

where ui = u(xi, t) and the k(σ) notation is used to refer to the edge σ

inside the triangle Tk(σ).

To complete the approximation, the boundary condition (2.13) is given

by dui/dt = λui(1 − ui). Thus, our discretisation is given by (2.19) in

the interior, i.e. the regions bounded by the red curves in Figure 2, while

on the red curve we have dui/dt = λui(1 − ui). The initial condition for

this system of ODEs comes from (2.14), letting ui = u0 on the boundary

and ui = 0 in the interior at the initial time. We solve the system of or-

dinary differential equations using DifferentialEquations.jl [85] with

the TRBDF2 algorithm and the KLUFactorization linear solver [86, 87] to-

gether with the package FiniteVolumeMethod.jl [88] that computes the

equations.

To assess the accuracy of our implementation of the finite volume, we

applied several test cases, including setting up a domain to compare with

one-dimensional travelling waves and comparisons with exact solutions.

Moreover, we ensured that the size of the mesh used was sufficient by

checking that increasing the number of mesh elements did not change the

quality of the solution. Tests for the implementation itself are examined

clearly in the documentation of the FiniteVolumeMethod.jl package [88].
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2.C Computing summary statistics from model

realisations

In this appendix, we consider the problem of computing the summary

statistics µc(t) and µp(t) as defined in the text. We let Cτ (t) = {x ∈ Ω :

u(x, t) = τ}; note that τ = 1/2 in the text. The objective is to compute

the area and perimeter of Cτ (t), together with a polygonal representation

of Cτ (t) assuming Cτ (t) is simply connected or Cτ (t) = ∅. In what follows,

we instead compute the area of the region where u(x, t) > τ , i.e. A(Ω \
Cτ (t)) = A(Ω) − A(Cτ (t)), where A(Ω) is the area of Ω and A(Cτ (t)) the

area of Cτ (t). The area of Cτ (t) is then obtained by simply computing

A(Cτ (t)) = A(Ω) −A(Ω \ Cτ (t)).

Let us take our triangular mesh T (Ω) of our domain, and consider some

triangle T (Ω) with vertices xi,xj ,xk and associated solution values at time

t given by ui = u(xi, t), uj = u(xj , t), and uk = u(xk, t). The finite volume

method allows us to represent u(x, t) with a linear interpolant inside T ,

giving

u(x, t) = αx + βy + γ, (x, y) ∈ T,

where the coefficients (α, β, γ) depend on t; these coefficients are defined

in Appendix 2.B. This linearity then implies that, to find intersections

of u with the plane u = τ inside T , we need only consider intersections

with the edges. We denote the edge connecting ui to uj by −−→uiuj , and

the edge connecting xi to xj by −−→xixj . This edge −−→xixj is parametrised by

x(s) = xi + (xj − xi)s, 0 ≤ s ≤ 1. With this parametrisation, we see that,

if an intersection does exist on −−→uiuj , it occurs when s∗ = (τ −ui)/(uj −ui),

in particular at x(s∗) = xi + (xj − xi)(τ − ui)/(uj − ui).

By considering the eight possible values of the ui, uj , uk relative to

u = τ , we can easily determine whether an intersection exists. These pos-

sibilities are shown in Table 2.C.1, which show that we can check each

possibility and compute the area accordingly. All the cases in Table 2.C.1,

except for the first and last cases, imply that there is a line going through

T where u = τ , and the length of this line can be easily computed by sim-

ply taking the magnitude of the difference of the intersections on the two

associated edges. Moreover, if we are interested in getting a representation

of the leading edge itself for plotting, we can simply store all these intersec-

tion points which we can then sort counter-clockwise and clear duplicated
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Table 2.C.1: Possible configurations of the nodal values relative to the
threshold τ . In the first three columns, the symbol refers to ui’s value
relative to τ . For example, a < in the uj column means uj < τ . In the
intersection columns, −−→uiuj is the edge from ui to uj , and the text refers
to whether the plane u(x, t) = αx + βy + γ can intersect with the plane
defined by the plane u = τ , with “N” meaning no intersection and “Y”
meaning there is an intersection. The notation A(ui, uj , uk) means the
area formed by these points projected onto the plane, and a point uij
denotes the intersection point on the edge connecting ui and uj .

Nodal values Intersection? Area contribution
ui uj uk

−−→uiuj
−−→ujuk

−−→ukui

< < < N N N 0
< < > N Y Y A(uki, ujk, uk)
< > < Y Y N A(uij , uj , ujk)
< > > Y N Y A(ui, uj , uk) −A(uij , uki, ui)
> < < Y N Y A(uki, ui, uij)
> < > Y Y N A(ui, uj , uk) −A(ujk, uij , uj)
> > < N Y Y A(ui, uj , uk) −A(ujk, uk, uki)
> > > N N N A(ui, uj , uk)

intersections, giving a vector of points that can be plotted. For the wave

geometry considered in the text, sorting the leading edge is not as simple

and so we instead plot the concave hull of these points, computed with the

ConcaveHull.jl package [89,90].

Now that we understand how to compute the area of the part of a

triangle that is above the plane u = τ , which we denote by AT , the to-

tal area where u(x, t) ≥ τ is given by
∑

T∈T (Ω)AT , meaning A(Cτ (t)) =

A(Ω) −
∑

T∈T (Ω)AT . Thus, normalising by A(Ω), we have

µc(t) = 1 − 1

A(Ω)

∑
T∈T (Ω)

AT . (2.20)

Similarly, letting ℓT be the length of the line in T where u = τ , which is zero

if there is no such line, the perimeter of Cτ (t) is ℓ(Cτ (t)) =
∑

T∈T (Ω) ℓT ,

giving µp(t) = [1/ℓ(∂Ω)]
∑

T∈T (Ω) ℓT . We note that it is possible to have∑
T∈T (Ω) ℓT = 0, which means that there is no part of u(x, t) where u > τ ,

but this means the whole of Ω is the void, i.e. u < τ in all of Ω. Thus, the



Chapter 2: Supplementary material 49

correct definition is

µp(t) =


1

ℓ(∂Ω)

∑
T∈T (Ω)

ℓT
∑

T∈T (Ω)

ℓT ̸= 0,

1
∑

T∈T (Ω)

ℓT = 1.
(2.21)

As described in the manuscript, these quantities µS are used to model

the distribution that our data yi,jS are realisations of, in particular Y i
S ∼

N (µS(ti;θ), σ2
S). Here we give the formula used for σ2

S . We simply aggre-

gate all the data for the quantity S into a single set, giving the sample

standard deviation

σ2
S =

1

n1 + n2 − 1

2∑
i=1

∑
j

(
yi,jS − yi,jS

)2
,

where ni is the total number of data points at t = ti for i = 1, 2, and

yi,jS =
1

n1 + n2 − 1

2∑
i=1

∑
j

yi,jS

is the aggregated mean of the yi,jS ; the second sum in each term denotes a

sum over all pore indices j. For the square geometry, n1 + n2 = 41, and

for the wave geometry we have n1 + n2 = 3.
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2.D Reparametrisation of the likelihood function

Here we discuss issues with working with D and λ separately in the likeli-

hood function. For this discussion, we will take u0 = 0.2, but note that the

results are the same for any other u0. To start, let us take our log-likelihood

function ℓ(θ | y) with θ = (D,λ). We evaluate this log-likelihood over a

grid of points, obtaining the surface shown in Figure 2.D.1(a). We see that

the log-likelihood in this case is banana-shaped, indicating that D and λ

are related [28], and so we would expect problems when trying to compute

univariate confidence intervals from the profile log-likelihoods. One way

to overcome this issue is to reparametrise in terms of (Dλ, λ), motivated

by noting that our likelihood function uses data based on the void bound-

ary which is known to have a speed that depends directly on the product

Dλ [30]. The surface we obtain under this reparametrisation is given in

Figure 2.D.1(b), where we see that we can now assign a finite interval to

Dλ, meaning we will be able to obtain confidence intervals from the profile

likelihood for Dλ, but we can still not assign any upper bound to λ — λ is

not identifiable. This latter issue with λ is not important for us, though, as

we only need Dλ to describe the cellular mechanisms driving tissue growth

in our experiments.
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(a): (D,𝜆) parametrisation
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(b): (D𝜆,𝜆) parametrisation

Figure 2.D.1: Log-likelihood surfaces for ℓ(θ | y) using (a) the (D,λ)
parametrisation and (b) the (Dλ, λ) parametrisation. The red curves show
the 95% confidence region for θ.

We note that, at first glance, it might appear that the surface in Figure

2.D.1(b) could eventually stop on the vertical axis for larger values of λ.

We have computed this surface up to λ = 25 day−1 previously and find

that this is not the case. Moreover, we note that even the maximum value

λ = 5 day−1 shown in Figure 2.D.1(b) is large, as the proliferation time for
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these cells is typically between half a day to two days, corresponding to a

value of λ between 0.5 day−1 and 2 day−1 [13]. Thus, even this value of λ =

5 day−1 is a conservative upper bound, and certainly λ is not identifiable.
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2.E Profile likelihood analysis

In this section, we will outline (1) how we compute the MLE, (2) how profile

likelihoods are computed, and (3) how prediction intervals are computed.

2.E.1 Computing the MLE

The MLE is obtained by maximising ℓ(θ | y) over a certain rectangle

defined by the bounds on Dλ and λ. We maximise ℓ(θ | y) using NLopt.jl

with the derivative-free algorithm LN BOBYQA [91–93]. To construct an

initial estimate for the optimiser, we evaluate the log-likelihood on a 40×40

grid, taking 40 values for Dλ in 0 < Dλ < 500 and 40 values for λ in

0 < λ < 5. We then take the pair (Dλ, λ) in this grid that gives the

greatest value for ℓ(θ | y), and this then gives the initial estimate we use

for the optimiser.

2.E.2 Computing profile likelihoods

We describe here how we compute ℓp(Dλ) as defined in Equation (8). We

use a simple iterative approach, although other approaches that exploit

the PDE for improving the computation could be used [94]. The basic

idea is to step to the left and right of the MLE D̂λ until we find where

ℓp(Dλ) ≤ c∗ in each direction, or until we reach the bounds of Dλ; recall

that c∗ = −χ2
1,1−α/2 ≈ −1.92 in this work, taking α = 0.05. At each step,

we solve the optimisation problem (8) to get a new value for ℓp(Dλ) at the

given Dλ. This optimisation problem starts with an initial estimate given

by the MLE if we have only taken one step, or via linear interpolation of

the optimised values for λ∗(Dλ) from the previous two steps, with λ∗(Dλ)

denoting the optimised value of λ that together gives the value for ℓp(Dλ) =

maxλ∈Λ[ℓ(Dλ, λ)] − ℓ∗, meaning ℓp(Dλ) = ℓ(Dλ, λ∗(Dλ)) − ℓ∗. If we find

points on each side of the MLE where ℓp(Dλ) ≤ c∗, we stop iterating and

fit a spline to the data (Dλi, ℓp(Dλi)), using a bisection algorithm on each

side of the MLE to find the two points where ℓp(Dλ) = c∗. These two

points define the endpoints of the confidence interval. This procedure is

implemented in the Julia package ProfileLikelihood.jl [77].
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2.E.3 Computing prediction intervals

Let us now describe how prediction intervals are computed, following the

approach developed by [28]. We note that while we describe the procedure

below for propagating uncertainty from the full log-likelihood ℓ(θ | y),

we could just as easily propagate uncertainty from the profile likelihoods,

again following [28]. The results turn out to be essentially the same, and

so we only describe the former approach here.

We start with the same 40 × 40 grid that we use for finding an es-

timate estimate for computing the maximum likelihood, as described in

Appendix 2.E.1. We then find all pairs θ = (Dλ, λ) in this grid such that

ℓ(θ)− ℓ∗ ≥ −χ2
2,1−α/2, where χ2

2,q is the qth quantile of the χ2 distribution

with two degrees of freedom and ℓ∗ = ℓ(θ̂) is the maximum log-likelihood.

With α = 0.05, −χ2
2,0.95/2 ≈ −3. We enumerate the points satisfying this

condition as {θ1, . . . ,θr}. For each point θi we compute qi = q(θi) for a

prediction function q, giving a sample (q1, . . . ,qr). Now, letting qij de-

note the jth element of qi, define qL = (minr
i=1 qi1, . . . ,minr

i=1 qi|q|) and

qU = (maxr
i=1 qi1, . . . ,maxr

i=1 qi|q|), where |q| is the length of outputs of q.

A parameter-wise prediction interval for q is then given by qL ≤ q ≤ qU ,

where the vector inequality a ≤ b ≤ c means ai ≤ bi ≤ ci for each i.

For our application, the prediction function q is defined by

q(θ) =


A(θ; t∗)

P(θ; t∗)

tb(θ)

 . (2.22)

For these functions, we let t∗ be a vector of m = 361 equally spaced points

between t = 5 day and t = 70 day. Then, A(θ; t∗) is the vector of coverages

(µc(t
∗
1), . . . , µc(t

∗
m)) for the given θ; P(θ; t∗) is the corresponding vector of

normalised perimeters (µp(t∗1), . . . , µp(t∗m)) for the given θ; tb(θ) is the time

at which the area of the void first becomes zero, in particular this is the

bridging time for the given θ, computing using the continuous callback

interface from DifferentialEquations.jl [85] to find when µc(t) ≈ 0 by

applying rootfinding to the function g(t) = µc(t) − 10−9.
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2.F Likelihood results using area only

In this appendix, we show some of the results when we include only area in

the likelihood function rather than both area and perimeter. For the tissue

growth predictions, we only show the results at u0 = 0.2, noting that the

results for other u0 are mostly indistinguishable.

2.F.1 Square pore

Analogous figures to those in Figures 5–7 are shown in Figures 2.F.1–2.F.3.

The results are very similar, with the main difference being that the uncer-

tainty is much wider than when we also include perimeter information, as

should be expected. The differences in the model predictions are also not

too distinguishable compared to their counterparts when including perime-

ter information. Overall, we see that for this data on the square, perimeter

does not contribute significantly to our understanding of these effects.
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Figure 2.F.1: Likelihood analysis results for the square pore without
perimeter information. In (a), the lines give the boundaries of the 95%
confidence region for θ for each u0, and the vertical dashed lines show the
MLE for Dλ (see Table 1). The profile log-likelihoods for Dλ for each u0
are shown in (b), with the threshold c∗ ≈ −1.92 shown with a horizontal
red line and the vertical dashed lines show the MLEs for Dλ. In (c)–(f),
predictions for µc(t) and µp(t) on each pore geometry are shown, with the
blue dots showing the experimental data, the surrounding solid lines giv-
ing 95% prediction intervals for each u0, and the dashed lines showing the
corresponding estimates at the MLE θ̂. The blue data points have been
slightly jittered horizontally to help distinguish them. The estimates for
the PDF p(tb) of the bridging time on each pore geometry are shown in
(g)–(h). The results in (d), (f), and (h) are predictions on the wave geom-
etry using parameters inferred from the square pore data.
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Figure 2.F.2: Model predictions for the variability in the tissue growth
behaviour for the square geometry for u0 = 0.2 at days 7, 14, 25,
and 28 without perimeter information. The parameters used are θ̂L =
(D̂L, λ̂L) = (41 µm2/day, 1 day−1), θ̂ = (D̂, λ̂) = (19 µm2/day, 5 day−1),
and θ̂L = (D̂U , λ̂U ) = (57 µm2/day, 5 day−1). The red boundary marks the
position of the void boundary where u(x, t) = 1/2. The top row of plots
shows the predictions for each time at θ = θ̂L, the middle row of plots
shows the prediction for each time at θ = θ̂, and the bottom row of plots
show the predictions for each time at θ = θ̂U ; each individual column thus
shows a rough confidence interval for the prediction at the respective time.

2.F.2 Wave pore

Analogous figures to those in Figures 8–10 are shown in Figures 2.F.4–

2.F.6. The results are much more problematic in this case than we include

area, with the uncertainty significantly wider than before, and Dλ is no

longer identifiable. We do capture the data in our uncertainty intervals,

although this is difficult to judge as the uncertainty being so large implies

that we might have captured this data regardless. It is impressive, though,

that we recover all of the experimental data points on the square. The

bridging time distributions in this case cover a much wider range, again

due to the large uncertainty in the parameters.
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Figure 2.F.3: Model predictions for the variability in the tissue growth
behaviour for the wave geometry using results from the square geometry
for u0 = 0.2 at days 7, 14, 25, and 28 without perimeter information. The
parameters used are θ̂L = (D̂L, λ̂L) = (41 µm2/day, 1 day−1), θ̂ = (D̂, λ̂) =
(19 µm2/day, 5 day−1), and θ̂L = (D̂U , λ̂U ) = (57 µm2/day, 5 day−1). The
red boundary marks the position of the void boundary where u(x, t) = 1/2.
The top row of plots shows the predictions for each time at θ = θ̂L, the
middle row of plots shows the prediction for each time at θ = θ̂, and the
bottom row of plots show the predictions for each time at θ = θ̂U ; each
individual column thus shows a rough confidence interval for the prediction
at the respective time.
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Figure 2.F.4: Likelihood analysis results for the wave pore without perime-
ter information. In (a), the lines give the boundaries of the 95% confidence
region for θ for each u0, and the vertical dashed lines show the MLE for
Dλ (see Table 1). The profile log-likelihoods for Dλ for each u0 are shown
in (b), with the threshold c∗ ≈ −1.92 shown with a horizontal red line
and the vertical dashed lines show the MLEs for Dλ. In (c)–(f), predic-
tions for µc(t) and µp(t) on each pore geometry are shown, with the blue
dots showing the experimental data, the surrounding solid lines giving 95%
prediction intervals for each u0, and the dashed lines showing the corre-
sponding estimates at the MLE θ̂. The blue data points have been slightly
jittered horizontally to help distinguish them. The estimates for the PDF
p(tb) of the bridging time on each pore geometry are shown in (g)–(h). The
results in (d), (f), and (h) are predictions on the square geometry using
parameters inferred from the wave pore data. The blue data points have
been slightly jittered horizontally to help distinguish them.
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Figure 2.F.5: Model predictions for the variability in the tissue growth
behaviour for the wave geometry for u0 = 0.2 at days 7, 14, 25, and 28
without perimeter information. The parameters used are θ̂L = (D̂L, λ̂L) =
(25 µm2/day, 0.2 day−1), θ̂ = (D̂, λ̂) = (22 µm2/day, 10 day−1), and θ̂L =
(D̂U , λ̂U ) = (2000 µm2/day, 10 day−1). The red boundary marks the posi-
tion of the void boundary where u(x, t) = 1/2. The top row of plots shows
the predictions for each time at θ = θ̂L, the middle row of plots shows the
prediction for each time at θ = θ̂, and the bottom row of plots show the
predictions for each time at θ = θ̂U ; each individual column thus shows a
rough confidence interval for the prediction at the respective time.
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Figure 2.F.6: Model predictions for the variability in the tissue growth be-
haviour for the square geometry using results from the wave geometry for
u0 = 0.2 at days 7, 14, 25, and 28 without perimeter information. The pa-
rameters used are θ̂L = (D̂L, λ̂L) = (25 µm2/day, 0.2 day−1), θ̂ = (D̂, λ̂) =
(22 µm2/day, 10 day−1), and θ̂L = (D̂U , λ̂U ) = (2000 µm2/day, 10 day−1).
The red boundary marks the position of the void boundary where u(x, t) =
1/2. The top row of plots shows the predictions for each time at θ = θ̂L,
the middle row of plots shows the prediction for each time at θ = θ̂, and
the bottom row of plots show the predictions for each time at θ = θ̂U ; each
individual column thus shows a rough confidence interval for the prediction
at the respective time.
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Abstract

Mathematical modelling of biological population dynamics often involves

proposing high fidelity discrete agent-based models that capture stochas-

ticity and individual-level processes. These models are often considered in

conjunction with an approximate coarse-grained differential equation that

captures population-level features only. These coarse-grained models are

only accurate in certain asymptotic parameter regimes, such as enforc-

ing that the time scale of individual motility far exceeds the time scale

of birth/death processes. When these coarse-grained models are accurate,

the discrete model still abides by conservation laws at the microscopic

level, which implies that there is some macroscopic conservation law that

can describe the macroscopic dynamics. In this work, we introduce an

equation learning framework to find accurate coarse-grained models when

standard continuum limit approaches are inaccurate. We demonstrate our

approach using a discrete mechanical model of epithelial tissues, consider-

ing a series of four case studies that consider problems with and without

free boundaries, and with and without proliferation, illustrating how we can

learn macroscopic equations describing mechanical relaxation, cell prolif-

eration, and the equation governing the dynamics of the free boundary

of the tissue. While our presentation focuses on this biological applica-

tion, our approach is more broadly applicable across a range of scenarios

where discrete models are approximated by approximate continuum-limit

descriptions. All code and data to reproduce this work are available at

https://github.com/DanielVandH/StepwiseEQL.jl.

https://github.com/DanielVandH/StepwiseEQL.jl
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3.1 Introduction

Mathematical models of population dynamics are often constructed by con-

sidering both discrete and continuous descriptions, allowing for both mi-

croscopic and macroscopic details to be considered [95]. This approach

has been applied to several kinds of discrete models, including cellular

Potts models [96–99], exclusion processes [100–103], mechanical models of

epithelial tissues [38, 40–42, 45, 104–106], hydrodynamics [107, 108], and a

variety of other types of individual-based models [95,109–116]. Continuum

models are useful for describing collective behaviour, especially because

the computational requirement of discrete models increases with the size

of the population, and this can become computationally prohibitive for

large populations, which is particularly problematic for parameter infer-

ence [117]. In contrast, the computational requirement to solve a continu-

ous model is independent of the population size, and generally requires less

computational overhead than working with a discrete approach only [40].

Continuum models are typically obtained by coarse-graining the discrete

model, using Taylor series expansions to obtain continuous partial differ-

ential equation (PDE) models that govern the population densities on a

continuum or macroscopic scale [41–44].

One challenge with using coarse-grained continuum limit models is that

while the solution of these models can match averaged data from the cor-

responding discrete model for certain choices of parameters [41, 106, 118],

the solution of the continuous model can be a very poor approximation for

other parameter choices [40, 48, 105, 119]. More generally, coarse-grained

models are typically only valid in certain asymptotic parameter regimes

[118–120]. For example, suppose we have a discrete space, discrete time,

agent-based model that incorporates random motion and random prolif-

eration. Random motion involves stepping a distance ∆ with probability

Pm ∈ [0, 1] per time step of duration τ . The stochastic proliferation process

involves undergoing proliferation with probability Pp ∈ [0, 1] per unit time

step. The continuum limit description of this kind of discrete process can

be written as [119]

∂q

∂t
=

∂

∂x

(
D(q)

∂q

∂x

)
+ R(q), (3.1)

where q is the macroscopic density of individuals, D(q) is the nonlinear
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diffusivity that describes the effects of individual migration, and R(q) is

a source term that describes the effects of the birth process in the dis-

crete model [119]. Standard approaches to derive (3.1) require D(q) =

O(Pm∆2/τ) and R(q) = O(Pp/τ) in the limit that ∆ → 0 and τ → 0. To

obtain a well-defined continuum limit such that the diffusion and source

terms are both present in the macroscopic model, some restrictions on the

parameters in the discrete model are required [119, 120]. Typically, this is

achieved by taking the limit as ∆ → 0 and τ → 0 jointly such that the

ratio ∆2/τ remains finite, implying that Pp = O(τ) so that both the diffu-

sion and source terms in (3.1) are O(1). In practice, this means that the

time scale of individual migration events has to be much faster than the

time scale of individual proliferation events, otherwise the continuum limit

description is not well defined [119,120]. If this restriction is not enforced,

then the solution of the continuum limit model does not always predict

the averaged behaviour of the discrete model [119], as the terms on the

right-hand side of (3.1) are no longer O(1) so that the continuum limit is

not well defined [120].

Regardless of whether choices of parameters in a discrete model obey

the asymptotic restrictions imposed by coarse-graining, the discrete model

still obeys a conservation principle, which implies that there is some alter-

native macroscopic conservation description that will describe population-

level features of interest [33, 46]. Equation learning is a means of deter-

mining appropriate continuum models outside of the usual continuum limit

asymptotic regimes. Equation learning has been used in several applica-

tions for model discovery. In the context of PDEs, a typical approach

is to write ∂q/∂t = N (q,D,θ), where q is the population density, N is

some nonlinear function parametrised by θ, D is a collection of differential

operators, and θ are parameters to be estimated [51]. This formulation

was first introduced by Rudy et al. [51], who extended previous work in

learning ordinary differential equations (ODEs) proposed by Brunton et

al. [47]. Equation learning methods developed for the purpose of learn-

ing biological models has also been a key interest [121, 122]. Lagergren et

al. [49] introduce a biologically-informed neural network framework that

uses equation learning that is guided by biological constraints, imposing

a specific conservation PDE rather than a general nonlinear function N .

Lagergren et al. [49] use this framework to discover a model describing data
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from simple in vitro experiments that describe the invasion of populations

of motile and proliferative prostate cancer cells. VandenHeuvel et al. [50]

extend the work of Lagergren et al. [49], incorporating uncertainty quan-

tification into the equation learning procedure through a bootstrapping

approach. Nardini et al. [48] use discrete data from agent-based models

to learn associated continuum ODE models, combining a user-provided li-

brary of functions together with sparse regression methods to give simple

ODE models describing population densities. Regression methods have

also been used as an alternative to equation learning for this purpose [52].

These previous approaches to equation learning consider various meth-

ods to estimate the parameters θ, such as sparse regression or nonlinear op-

timisation [47–51,121], representing N as a library of functions [47,51,121],

neural networks [49], or in the form of a conservation law with individual

components to be learned [49, 50]. In this work, we introduce a stepwise

equation learning framework, inspired from stepwise regression [123], for

estimating θ from averaged discrete data with a given N representing a

proposed form for the continuum model description. We incorporate or

remove terms one at a time until a parsimonious continuum model is ob-

tained whose solution matches the data well and no further improvements

can be made to this match. Our approach is advantageous for several rea-

sons. Firstly, it is computationally efficient and parallelisable, allowing for

rapid exploration of results with different discrete parameters and different

forms of N for a given data set. Secondly, the approach is modular, with

different mechanistic features easily incorporated. This approach enables

extensive computational experimentation by exploring the impact of in-

cluding or excluding putative terms in the continuum model without any

great increase in computational overhead. Lastly, it is easy to examine the

results from our procedure, allowing for ease of diagnosing and correcting

reasons for obtaining poor fitting models, and explaining what components

of the continuum model are the most influential. We emphasise that a key

difference between our approach and other work, such as the methods de-

veloped by Brunton et al. [47] and Rudy et al. [51], is that we constrain

our problem so that we can only learn conservation laws rather than al-

low a general form through a library of functions, and that we iteratively

eliminate variables from θ rather than use sparse regression. These impor-

tant features are what support the modularity and interpretability of our
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approach.

To illustrate our procedure, we consider a discrete, individual-based

one-dimensional toy model inspired from epithelial tissues [41,106]. Epithe-

lial tissues are biological tissue composed of cells, organised in a monolayer,

and are present in many parts of the body and interact with other cells

[124], lining surfaces such as the skin and the intestine [125]. They are im-

portant in a variety of contexts, such as wound healing [126,127] and cancer

[128,129]. Many models have been developed for studying their dynamics,

considering both discrete and continuum modelling [38,40–42,45,104,105],

with most models given in the form of a nonlinear reaction-diffusion equa-

tion with a moving boundary, using a nonlinear diffusivity term to incor-

porate mechanical relaxation and a source term to model cell prolifera-

tion [38, 104, 105]. These continuum limit models too are only accurate

in certain parameter regimes, becoming inaccurate if the rate of mechan-

ical relaxation is slow relative to the rate of proliferation [40, 105, 119].

To apply our stepwise equation learning procedure, we let the nonlinear

function N be given in the form of a conservation law together with equa-

tions describing the free boundary. We demonstrate this approach using

a series of four biologically-motivated case studies, considering problems

with and without a free boundary, and with and without proliferation,with

each case study building on those before it. The first two case studies are

used to demonstrate how our approach can learn known continuum lim-

its, while the latter two case studies show how we can learn improved

continuum limit models in parameter regimes where these known con-

tinuum limits are no longer accurate. We implement our approach in

the Julia language [130], and all code is available on GitHub at https:

//github.com/DanielVandH/StepwiseEQL.jl.

3.2 Mathematical model

Following Murray et al. and Baker et al. [38, 41], we suppose that we

have a set of nodes x1, . . . , xn(t) describing n cell boundaries at a time

t. The interval (xi(t), xi+1(t)) represents the ith cell for i = 1, . . . , n −
1, where we fix x1 = 0 and x1 < x2(t) < · · · < xn(t). The number

of nodes, n, may increase over time due to cell proliferation. We model

the mechanical interaction between cells by treating them as springs, as

indicated in Figure 3.1, so that each node i experiences forces Fi,i±1 from

https://github.com/DanielVandH/StepwiseEQL.jl
https://github.com/DanielVandH/StepwiseEQL.jl
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(a): Fixed boundary

Fixed

Fixed

(b): Moving boundary

(c): Proliferation event

(d): CS 1: Fixed boundaries

(f): CS 3: Fixed boundaries, proliferation 

(e): CS 2: Free boundaries

(g): CS 4: Free boundaries, proliferation

Fixed

Free

Figure 3.1: Discrete model and schematics for each case study (CS). (a)
A fixed boundary problem with x1 = 0 and xn = L fixed. (b) A free
boundary problem with x1 = 0 and xn(t) = L(t), show in red, free. (c)
Proliferation schematic, showing a cell (xi(t), xi+1(t)) dividing into (xi(t+
∆t), xi+1(t+ ∆t)) and (xi+1(t+ ∆t), xi+2(t+ ∆t)) following a proliferation
event, where xi+1(t + ∆t) = (xi(t) + xi+1(t))/2. (d)–(g) show schematics
for the four case studies considered in this work, where the first row in each
panel is a representation of the initial configuration of cells at t = 0 and
the second row a representation at a later time t > 0.
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nodes i ± 1, respectively, except at the boundaries where there is only

one neighbouring force. We further assume that each of these springs

has the same mechanical properties, and that the viscous force from the

surrounding medium is given by ηdxi(t)/dt with drag coefficient η. Lastly,

assuming we are in a viscous medium so that the motion is overdamped,

we can model the dynamics of each individual node xi(t), fixing x1 = 0, by

[38]

η
dxi(t)

dt
= Fi,i−1 + Fi,i+1, i = 1, . . . , n− 1, (3.2)

η
dxn(t)

dt
= Fn,n−1, (3.3)

where

Fi,i±1 = F (|xi(t) − xi±1(t)|)
xi(t) − xi±1(t)

|xi(t) − xi±1(t)|
(3.4)

is the interaction force that the ith node experiences from nodes i ± 1

(Figure 3.1). In Case Studies 1 and 3 (see Section 3.3, below), we hold

xn(t) = L constant and discard (3.3). Throughout this work, we use linear

Hookean springs so that F (ℓi) = k(s− ℓi), ℓi > 0, where ℓi(t) = xi+1(t) −
xi(t) is the length of the ith cell, k > 0 is the spring constant, and s ≥ 0 is

the resting spring length [41]; we discuss other force laws in 3.E.

The dynamics governed by (3.2)–(3.3) describe a system in which cells

mechanically relax. Following previous work [38, 41, 45], we introduce a

stochastic mechanism that allows the cells to undergo proliferation, as-

suming only one cell can divide at a time over a given interval [t, t + ∆t)

for some small duration ∆t. We let the probability that the ith cell pro-

liferates be given by Gi∆t, where Gi = G(ℓi) for some length-dependent

proliferation law G(ℓi) > 0. As represented in Figure 3.1(c), when the ith

cell proliferates, the cell divides into two equally-sized daughter cells, and

the boundary between the new daughter cells is placed at the midpoint of

the original cell. Throughout this work, we use a logistic proliferation law

G(ℓi) = β[1−1/(Kℓi)] with ℓi > 1/K, where β is the intrinsic proliferation

rate and K is the carrying capacity density; we consider other prolifera-

tion laws in 3.E. The implementation of the solution to these equations

(3.2)–(3.3) and the proliferation mechanism is given in the Julia pack-

age EpithelialDynamics1D.jl; in this implementation, if G(ℓi) < 0 we

set G(ℓi) = 0 to be consistent with the fact that we interpret G(ℓi) as a
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probability. We emphasise that, without proliferation, we need only solve

(3.2)–(3.3) once for a given initial condition in order to obtain the expected

behaviour of the discrete model, because the discrete model is determinis-

tic in the absence of proliferation. In contrast, incorporating proliferation

means that we need to consider several identically-prepared realisations of

the same stochastic discrete model to estimate the expected behaviour of

the discrete model for a given initial condition.

In practice, macroscopic models of populations of cells are described in

terms of cell densities rather than keeping track of the position of individual

cell boundaries. The density of the ith cell (xi(t), xi+1(t)) is 1/ℓi(t). For

an interior node xi(t), we obtain a density qi(t) by taking the inverse of

the average of the cells left and right of xi(t), giving

qi(t) =
2

xi+1(t) − xi−1(t)
, i = 2, . . . , n− 1, (3.5)

as in Baker et al. [38]. At boundary nodes, we use

q1(t) =
2

x2(t)
− 2

x3(t)
, qn(t) =

2

xn(t) − xn−1(t)
− 2

xn(t) − xn−2(t)
, (3.6)

derived by linear extrapolation of (3.5) to the boundary. The densities

in (3.6) ensure that the slope of the density curves at the boundaries,

∂q/∂x, match those in the continuum limit. We discuss the derivation of

(3.6) in 3.B. In the continuum limit where the number of cells is large and

mechanical relaxation is fast, the densities evolve according to the moving

boundary problem [38,41]

∂q

∂t
=

∂

∂x

(
D(q)

∂q

∂x

)
+ R(q) 0 < x < L(t), t > 0,

∂q

∂x
= 0 x = 0, t > 0,

∂q

∂x
= H(q) x = L(t), t > 0,

q
dL

dt
= −D(q)

∂q

∂x
x = L(t), t > 0,

(3.7)

where q(x, t) is the density at position x and time t, D(q) = −1/(ηq2)F ′(1/q),

R(q) = qG(1/q), H(q) = −2qF (1/q)/[ηD(q)], and L(t) = xn(t) is the lead-

ing edge position with L(0) = xn(0). The quantity 1/q in these equations

can be interpreted as a continuous function related to the length of the
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individual cells. The initial condition q(x, 0) = q0(x) is a linear interpolant

of the discrete densities qi(t) of the cells at t = 0. Similar to the discussion

of (3.1), for this continuum limit to be valid so that both D(q) and R(q)

play a role in the continuum model, constraints must be imposed on the

discrete parameters. As discussed by Murphy et al. [40], we require that

the time scale of mechanical relaxation is sufficiently fast relative to the

time scale of proliferation. In practice this means that for a given choice

of β we must have k/η sufficiently large for the solution of the continuum

model to match averaged data from the discrete model. We note that, with

our choices of F and G, the functions in (3.7) are given by

D(q) =
k

ηq2
, R(q) = βq

(
1 − q

K

)
, H(q) = 2q2(1 − qs). (3.8)

For fixed boundary problems we take H(q) = 0 and dL/dt = 0. In 3.C,

we describe how to solve (3.7) numerically, as well as how to solve the

corresponding problem with fixed boundaries numerically.

3.3 Continuum-discrete comparison

We now consider four biologically-motivated case studies to illustrate the

performance of the continuum limit description (3.7). These case studies

are represented schematically in Figure 3.1(d)—(g). Case Studies 1 and

3, shown in Figure 3.1(d) and Figure 3.1(f), are fixed boundary problems,

where we see cells relax mechanically towards a steady state where each cell

has equal length. Case Studies 2 and 4 are free boundary problems, where

the right-most cell boundary moves in the positive x-direction while all cells

relax towards a steady state where the length of each cell is given by resting

spring length s. Case Studies 1 and 2 have β = 0 so that there is no cell

proliferation and the number of cells remains fixed during the simulations,

whereas Case Studies 3 and 4 have β > 0 so that the number of cells

increases during the discrete simulations. To explore these problems, we

first consider cases where the continuum limit model is accurate, using the

data shown in Figure 3.2, where we show space-time diagrams and a set of

averaged density profiles for each problem in the left and right columns of

Figure 3.2, respectively. Case Studies 1 and 3 initially place 30 nodes in

0 ≤ x ≤ 5 and 30 nodes in 25 ≤ x ≤ 30, or equivalently n = 60 with 28

cells in 0 ≤ x ≤ 5 and 28 cells in 25 ≤ x ≤ 30, spacing the nodes uniformly
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Figure 3.2: Space-time diagrams (left column) and densities (right col-
umn) for the four case studies from Figure 3.1 considered throughout this
work. The left column shows the evolution of the discrete densities in space
and time, with (c) and (d) showing averaged results over 2500 identically-
prepared realisations of the discrete model. In (b) and (d), the red line
shows the position of the free boundary. In the figures in the right col-
umn, the solid curves are the discrete densities (3.5) and the dashed curves
are solutions to the continuum limit problem (3.7), and the curves are
given by black, red, blue, green, orange, and purple in the order of in-
creasing time as indicated by the black arrows. The times shown are (a)
t = 0, 1, 2, 3, 4, 5; (b) t = 0, 5, 10, 25, 50, 100; (c) t = 0, 1, 5, 10, 20, 50; and
(d) t = 0, 5, 10, 20, 50, 100. In (c) and (d), the shaded regions show 95%
confidence bands from the mean discrete curves at each time; the curves in
(a) and (b) show no shaded regions as these models have no stochasticity.
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within each subinterval. Case Studies 2 and 4 initially place 60 equally

spaced nodes in 0 ≤ x ≤ 5.
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(a): Case Study 3: Fixed boundaries with proliferation
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(b): Case Study 4: Free boundaries with proliferation

t

Figure 3.3: Examples of inaccurate continuum limits for (a) Case Study 3
and (b) Case Study 4, where both case studies use the same parameters
as in Figure 3.2 except with k = 1/5 rather than k = 50. The solid
curves are the discrete densities (3.5) and the dashed curves are solutions
to the continuum limit problem (3.7). The arrows show the direction of
increasing time. The density profiles are plotted in black, red, blue, green,
orange, and purple for the respective times (a) t = 0, 1, 10, 25, 40, 75 and
(b) t = 0, 5, 25, 50, 100, 250.

The problems shown in Figure 3.2 use parameter values such that the

solution of the continuum limit (3.7) is a good match to the averaged

discrete density profiles. In particular, all problems use k = 50, η = 1,

s = 1/5 and, for Case Studies 3 and 4, ∆t = 10−2, K = 15, and β = 0.15.

The accuracy of the continuum limit is clearly evident in the right column

of Figure 3.2 where, in each case, the solution of the continuum limit model

is visually indistinguishable from averaged data from the discrete model.

With proliferation, however, the continuum limit can be accurate when

k/η is not too much larger than β, and we use Case Studies 3 and 4 to

explore this.

Figure 3.3 shows further continuum-discrete comparisons for Case Stud-

ies 3 and 4 where we have slowed the mechanical relaxation by taking

k = 1/5. This choice of k means that D(q) and R(q) are no longer on
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the same scale and thus the continuum limit is no longer well defined, as

explained in the discussion of (3.1), meaning the continuum limit solutions

are no longer accurate. In both cases, the solution of the continuum limit

model lags behind the averaged data from the discrete model. In 3.A,

we show the 95% confidence regions for each curve in Figure 3.3, where

we find that the solutions have much greater variance compared to the

corresponding curves in Figure 3.2 where k = 50.

We are interested in developing an equation learning method for learn-

ing an improved continuum model for problems like those in Figure 3.3,

allowing us to extend beyond the parameter regime where the continuum

limit (3.7) is accurate. We demonstrate this in Case Studies 1–4 in Section

3.4 where we develop such a method.

3.4 Learning accurate continuum limit models

In this section we introduce our method for equation learning and demon-

strate the method using the four case studies from Figures 3.1–3.3. Since

the equation learning procedure is modular, adding these components into

an existing problem is straightforward. All Julia code to reproduce these

results is available at https://github.com/DanielVandH/StepwiseEQL.jl.

A summary of all the parameters used for each case study is given in Table

3.1.

3.4.1 Case Study 1: Fixed boundaries

Case Study 1 involves mechanical relaxation only so that there is no cell

proliferation and the boundaries are fixed, implying R(q) = 0 and H(q) = 0

in (3.7), respectively, and the only function to learn is D(q).

Our equation learning approach starts by assuming that D(q) is a lin-

ear combination of d basis coefficients {θ1, . . . , θd} and d basis functions

{φ1, . . . , φd}, meaning D(q) can be represented as

D(q) =

d∑
i=1

θiφi(q). (3.9)

These basis functions could be any univariate function of q, for example

the basis could be {φ1, φ2, φ3} = {1/q, 1/q2, 1/q3} with d = 3. In this

work, we impose the constraint that D(q) ≥ 0 for qmin ≤ q ≤ qmax, where

https://github.com/DanielVandH/StepwiseEQL.jl
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Parameter
Case Study

1 2 3a 3b 4a 4b

k 50 50 50 1/5 50 1/5
η 1 1 1 1 1 1
s 1/5 1/5 1/5 1/5 1/5 1/5
∆t — — 10−2 10−2 10−2 10−2

β — — 0.15 0.15 0.15 0.15
K — — 15 15 15 15
M 50 150 501 751 (25, 50, 100, 250) (20, 200, 200, 200)
t1 0 0 0 0 (0, 0, 5, 10) (0, 2, 10, 20)
tM 5 15 50 75 (10−1, 5, 10, 50) (2, 10, 20, 50)
ns — — 1000 1000 1000 1000
nk — — 50 200 (25, 50, 100, 50) (50, 100, 100, 100)
τq 0.1 0.35 0.1 0.25 (0.1, 0, 0, 0) (0, 0, 0, 0.3)
τdL/dt — 0.1 — — (0, 0.2, 0, 0) (0, 0.4, 0, 0)

τt 0 0 0 0 0 (0.4, 0.4, 0, 0)

Table 3.1: Parameters used for each case study. The parameters are k, the
spring constant; η, the drag coefficient; s, the resting spring length; ∆t, the
proliferation duration; β, the intrinsic proliferation rate; K, the carrying
capacity density; M , the number of time points; t1, the initial time; tM ,
the final time; ns, the number of identically-prepared realisations; nk, the
number of knots used for averaging over realisations; τq, which defines
the 100τq% and 100(1 − τq)% density quantiles; τdL/dt, which defines the
100τdL/dt% and 100(1 − τdL/dt)% velocity quantiles; and τt, which defines
the 100τt% and 100(1−τt)% temporal quantiles. Values indicated by a line
are not relevant for the corresponding case study. For Case Study 3 and 4,
the label “a” refers to the accurate continuum limit case, and “b” refers to
the inaccurate continuum limit case. For Case Study 4, some parameters
are given by a set of four parameters, with the ith value of this set referring
to the value used when learning the ith mechanism; see Section 43.4.4 for
details.

qmin and qmax are the minimum and maximum densities observed in the

discrete simulations, respectively. This constraint enforces the condition

that the nonlinear diffusivity function is positive over the density interval

of interest. While it is possible to work with some choices of nonlinear

diffusivity functions for which D(q) < 0 for some interval of density [131–

133], we wish to avoid the possibility of having negative nonlinear diffusivity

functions and our results support this approach.

The aim is to estimate θ = (θ1, . . . , θd)T in (3.9). We use ideas similar

to the basis function approach from VandenHeuvel et al. [50], using (3.9)

to construct a matrix problem for θ. In particular, let us take the PDE

(3.7), with R(q) = 0 and H(q) = 0, and expand the spatial derivative term
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so that we can isolate the θk terms,

∂qij
∂t

=
d∑

k=1

{
dφk(qij)

dq

(
∂qij
∂x

)2

+ φk(qij)
∂2qij
∂x2

}
θk, (3.10)

where we let qij denote the discrete density at position xij = xi(tj) and

time tj . We note that while qij is discrete, we assume it can be approxi-

mated by a smooth function, allowing us to define these derivatives ∂qij/∂t,

∂qij/∂x, and ∂2qij/∂x
2 in (3.10); this assumption is appropriate since, as

shown in Figure 3.2, these discrete densities can be well approximated by

smooth functions. These derivatives are estimated using finite differences,

as described in 3.D. We also emphasise that, while (3.10) appears similar

to results in [47, 51], the crucial difference is that we are specifying forms

for the mechanisms of the PDE rather than the complete PDE itself; one

other important difference is in how we estimate θ, defined below and in

(3.15). We save the solution to the discrete problems (3.2)–(3.3) at M

times 0 = t1 < t2 < · · · < tM so that i ∈ {1, . . . , n} and j ∈ {2, . . . ,M},

where n = 60 is the number of nodes and we do not deal with data at

j = 1 since the PDE does not apply at t = 0. We can therefore convert

(3.10) into a rectangular matrix problem Aθ = b, where the rth row in

A, r = 1, . . . , n(M − 1), corresponding to the point (xij , tj) is given by

aij ∈ R1×d, where

aTij =


dφ1(qij)

dq

(
∂qij
∂x

)2

+ φ1(qij)
∂2qij
∂x2

...

dφd(qij)

dq

(
∂qij
∂x

)2

+ φd(qij)
∂2qij
∂x2

 , (3.11)

with each element of aij corresponding to the contribution of the associated

basis function in (3.10). Thus, we obtain the system

A =


a12

a22
...

anM

 ∈ Rn(M−1)×d and b =


∂q12/∂t

∂q22/∂t
...

∂qnM/∂t

 ∈ Rn(M−1)×1. (3.12)

The solution of Aθ = b, given by θ = (ATA)−1ATb, is obtained by
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minimising the residual ∥Aθ − b∥22, which keeps all terms present in the

learned model. We expect, however, just as in (3.8), that θ is sparse so

that D(q) has very few terms, which makes the interpretation of these

terms feasible [47,51]. There are several ways that we could solve Aθ = b

to obtain a sparse vector, such as with sparse regression [51], but in this

work we take a stepwise equation learning approach inspired by stepwise

regression [123] as this helps with both the exposition and modularity of

our approach. For this approach, we first let I = {1, . . . , d} be the set of

basis function indices. We let Ak denote the set of active coefficients at the

kth iteration, meaning the indices of non-zero values in θ, starting with

A1 = I. The set of indices of zero values in θ, Ik = I \ Ak, is called the

set of inactive coefficients. To obtain the next set, Ak+1, from a current

set Ak, we apply the following steps:

1. Let the vector θA denote the solution to Aθ = b subject to the

constraint that each inactive coefficient θi is zero, meaning θi = 0 for

i ∈ I \ A for a given set of active coefficients A. We compute θA by

solving the reduced problem in which the inactive columns of A are

not included. The vector with A = Ak at step k is denoted θk. With

this definition, we compute the sets

M+
k =

{
θAk∪{i} : i /∈ Ak

}
and M−

k =
{
θAk\{i} : i ∈ Ak

}
.

(3.13)

M+
k is the set of all coefficient vectors θ obtained by making each

active coefficient at step k inactive one at a time. M−
k , is similar to

M−
k+1 except we make each inactive coefficient at step k active one

at a time. We then define Mk = {θk} ∪M+
k ∪M−

k , so that Mk is

the set of all coefficient vectors obtained from activating coefficients

one at a time, deactivating coefficients one at a time, or retaining the

current vector θk.

2. Choose one of the vectors in Mk by defining a loss function L(θ):

L(θ)︸︷︷︸
loss

= log

 1

n(M − 1)

M∑
j=2

n∑
i=1

(
qij − q(xij , tj ;θ)

qij

)2


︸ ︷︷ ︸
goodness of fit

+ ∥θ∥0︸︷︷︸
model complexity

,

(3.14)

where q(x, t;θ) is the solution of the PDE (3.7) with R(q) = H(q) = 0
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and D(q) uses the coefficients θ in (3.9), q(xij , tj ;θ) is the linear

interpolant of the PDE data at t = tj evaluated at x = xij , and ∥θ∥0
is the number of non-zero terms in θ. This loss function balances the

goodness of fit with model complexity. If, for some θ, D(q) < 0 within

qmin ≤ q ≤ qmax, which we check by evaluating D(q) at nc = 100

equally spaced points in qmin ≤ q ≤ qmax, we set L(θ) = ∞. With

this loss function, we compute the next coefficient vector

θk+1 = argmin
θ∈Mk

L(θ). (3.15)

If θk+1 = 0, so that all the coefficients are inactive, we instead take

the vector that attains the second-smallest loss so that a model with

no terms cannot be selected.

3. If θk+1 = θk, then there are no more local improvements to be made

and so the procedure stops. Otherwise, we recompute Ak+1 and Ik+1

from θk+1 and continue iterating.

The second step prevents empty models from being returned, allowing the

algorithm to more easily find an optimal model when starting with no active

coefficients. We note that Nardini et al. [48] consider a loss based on the

regression error, ∥Aθ−b∥22, that has been useful for a range of previously-

considered problems [47, 48, 51]. We do not consider the regression error

in this work as we find that it typically leads to poorer estimates for θ

compared to controlling the density errors as we do in (3.15).

Let us now apply the procedure to our data from Figure 3.2, where we

know that the continuum limit with D(q) = 50/q2 is accurate. We use the

basis functions φi = 1/qi for i = 1, 2, 3 so that

D(q) =
θ1
q

+
θ2
q2

+
θ3
q3

, (3.16)

and we expect to learn θ = (0, 50, 0)T. We save the solution to the discrete

model at M = 50 equally spaced time points between t1 = 0 and tM = 5.

With this setup, and starting with all coefficients initially active so that

A1 = {1, 2, 3}, we obtain the results in Table 3.2. The first iterate gives

us θ1 such that D(q) < 0 for some range of q as we show in Figure 3.4(a),

and so we assign L(θ1) = ∞. To get to the next step, we remove θ1,

θ2, and θ3 one a time and compute the loss for each resulting vector, and
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we find that removing θ3 leads to a vector that gives the least loss out of

those considered. We thus find A2 = {1, 2} and θ2 = (−1.46, 47.11, 0)T.

Continuing, we find that out of the choice of removing θ1 or θ2, or putting θ3

back into the model, removing θ1 decreases the loss by the greatest amount,

giving A3 = {2}. Finally, we find that there are no more improvements to

be made, and so the algorithm stops at θ3 = (0, 43.52, 0)T, which is close

to the continuum limit. We emphasise that this final θ3 is a least squares

solution with the constraint θ1 = θ3 = 0, thus there is no need to refine θ3

further by eliminating θ1 and θ3 directly in (3.16), as the result would be

the same. Comparing the densities from the solution of the learned PDE

with θ = θ3 with the discrete densities in Figure 3.5(a), we see that the

curves are nearly visually indistinguishable near the center, but there are

some visually discernible discrepancies near the boundaries. We show the

form of D(q) at each iteration in Figure 3.4(a), where we observe that the

first iterate captures only the higher densities, the second iterate captures

the complete range of densities, and the third iterate removes a single term

which gives no noticeable difference.

Table 3.2: Stepwise equation learning results for the density data for Case
Study 1: Fixed boundaries using the basis expansion (3.16), saving the
results at M = 50 equally spaced times between t1 = 0 and tM = 5 and
starting with all coefficients active, A1 = {1, 2, 3}. Coefficients highlighted
in blue show the coefficient chosen to be removed or added at the corre-
sponding step.

Step θ1 θ2 θ3 Loss

1 -5.97 70.73 -27.06 ∞
2 -1.46 47.11 0.00 -4.33
3 0.00 43.52 0.00 -5.18
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(a): D(q) without pruning

q
0 2 4 6

D(
q)

− 20

0

20

40

60

80
(b): D(q) with pruning
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Figure 3.4: Progression of D(q) over each iterate for Case Study 1: Fixed
boundaries. (a) Progression from the results in Table 3.2 (dashed curves).
(b) As in (a), except with the results from Table 3.3 using matrix pruning.

To improve our learned model we introduce matrix pruning, inspired
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from the data thresholding approach in VandenHeuvel et al. [50], to im-

prove the estimates for θ. Visual inspection of the space-time diagram in

Figure 3.2(a) shows that the most significant density changes occur at early

time and near to locations where q changes in the initial condition, and a

significant portion of the space-time diagram involves regions where q is

almost constant. These regions where q has minimal change are problem-

atic as points which lead to a higher residual are overshadowed, affecting

the least squares problem and consequently degrading the estimates for θ

significantly, and so it is useful to only include important points in the con-

struction of A. To resolve this issue, we choose to only include points if the

associated densities falls between the 10% and 90% quantiles for the com-

plete set of densities, which we refer to by density quantiles; more details

on this pruning procedure are given in 3.D. This choice of density quantiles

is made using trial and error, starting at 0% and 100%, respectively, and

shrinking the quantile range until suitable results are obtained. When we

apply this pruning and reconstruct A, we obtain the improved results in

Table 3.3 and associated densities in Figure 3.5(b). Compared with Table

3.2, we see that the coefficient estimates for θ all lead to improved losses,

and our final model now has θ = (0, 49.83, 0)T, which is much closer to

the the continuum limit, as we see in Figure 3.5(b) where the solution

curves are now visually indistinguishable everywhere. Moreover, we show

in Figure 3.4(b) how D(q) is updated at each iteration, where we see that

the learned nonlinear diffusivity functions are barely different from the ex-

pected continuum limit result. These results demonstrate the importance

of only including the most important points in A.

Table 3.3: Improved results for Case Study 1: Fixed boundaries from Table
3.2, now using matrix pruning so that densities outside of the 10% and 90%
density quantiles are not included. Coefficients highlighted in blue show
the coefficient chosen to be removed or added at the corresponding step.

Step θ1 θ2 θ3 Loss

1 -1.45 42.48 13.76 -4.19
2 0.00 37.79 19.69 -5.46
3 0.00 49.83 0.00 -7.97
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Figure 3.5: Stepwise equation learning results for Case Study 1: Fixed
boundaries. (a) Comparisons of the discrete density profiles (solid curves)
with those learned from PDEs obtained from the results in Table 3.2
(dashed curves). (b) As in (a), except with the results from Table 3.3
using matrix pruning so that densities outside of the 10% and 90% density
quantiles are not included. (c) Comparisons of the learned D(q) from Ta-
ble 3.2 without pruning, Table 3.3 with pruning, and the continuum limit
from (3.8). In (a)–(b), the arrows show the direction of increasing time,
and the density profiles shown are at times t = 0, 1, 2, 3, 4, 5 in black, red,
blue, green, orange, and purple, respectively.

3.4.2 Case Study 2: Free boundaries

Case Study 2 extends Case Study 1 by allowing the right-most cell bound-

ary to move so that H(q) ̸= 0. We do not consider proliferation, giving

R(q) = 0 in (3.7).

The equation learning procedure for this case study is similar to Case

Study 1, namely we expand D(q) as in (3.9) and constrain D(q) ≥ 0. In

addition to learning D(q), we need to learn H(q) and the evolution equation

describing the free boundary. In (3.7), this evolution equation is given by a

conservation statement, qdL/dt = −D(q)∂q/∂x with q = q(L(t), t). Here

we treat this moving boundary condition more generally by introducing a

function E(t) so that

q
dL

dt
= −E(q)

∂q

∂x
(3.17)

at x = L(t) for t > 0. While (3.17) could lead to local loss of conservation at
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the moving boundary, our approach is to for the possibility that coefficients

in D(q) and E(q) differ and to explore the extent to which this is true, or

otherwise, according to our equation learning procedure. We constrain

E(q) ≥ 0 so that (3.17) makes sense for our problem and we expand D(q),

H(q), and E(q) as follows

D(q) =
d∑

i=1

θdi φ
d
i (q), H(q) =

h∑
i=1

θhi φ
h
i (q), E(q) =

h∑
i=1

θeiφ
e
i (q). (3.18)

The matrix system for θd = (θd1 , . . . , θ
d
d)T is the same as it was in Case

Study 1 in (3.12), which we now write as Adθd = bd with Ad ∈ Rn(M−1)×d

and bd ∈ Rn(M−1)×1 given by A and b in (3.12), and we can construct

two other independent matrix systems for θh = (θh1 , . . . , θ
h
h)T and θe =

(θe1, . . . , θ
e
e)

T. To construct these matrix systems, for a given boundary

point (xnj , tj) we write

∂qnj
∂x

=
h∑

k=1

θhkφ
h
k(qnj), qnj

dLj

dt
= −∂qnj

∂x

e∑
k=1

θekφ
e
k(qnj), (3.19)

where Lj = xnj is the position of the leading edge at t = tj . In (3.19) we

assume that Lj can be approximated by a smooth function so that dLj/dt

can be defined. With (3.19) we have Ahθh = bh and Aeθe = be, where

Ah =


φh
1(q12) · · · φh

h(q12)
...

. . .
...

φh
1(qnM ) · · · φh

h(qnM )

 , bh =


∂q12
∂x
...

∂qnM
∂x

 (3.20)

with Ah ∈ R(M−1)×h and bh ∈ R(M−1)×1, and

Ae =


φe
1(q12)

∂qn2
∂x

· · · φe
e(q12)

∂qn2
∂x

...
. . .

...

φe
1(qnM )

∂qnM
∂x

· · · φe
e(qnM )

∂qnM
∂x

 , be = −


qn2

dL2

dt
...

qnM
dLM

dt


(3.21)
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with Ae ∈ R(M−1)×e and be ∈ R(M−1)×1. Then, writing

A = diag(Ad,Ah,Ae) ∈ R(n+2)(M−1)×(d+h+e),

b =


bd

bh

be

 ∈ R(n+2)(M−1)×1,
(3.22)

we obtain

Aθ = b, θ =


θd

θh

θe

 ∈ R(d+h+e)×1. (3.23)

The solution of Aθ = b is the combined solution of the individual linear

systems as A is block diagonal. Estimates for θd, θh, and θe are inde-

pendent, which demonstrates the modularity of our approach, where these

additional features, in particular the leading edge, are just an extra in-

dependent component of our procedure in addition to the procedure for

estimating D(q).

In addition to the new matrix system Aθ = b in (3.23), we augment

the loss function (3.14) to incorporate information about the location of

the moving boundary. Letting L(t;θ) denote the leading edge from the

solution of the PDE (3.7) with parameters θ, the loss function is

L(θ)︸︷︷︸
loss

=

density goodness of fit︷ ︸︸ ︷
log

 1

n(M − 1)

M∑
j=2

n∑
i=1

(
qij − q (xij , tj ;θ)

qij

)2


+ log

 1

M − 1

M∑
j=2

(
Lj − L (tj ;θ)

Lj

)2


︸ ︷︷ ︸
leading edge goodness of fit

+ ∥θ∥0︸︷︷︸
model complexity

. (3.24)

Let us now apply our stepwise equation learning procedure with (3.23)

and (3.24). We consider the data from Figure 3.2, where we know in

advance that the continuum limit with D(q) = 50/q2, H(q) = 2q2 − 0.4q3,

and E(q) = 50/q2 is accurate. The expansions we use for D(q), H(q), and
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E(q) are given by

D(q) =
θd1
q

+
θd2
q2

+
θd3
q3

,

H(q) = θh1q + θh2q
2 + θh3q

3 + θh4q
4 + θh5q

5,

E(q) =
θe1
q

+
θe2
q2

+
θe3
q3

.

(3.25)

With these expansions, we expect to learn the vectors θd = (0, 50, 0)T,

θh = (0, 2,−0.4, 0, 0)T, and θe = (0, 50, 0)T. We initially consider sav-

ing the solution at M = 1000 equally spaced times between t1 = 0 and

tM = 100, and using matrix pruning so that only points whose densities

fall within the 35% and 65% density quantiles are included. The results

with this configuration are shown in Table 3.4, where we see that we are

only able to learn H(q) = E(q) = 0 and D(q) = 25.06/q3. This outcome

highlights the importance of choosing an appropriate time interval, since

Figure 3.2(b) indicates that mechanical relaxation takes place over a rela-

tive short interval which means that working with data in 0 < t ≤ 100 can

lead to a poor outcome.

Table 3.4: Stepwise equation learning results for Case Study 2: Free bound-
aries, using the basis expansions (3.25), saving the results at M = 1000
equally spaced times between t1 = 0 and tM = 100, pruning so that den-
sities outside of the 35% and 65% density quantiles are not included, and
starting with all terms inactive. Coefficients highlighted in blue show the
coefficient chosen to be removed or added at the corresponding step.

Step θd1 θd2 θd3 θh1 θh2 θh3 θh4 θh5 θe1 θe2 θe3 Loss

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.40
2 0.00 0.00 25.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.40

We proceed by restricting our data collection to 0 ≤ t ≤ 15, now sav-

ing the solution at M = 200 equally spaced times between t1 = 0 and

tM = 15. Keeping the same quantiles for the matrix pruning, the new

results are shown in Table 3.5 and Figure 3.6. We see that the densities

and leading edges are accurate for small time, but the learned mechanisms

do not extrapolate as well for t ≥ 15, for example L(t) in Figure 3.6(b)

does not match the discrete data. To address this issue, we can further

limit the information that we include in our matrices, looking to only in-

clude boundary points where dL/dt is neither too large not too small. We

implement this by excluding all points (xnj , tj) from the construction of
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(Ae,be) in (3.21) such that dLj/dt is outside of the 10% or 90% quantiles

of the vector (dL2/dt, . . . ,dLM/dt), called the velocity quantiles.

Table 3.5: Stepwise equation learning results for Case Study 2: Free bound-
aries, using the basis expansions (3.25), saving the results at M = 200
equally spaced times between t1 = 0 and tM = 15, pruning so that den-
sities outside of the 35% and 65% density quantiles are not included, and
starting with all terms inactive. Coefficients highlighted in blue show the
coefficient chosen to be removed or added at the corresponding step.

Step θd1 θd2 θd3 θh1 θh2 θh3 θh4 θh5 θe1 θe2 θe3 Loss

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -3.37
2 0.00 0.00 0.00 0.00 -0.03 0.00 0.00 0.00 0.00 0.00 0.00 -2.37
3 0.00 0.00 0.00 0.00 -0.03 0.00 0.00 0.00 8.74 0.00 0.00 -3.68
4 0.00 47.38 0.00 0.00 -0.03 0.00 0.00 0.00 8.74 0.00 0.00 -4.02
5 0.00 47.38 0.00 8.41 -1.69 0.00 0.00 0.00 8.74 0.00 0.00 -8.14

x
0 5 10 15

q(
x,t

)

5

10

15
(a): PDE comparison

t

t
0 10 20 30 40 50 60 70 80 90 100

L(
t)

0

5

10

15
(b): Leading edge comparison

q
5 8 11

D(
q)

0

1

2

3

4

5
(c): D(q) comparison

q
5 8 11

H(
q)

− 100

− 60

− 20

20
(d): H(q) comparison

q
5 8 11

E(
q)

0

1

2

3

4

5
(e): E(q) comparison

Learned
Discrete

Learned
Continuum limit

Learned
Continuum limit

Learned
Continuum limit

Figure 3.6: Stepwise equation learning results from Table 3.5 for Case
Study 2: Free boundaries. (a) Comparisons of the discrete density profiles
(solid curves) with those learned from PDEs obtained from the results
in Table 3.5 (dashed curves), plotted at the times t = 0, 5, 10, 25, 50, 100
in black, red, blue, green, orange, and purple, respectively. The arrow
shows the direction of increasing time. (b) As in (a), except comparing the
leading edges. (c)–(e) are comparisons of the learned forms of D(q), H(q),
and E(q) with the forms from the continuum limit (3.8).

Implementing thresholding on dL/dt leads to the results presented in

Figure 3.7. We see that the learned densities and leading edges are both

visually indistinguishable from the discrete data. Since H(q) and E(q) are

only ever evaluated at x = L(t), and q(L(t), t) ≈ 5 for t > 0, we see that

H(q) and E(q) only match the continuum limit at q ≈ 5, which means that

our learned continuum limit model conserves mass and is consistent with

the traditional coarse-grained continuum limit, as expected. We discuss in
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3.E how we can enforce D(q) = E(q) to guarantee conservation mass from

the outset, however our approach in Figure 3.7 is more general in the sense

that our learned continuum limit is obtained without making any a priori

assumptions about the form of E(q).
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Figure 3.7: Stepwise equation learning results from Table 3.5 for Case
Study 2: Free boundaries, except also using matrix pruning on (A3,b3) so
points where dLj/dt falls outside of the 10% and 90% velocity quantiles
are excluded, giving θe1 = 9.42 rather than 8.74. (a) Comparisons of the
discrete density profiles (solid curves) with those from the learned PDE
(dashed curves), plotted at the times t = 0, 5, 10, 25, 50, 100 in black, red,
blue, green, orange, and purple, respectively. The arrow shows the direction
of increasing time. (b) As in (a), except comparing the leading edges. (c)–
(e) are comparisons of the learned forms of D(q), H(q), and E(q) with the
forms from the continuum limit (3.8).

3.4.3 Case Study 3: Fixed boundaries with proliferation

Case Study 3 is identical to Case Study 1 except that we incorporate cell

proliferation, implying R(q) ̸= 0 in (3.7). This case is more complicated

than with mechanical relaxation only, as we have to consider how we com-

bine the repeated realisations to capture the average density data as well.

For this work, we average over each realisation at each time using linear

interpolants as described in 3.D. This averaging procedure gives nk points

x̄ij between x = 0 and x = 30 at each time tj , j = 1, . . . ,M , with corre-

sponding density value q̄ij . The quantities x̄ij and q̄ij play the same role

as xij and qij in the previous case studies.

To apply equation learning we note there is no moving boundary, giving
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H(q) = 0 in (3.8). We proceed by expanding D(q) and R(q) as follows

D(q) =
d∑

i=1

θdi φ
d
i (q), R(q) =

r∑
i=1

θriφ
r
i (q), (3.26)

with the aim of estimating θd = (θd1 , . . . , θ
d
d)T and θr = (θr1, . . . , θ

r
r)T, again

constraining D(q) ≥ 0. We expand the PDE from (3.10), as in Section

3.4(a), and the only difference is the additional term
∑r

m=1 φ
r
m(q̄ij)θ

r
m for

each point (x̄ij , tj). Thus, we have the same matrix as in Section 3.4(a),

denoted Ad ∈ Rnk(M−1)×d, and a new matrix Ar ∈ Rnk(M−1)×r whose row

corresponding to the point (x̄ij , tj) is given by

arij =
[
φr
1(q̄ij) · · · φr

r(q̄ij)
]
∈ R1×r, (3.27)

so that the coefficient matrix A is now

A =
[
Ad Ar

]
∈ Rnk(M−1)×(d+r). (3.28)

The corresponding entry for the point (x̄ij , tj) in b ∈ Rnk(M−1)×1 is ∂q̄ij/∂t.

Notice that this additional term in the PDE adds an extra block to the

matrix without requiring a significant coupling with the existing equations

from the simpler problem without proliferation. Thus, we estimate our

coefficient vectors using the system

Aθ = b, θ =

[
θd

θr

]
∈ R(d+r)×1. (3.29)

We can take exactly the same stepwise procedure as in Section 3.4(a),

except now the loss function (3.14) uses nk, q̄ij , and x̄ij rather than n, qij ,

and xij , respectively.

Accurate continuum limit

Let us now apply these ideas to our data from Figure 3.2, where we know

that the continuum limit with D(q) = 50/q2 and R(q) = 0.15q − 0.01q2 is

accurate. The expansions we use for D(q) and R(q) are given by

D(q) =
θd1
q

+
θd2
q2

+
θd3
q3

, R(q) = θr1q + θr2q
2 + θr3q

3 + θr4q
4 + θr5q

5, (3.30)
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and we expect to learn θd = (0, 50, 0)T and θr = (0.15,−0.01, 0, 0, 0)T. We

average over 1000 identically-prepared realisations, saving the solutions at

M = 501 equally spaced times between t1 = 0 and tM = 50 with nk = 50

knots for averaging. For this problem, and for Case Study 4 discussed

later, we find that working with 1000 identically-prepared realisations of

the stochastic models leads to sufficiently smooth density profiles. As dis-

cussed in 3.F, the precise number of identically-prepared realisations is not

important provided that the number is sufficiently large; when not enough

realisations are taken, the results are inconsistent across different sets of

realisations and will fail to identify the average behaviour from the learned

model. We also use matrix pruning so that we only include points whose

densities fall within the 10% and 90% density quantiles, as done in Section

3.4(a). The results we obtain are shown in Table 3.6, starting with all

coefficients active.

Table 3.6: Stepwise equation learning results for Case Study 3: Fixed
boundaries with proliferation, where the continuum limit is accurate, using
the basis expansions (3.30), saving the results at M = 501 equally spaced
times between t1 = 0 and tM = 50, averaging across 1000 realisations with
nk = 50 knots, pruning so that densities outside of the 10% and 90% density
quantiles are not included, and starting with all diffusion and reaction
coefficients active. Coefficients highlighted in blue show the coefficient
chosen to be removed or added at the corresponding step.

Step θd1 θd2 θd3 θr1 θr2 θr3 (×10−4) θr4 (×10−5) θr5 (×10−7) Loss

1 -11.66 147.43 -191.51 0.13 -0.00 -0.00 5.83 −11.30 ∞
2 -2.24 60.86 0.00 0.13 -0.00 −5.72 2.62 −3.49 -0.71
3 -2.25 60.90 0.00 0.14 -0.01 0.00 −1.25 5.95 -1.92
4 0.00 52.95 0.00 0.14 -0.01 0.00 −1.36 6.49 -3.35
5 0.00 53.02 0.00 0.15 -0.01 0.00 0.00 0.32 -4.98
6 0.00 52.97 0.00 0.15 -0.01 0.00 0.00 0.00 -5.70

Table 3.6 shows that we find the vectors θd = (0, 52.97, 0)T and θr =

(0.15,−0.010, 0, 0, 0)T, which are both very close to the continuum limit.

Figure 3.8 visualises these results, showing that the PDE solutions with the

learned D(q) and R(q) match the discrete densities, and the mechanisms

that we do learn are visually indistinguishable with the continuum limit

functions (3.8) as shown in Figure 3.8(b)–(c).

Inaccurate continuum limit

We now extend the problem so that the continuum limit is no longer accu-

rate, taking k = 1/5 to be consistent with Figure 3.3(a). Using the same
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Figure 3.8: Stepwise equation learning results for Case Study 3: Fixed
boundaries with proliferation, where the continuum limit is accurate. (a)
Comparisons of the discrete density profiles (solid curves) with those
learned from PDEs obtained from the results in Table 3.6 (dashed curves),
plotted at the times t = 0, 1, 5, 10, 20, 50 in black, red, blue, green, orange,
and purple, respectively. The arrow shows the direction of increasing time.
(b)–(c) are comparisons of D(q) and R(q) with the forms from the contin-
uum limit (3.8).

basis expansions in (3.30), we save the solution at M = 751 equally spaced

times between t1 = 0 and tM = 75, averaging over 1000 realisations with

nk = 200. We find that we need to use the 25% and 75% density quantiles

rather than the 10% and 90% density quantiles, as in the previous example,

to obtain results in this case. With this configuration, the results we find

are shown in Table 3.7 and Figure 3.9.

Results in Table 3.7 show θd = (0, 0.12, 0)T, which is reasonably close

to the continuum limit with (0, 0.2, 0)T. The reaction vector, for which

the continuum limit is (0.15,−0.01, 0, 0, 0)T so that R(q) is a quadratic, is

now given by θr = (0.16,−0.02, 7.49 × 10−4,−1.69 × 10−5, 0)T, meaning

the learned R(q) is a quartic. Figure 3.9 compares the averaged discrete

densities with the solution of the learned continuum limit model. Figure

3.9(c) compares the learned source term with the continuum limit. While

both terms are visually indistinguishable at small densities, we see that the

two source terms differ at high densities, with the learned carrying capacity
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Table 3.7: Stepwise equation learning results for Case Study 3: Fixed
boundaries with proliferation, where the continuum limit is inaccurate, us-
ing the basis expansions (3.30), saving the results at M = 751 equally
spaced times between t1 = 0 and tM = 75, averaging across 1000 realisa-
tions with nk = 200 knots, pruning so that densities outside of the 25%
and 75% density quantiles are not included, and starting with all diffusion
and reaction coefficients inactive. Coefficients highlighted in blue show the
coefficient chosen to be removed or added at the corresponding step.

Step θd1 θd2 θd3 θr1 θr2 θr3 (×10−4) θr4 (×10−5) θr5 Loss

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.33
2 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.51
3 0.00 0.00 0.00 0.11 -0.01 0.00 0.00 0.00 0.20
4 0.00 0.11 0.00 0.11 -0.01 0.00 0.00 0.00 -0.04
5 0.00 0.12 0.00 0.13 -0.01 1.59 0.00 0.00 -0.46
6 0.00 0.12 0.00 0.16 -0.02 7.49 −1.69 0.00 -1.13
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Figure 3.9: Stepwise equation learning results for Case Study 3: Fixed
boundaries with proliferation, where the continuum limit is inaccurate.
(a) Comparisons of the discrete density profiles (solid curves) with those
learned from PDEs obtained from the results in Table 3.6 (dashed curves),
plotted at the times t = 0, 1, 10, 25, 40, 75 in black, red, blue, green, orange,
and purple, respectively. The arrow shows the direction of increasing time.
(b)–(c) are comparisons of D(q) and R(q) with the forms from the contin-
uum limit (3.8).

density, where R(q) = 0, reduced relative to the continuum limit. This is

consistent with previous results [40].
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3.4.4 Case Study 4: Free boundaries with proliferation

Case Study 4 is identical to Case Study 2 except that we now introduce

proliferation into the discrete model so that R(q) ̸= 0 in (3.7). First, as

in Case Study 3 and as described in 3.D, we average our data across each

realisation from our discrete model. This averaging provides us with points

x̄ij between x = 0 and x = L̄j at each time tj , j = 1, . . . ,M , where L̄j is

the average leading edge at t = tj , with corresponding density values q̄ij ,

where i = 1, . . . , nk and nk is the number of knots to use for averaging. We

expand the functions D(q), R(q), H(q), and E(q) as

D(q) =
d∑

i=1

θdi φ
d
i (q), R(q) =

r∑
i=1

θriφ
r
i (q),

H(q) =

h∑
i=1

θhi φ
h
i (q), E(q) =

e∑
i=1

θeiφ
e
i (q),

(3.31)

again restricting D(q), E(q) ≥ 0. The function E(q) is used in the moving

boundary condition in (3.7), as in (3.17). The matrix A and vector b are

given by

A = diag(Adr,Ah,Ae) ∈ Rnk(M−1)×(d+r+h+e),

b =


bdr

bh

be

 ∈ Rnk(M−1),
(3.32)

where Adr = [Ad Ar] as defined in (3.28), Ah and Ae are the matrices

from (3.20) and (3.21), respectively, and similarly for bdr = ∂q/∂t, bh,

and be from (3.12), (3.20), and (3.21), respectively. Thus,

Aθ = b, θ =


θd

θr

θh

θe

 ∈ R(d+r+h+e)×1. (3.33)

Similar to Case Study 2, the coefficients for each mechanism are indepen-

dent, except for θd and θr. The loss function we use is the loss function

from (3.24).

With this problem, it is difficult to learn all mechanisms simultaneously,
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especially as mechanical relaxation and proliferation occur on different time

scales since mechanical relaxation dominates in the early part of the sim-

ulation, whereas both proliferation and mechanical relaxation play a role

at later times. This means D(q) and R(q) cannot be estimated over the

entire time range as was done in Case Study 3. To address this we take

a sequential learning procedure to learn these four mechanisms using four

distinct time intervals Id, Ie, Ih, and Ir:

1. Fix R(q) = H(q) = E(q) = 0 and learn θd over t ∈ Id, solving

Adθd = bdr.

2. Fix R(q) = H(q) = 0 and θd and learn θe over t ∈ Ie, solving

Aeθe = be.

3. Fix R(q) = 0, θd, and θe and learn θh over t ∈ Ih, solving Ahθh = bh.

4. Fix θd, θe, and θh and learn θr over t ∈ Ir, solving Arθr = bdr −
Adθd.

In these steps, solving the system Aθ = b means to apply our stepwise

procedure to this system; for these problems, we start each procedure with

no active coefficients. The modularity of our approach makes this sequen-

tial learning approach straightforward to implement. For these steps, the

interval Id must be over sufficiently small times so that proliferation does

not dominate, noting that fixing R(q) = 0 will not allow us to identify any

proliferation effects when estimating the parameters. This is less relevant

for Ih and Ie as the estimates of θh and θe impact the moving boundary

only.

3.4.5 Accurate continuum limit

We apply this procedure to data from Figure 3.2, where the continuum limit

is accurate with D(q) = 50/q2, R(q) = 0.15q− 0.01q2, H(q) = 2q2 − 0.4q3,

and E(q) = 50/q2. The expansions we use are

D(q) =
θd1
q

+
θd2
q2

+
θd3
q3

,

R(q) = θr1q + θr2q
2 + θr3q

3 + θr4q
4 + θr5q

5,

H(q) = θh1q + θh2q
2 + θh3q

3 + θh4q
4 + θh5q

5,

E(q) =
θe1
q

+
θe2
q2

+
θe3
q3

.

(3.34)
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With (3.34), we expect to learn θd = (0, 50, 0)T, θr = (0.15,−0.01, 0, 0, 0)T,

θh = (0, 2,−0.4, 0, 0, 0)T, and θe = (0, 50, 0)T. We average the data over

1000 realisations. For saving the solution, the time intervals we use are

Id = [0, 0.1], Ie = [0, 5], Ih = [5, 10], and Ir = [10, 50], with 25, 50, 100,

and 250 time points inside each time interval for saving. For interpolating

the solution to obtain the averages, we use nk = 25, nk = 50, nk = 100,

and nk = 50 over Id, Ie, Ih, and Ir, respectively.

To now learn the mechanisms, we apply the sequential procedure de-

scribed for learning them one at a time. For each problem, we apply

pruning so that points outside of the 10% and 90% density quantiles

or the 20% and 80% velocity quantiles are not included. We find that

θd = (0, 49.60, 0)T, θe = (0, 49.70, 0)T, θh = (−0.0084, 0, 0,−0.0011, 0)T,

and θr = (0.15,−0.010, 0, 0, 0)T. The results with all these learned mech-

anisms are shown in Figure 3.10. We see from the comparisons in Figure

3.10(a)–(b) that the PDE results from the learned mechanisms are nearly

indistinguishable from the discrete densities. Similar to Case Study 2, H(q)

only matches the continuum limit at q(L(t), t). Note also that the solu-

tions in Figure 3.10(a) go up to t = 100, despite the stepwise procedure

considering only times up to t = 50.

3.4.6 Inaccurate continuum limit

We now consider data from Figure 3.3(b) where the continuum limit is

inaccurate. Here, k = 1/5 and the continuum limit vectors are θd =

(0, 0.2, 0)T, θr = (0.15,−0.01, 0, 0, 0)T, θh = (0, 2,−0.4, 0, 0, 0)T, and θe =

(0, 0.2, 0)T. Using the same procedures and expansions as Figure 3.10, we

average the data over 1000 realisations. The time intervals we use are

Id = [0, 2], Ie = [2, 10], Ih = [10, 20], and Ir = [20, 50], using 20 time

points for Id and 200 time points for Ie, Ih, and Ir. We use nk = 50 knots

for averaging the solution over Id, and nk = 100 knots for averaging the

solution over Ie, Ih, and Ir.

To apply the equation learning procedure we prune all matrices so

that points outside of the 40% and 60% temporal quantiles are elimi-

nated, where the temporal quantiles are the quantiles of ∂q/∂t from the

averaged discrete data, and similarly for points outside of the 40% and

60% velocity quantiles. We find θd = (0, 0.21, 0)T, θe = (0, 0.23, 0)T,

θh = (−0.15, 0, 0,−0.0079, 0)T, and θr = (0.11,−0.0067, 0, 0, 0)T. Inter-
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Figure 3.10: Stepwise equation learning results for Case Study 4: Free
boundaries with proliferation, when the continuum limit is accurate, us-
ing the learned mechanisms with θd = (0, 49.60, 0)T, θe = (0, 49.70, 0)T,
θh = (−0.0084, 0, 0,−0.0011, 0)T, and θr = (0.15,−0.010, 0, 0, 0)T. (a)
Comparisons of the discrete density profiles (solid curves) with those
learned from PDEs with the given θd, θe, θh, and θr (dashed curves),
plotted at the times t = 0, 5, 10, 25, 50, 100 in black, red, blue, green, or-
ange, and purple, respectively. The arrow shows the direction of increasing
time. (b) As in (a), except comparing the leading edges. (c)–(f) are com-
parisons of the learned forms of D(q), R(q), H(q), and E(q) with the forms
from the continuum limit (3.8).

estingly, here we learn R(q) is quadratic with coefficients that differ from

the continuum limit. The results with all these learned mechanisms are

shown in Figure 3.11. We see from the comparisons in Figure 3.11 that the

PDE results from the learned mechanisms are visually indistinguishable

from the discrete densities. Moreover, as in Figure 3.10, the learned H(q)

and E(q) match the continuum results at q(L(t), t) which confirms that the

learned continuum limit conserves mass, as expected. Note also that the

solutions in Figure 3.11(a) go up to t = 250, despite the stepwise proce-

dure considering only times up to t = 50, demonstrating the extrapolation

power of our method.
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Figure 3.11: Stepwise equation learning results for Case Study 4: Free
boundaries with proliferation, when the continuum limit is inaccurate, us-
ing the learned mechanisms with θd = (0, 0.21, 0)T, θe = (0, 0.23, 0)T,
θh = (−0.15, 0, 0,−0.0079, 0)T, and θr = (0.11,−0.0067, 0, 0, 0)T. (a) Com-
parisons of the discrete density profiles (solid curves) with those learned
from PDEs with the given θd, θe, θh, and θr (dashed curves), plotted at
the times t = 0, 5, 25, 50, 100, 250 in black, red, blue, green, orange, and
purple, respectively. The arrow shows the direction of increasing time. (b)
As in (a), except comparing the leading edges. (c)–(f) are comparisons of
the learned forms of D(q), R(q), H(q), and E(q) with the forms from the
continuum limit (3.8).

3.5 Conclusion and discussion

In this work, we presented a stepwise equation learning framework for

learning continuum descriptions of discrete models describing population

biology phenomena. Our approach provides accurate continuum approxi-

mations when standard coarse-grained approximations are inaccurate. The

framework is simple to implement, efficient, easily parallelisable, and mod-

ular, allowing for additional components to be added into a model with

minimal changes required to accommodate them into an existing proce-

dure. In contrast to other approaches, like neural networks [49] or linear

regression approaches [52], results from our procedure are interpretable in

terms of the underlying discrete process. The coefficients incorporated or

removed at each stage of our procedure give a sense of the influence each
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model term contributes to the model, giving a greater interpretation of the

results, highlighting an advantage of the stepwise approach over traditional

sparse regression methods [47,48,51]. The learned continuum descriptions

from our procedure enable the discovery of new mechanisms and equations

describing the data from the discrete model. For example, the discovered

form of D(q) can be interpreted relative to the discrete model, describing

the interaction forces between neighbouring cells. In addition, we found

in Case Study 4 that, when k = 1/5 so that the continuum limit is inac-

curate, the positive root of the quadratic form of the source term R(q) is

greater than the mean field carrying capacity density K, as seen in Figure

3.11. This increase suggests that, when the rate of mechanical relaxation

is small relative to the proliferation rates, the mean field carrying capac-

ity density in the continuum description can be different from that in the

discrete model.

We demonstrated our approach using a series of four biologically moti-

vated case studies that incrementally build on each other, studying a dis-

crete individual-based mechanical free boundary model of epithelial cells

[38, 40–42]. In the first two case studies, we demonstrated that we can

easily rediscover the continuum limit models derived by Baker et al. [38],

including the equations describing the evolution of the free boundary. The

last two case studies demonstrate that, when the coarse-grained models

are inaccurate, our approach can learn an accurate continuum approxima-

tion. The last case study was the most complicated, with four mechanisms

needing to be learned, but the modularity of our approach made it sim-

ple to apply a sequential procedure to learning the mechanisms, applying

the procedure to each mechanism in sequence. Our procedure was able

to recover terms that conserved mass, despite not enforcing conservation

of mass explicitly. The procedure as we have described does have some

limitations, such as assuming that the mechanisms are linear combinations

of basis functions, which could be handled more generally by instead using

nonlinear least squares [50]. The procedure may also be sensitive to the

quality of the data points included in the matrices, and thus to the param-

eters used for the procedure. In 3.F, we discuss a parameter sensitivity

study that investigates this in greater detail. In this parameter sensitiv-

ity study, we find that the most important parameters to choose are the

pruning parameters. These parameters can be easily tuned thanks to the
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efficiency of our method, modifying each parameter in sequence and using

trial and error to determine suitable parameter values.

There are many avenues for future work based on our approach. Firstly,

two-dimensional extensions of our discrete model could be considered [34,

134], which would follow the same approach except the continuum problems

would have to be solved using a more detailed numerical approximation

[135–137]. Another avenue for exploration would be to consider applying

the discrete model on a curved interface which is more realistic than con-

sidering an epithelial sheet on a flat substrate [138, 139]. Working with

heterogeneous populations of cells, where parameters in the discrete model

can vary between individuals in the population, is also another interesting

option for future exploration [45]. Uncertainty quantification could also be

considered using bootstrapping [50] or Bayesian inference [140]. Allowing

for uncertainty quantification would also allow for noisy data sets to be

modelled, unlike the idealised, noise-free data used in this work. Lastly,

another interesting possibility for future work is to consider fitting data

sets from multiple parameter sets simultaneously, including parameter sets

where the continuum limit is accurate, so that a more general macroscopic

model could be obtained that has the continuum limit as a special case.

We emphasise that, regardless of the approach taken for future work, we

believe that our flexible stepwise learning framework can form the basis of

these potential future studies.
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material

3.A Confidence bands for inaccurate continuum

limits

In Figure 3.3, we show a series of curves for Case Study 3 and Case Study 4

with k = 1/5, finding that the solution to the continuum limit is no longer

a good match to the data from the discrete model. Figure 3.A.1 shows the

confidence bands around each of these curves, showing how the uncertainty

evolves over time.

97
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Figure 3.A.1: Complementary figure to Figure 3.3, showing inaccurate
continuum limits for Case Study 3 (left column) and Case Study 4 (right
column). The solid curves are the discrete densities from Equation (3.5)
and the dashes curves are solutions to the continuum limit problem in
Equation (3.7). The shaded regions show 95% confidence bands from the
mean discrete curves at each time shown.



Chapter 3: Supplementary material 99

3.B Discrete densities at the boundaries

In (3.6), we give the following formulae for computing the cell densities

from our discrete model at the boundary:

q1(t) =
2

x2(t) − x1(t)
− 2

x3(t) − x1(t)
,

qn(t) =
2

xn(t) − xn−1(t)
− 2

xn(t) − xn−2(t)
,

(3.35)

noting also that x1(t) = 0 in this work. In this section, we derive the

expressions for q1(t) and qn(t) and show the need for these complicated

expressions over those from Baker et al. [38], namely q1(t) = 1/(x2(t) −
x1(t)) and qn(t) = 1/(xn(t) − xn−1(t)), through an example.

3.B.1 Derivation

We give the derivation for qn(t) only, as q1(t) is derived in the same way.

We follow the idea from Baker et al. [38], relating the cell index i to the

density q according to

i(x, t) = 1 +

∫ x

0
q(y, t) dy.

Baker et al. [38] use 1 = n−(n−1) together with this relationship to write

1 =

∫ xn(t)

xn−1(t)
q(y, t) dy,

and Baker et al. [38] then use a right endpoint rule to approximate qn(t).

If we instead use a trapezoidal rule, then

1 =

∫ xn(t)

xn−1(t)
q(y, t) dy ≈

(
xn(t) − xn−1(t)

2

)
(qn(t) + qn−1(t)) . (3.36)

We use this expression to solve for qn(t):

qn(t) =
2

xn(t) − xn−1(t)
− qn−1(t) =

2

xn(t) − xn−1(t)
− 2

xn(t) − xn−2(t)
,

which is exactly the formula in (3.35). We note that an alternative deriva-

tion of this formula is to use linear extrapolation, treating the density

1/(xn(t) − xn−1(t)) as if it were placed at the cell midpoint (xn−1(t) +
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xn(t))/2 rather than xn(t).

3.B.2 Motivation

Let us now give the motivation for why we need the modifications to the

boundary densities in (3.35) compared to those given in Baker et al. [38].

Consider a mechanical relaxation problem, starting with 30 equally spaced

nodes in 0 ≤ x ≤ 5, taking the parameters k = 50, s = 1/5, η = 1 and

leaving the right boundary free. Let us compare the discrete densities at

t = 2 to those from the continuum limit, as well as estimates of the gradient

∂q/∂x at the right boundary.

Figure 3.B.1 shows our comparisons. Focusing on the densities at the

right boundary of Figure 3.B.1(a) gives Figure 3.B.1(b), where we can see

a clear difference in the slopes of each curve. The curve obtained using

the approach of Baker et al. [38], using qn(t) = 1/(xn(t) − xn−1(t)), has

a different slope from the continuum limit, whereas the red curve, using

qn(t) = 2/(xn(t)−xn−1(t))− 2/(xn(t)−xn−2(t)), has a slope that is much

closer to the slope of the continuum limit model at this point. These issues

become more apparent when we try to estimate ∂q/∂x at the boundary

for each time, as we would have to do in our equation learning procedure.

Shown in Figure 3.B.1(c), we see that the estimates of ∂q/∂x that use

qn(t) = 1/(xn(t)− xn−1(t)) do not resemble what we expect in the contin-

uum limit, namely ∂q/∂x = H(q) = 2q2(1 − qs) (using q = q(xn, t), where

q(x, t) is the solution from the continuum limit partial differential equation

(PDE)). Our new expression for qn(t) gives estimates for ∂q/∂x that are

much closer to H(q), with H(q) passing directly through the center of these

estimates across the entire time domain. Thus, our revised formulae (3.35)

are necessary if we want to obtain accurate estimates for the boundary

gradients.
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Figure 3.B.1: Comparison of the density definitions from Baker et al. [38]
to those in (3.35), using data from a mechanical relaxation problem as an
example. (a) Comparing the definitions at t = 2 together with densities
from the continuum limit PDE. The magenta rectangle shows the region
that is zoomed in on in (b). (b) Zooming in on the magenta rectangle from
(a) at the right boundary. (c) Comparing estimates of ∂q/∂x at the right
boundary using each definition along with the continuum limit boundary
condition ∂q/∂x = 2q2(1 − qs).
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3.C Numerical methods

In this section we give the details involved in solving the PDEs on the

fixed and moving domains numerically using the finite volume method

[83]. We have provided Julia packages FiniteVolumeMethod1D.jl and

MovingBoundaryProblems1D.jl to implement these methods for the fixed

and moving domains, respectively.

3.C.1 Fixed domain

We start by considering the fixed domain problem. The PDE we consider

is

∂q

∂t
=

∂

∂x

(
D(q)

∂q

∂x

)
+ R(q) 0 < x < L, t > 0,

∂q

∂x
= 0 x ∈ {0, L}, t > 0,

(3.37)

where L is the length of the domain, D(q) is the nonlinear diffusivity

function, and R(q) is the source term. To discretise (3.37), define a grid

0 = x1 < x2 < · · · < xn = L with xi = (n − 1)∆x and ∆x = L/(n − 1).

This grid enables us to define control volumes Ωi = [wi, ei] for each i, where

wi =

x1 i = 1,
1

2
(xi−1 + xi) i = 2, . . . , n,

ei =


1

2
(xi + xi+1) i = 1, . . . , n− 1,

xn i = n.

(3.38)

The volumes of these control volumes are denoted Vi = ei−wi, i = 1, . . . , n.

We then integrate (3.37) over a single Ωi to give

dq̄i
dt

=
1

Vi

{
D (q(ei, t))

∂q(ei, t)

∂x
−D (q(wi, t))

∂q(wi, t)

∂x

}
+ R̄i, (3.39)

where

q̄i =
1

Vi

∫ ei

wi

q(x, t) dx and R̄i =
1

Vi

∫ ei

wi

R[q(x, t)] dx.
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To proceed, let qi = q(xi, t), Di = D(qi), Ri = R(qi) and define the

following approximations:

q̄i = qi i = 1, . . . , n,

R̄i = Ri i = 1, . . . , n,

D (q(ei, t)) =
1

2
(Di + Di+1) i = 1, . . . , n− 1,

D (q(wi, t)) =
1

2
(Di−1 + Di) i = 2, . . . , n,

∂q(ei, t)

∂x
=

qi+1 − qi
∆x

i = 1, . . . , n− 1,

∂q(wi, t)

∂x
=

qi − qi−1

∆x
i = 2, . . . , n.

(3.40)

Using the approximations in (3.40), (3.39) becomes

dqi
dt

=
1

Vi

[(
Di + Di+1

2

)(
qi+1 − qi

∆x

)
−
(
Di−1 + Di

2

)(
qi − qi−1

∆x

)]
+Ri,

(3.41)

for i = 2, . . . , n − 1. The boundary conditions are x = 0 and x = L are

incorporated by simply setting the associated derivative term in (3.39) to

zero, giving

dq1
dt

=
1

2V1∆x
(D1 + D2) (q2 − q1) + R1, (3.42)

dqn
dt

= − 1

2Vn∆x
(Dn−1 + Dn) (qn − qn−1) + Rn. (3.43)

The system of ordinary differential equations (ODEs) is thus given

by (3.41)–(3.43) and defines the numerical solution to (3.37). In partic-

ular, letting qn = (q1(tn), . . . , qn(tn))T for some time tn, we start with

q0 = (q0(x1), . . . , q0(xn))T using the initial condition q(x, 0) = q0(x), and

then integrate forward in time via (3.41)–(3.43). This procedure is im-

plemented in the Julia package FiniteVolumeMethod1D.jl which makes

use of DifferentialEquations.jl to solve the system of ODEs with the

TRBDF2(linsolve = KLUFactorization()) algorithm [85–87].
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3.C.2 Moving boundary problem

We now describe how we solve the PDEs for a moving boundary problem.

The PDE we consider is

∂q

∂t
=

∂

∂x

(
D(q)

∂q

∂x

)
+ R(q) 0 < x < L(t), t > 0,

∂q

∂x
= 0 x = 0, t > 0,

∂q

∂x
= H(q) x = L(t), t > 0,

q
dL

dt
= −E(q)

∂q

∂x
x = L(t), t > 0.

(3.44)

We assume that L(t) > 0 for t ≥ 0. The discretisation starts by trans-

forming onto a fixed domain using the Landau transform ξ = x/L(t)

[38, 141,142]. With this change of variable, (3.44) becomes

∂q

∂t
=

ξ

L

dL

dt

∂q

∂ξ
+

1

L2

∂

∂ξ

(
D(q)

∂q

∂ξ

)
+ R(q) 0 < ξ < 1, t > 0,

∂q

∂ξ
= 0 ξ = 0, t > 0,

∂q

∂ξ
= LH(q) ξ = 1, t > 0,

q
dL

dt
= −E(q)

L

∂q

∂ξ
ξ = 1, t > 0.

(3.45)

To now discretise (3.45), define ξi = (i − 1)∆ξ for i = 1, . . . , n, where

∆ξ = 1/(n− 1), and then let

wi =

ξ1 i = 1,
1

2
(ξi−1 + ξi) i = 2, . . . , n,

ei =


1

2
(ξi + ξi+1) i = 1, . . . , n− 1,

ξn i = n.

(3.46)

We then define a control volume to be the interval Ωi = [wi, ei] with volume

Vi = ei − wi, i = 1, . . . , n. Next, the PDE in (3.45) is integrated over this
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control volume to give∫ ei

wi

∂q

∂t
dξ =

1

L

dL

dt

∫ ei

wi

ξ
∂q

∂ξ
dξ +

∫ ei

wi

R(q) dξ

+
1

L2

[
D (q(ei, t))

∂q(ei, t)

∂ξ
−D (q(wi, t))

∂q(wi, t)

∂ξ

]
. (3.47)

Using integration by parts, the first integral on the right-hand side of (3.47)

is simply ∫ ei

wi

ξ
∂q

∂ξ
dξ = eiq(ei, t) − wiq(wi, t) −

∫ ei

wi

q dξ.

Next, define the control volume averages

q̄i =
1

Vi

∫ ei

wi

q dξ, R̄i =
1

Vi

∫ ei

wi

R dξ,

and set qi = q(ξi, t), Di = D(qi), and Ri = R(qi). With this notation, we

define the following set of approximations:

q̄i = qi i = 1, . . . , n,

R̄i = Ri i = 1, . . . , n,

q(ei, t) =
1

2
(qi + qi+1) i = 1, . . . , n− 1,

q(wi, t) =
1

2
(qi−1 + qi) i = 2, . . . , n,

D (q(ei, t)) =
1

2
(Di + Di+1) i = 1, . . . , n− 1,

D (q(wi, t)) =
1

2
(Di−1 + Di) i = 2, . . . , n,

∂q(ei, t)

∂ξ
=

qi+1 − qi
∆ξ

i = 1, . . . , n− 1,

∂q(wi, t)

∂ξ
=

qi − qi−1

∆ξ
i = 2, . . . , n.

(3.48)

Using these approximations, (3.47) becomes

dqi
dt

=
1

ViL

dL

dt

[
ei

(
qi + qi+1

2

)
− wi

(
qi−1 + qi

2

)]
− 1

L

dL

dt
qi + Ri

+
1

ViL2

[(
Di + Di+1

2

)(
qi+1 − qi

∆ξ

)
−
(
Di−1 + Di

2

)(
qi − qi−1

∆ξ

)]
.

(3.49)

The last component to handle are the boundary conditions. Since
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∂q/∂ξ = 0 at ξ = 0, and since w1 = ξ1 = 0, our discretisation at ξ = 0

becomes

dq1
dt

=
1

V1L

dL

dt
e1

(
q1 + q2

2

)
− 1

L

dL

dt
q1+R1+

1

V1L2

(
D1 + D2

2

)(
q2 − q1

∆ξ

)
.

(3.50)

The boundary condition at ξ = 1 is ∂q/∂ξ = LH(q), thus

dqn
dt

=
1

VnL

dL

dt

[
qn − wn

(
qn−1 + qn

2

)]
− 1

L

dL

dt
qn + Rn

+
1

VnL2

[
DnLH(qn) −

(
Dn−1 + Dn

2

)(
qn − qn−1

∆ξ

)]
. (3.51)

The remaining boundary condition is the moving boundary condition,

qdL/dt = −[E(q)/L]∂q/∂ξ. Since ∂q/∂ξ = LH(q), we can write qndL/dt =

−[E(qn)/L]LH(qn) = −E(qn)H(qn), giving

qn
dL

dt
= −E(qn)H(qn). (3.52)

The system of ODEs (3.49)–(3.52), together with the initial conditions

qi(0) = q0(ξiL(0)) for i = 1, . . . , n and L(0) = L0, where q0(x) and L0

are the initial conditions, define our complete discretisation. Solving these

ODEs over time give values for q(ξi, tj), for some tj , which gets trans-

lated back in terms of x via xi = ξiL(tj). As in the fixed domain case,

we solve these ODEs using DifferentialEquations.jl together with the

TRBDF2(linsolve = KLUFactorization()) algorithm [85–87]. We pro-

vide our implementation of this procedure in a separate Julia package,

MovingBoundaryProblems1D.jl.
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3.D Additional stepwise equation learning details

In this section, we give some extra details for our stepwise equation learning

procedure.

3.D.1 Discrete mechanism averaging

We start by discussing how we take multiple stochastic realisations from our

discrete cell simulations and average them into a single density function.

The discrete simulations give us ns identically prepared realisations

that can be averaged over to estimate the mean density curve. This average

can be estimated using a linear interpolant across each time and for each

simulation. In particular, let nk be the number of knots to use for the

interpolant at each time. Then, for a given time tj , let the knots be given

by x̄ij for i = 1, . . . , nk. These knots are equally spaced with x̄1j = 0 and

x̄nkj = (1/ns)
∑ns

ℓ=1 L
(ℓ)
j , where L

(ℓ)
j is the leading edge at the time tj from

the ℓth simulation. Then, letting q(ℓ)(x, tj) denote the linear interpolant of

the density data at the time tj from the ℓth simulation, we define

q̄ij =
1

ns

ns∑
ℓ=1

q(ℓ)(x̄ij , tj), (3.53)

for i = 1, . . . , nk and j = 1, . . . ,M . If q(ℓ)(x̄ij , tj) < 0 for a given ℓ, then

we set q(ℓ)(x̄ij , tj) = 0. This density data is used for computing the system

(A,b) for equation learning when proliferation is involved.

3.D.2 Derivative estimation

The equation learning system (A,b) requires estimates for the derivatives

∂qij/∂t, ∂qij/∂x, ∂2qij/∂x
2, and dLj/dt. To give a formula for an estimate

of these derivatives, suppose we have three function values {f1, f2, f3} for

some function f(x) at the points {x1, x2, x3}, where fi = f(xi) for i =

1, 2, 3. These points do not need to be equally spaced. The Lagrange

interpolating polynomial through this data is given by

g(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
f1+

(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
f2+

(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
f3,
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which can be used to estimate the derivatives via f ′(xi) ≈ g′(xi), i = 1, 2, 3,

and similarly for f ′′(x). Using this approximation, we write

f ′(x1) ≈
(

1

x1 − x2
+

1

x1 − x3

)
f1 −

x1 − x3
(x1 − x2)(x2 − x3)

f2

+
x1 − x2

(x1 − x3)(x2 − x3)
f3,

(3.54)

f ′(x2) ≈
x2 − x3

(x1 − x2)(x1 − x3)
f1 +

(
1

x2 − x3
− 1

x1 − x2

)
f2

+
x2 − x1

(x1 − x3)(x2 − x3)
f3,

(3.55)

f ′(x3) ≈
x3 − x2

(x1 − x2)(x1 − x3)
f1 +

x1 − x3
(x1 − x2)(x2 − x3)

f2

−
(

1

x1 − x3
+

1

x2 − x3

)
f3,

(3.56)

f ′′(xi) ≈
2

(x1 − x2)(x1 − x3)
f1 −

2

(x1 − x2)(x2 − x3)
f2

+
2

(x1 − x3)(x2 − x3)
f3,

(3.57)

where (3.57) is valid for i = 1, 2, 3.

We can use the formulae (3.54)–(3.57) to approximate our required

derivatives. For example, taking {x1, x2, x3} = {tj−1, tj , tj+1} and {f1, f2, f3} =

{Lj−1, Lj , Lj+1} gives

dLj

dt
≈ Lj+1 − Lj−1

h
, j = 2, . . . ,M − 1, (3.58)

assuming the times are equally spaced with spacing h. The estimate

for dLM/dt is obtained by taking {x1, x2, x3} = {tM−2, tM−1, tM} and

{f1, f2, f3} = {LM−2, LM−1, LM}, giving

dLM

dt
≈ 3LM − 4LM−1 + LM−2

2h
. (3.59)

Similarly, taking the points {x1, x2, x3} = {xi−1,j , xij , xi+1,j} and function
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values {f1, f2, f3} = {qi−1,j , qij , qi+1,j} gives

∂2qij
∂x2

≈ 2

(xi−1,j − xi,j)(xi−1,j − xi+1,j)
qi−1,j

− 2

(xi−1,j − xij)(xij − xi+1,j)
qij

+
2

(xi−1,j − xi+1,j)(xij − xi+1,j)
,

(3.60)

for i = 2, . . . , nj − 1 and j = 1, . . . ,M , where nj is the number of nodes at

t = tj . The remaining derivatives can be obtained similarly, ensuring that

the appropriate finite difference (backward, central, or forward) is taken

for the given point.

The only exception to these rules are for ∂q/∂x at the boundaries. We

find that using simple forward and backward differences there gives better

results than with (3.54) and (3.55), so we use

∂q1j
∂x

≈ q2j − q1j
x2j − x1j

,
∂qnjj

∂x
≈

qnjj − qnj−1,j

xnjj − xnj−1,j
. (3.61)

3.D.3 Matrix pruning

We now discuss our approach to matrix pruning, wherein we discard points

from our equation learning matrix A that do not help to improve our esti-

mates for θ. The approach we take is inspired from the data thresholding

idea from VandenHeuvel et al. [50].

To start with our approach, let q = (q12, . . . , qnMM )T be the vector of

all discrete densities, letting nj be the number of nodes at the time t = tj ,

excluding the densities from the initial condition. Then, take the threshold

tolerance 0 ≤ τq < 1/2 and compute the interval (Qq
τq ,Q

q
1−τq

), where Qy
τ

denotes the 100τ% quantile of the vector y. With these intervals, we only

include a row in the matrix A from a given point (xij , tj) if Qq
τq ≤ qij ≤

Qq
1−τq

.

By choosing the threshold τq appropriately, we can significantly improve

the estimates for θ as we only include the most relevant data for estimation,

excluding all points with relatively low or high density. Similar thresh-

olds can be defined for the other quantities |∂q/∂x|, |∂2q/∂x2|, |∂q/∂t|,
and |dL/dt|, defining these vectors similarly to q, for example |∂tq| =

(|∂tq12|, . . . , |∂tqnMM |)T, with respective threshold tolerances satisfying 0 ≤
τ∂q/∂x, τ∂2q/∂x2 , τ∂q/∂t, τdL/dt < 1/2.
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3.E Additional examples

In this section, we give some additional case studies to further demonstrate

our method, exploring different force law and proliferation laws, and en-

forcing conservation of mass together with a discussion about enforcing

equality constraints in general.

3.E.1 Enforcing conservation of mass

In the main chapter, we discussed at the end of Case Study 2 that it could

be possible to enforce mass conservation to fix the issue with D(q) ̸= E(q),

noting that mass conservation requires D(q(L(t), t)) = E(q(L(t), t)). In

this section, we consider the results when we fix D(q) = E(q) so that mass

is conserved from the outset.

This change D(q) = E(q) is reasonably straightforward to implement

in the algorithm, simply replacing the boundary condition (3.17) so that

q(L(t), t)
dL(t)

dt
= −D (q(L(t), t))

∂q(L(t), t)

∂x
. (3.62)

This constraint D(q) = E(q) also needs to be reflected in the matrix A.

This is simple to do in this case. Previously, our matrix system took the

block diagonal form 
A1 0 0

0 A2 0

0 0 A3



θd

θh

θe

 =


b1

b2

b3

 . (3.63)

With the constraint D(q) = E(q), (3.63) becomes
A1 0

0 A2

A3 0


[
θd

θh

]
=


b1

b2

b3

 . (3.64)

We note that, if we wanted to enforce this constraint in Case Study 4,

where A1 = [Ad Ar], with Ad and Ar defined from (3.28), then we instead

have 
Ad Ar 0

0 0 A2

A3 0 0



θd

θr

θh

 =


b1

b2

b3

 . (3.65)
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Table 3.E.1: Stepwise equation learning results for Case Study 2, using the
basis expansions (3.25), saving the results at M = 200 equally spaced times
between t1 = 0 and tM = 15, pruning with τq = 0.35 and τdL/dt = 0.1,
starting with all terms inactive, and enforcing conservation of mass with
D(q) = E(q). Coefficients highlighted in blue show the coefficient chosen
to be removed or added at the corresponding step.

Step θd1 θd2 θd3 θh1 θh2 θh3 θh4 θh5 Loss

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -3.371
2 0.000 0.000 0.000 0.000 -0.025 0.000 0.000 0.000 -2.371
3 0.000 47.413 0.000 0.000 -0.025 0.000 0.000 0.000 -1.706
4 0.000 47.413 0.000 0.000 0.443 0.000 0.000 -0.004 -0.688

Let us now consider the results with mass conservation. We use the

same parameters that were used to produce the results in Figure 3.7. In

particular, we save the solution at M = 200 equally spaced times between

t1 = 0 and tM = 15, τq = 0.35, τdL/dt = 0.1, and we start with all

coefficients initially inactive. The results we obtain are shown in Table

3.E.1 and Figure 3.E.1. We see that the form we learn for D(q), and hence

for E(q) also, is close to the continuum limit 50/q2, and similarly H(q) is

a good match; note that H(q) is only evaluated at the boundary densities,

which is approximately 5 for t > 0, so indeed H(q) matches the continuum

limit. Looking to Figure 3.E.1(a)–(b), the results are indistinguishable

from the continuum limit, which is also what we found in Figure 3.7 before

we enforced conservation of mass.

Imposing linear equality constraints generically

We note that this approach to implementing the constraint D(q) = E(q)

requiring such a significant change to the matrix system, giving (3.64),

and to the boundary condition (3.62), might suggest that the modularity

of our approach weakens here. This does not need to be the case, and

so let us briefly remark about how constraints such as D(q) = E(q), or

any other linear constraints, could be alternatively implemented in our

approach seamlessly, further demonstrating the modularity.

Suppose we take our system Aθ = b, with A ∈ Rm×p, θ ∈ Rp, and

b ∈ Rm, and suppose we have constraints of the form QTθ = c where

Q ∈ Rp×c and c ∈ Rc, where c < p and Q has full rank. The constrained

least squares estimator for θ subject to these constraints, denoted θ̂c, is
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Figure 3.E.1: Stepwise equation learning results from Table 3.E.1. (a)
Comparisons of the discrete density profiles (solid curves) with those
from the learned PDE (dashed curves), plotted at the times t =
0, 5, 10, 25, 50, 100 in black, red, blue, green, orange, and purple, respec-
tively. (b) As in (a), except comparing the leading edges. (c)–(e) are
comparisons of the learned forms of D(q), H(q), and E(q) compared to the
forms from the continuum limit.

then given by

θ̂c = θ̂ −
(
ATA

)−1
Q

[
QT
(
ATA

)−1
Q

]−1 (
QTθ̂ − c

)
, (3.66)

where θ̂ = (ATA)−1ATb is the unconstrained least squares estimator for

Aθ = b [143]. Using this formulation, imposing D(q) = E(q) is simple to

enforce without changing the boundary condition or the matrix A, simply
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using c = 03×1 and

Q =


θd I3

θh 05×3

θe −I3

=





θd1 1 0 0

θd2 0 1 0

θd3 0 0 1

θh1 0 0 0

θh2 0 0 0

θh3 0 0 0

θh4 0 0 0

θh5 0 0 0

θe1 −1 0 0

θe2 0 −1 0

θe3 0 0 −1

,

where In and 0m×n denote the n-square identity matrix and m × n zero

matrix, respectively. This does not solve the problem entirely, though,

since we also have coefficients that we force to zero throughout the step-

wise procedure. These zeros constraints can also be imposed by including

additional columns of Q. For example, if θh1 and θd2 are inactive, then Q

becomes

Q =


θd I3 ed2 03×1

θh 05×3 05×1 eh1

θe −I3 03×1 03×1

, (3.67)

where ed2 = (0, 1, 0)T and eh1 = (1, 0, 0, 0, 0)T. In particular, each inactive

coefficient θi corresponds to a new column with a one in the row corre-

sponding to that coefficient. Note that Q in (3.67) can be further written

as Q = [Q1 Q2], where Q1 are the user-provided constraints D(q) = E(q)

and Q2 are the constraints imposed by the inactive coefficients, making it

easy to incorporate constraints in this manner. Additional care is required

to ensure that there are no redundant constraints represented by Q1 and

Q2 as Q must be full rank. For example, imposing θd1 = 0 and θe1 = 0

together with the constraint θd1 = θe1 from D(q) = E(q) can be represented
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using only two constraints rather than three, and the associated matrix

Q =


θd I3 ed1 03×1

θh 05×3 05×1 05×1

θe −I3 03×1 eh1

, (3.68)

where eh1 = (1, 0, 0)T, only has rank 4 rather than the full rank 5. This

could be dealt with by finding a basis for the column space of Q, replacing

Q with the corresponding matrix of basis vectors.

To summarise this discussion, it is straightforward to implement our

procedure with the ability to enforce linear equality constraints, allowing

for additional constraints, such as conservation of mass, to be enforced.

This is easy to code without breaking the modularity of the approach and

requiring a significant change to the procedure that would be cumbersome

to implement by increasing the complexity of the corresponding code.

3.E.2 A piecewise proliferation law

In this section, we consider the problem described in Section 3.3 of Murphy

et al. [40]. This problem given by Murphy et al. [40] is used to demonstrate

a case where the solution of the continuum limit no longer gives a good

match with averaged data from the discrete model, as the value of k used

is too low relative to the proliferation rate. Here, we show how our method

can learn an accurate continuum model in this case.

The example is as follows. We consider F (ℓi) = k(s − ℓi) as usual,

taking k = 10−4 and s = 0, but our proliferation law is now given by

G(ℓi) =

0 0 ≤ ℓi < ℓp,

β ℓi ≥ ℓp,
(3.69)

where ℓp = 0.2 is the proliferation threshold and β = 10−2. We use ∆t =

10−2 for the proliferation events. The initial condition places n = 41

equally spaced nodes in [0, 10] so that ℓi = 0.25 at t = 0 for each of the

40 cells. In Figure 3.E.2, we show a comparison of the discrete data from

this problem with the solution of the continuum limit. We also compare

the cell numbers N(t), where the cell numbers from the PDE q(x, t) are
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obtained via N(t) =
∫ 10
0 q(x, t) dx. We see that the densities from the

solution of the continuum limit reach a capacity at 50 cells, while the

discrete model instead reaches 80 cells. Note that the densities appear

jagged in Figure 3.B.1 due to the combination of the averaging procedure

from Section 3.D.1 with the variance of the densities for moderate t; a

better averaging method could be to build the knots at each time t based

on the node positions themselves, but we do not consider that here as it

does not impact the results.
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Figure 3.E.2: Comparison of the solution of the piecewise proliferation law
problem with the solution of continuum limit, where F (ℓi) = k(s− ℓi) and
G(ℓi) = β for ℓi ≥ ℓp and G(ℓi) = 0 otherwise, using k = 10−4, s = 0,
ℓp = 0.2, η = 1, β = 10−2, and ∆t = 10−2. (a) The solid curves are the
discrete densities, and the dashed curves are the densities from the solution
of the continuum limit. The arrow shows the direction of increasing time.
The density profiles are shown at the times t = 0, 10, 50, 100, 250, 500 in
black, red, blue, green, orange, and purple, respectively. (b) Comparison
of the number of cells from the discrete model with that computed from
the solution of the continuum limit, using N(t) =

∫ 10
0 q(x, t) dx for the

continuum limit case. In (a)–(b), the discrete results are averaged over 1000
identically prepared realisations, using nk = 100 knots for the averaging
procedure described in Section 3.D.1.

The continuum limit for this problem is

D(q) =
10−4

q2
and R(q) =

0 q > 1/ℓp,

10−2q q ≤ 1/ℓp.

This suggests one possible basis expansion to use for R(q) in our equa-

tion learning procedure, with the aim to learn an appropriate continuum

approximation to the results in Figure 3.E.2, could be

R(q) =
[
θr0 + θr1q + θr2q

2 + θr3q
3
]
I
(
q ≤ 1

ℓp

)
,

where I(A) is the indicator function for the set A. We find that this does
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not lead to any improved model for this problem, and so we instead consider

a polynomial model:

R(q) = θr0 + θr1q + θr2q
2 + θr3q

3 + θr4q
4 + θr5q

5. (3.70)

For D(q), this mechanism does not appear to be relevant in this example,

with the results that follow all giving visually indistinguishable regardless

of whether D(q) = 0 or D(q) = 10−4/q2. Thus, we do not bother learning

it in this case, simply fixing D(q) = 10−4/q2; if we do not fix D(q), we

just end up learning D(q) = 0 in the results that follow. With (3.70) and

D(q) = 10−4/q2, the results we obtain are shown in Table 3.E.2 and Figure

3.E.3.

Step θr1 θr2 θr3 θr4 θr5 θr6 Loss

1 0.00 0.00 0.00 0.00 0.00 0.00 -1.63
2 0.00 0.00 0.00 0.00 0.00 0.00 -1.53
3 0.077 -0.0096 0.00 0.00 0.00 0.00 -6.22

Table 3.E.2: Equation learning results for the piecewise proliferation law
problem in Figure 3.E.2, fixing D(q) = 10−4/q2 and using the expansion of
R(q) in (3.70). The discrete data is averaged over 1000 identically prepared
realisations with nk = 100 knots for interpolating, and the solution is saved
every 0.1 units of time between t = 0 and t = 500.

The results in Table 3.E.2 and Figure 3.E.3 show that we have learned

R(q) = 0.077 − 0.0096q. (3.71)

The results in Figure 3.E.3(a)–(b) show a good match between the discrete

data and the learned PDE solution. Most interestingly, 3.E.3(c), we see

that this learned R(q) connects the endpoints of the continuum limit form

continuously. In particular, R(q) ≈ β(K−q) = βK(1−q/K), where K = 8

is the maximum density from the averaged discrete data. We have thus

learned an accurate continuum model to describe this problem, originally

from Murphy et al. [40], showing that the piecewise continuum limit form

of R(q) is more appropriately described by a simple linear model that

connects the jumps in R(q).
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Figure 3.E.3: Equation learning results for the piecewise proliferation law
problem in Figure 3.E.2, using the results from Table 3.E.2. (a) Compari-
son of the averaged discrete densities (solid curves) with the solution of the
learned PDE (dashed). The arrow shows the direction of increasing time.
The arrow shows the direction of increasing time. The density profiles are
shown at the times t = 0, 10, 50, 100, 250, 500 in black, red, blue, green,
orange, and purple, respectively.(b) Comparison of the cell numbers. (c)
Comparison of the learned form of R(q) with the continuum limit form of
R(q).

3.E.3 Linear diffusion

In this section, we consider an example where we consider a force law that

leads to linear diffusion, namely

F (ℓi) = k

(
1

ℓi
− s

)
, (3.72)

We use k = 20 and s = 1. For the initial condition, we consider a Gaussian

initial density q0(x) with variance three centered at x = L0/2 over 0 ≤
x ≤ L0 with L0 = 10, and scaled so that the initial number of cells is 40,

meaning 40 =
∫ 10
0 q0(x) dx. This leads to

q0(x) =
A√

2πσ2
exp

{
−1

2

(
x− L0/2

σ

)2
}
, A =

[
erf

(
L0

√
2

4σ

)]−1

N(0),

(3.73)

where N(0) = 40, σ2 = 3, and erf is the error function. To convert this den-

sity into a set of initial cell positions, we consider a set of nodes x1, . . . , x41

with x1 = 0 and x41 = L0. The interior nodes x̃(0) = (x2(0), . . . , x40(0))T
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are obtained by solving the optimisation problem

x̃(0) = argmin
x̃∈R39

41∑
i=1

(q0 (xi(0)) − qi)
2

subject to the constraint 0 < x2(0) < · · · < x40(0) < L0, where qi is the

density at xi using our piecewise formulae. This problem is solved using

NLopt.jl [91, 92]. The discrete densities we obtain over 0 ≤ t ≤ 100 are

shown in Figure 3.E.4, where we also compare the data to the solution of

the continuum limit.
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Figure 3.E.4: Comparison of the linear diffusion problem with its contin-
uum limit, where F (ℓi) = k(a/ℓi − s) with k = 20, s = 1, η = 1, and
a Gaussian initial density. (a) The solid curves are the discrete densities,
and the dashed curves are the densities from the solution of the continuum
limit. The arrow shows the direction of increasing time. The density pro-
files are shown at the times t = 0, 0.1, 2, 10, 50, 75, 100 in black, red, blue,
green, orange, purple, and brown, respectively. (b) Like in (a), except com-
paring the leading edges.

To apply the equation learning procedure to this problem, we note that

we expect D(q) = E(q) = 20, and H(q) = 2q − 2q2. We thus consider

D(q) =
θd−2

q2
+

θd−1

q
+ θd0 + θd1q + θd2q

2,

H(q) = θh1q + θh2q
2 + θh3q

3 + θh4q
4 + θh5q

5,

E(q) =
θe−2

q2
+

θe−1

q
+ θe0 + θe1q + θe2q

2.

Saving the solution between t = 0 and t = 100 every 0.01 units of time

and pruning with τq = 0.3 and τdL/dt = 0.2, we obtain the results in Table

3.E.3 and Figure 3.E.5, showing a good match between the solution of the

learned model and the discrete data.
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Step θd−2 θd−1 θd0 θd1 θd2 θh1 θh2 θh3 θh4 θh5 θe−2 θe−1 θe0 θe1 θe2 Loss

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.76
2 0.00 0.00 19.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.14
3 0.00 0.00 19.18 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 0.00 0.98
4 0.00 0.00 19.18 0.00 0.00 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 20.05 0.00 0.00 -5.05
5 0.00 0.00 19.18 0.00 0.00 0.00 0.42 0.00 0.00 -0.42 0.00 0.00 20.05 0.00 0.00 -10.73

Table 3.E.3: Equation learning results for the linear diffusion problem in
Figure 3.E.4. The solution is saved every 10−2 units of time between t = 0
and t = 100, and matrix pruning is used with τq = 0.3 and τdL/dt = 0.2.
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Figure 3.E.5: Equation learning results for the linear diffusion problem
in Figure 3.E.2, using the results from Table 3.E.2. (a) Comparison of
the discrete densities (solid curves) with the solution of the learned PDE
(dashed). The arrow shows the direction of increasing time. The density
profiles are shown at the times t = 0, 0.1, 2, 10, 50, 75, 100 in black, red,
blue, green, orange, purple, and brown, respectively. (b) Line in (a), except
comparing the leading edges. (c)–(e) shows comparisons of the learned
mechanisms with the forms from the continuum limit.
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3.F Parameter sensitivity study

In this appendix, we provide a brief parameter sensitivity study, exploring

the impact of parameters such as the pruning parameters and the number of

time points on the results of our stepwise learning framework. We use Case

Study 3 for this purpose, taking the case k = 1/5 so that the continuum

limit is inaccurate. The parameters we consider are h, the duration between

time points; ns, the number of identically-prepared realisations; tM , the

final time, noting that t1 = 0; nk, the number of knots used for averaging;

and τq, the pruning parameter for the density quantiles. We only vary each

parameter one at a time, so that the default values for each parameter are

h = 0.1, ns = 1000, nk = 200, tM = 75, and τq = 0.25 while a given

parameter is being varied.

To assess the results for each set of parameters we use the loss of the

learned model, L(θ̂). To further examine the results, we divide the results

into two categories: those that learn D(q) = 0, and those that learn D(q) ̸=
0. The results of the study are shown in Figure 3.F.1. We see that there

is little dependence of the results on h, or equivalently on the number of

time points. Figure 3.F.1(b) shows that ns needs to be sufficiently large,

around ns > 500, in order for any diffusion terms to be selected, although

the loss does not change significantly once D(q) terms are identified. The

final time is important, where only final times in 50 ≤ tM ≤ 75 give

reasonable results. The number of knots is not too important according

to Figure 3.F.1(d), so long as there are not too many or too few. The

most impactful parameter is τq, where we need τq ≈ 0.2 to obtain an

adequate learned model; for other case studies which involve other pruning

parameters, such as on the derivatives or on the leading edge, we also find

that these parameters are the most influential.

Overall, Figure 3.F.1 shows that τq and tM are the most important

parameters for this problem. This is consistent with what we have found

for the other case studies, where the choice of pruning parameters is crucial

and the time horizon needs to be carefully chosen so that D(q) can be

identified. Choosing these parameters can be quite difficult, and trial and

error is needed to identify appropriate terms, as well as understanding why

a certain model is failing to give good results. For example, in Case Study

2 we determined that we had to shrink the time interval used for learning

the results, and that we needed to use velocity quantiles, by determining
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Figure 3.F.1: Dependence of L(θ), where θ is the vector combined the
learned θd and θr, on the parameters h, ns, tM , nK , and τq. For each
parameter, as it is varied the other parameters are held at their default
values h = 0.1, ns = 1000, tM = 75, nk = 200, and τq = 0.25.

what mechanisms are failing to be learned and seeing where the model fails

to extrapolate. The values that we used for these parameters, though, had

to be chosen with trial and error. Our procedure is efficient enough for

this trial and error procedure to be performed quickly, but future work

could examine these issues in more detail to simplify the selection of these

parameters.
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Conclusion and Future Work

In this thesis, we apply mathematical and statistical methods to problems

in tissue engineering. There are two primary outcomes of this research.

Firstly, we combine mathematical modelling with a likelihood-based uncer-

tainty framework to demonstrate that the cellular mechanisms driving tis-

sue growth are independent of pore geometry. While previous research has

explored tissue growth in various pore geometries [13,21–26,55,56,58–62],

this is the first work that has directly examined the cellular mechanisms

between geometries and provided evidence of this independence. Lastly,

we develop an equation learning framework that can learn models describ-

ing tissue growth experiments, like those examined in the first half of this

thesis, enabling partial differential equation models to be derived for ex-

periments more complicated than those considered in this thesis.

Our findings in Chapter 2 have several important implications. Firstly,

it is possible to make predictions of tissue growth experiments, and thus

of quantities such as the bridging time, on pore geometries using models

calibrated from other pore geometries. This can be useful as a screening

tool, where experiments on new geometries can be simulated before even

fabricating the scaffolds; these simulations do not replace experimental ver-

ification, but they will significantly assist with planning and interpreting

experiments effectively. Moreover, the results imply that observed curva-

ture effects, such as those discussed by Callens et al. [58] who find that

cells generally prefer concave regions, are due to space availability rather

than cellular mechanisms. This insight is useful as it may assist in how

future experiments are designed to further study this phenomena, and to

focus research into mechanisms other than the cellular mechanisms for
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understanding curvature effects further. These findings do have some lim-

itations that are important to recognise. Firstly, we only considered the

MC3T3-E1 cell line [27] for these results. Secondly, if we were to apply

our procedure to other more complicated experiments, where effects such

as cell adhesion may be relevant, the model used may need to be more

complex. This complexity may increase the need for more data so that the

additional model parameters can be estimated [28,76].

The equation learning framework in Chapter 3 has shown that we can

learn continuum descriptions of discrete individual-based models beyond

their coarse-grained continuum limit, and in particular of models that

describe tissue growth experiments, especially for parameters outside of

regimes where known models are no longer accurate. Our framework can

be especially useful when considering more complicated experiments for

which a mathematical model, like the one in Chapter 2, is not known.

Results from our procedure could give further insight into cellular mecha-

nisms, or other mechanisms more generally, since the learned models can

be interpreted relative to these mechanisms.

The research in this thesis could be extended in many ways. Firstly,

it would be of interest to apply our likelihood-based inference methods of

Chapter 2 to tissue growth experiments on other pore geometries or with

different cell lines, as this could be explored without any modification to

our approach. Secondly, a further examination of how curvature effects

influence tissue growth would be worthwhile, using our approach of pre-

dicting results on new experiments to systematically vary the curvature on

a geometry while visualising the density profiles for each geometry. The

equation learning work in Chapter 3 could be extended into higher dimen-

sions of space, where the main change to our framework would be the need

for a more complex method for solving the PDEs numerically [135–137].

Applying the framework to heterogeneous cell populations would also be of

interest [45], where the main difficulty would be in changing the nonlinear

diffusion function to vary in space to allow for varying rates of mechanical

relaxation. Lastly, it would be useful to consider applying the equation

learning framework in Chapter 3 to experimental data like from the exper-

iments in Chapter 2, which would also involve exploring how uncertainty

quantification can be incorporated into the framework, for example using

bootstrapping [50] or Bayesian inference [140] together with methods from
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multimodel inference [144, 145]. Similarly, for such an application it may

be necessary to borrow ideas from recent work in equation learning to ex-

tend the framework, such as using denoising methods for estimating finite

differences from noisy data or other extensions [140, 146–153]. Applying

the framework in Chapter 3 to experimental data will also require values

for the discrete model parameters, which may be taken from the literature

[34] or calibrated to the experimental data directly [154–162].

This thesis shows the importance of applying ideas from mathematical

and statistical modelling to problems in tissue engineering. We have used

modelling to examine images from a tissue growth experiment to test the

question of whether cellular mechanisms are independent of pore geome-

try, and further used statistical methods to demonstrate how experimental

design and experimenting planning can be improved for new geometries.

The procedure we use for this is highly general, and can be used more

broadly in tissue engineering. We have shown how, even in cases where a

model describing the experiments is not known, equation learning can be

applied to learn such a continuum model that can then be used for analysis.

From the above discussion, we can see that the results in this thesis can be

extended in many directions.



Appendix A

Equation learning example

This appendix serves to provide a didactic example of how equation learn-

ing is traditionally applied, in the spirit of Brunton et al. [47]. We will

conclude this appendix by clarifying similarities between this traditional

approach to how we apply equation learning in Chapter 3.

A.1 Learning an ordinary differential equation

We give an example where we learn data from an ordinary differential

equation (ODE). The data we consider is simulated from a weak Allee

effect model, given by [163]

dC(t)

dt
= rC(t)

(
1 − C(t)

K

)(
1 +

C(t)

A

)
, 0 < t ≤ T, (A.1)

where C(t) is the population density with C(0) = 1/24, K = 1 is the

carrying capacity density, A = 50 defines a deviation away from logistic

growth via 1 + C(t)/A, r = 1/10 is the proliferation rate, and T = 100

is the final time. The data we will be using for this exercise is shown in

Figure A.1. For the purposes of this exercise, we do not consider adding

any noise to the data, similar to what we have in Chapter 3.

The data we show in Figure A.1 shows a time series with data given

by {(tj , Cj)}Mj=1, where M = 1001, tj = (j − 1)∆t with ∆t = 1/10, and

Cj = C(tj). Our aim is to use this data to learn the original equation
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Figure A.1: Simulated data from the weak Allee effect model (A.1) with
C(0) = 1/24, K = 1, B = 1/2, r = 1, and T = 100.

(A.1). To learn these equations, the procedure starts by writing

C =


C1

C2

...

CM

 ∈ RM×1, Ċ =


dC1/dt

dC2/dt
...

dCM/dt

 ∈ RM×1, (A.2)

where the derivatives dCj/dt are estimated using finite differences, j =

1, . . . ,M . Next, we define a library Θ(C) ∈ RM×p which contains terms

that we might expect to appear in the learned model. For this problem, we

suppose that the learned model might contain terms up to quartic order

so that

Θ(C) =


1 C1 C2

1 C3
1 C4

1

1 C2 C2
2 C3

2 C4
2

...
...

...
...

...

1 CM C2
M C3

M C4
M

 ∈ RM×5. (A.3)

Thus, if we suppose that the model takes the form

dC

dt
= ξ0 + ξ1C + ξ2C

2 + ξ3C
3 + ξ4C

4, (A.4)
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then the library (A.3) gives the system

Ċ = Θ(C)ξ, (A.5)

where ξ = (ξ0, ξ1, ξ2, ξ3, ξ4)
T. In the notation from Chapter 1, where we

wrote ∂q/∂t = N (q,D,θ), we have q = C, D = ∅, θ = ξ, and N (q,D,θ) =

ξ0 + ξ1C + ξ2C
2 + ξ3C

3 + ξ4C
4.

To solve (A.5), sparse regression is used. For this problem, we use

LASSO regression so that [47]

ξ = argmin
ξ′

{∥∥∥Ċ−Θ(ξ)ξ′
∥∥∥
2

+ λ∥ξ′∥1
}
, (A.6)

which simultaneously balances goodness of fit with model complexity. For

ξ to match (A.1), we need ξ = (0, 0.1,−0.098,−0.002, 0)T. Optimising

(A.6) with λ = 1/50 gives

ξ = (3.24 × 10−6, 0.1,−0.098,−0.00191,−8.13 × 10−5)T, (A.7)

which has a relative error of 0.087% compared to the true ξ; sequential

thresholded least squares could be used to find a ξ which iteratively zeros

out components [47]. We show in Figure A.2 the comparison between the

data and the solution to the learned ODE.

t
0 25 50 75 100

C(
t)

0.0

0.5

1.0

Original
Learned

Figure A.2: Comparison of the learned ODE (A.4) with ξ given by (A.7)
to the original data from Figure A.1.



128

A.2 Similarities with the approach in Chapter 3

The example we give is useful as it shows some similarities with our ap-

proach from Chapter 3. Firstly, both of these problems lead to a matrix

problem for the coefficients to be estimated, although the method used for

solving it differs. Secondly, both methods simultaneously balance model

complexity with the goodness of fit, a feature common to all equation

learning methods. Lastly, both methods use time series data and finite

differences as input, although in our case we have data not of density but

of position that then gets converted into the appropriate variable for the

differential equation.

There are also some differences. While the method of [47] learns the

entire problem at once, our method instead learns a constrained problem

so that it takes the form of a conservation law. In particular, we use

N (q,D,θ) =
∂

∂x

(
D(q)

∂q

∂x

)
+ R(q) (A.8)

so that D = {∂/∂x} and θ are the coefficients parametrising D(q) and

R(q). Additionally, rather than using (A.6) to estimate the parameters,

we use a least squares problem to estimate the parameters and then use a

loss function similar to (A.6) for iteratively refining the parameter vector.
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