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Abstract

We develop a parameter estimation method based on Approximate Bayesian Computa-

tion (ABC) for a stochastic cell invasion model using fluorescent cell cycle labelling with

proliferation, migration, and crowding effects. Previously, inference has been performed

on a deterministic version of the model using cell density data, and not all the para-

meters could be identified. Working with a stochastic model allows us to harness more

features of experimental data, including cell trajectories and cell count data, which

overcomes the parameter identifiability problem. We demonstrate that, whilst difficult

to collect, cell trajectory data can provide more information about the parameters of

the cell invasion model. To handle the intractability of the likelihood function of the

stochastic model, we use an efficient ABC algorithm based on sequential Monte Carlo.
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Chapter 1
Introduction

1.1 Motivation and Context

Cancer cells can invade into neighbouring cell tissue in a process known as metastasis. In

this thesis, we focus on the dynamics of cell invasion into the surrounding tissue similar

to Maini et al. (2004) and Simpson et al. (2018) where malignant cells undergo combined

proliferation and migration; although some other studies (see El-Hachem et al., 2021;

Painter and Sherratt, 2003) choose to focus solely on cell migration. Insights into cell

invasion dynamics can be obtained through collective cell spreading experiments. These

experiments usually involve growing monocultures of cells on plastic tissue culture

plates and observing how the population moves and evolves under a variety of different

experimental conditions (Liang et al., 2007). Cells proliferate by progressing through a

four-stage sequence of phases consisting of gap 1 (G1), synthesis (S), gap 2 (G2), and

mitosis (M) where the cell divides into two daughter cells, each of which return to the

G1 phase (Haass et al., 2014). Of particular interest in cancer research is the effect of

applied drugs on the behaviour of cancerous cells (Desoize et al., 1998; Smalley et al.,

2006). In addition, understanding the effects of these applied drugs with respect to

the different stages of the cell cycle is becoming increasingly important as many drug

treatment methods target different phases of the cell cycle (Haass & Gabrielli, 2017).

Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology (Sakaue-

Sawano et al., 2008) allows us to visualise phases of the cell cycle in real time through

the use of two fluorescent probes. When cells are in the G1 phase the probes emit a

red fluorescence and when in the S/G2/M phases the probes emit a green fluorescence.

Additionally, during the transition between G1 and S phase, both probes are active

(giving the impression that the cell fluoresces yellow), allowing the visualisation of the

early S phase, which we refer to as eS. This allows the visualisation of three unique

phases in the cell cycle. Still images of a scratch assay experiment using WM983C

1
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FUCCI-transduced melanoma cells are presented in Figure 1.1. In Figure 1.1 (c)-(f),

cells appear to gradually migrate into the scratched region and proliferate with the

abundance of space and nutrients as the experiment progresses. We note that the

fluorescent intensity of the cells in Figure 1.1 (c)-(f) appears to fluctuate between cell

phases. In this thesis, we choose to classify the cells into three phases previously

mentioned using a classification rule based on the RGB decimal codes outlined in

Section 3.5.2; however, this information may be useful to consider in future studies.

G2

G1

S

M

G1 eS S/G2/M

G1

G1

Rr Ry

Rg

eS S/G2/M

G1

G1
Rr Ry
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t = 0 h t = 16 h t = 32 h t = 48 h

(a) (b)

Figure 1.1: (a)-(b) Schematic of cell cycle. (c)-(f) Experimental images, all 1309.09 x
1745.35 µm, of WM983C FUCCI-transduced melanoma cells at 0, 16, 32 and 48 hours,
respectively. Images reproduced with permission from Vittadello et al. (2018)

The process of reproducing these experiments with varying experimental conditions is

often expensive and time consuming. An alternative to studying cell dynamics in vitro is

the construction of mathematical models which are capable of reproducing experiment

conditions virtually. There are a multitude of benefits to using these simulation models

instead of in vitro experiments besides the obvious reduced time and expenses. Firstly,

these models can be extended or altered in a variety of ways to aid in the development

of theoretical mechanisms. Secondly, such mechanisms incorporated into the model

are usually controlled by a collection of parameters, which can be quantified through

statistical inference methods. Lastly, hypotheses can be tested by comparing model

predictions with experiment data.

Collective cell spreading and invasion models usually use a deterministic modelling

framework where the spatial location of cells in the experiment are defined by par-

tial differential equations (PDE). These PDE’s are generally extensions of the Fisher-
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Kolmogorov-Petrovsky-Piscounov (Fisher-KPP) model (Fisher, 1937; Kolmogorov, 1937)

which is a reaction-diffusion model. This modelling approach includes a diffusion source

term which describes the cells movement and a logistic source term which describes pro-

liferation with respect to the carrying capacity of the environment (Edelstein-Keshet,

2005; Murray, 2007). However, these modeling approaches are usually unable to ac-

commodate multiple data types and can lead to parameter identifiability issues if the

informativeness of the data that the model can produce is insufficient (see for example

Simpson et al., 2020). Alternatively, a stochastic modelling approach can be used to

consider individual cell behaviour (Codling et al., 2008). These models are constructed

from Markov processes and often allow for a wider range of data types to be considered

(e.g. cell trajectories).

In this thesis, we use a stochastic modelling approach proposed by Simpson et al. (2018)

to mimic the the proliferation and movement of cells within a scratch assay experiment.

This modelling approach involves describing a discrete exclusion based (meaning no two

agents can occupy the same site) random walk on a two-dimensional (2D) hexagonal

lattice. This model has yet to be calibrated to experimental data and have the unknown

cell cycle transition and motility rate parameters estimated. We extend on the work of

Simpson et al. (2018) by estimating these parameters through a Bayesian framework.

Bayesian methods achieve this through estimating the posterior distribution which is

a function of the likelihood of the data and the prior information. However, stochastic

models of collective cell invasion and migration are often so complex that standard para-

meter estimation procedures are not feasible due to the intractability of the likelihood

function. We overcome this limitation by applying Approximate Bayesian Computation

(ABC methods). These methods bypass evaluating the intractable likelihood function

by identifying parameter configurations which produce simulated data that closely re-

sembles the observed data; where often the simulated and observed data are reduced

to a set of low dimensional summary statistics. With respect to previous collective cell

spreading modelling approaches (see Cai et al., 2007; Maini et al., 2004; Savla et al.,

2004; Simpson et al., 2020; Swanson, 2008; Vo et al., 2015), our study is the first of its

kind to successfully estimate the parameters of a stochastic cell invasion model with

multiple phases of the cell cycle.

1.2 Aims and Objectives

The overall aim of this project is to develop a parameter estimation method for es-

timating parameters of a stochastic cell invasion model which considers proliferation,

migration and crowding effects. By considering the stochastic model we can harness

more features of experimental data, including cell trajectories and cell count data,

which cannot be done with deterministic modelling. We achieve this aim through the
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following objectives:

1. Assess the suitability of the existing ABC methods and consider their suitability

to the stochastic cell invasion model

2. Analyse and compare the informativeness of various summary statistics with sev-

eral biologically plausible synthetic data sets

3. Estimate the model parameters using a suitable set of summary statistics and

likelihood-free inference method.

4. Assess the increase in information that can be obtained about the parameters by

harnessing the additional cell trajectory and count data, which is not considered

in previous deterministic modelling approaches.

1.3 Thesis Structure

In Chapter 2, we provide a background into Bayesian statistics, sampling methods

and their likelihood-free adaptations to give the reader a better appreciation and un-

derstanding for the algorithms we later use to estimate model parameters in Chapter

3.

In Chapter 3, we describe how to estimate parameters of a stochastic collective cell

spreading model by using likelihood-free inference methods. This involves a review of

previous modelling methods, a review of the likelihood-free inference methods (object-

ive 1), the procedure on how to calibrate the model to experimental data and data

extraction, comparison of the informativeness of multiple data types (objective 2), es-

timation of the model parameters and validation (objective 3), and discussion on results

(objective 4). The contents of this chapter have been published in Journal of the Royal

Society Interface (see Carr et al., 2021).

Finally, in Chapter 4 we summarise our the main findings from the thesis and provide

insight into limitations and possible future directions.



Chapter 2
Statistical Background

2.1 Bayesian Statistics

2.1.1 Bayes’ Theorem

In Bayesian Statistics, the uncertainty in the unknown model parameters θ = (θ1, ..., θp)
>

(where θ ∈ Θ ⊆ Rp and p is the number of parameters) conditional on the data

y = (y1, ..., ym)> (where y ∈ Y ⊆ Rm and m is the dimension of the data) can be

quantified by the posterior distribution, given by Bayes’ theorem:

π(θ|y) =
π(y|θ)π(θ)∫

Θ π(y|θ)π(θ)dθ

where π(y|θ) is the likelihood function, π(θ) is the prior and
∫

Θ π(y|θ)π(θ)dθ is the

normalising constant. Generally the normalising constant can be computationally in-

tractable but is seldom required for applications where the focus is sampling from the

posterior.

Their are numerous advantages to using Bayesian statistics (for a comprehensive review

see Carlin and Louis, 2000; Gelman et al., 2013). To name a few, the inclusion of

previous knowledge or expert opinion about the model parameters can be incorporated

into the inference process through the prior distribution. Additionally, the uncertainty

in the model parameters and predictions can be modeled with probabilistic distributions

rather than frequentist point estimates and confidence intervals. These probabilistic

distributions are generally more intuitive and contain much more information about

the uncertainty in parameters. For these reasons, we adopt a Bayesian approach to

inference in this thesis.

5



Chapter 2. Statistical Background 6

2.1.2 Monte Carlo

In Bayesian statistics the main objective is to reveal information about the unknown

quantity θ. This can be achieved by computing the expectation with respect to the

posterior:

E[h(θ)] =

∫
Θ
h(θ)π(θ|y)dθ ≈ 1

N

N∑
i=1

h(θi),

where h(θ) is the unknown quantity and it is assumed θi can be independently sampled

from π(θ|y). This is known as Monte Carlo integration (Robert & Casella, 2013).

Commonly h(θ) is set as θ or (θ − E[θ])2 to estimate the posterior mean and variance,

respectively.

2.1.3 Markov Chain Monte Carlo

In practice, using Monte Carlo methods to the quantify the unknown parameter θ is

often not possible due to the difficulty in independently sampling from the posterior

distribution. However, we can construct an ergodic Markov chain with the posterior

distribution as its stationary distribution to generate T samples from the posterior;

although, these samples are still not independent. Nevertheless, we ensure that

lim
t→∞

1

T

T∑
t=1

h(θt)→
∫

Θ
h(θ)π(θ|y)dθ,

by the Markov chain central limit theorem (Tierney, 1994) since we are using an ergodic

Markov chain.

One of the most well know Markov Chain Monte Carlo (MCMC) sampling algorithms

is the Metropolis-Hastings algorithm (Hastings, 1970; Metropolis et al., 1953) (see

Algorithm 1). This method proposes θi, for i = 1, ..., N , from a proposal distribution,

q(θi|θi−1), conditional on the current value θi−1. The proposed value, θi, is accepted

as the next value in the chain with probability

pacc = min

(
1,

π(y|θi)π(θi)q(θi−1|θi)
π(y|θi−1)π(θi−1)q(θi|θi−1)

)
,

otherwise the current value, θi−1, is accepted as the next value in the Markov chain.

Implementation of the Metropolis-Hastings algorithm requires an initial value θ0, a

proposal distribution q(θi|θi−1) and the total number of iterations T to be specified.

The choice of θ0 is somewhat arbitrary as after a large enough number of iterations

the chain will converge to the stationary distribution; however this requires samples

recovered prior to convergence to be discarded (referred to as burn-in) to avoid sample

bias. Otherwise, θ0 could be chosen such that it is already in the stationary distribution

(see for example Flegal and Herbei, 2012) to improve efficiency. The choice of the
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proposal distribution q(θi|θi−1) should be chosen such that the entire sample space of θ

is explored. A simple choice is a multivariate normal distribution, N (θi; θi−1,Σ), with

Σ as a tuning parameter. Although, more efficient proposal distributions which consider

gradient information could be used instead to improve performance in higher dimensions

(for example see Hoffman and Gelman, 2014; Roberts and Stramer, 2002). To tune the

proposal distribution, a good rule of thumb to use when the proposal distribution is of

the same shape as the target distribution is to target an acceptance rate between 23.4-

44% (depending on the dimension of the parameter space) (Gelman et al., 1996). The

choice of T is problem specific and will largely depend on the autocorrelation in samples

and the desired level of precision in estimates. The Metropolis-Hastings algorithm is

presented in Algorithm 1.

Algorithm 1 Metropolis-Hastings Algorithm

1: Initialise θ0

2: for i = 1 to T do
3: Propose θi ∼ q(·|θi−1)

4: Compute pacc = min

(
1, π(y|θi)π(θi)q(θi−1|θi)

π(y|θi−1)π(θi−1)q(θi|θi−1)

)
5: Accept proposal θi with probability pacc otherwise set θi = θi−1 (reject proposal)
6: end for

2.1.4 Importance Sampling

Importance sampling offers refinement to Monte Carlo methods in situations when

samples are difficult or unable to be drawn from the posterior distribution. The basic

principal is to instead sample from an importance distribution g(θ) which is easier

to sample from. To transform these samples from the importance distribution to be

samples from the posterior we first calculate the weights wi = π(θi|y)/g(θi), then the

normalised weights w̃i = wi/
∑

j wj and then weight the samples with respect to the

normalised weights. In effect, importance sampling computes the expectation:

E[h(θ)] =

∫
Θ
h(θ)π(θ|y)dθ =

∫
G
h(θ)

π(θ|y)

g(θ)
g(θ)dθ ≈ 1

N

N∑
i=1

w̃ih(θi),

where h(θ) is the unknown quantity and θi is independently sampled from the import-

ance distribution g(θ).

A requirement of importance sampling to work well is that the importance distribution

should be close to the posterior distribution but with heavier tails. However, this is

often difficult to find in practice as information about the surface of the posterior is

often unknown. An extension to importance sampling, known as adaptive importance

sampling, uses a family of importance distributions gφt(θ) with hyperparameter φt

that is sequentially tuned from the weighted sample {w̃t−1
i , θt−1

i }Ni=1 to bring it closer

to the posterior. We can compare the performance of each importance distribution
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gφt(θ) by computing the effective sample size ESS = 1/
∑

i w̃
2
i between iterations. We

continually iterate importance distributions bringing the importance distribution closer

to the posterior until the change in ESS is below a pre-specified tolerance. We present

the adaptive importance sampling algorithm in Algorithm 2.

Algorithm 2 Adaptive Importance Sampling Algorithm

1: Set t = 0 and initialise φ0

2: Sample {θi}Ni=1 from gφt
3: Compute sample weights wi ∝ π(θi|y)/gφt(θi), for i = 1, ..., N
4: Compute normalised weights w̃i = wi/

∑
j wj , for i = 1, ..., N

5: Compute φt from {w̃i, θi}Ni=1

6: Compute ESS = 1/
∑

i w̃
2
i

7: Set t = t+ 1 and repeat from 2 until there is little improvement in ESS

2.1.5 Sequential Monte Carlo

One of the shortcomings of importance sampling is the difficulty in specifying an ap-

propriate family of importance distribution which closely resembles the posterior. Se-

quential Monte Carlo (SMC) offers an alternative method which forms a sequence of

distributions based on likelihood annealing, given by:

πt(θ|y) ∝ π(y|θ)γtπ(θ), for t = 1, ..., T

where when γ1 = 0 the prior distribution is used as the importance distribution and

when γt = 1 the posterior is used. In this way, the importance distribution is gradually

brought closer to the target posterior by increasing the intermediate temperatures γ2 <

... < γT−1 in a smooth fashion.

One of the challenges of SMC and importance sampling is the increasing variability

of the particle weights in the collection of particles {w̃ti , θti}Ni=1 which lowers the ESS

as t increases. Chopin (2002) proposes an algorithm to address the issues of sample

degeneracy by implementing a resampling and move step once the ESS falls below an

undesirable threshold E. The intuition behind this procedure is that the resampling

step will discard particles with insignificant weights and duplicate particles with high

weights by resampling particles with probabilities given by their weights. The move step

then diversifies the population with an MCMC kernel using a proposal distribution, qt,

with invariant distribution πt(θ|y). Moreover, the tuning parameters for the proposal

distribution can be adaptively tuned from the population of particles {w̃ti , θti}Ni=1. We

present the SMC algorithm of Chopin (2002) in Algorithm 3
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Algorithm 3 SMC Algorithm

1: Draw θ0
i ∼ π(·) and set w0

i = 1/N for i = 1, ..., N
2: for t = 1 to T do
3: Compute sample weights wti ∝ πt(θ

t−1
i |y)/πt−1(θt−1

i |y), for i = 1, ..., N
4: Set θti = θt−1

i , for i = 1, ..., N
5: Compute normalised weights w̃ti = wti/

∑
j w

t
j , for i = 1, ..., N

6: Compute ESS = 1/
∑

i(w̃
t
i)

2

7: if ESS < E then
8: Resample particles producing {θti}Ni=1 and reset weights to be equal to 1/N
9: Compute tuning parameters of MCMC kernel qt

10: Move θti with MCMC kernel Rt times, for i = 1, ..., N
11: end if
12: end for

2.2 Likelihood-free Inference

While Bayesian statistics can be beneficial to use, a key requirement is that the likeli-

hood function is tractable. However, this may not be the case for sufficiently complex

models if the likelihood function is either too computationally expensive to compute

or is not analytically tractable. For example, the stochastic model used in this thesis

has an intractable likelihood function due to the computational cost of computing the

matrix exponential on the high dimensional generator matrix (a matrix of rate para-

meters which describe the rate of transitioning between states in a Markov process).

Rather than reverting to simpler models with tractable likelihoods, these types of prob-

lems can be instead analysed using likelihood-free methods that avoid evaluating the

likelihood function. Likelihood-free inference is the set of methods which quantify the

uncertainty in the unknown model parameters θ by simulating data from the model,

x ∼ π(·|θ), and identifying which parameter values yield simulated data x that closely

resembles observed data y. It can be often impractical to compare the full data sets of

x and y, so likelihood-free inference methods usually reduce the full data sets down to

a set of low dimensional summary statistics by some summarising function S(·); where

the summary statistics for x and y are denoted Sx = S(x) and Sy = S(y), respect-

ively. Provided that these summary statistics are highly informative about the model

parameters, then π(θ|y) ≈ π(θ|Sy) is a good approximation (Blum et al., 2013). By

this process, likelihood-free methods avoid having to evaluate the intractable likelihood

function by instead simulating data from a model. However, these methods tend to be

computationally intensive due to the large number of data sets required to be simulated.

Therefore, the strengths and weaknesses of the likelihood-free inference method relat-

ive to the application should be considered carefully. In this study, the likelihood-free

method we adopt is ABC, which we now explore in further detail.
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2.2.1 Approximate Bayesian Computation

Introduced by Pritchard et al. (1999) and later popularised by Beaumont et al. (2002),

ABC samples from the approximate posterior:

πε(θ|Sy) ∝ π(θ)

∫
x
Kε(ρ(Sy, Sx))π(x|θ) dx, (2.1)

where ρ(Sy, Sx) is the discrepancy function which measures the difference between

the two summary statistics and Kε(·) is the kernel weighting function which weighs

ρ(Sy, Sx) conditional on the tolerance ε. A common choice for the discrepancy func-

tion is the Euclidean distance, ρ(Sy, Sx) = ‖Sy − Sx‖2, and for the kernel weighting

function is the indicator function, 1(·), which is equal to one if ρ(Sy, Sx) ≤ ε and is

zero otherwise. The approximate posterior in Equation 2.1 converges to the posterior

conditional on the observed summary (often referred to as the partial posterior) in the

limit as ε→ 0 (Beaumont et al., 2002).

Generally the limitations of ABC are related to the dimension of the parameter space or

the number of summary statistics used being too high. Fearnhead and Prangle (2012)

show that the average acceptance probability of a proposed parameter configuration

is O(εd), where d is the dimension of the summary statistic. Therefore, for problems

which have high dimensional parameter spaces or require high dimensional summary

statistics, ABC can perform poorly. However, strategies such as regression adjustment

(Beaumont et al., 2002; Blum & François, 2010) and semi-automatic ABC (Fearnhead

& Prangle, 2012; Harrison & Baker, 2020) can be used to improve ABC’s performance

in higher dimensions. Another limitation of ABC is the requirement for the tolerance, ε,

to be small for πε(θ|Sy) to be a good approximation of π(θ|Sy). However, as ε decreases

the acceptance rate also decreases. This requires a greater number of model simulations

to be performed which can make ABC computationally expensive or intractable when

the simulation model is computationally intensive.

2.2.2 ABC sampling algorithms

The most rudimentary ABC sampling algorithm is ABC rejection (Pritchard et al.,

1999). This method generatesN independently and identically distributed (iid) samples

from the approximate posterior by accepting parameter configurations where the dis-

crepancy measure ρ(Sy, Sx) is less than the desired target tolerance εT . Under this

method, proposed parameter values are generated from the prior distribution π(θ).

The ABC rejection algorithm is presented in Algorithm 4. ABC rejection is desirable

to use because it is relatively simple to implement and acquires iid samples (Marjoram

et al., 2003). However, if the prior is relative diffuse compared to the posterior, then

the simulated data sets will mostly not resemble the observed data because parameter

values will be predominantly sampled in regions of low posterior density (Sisson et al.,
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2007). This results in very few samples being accepted and can make ABC rejection

computationally prohibitive, especially when the model is computationally expensive

to simulate.

Algorithm 4 ABC rejection

1: for i = 1 to N do
2: Propose θi ∼ π(·)
3: Simulate x ∼ π(·|θi)
4: Compute Sx = S(x)
5: Accept θi if ρ(Sy, Sx) ≤ εT
6: end for

Marjoram et al. (2003) developed a likelihood-free Markov chain Monte Carlo algorithm

(MCMC-ABC) in an effort to increase the acceptance rates relative to ABC rejection

by constructing a Markov chain with a stationary distribution identical to the ABC

posterior. This algorithm proposes parameters θi, for i = 1, ..., N , from a carefully

tuned proposal distribution θi ∼ q(·|θi−1), conditional on the current parameter θi−1.

Proposals are to be accepted with probability pacc based on the Metropolis-Hastings

ratio (Hastings, 1970; Metropolis et al., 1953):

pacc = min

(
1,

π(θi)q(θi−1|θi)Kε(ρ(Sy, S
i
x))

π(θi−1)q(θi|θi−1)Kε(ρ(Sy, S
i−1
x ))

)
. (2.2)

The choice of the initial value, θ0, can be chosen arbitrarily if a pilot run is conducted

until the chain has converged to the stationary distribution and all samples collected

prior to convergence are discarded (referred to as burn-in). While MCMC-ABC can be

more efficient than ABC rejection (Marjoram et al., 2003), due to searching around loc-

ally for regions of high posterior probability, it is possible for the Markov chain to spend

many iterations in areas of low posterior probability (Sisson et al., 2007). Addition-

ally, tuning the proposal distribution can take considerable effort. The MCMC-ABC

algorithm is presented in Algorithm 5.

In recognition of the disadvantages of MCMC-ABC, Sisson et al. (2007) develop a

likelihood-free Sequential Monte Carlo algorithm (SMC-ABC). This method sequen-

tially approximates the posterior with T non-increasing tolerance levels ε1 ≥ · · · ≥ εT :

πεt(θ|Sy) ∝ π(θ)

∫
x
Kεt(ρ(Sy, Sx))π(x|θ) dx, for t = 1, ..., T. (2.3)

Initially θ is independently sampled from the prior distribution and ε1 is set as the

maximum sample tolerance. Thereafter, to propagate samples between target distri-

butions, θ is resampled from the previous population proportional to their weights,

θt ∼ {θit−1,W
i
t−1}Ni=1, and perturbed according to a Markov transition kernel θi ∼

Mt(·|θii− 1). Corrections on the weighting function from Beaumont et al. (2009) sug-
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Algorithm 5 MCMC-ABC

1: After burn-in initialise θ0, Sx, ψ
0 = Kε(ρ(Sy, Sx))

2: for i = 1 to T do
3: Propose θi ∼ q(·|θi−1)
4: Simulate x ∼ π(·|θi)
5: Compute Sx = S(x)
6: Compute ψi = Kε(ρ(Sy, Sx))

7: Compute pacc = π(θi)q(θi−1|θi)ψi
π(θi−1)q(θi|θi−1)ψi−1

8: if U(0, 1) < pacc then
9: Accept θi

10: else
11: Set θi = θi−1, ψi = ψi−1

12: end if
13: end for

gest using Wt ∝ π(θt)/
∑N

j=1W
j
t−1Mt(θt|θjt−1). However, this approach still requires

considerable effort and the intermediate intermediate target distances ε2, ..., εT to be

specified.

An alternative approach from Drovandi and Pettitt (2011) suggest using a weighting

function Wt ∝ Wt−11(ρ(Sy, Sxt−1) ≤ εt)/1(ρ(Sy, Sxt−1) ≤ εt−1)), where 1(·) is the in-

dicator function, and an MCMC kernel to perturb samples. This method results in

parameter configurations only being kept if they satisfy the target tolerance εt; how-

ever, this may cause sample degeneracy (too many duplicated particles). To overcome

this, θ is resampled from the best 100(1− α)% (with respect to minimising tolerance)

until N samples are attained. However, this approach will cause particle duplication.

Hence, Drovandi and Pettitt (2011) recommend iterating the MCMC kernel Rt times

to guarantee sample diversity, where Rt = dlog(c)/log(1− pacc)e with pacc as the over-

all MCMC acceptance rate which can be computed from Rt−1/2 pilot iterations and

the ceiling function d·e is used to be conservative. Rt is dependent on the sequence

level t because as εt decreases, the number of iterations required to accept a proposal

(with probability 1 − c) tends to increase since the criterion for accepting a proposal,

ρ(Sy, Sx) < εt, becomes more stringent. Appropriate values for the tuning parameters

are α = 0.5 and c = 0.01 (Drovandi & Pettitt, 2011). The algorithm is completed once

the sample maximum tolerance is less than or equal to the target tolerance εT or when

the overall MCMC acceptance rate reaches an unacceptable level tacc.

The main innovation of this approach is that the intermediate target distances ε2, ..., εT

are adaptively set (along with the number of targets T −2) and are replaced by a single

tuning parameter α. Furthermore, the tuning parameters for the proposal distribu-

tion, qt(·|·), can be dynamically computed from the {θ}N−Nai=1 samples because they are

already distributed according to the next target distribution. Consequently, the main

drawback of SMC-ABC is that is it relatively more complex to implement than ABC
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rejection and MCMC-ABC. The SMC-ABC replenishment algorithm of Drovandi and

Pettitt (2011) is presented in Algorithm 6.

Algorithm 6 SMC-ABC (Drovandi & Pettitt, 2011)

1: Set tacc, εT and Nα = bαNc
2: Set St the initial number of pilot MCMC iterations
3: for i = 1 to N do
4: Draw θi ∼ π(·)
5: Simulate xi ∼ π(·|θi)
6: Compute Six = S(xi)
7: Compute ρi = ρ(Sy, S

i
x)

8: end for
9: Sort θ by ρ such that ρ1 ≤ ρ2 ≤ ... ≤ ρN

10: Set εt = ρN−Nα

11: while pacc > tacc OR ρN > εT do
12: Compute tuning parameters of MCMC kernel qt(·|·) using {θi}N−Nαi=1

13: for j = N −Nα + 1 to N do
14: Resample θj from {θi}N−Nαi=1

15: for k = 1 to St do
16: Propose θ∗ ∼ qt(·|θj)
17: Simulate x ∼ π(·|θ∗)
18: Compute Sx = S(x)

19: Compute MH ratio pacc =
π(θ∗)q(θj |θ∗)
π(θj)q(θ∗|θj)

1(ρ(Sy, Sx) < εt)

20: if U(0, 1) < pacc then
21: Set θj = θ∗, ρj = ρ(Sy, Sx) and Sjx = Sx
22: end if
23: end for
24: end for
25: Calculate pacc based on the overall acceptance rate from the pilot MCMC runs

26: Set Rt = d log(c)

log(1− pacc)
e

27: Repeat steps 13-24 with St = max(0, Rt − St)
28: Set εt = ρN−Nα and St = dRt/2e
29: end while
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3.2 Introduction

Australia and New Zealand have the highest incidence rates of melanoma in the world,

followed by northern America and northern Europe (Parkin et al., 2005). In Australia,

melanoma is the third most common diagnosed form of cancer (Australian Institute

of Health and Welfare, 2018). Since the 1960s, Australia’s primary strategy to reduce

overall mortality rates has been targeted at early prevention and detection (Giblin &

Thomas, 2007). However, a better understanding of the mechanisms which control cell

invasion is necessary in order to improve or establish new treatment measures.

The underlying mechanisms of cell invasion we consider are combined cell proliferation

and cell migration. Cell proliferation is a four-stage sequence consisting of gap 1 (G1),

synthesis (S), gap 2 (G2), and mitosis (M) where the cell divides into two daughter

cells, each of which return to the G1 phase (Haass et al., 2014). Improvements in tech-

nology have enabled us to visualise different phases of the cell cycle in real time using

Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology (Sakaue-

Sawano et al., 2008). FUCCI technology involves two fluorescent probes which emit
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red fluorescence when the cells are in G1 phase and green fluorescence when in S/G2/M

phases. During the transition between G1 and S phase, both probes are active (giving

the impression that the cell fluoresces yellow), allowing the visualisation of the early S

phase, which we refer to as eS. Experiments using FUCCI-transduced melonama cells

are becoming increasingly important in cancer research because many drug treatments

target different phases of the cell cycle (Haass & Gabrielli, 2017).

The development of simulation models offer us a quick and inexpensive alternative

to in vitro experiments. Although, existing mathematical models have had a long

history without incorporating cell cycle information until more recently (for example

see Perez-Carrasco et al., 2020; Simpson et al., 2018). In this study, we adopt the cell

invasion model of scratch assay experiments developed by Simpson et al. (2018). This

model describes a discrete exclusion based random walk on a two-dimensional (2D)

hexagonal lattice. Furthermore, this model involves treating the entire population of

agents as three subpopulations that correspond to the red, yellow and green phases of

the cell cycle as identified by FUCCI. Agents transition through the cell cycle, while

simultaneously undergoing a nearest neighbour random walk, with exclusion, to model

cell migration. This model is discussed in more detail in Section 3.4.1. This previous

study did not perform any parameter inference or calibrate the model to experimental

data. The primary focus of this present work is to apply Bayesian methods to recover

parameter estimates for the model and the associated distribution of uncertainly around

them. However, standard Bayesian approaches rely on the computation of the likelihood

function which is often intractable in complex stochastic models. We overcome this

limitation by applying Approximate Bayesian Computation (ABC) methods, which is

discussed later in Section 3.4.2.

Simpson et al. (2020) investigate practical parameter identifiability in a deterministic

partial differential equation of FUCCI scratch assay experiments. Practical parameter

identifiability is a term that describes whether it is possible to produce precise estimates

with finite regions of confidence levels (Raue et al., 2009). We adopt this terminology

here since it is consistent with Simpson et al. (2020). Nevertheless, by using a sim-

pler model, their study was able to adopt standard Bayesian approaches to parameter

estimation since the likelihood function is tractable. Using a Markov Chain Monte

Carlo (MCMC) framework and cell density data, their study found cell diffusivities

were practically non-identifiable when they considered the case where the cell migra-

tion rate depends on the cell cycle phase. Although, their study does not consider other

types of data which may be more informative of the underlying mechanisms. Here, we

address the limitations Simpson et al. (2020) identify by modelling individual cell be-

haviour with a stochastic model which allows the generation of numerous data types.

Indeed, we take full advantage of the flexibility of the stochastic model in this study

and combine multiple data types (the number of cells in each phase and cell trajectory
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data accounting for different phases) to improve parameter identifiability. However,

working with cell trajectory data can be challenging, and these challenges include time

consuming effort to manually track cells and the need for the cell density to be low

to make cell tracking easier. Models which can avoid using cell trajectory data is an

active area of research (Hywood et al., 2021), but we find using the Simpson et al.

(2018) model, which incorporates cell trajectory data, leads to a good outcome.

Many other studies have explored modelling and/or parameter estimation in cell in-

vasion models (Cai et al., 2007; Maini et al., 2004; Savla et al., 2004; Swanson, 2008;

Takamizawa et al., 1997; Vo et al., 2015). Notably, Vo et al. (2015) estimate the para-

meters of a stochastic cell spreading model of an expanding population of fibroblast cells

in a 2D circular barrier assay without cell cycle labelling. While ABC methods have

previously been considered in stochastic cell spreading models, such as the Vo et al.

(2015) study, they have never before been considered with FUCCI models and/or data.

Prior to Vo et al. (2015), cell invasion models were usually defined by deterministic

partial differential equation and when performing parameter inference, they usually

used trial and error based approaches (Takamizawa et al., 1997) or non-linear least

squares estimation (Cai et al., 2007; Maini et al., 2004; Savla et al., 2004; Swanson,

2008). However, these approaches to parameter estimation are unable to quantify the

uncertainty around the point estimates. In this study, we show that using a discrete

stochastic model is necessary to identify the transition and motility parameters when

multiple phases of the cell cycle are considered. This difference is due to the wider range

of data types that are available since individual cells are modelled rather than working

with a simple cell density profile. This allows data types that are more informative

about the model parameters, which have previously been unavailable to deterministic

modelling approaches, to be considered. That is, we find cell count and cell trajectory

data to be the most informative data types as they can produce practically identifiable

parameters for the transition and motility parameters, respectively. Rcpp and MAT-

LAB implementations of the simulation model and ABC algorithm used in this study

are available at https://github.com/michaelcarr-stats/FUCCI.

The paper is structured as follows. In Section 3.2, we introduce the experimental data

and the process by which it is collected. Section 3.3 describes the simulation model, the

parameter inference method used, and our prior knowledge on the model parameters.

In Section 3.4 we explain the image analysis process and present the inference results

when using synthetic and experimental data sets. Discussion of results, future work

and concluding remarks are presented in Section 3.5.
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3.3 Data

2D scratch assay experiments are a good screening tool for more complex experimental

models, as they are low cost, allow for easy data interpretation and readily allow control

of oxygen, nutrients and drug supply (Beaumont et al., 2014; Santiago-Walker et al.,

2009). We adopt data from a study conducted by Vittadello et al. (2018) where a

scratch assay is used to examine melanoma cell proliferation and migration in real time

with FUCCI technology. The experiment is initialised by placing a small population

of cells and a growth medium in a culture dish (Figure 3.1 (a)) to create a uniform

2D monolayer of cells. Next, a sharp-tipped instrument is used to make a scratch

in the monolayer of cells (Figure 3.1 (b)). Finally, the cells are observed at regular

intervals as they proliferate and migrate into the newly created gap over the following

48 hours. For this study, we adopt the data from the experiments with WM983C

FUCCI-transduced melonoma cells and present still images captured at 0 and 48 hours

in Figure 3.1 (c)-(d), respectively. A major advantage of 2D scratch assay experiments

is the multitude of different data types which can be easily recovered. The data types

which we explore later include the number of cells in each population, position of cell

populations, and cell trajectory data (Figure 3.1 (e)). It is important to consider the

size of the imaged region compared to the culture plate (Figure 3.1 (b)) because the

boundaries of the imaged region are not physical boundaries. Since the cell density

outside of the scratched region is approximately uniform, with no macroscopic density

gradients away from the leading edge, the net flux of cells across the boundary will

be zero (Simpson et al., 2018). Therefore, the appropriate mathematical boundary

conditions along the vertical boundaries will be zero net flux.



Chapter 3. Estimating parameters of a stochastic cell invasion model with fluorescent cell
cycle labelling using Approximate Bayesian Computation 19

S/G2/MG1 eS

x

y

Imaged region(b)

(c)(a) (d) (e)

Scratched region

Monolayer of cells 

x μm

y 
μ

m

0         250      500      750     1000    1250

1500

1000

500

x

y

Figure 3.1: Experimental procedure and data. (a)-(b) Explains the experimental pro-
cedure and boundary conditions for simulation models. (a) Photograph of 6 culture
plates commonly used with a uniform monolayer of cells. (b) Schematic showing the
uniform cell monolayer (shaded), scratched region (white), and imaged region (outlined
in red) in a 35 mm culture plate. (c)-(d) Experimental images, both 1309.09 x 1745.35
µm, of WM983C FUCCI-transduced melanoma cells at 0 and 48 hours, respectively.
Images reproduced with permission from Vittadello et al. (2018). (e) Cell trajectory
data of a select few cells recorded through red to green phases travelling inward to fill
scratched region.

3.4 Methods

3.4.1 Simulation model

We adopt the discrete random walk model developed by Simpson et al. (2018) on a

2D hexagonal lattice. Each lattice site has diameter ∆ = 20 µm, which is the average

cell diameter (Treloar et al., 2013), and is associated with a set of unique Cartesian

coordinates,

(xi, yj) =


(
(j − 1/2)∆

√
3/2, i∆

)
if i is even,(

(j − 1)∆
√

3/2, i∆
)

if i is odd,
(3.1)

where i and j are the respective row and column indices. To mimic scratch assay exper-

iments, cells in G1 phase are represented by red agents, cells in eS phase are represented

by yellow agents, and cells in S/G2/M phase are represented by green agents. Agents

are permitted to transition through phases of the cell cycle and undergo a nearest

neighbour random walk by simulating from a Markov process using the Gillespie al-

gorithm (Gillespie, 1977) where the time between events is exponentially distributed.

The algorithm is presented in Section 3.12.1 of the Supplementary Material.

To simulate cell migration, agents undergo a nearest neighbour random walk at rates

Mr,My,Mg per hour for red, yellow and green agents, respectively (Figure 3.2 (a)-(f)).

Potential movement events involve randomly selecting the target site from the set of

six nearest-neighbouring lattice sites, with the movement event being successful only

if the target site is vacant. In this way crowding effects are simply accommodated. To
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simulate transitions through the cell cycle, red agents are allowed to transition into

yellow agents at rate Rr per hour (Figure 3.2 (h)-(i)), yellow agents to green agents

at rate Ry per hour (Figure 3.2 (i)-(j)) and green agents into two red daughter agents

at rate Rg per hour (Figure 3.2 (j)-(k)). While we assume that the red-to-yellow and

yellow-to-green transitions are unaffected by crowding, we model crowding effects for

the green-to-red transition by aborting transitions where the additional red daughter

agent would be placed onto an occupied lattice site. By prohibiting multiple agents

from occupying the same lattice site, we are able to realistically incorporate crowding

effects (Ermentrout & Edelstein-Keshet, 1993; Johnston et al., 2016).

The Simpson et al. (2018) model is dependent on the initial geometry, boundary con-

ditions, the lattice spacing ∆, and the cell cycle transition and motility rates. Since we

have reasonable estimates for ∆ (Treloar et al., 2013) and we calibrate the initial geo-

metry and boundary conditions to the experimental data, our study is concerned with

estimating the unknown cell cycle transition and motility parameters. In a Bayesian

setting, the unknown model parameters, θ = (Rr, Ry, Rg,Mr,My,Mg), and the uncer-

tainty around them can be quantified by the posterior distribution, which is dependent

on the likelihood and the prior distribution. However, while the Markov process model

can capture the stochastic nature of cell proliferation and migration, when the dimen-

sion of the generator matrix (a matrix of rate parameters which describe the rate of

transitioning between states) is too high the likelihood function consequently becomes

intractable due to the computational cost of computing the matrix exponential (see

Ho et al., 2018; Moler and Van Loan, 2003; Schnoerr et al., 2017; Sidje, 1998). Since

conventional Bayesian approaches to parameter estimation are no longer feasible, we

are motivated to use likelihood-free methods.
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Figure 3.2: Cell migration and proliferation. (a-f) An agent at lattice site L will attempt
to migrate to the six neighbouring lattice sites, successfully migrating if the selected
site is vacant. (g) Schematic showing the progression through the G1 phase (red), early
S phase (yellow) and S/G2/M phase (green) for FUCCI. (h-k) Agent transition through
the cell cycle and proliferation. (k) A green agent (S/G2/M phase) at lattice site L will
successfully divide and transition if the randomly selected neighbouring site is vacant.

3.4.2 Approximate Bayesian Computation

Using a Bayesian framework, the uncertainty about the unknown parameter θ with

respect to the data y can be quantified by sampling from the posterior distribution

π(θ|y) ∝ π(y|θ)π(θ), where π(y|θ) is the likelihood function and π(θ) is the prior.

However, the likelihood function for sufficiently complex models becomes intractable

(see examples in biology Johnston et al., 2016; Kursawe et al., 2018; Vo et al., 2015,

in ecology Guillemaud et al., 2010; Toni et al., 2009 and in cosmology Weyant et al.,

2013). Rather than reverting to simpler models with tractable likelihoods, these types

of problems can be instead analysed using likelihood-free methods that avoid evaluating

the likelihood function.

One popular likelihood-free approach is ABC (Sisson et al., 2018). ABC involves sim-

ulating data from the model x ∼ π(·|θ) instead of evaluating the intractable likelihood;

accepting configurations of θ which produce simulated data x that is close to the ob-

served data y. It can be impractical to compare the full data sets of x and y, so ABC

often relies on reducing the full data sets to summary statistics by some summarising

function S(·), where the summary statistics for x and y are denoted Sx = S(x) and

Sy = S(y), respectively. Provided the summary statistics are highly informative about
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the model parameters, then π(θ|y) ≈ π(θ|Sy) is a good approximation or exact if suffi-

cient statistics are used (Blum et al., 2013). However, the latter are usually difficult to

attain in practice and so this study focuses on the use of summary statistics. In effect,

ABC samples from the approximate posterior:

πε(θ|Sy) ∝ π(θ)

∫
x
Kε(ρ(Sy, Sx))π(x|θ) dx, (3.2)

where ρ(Sy, Sx) is the discrepancy function which measures the difference between

the two data sets and Kε(·) is the kernel weighting function which weighs ρ(Sy, Sx)

conditional on the tolerance ε. A common choice for the discrepancy function is the

Euclidean distance, ρ(Sy, Sx) = ‖Sy − Sx‖2, and for the kernel weighting function is

the indicator function, 1(·), which is equal to one if ρ(Sy, Sx) ≤ ε and is zero otherwise.

The approximate posterior in Equation 3.2 converges to the posterior conditional on

the observed summary (often referred to as the partial posterior) in the limit as ε→ 0

(Beaumont et al., 2002).

To sample from the approximate posterior, commonly ABC-rejection (Pritchard et al.,

1999; Tavaré et al., 1997), Markov Chain Monte Carlo ABC (MCMC-ABC) (Marjoram

et al., 2003), or Sequential Monte Carlo ABC (SMC-ABC) (for examples see Drovandi

and Pettitt, 2011; Harrison and Baker, 2020; Sisson et al., 2007) algorithms are used.

ABC-rejection samples particles from the prior distribution and accepts particles with

a discrepancy measure ρ(Sy, Sx) less than the desired tolerance ε. In cases when the

prior distribution is relatively diffuse compared to the posterior density (such as our

application), lower acceptance rates are common because particles are predominantly

sampled in regions of low posterior density (Sisson et al., 2007). To increase efficiency,

one could instead use MCMC-ABC which constructs a Markov chain with a station-

ary distribution identical to the approximate posterior by proposing particles from a

carefully-tuned proposal distribution, θi ∼ q(·|θi−1), and accepting those with probab-

ility

pacc = min

(
1,

π(θi)q(θi−1|θi)Kε(ρ(Sy, S
i
x))

π(θi−1)q(θi|θi−1)Kε(ρ(Sy, S
i−1
x ))

)
, (3.3)

which is based on the Metropolis-Hastings ratio (Hastings, 1970; Metropolis et al.,

1953). While MCMC-ABC tends to be more computationally efficient compared to

ABC-rejection (Marjoram et al., 2003), it is possible for the Markov chain to spend

many iterations in areas of low posterior probability. In our application we found

MCMC-ABC to take a considerable effort to tune the proposal distribution while

still being computationally cumbersome. However, SMC-ABC or more specifically

the SMC-ABC replenishment algorithm (Drovandi & Pettitt, 2011) requires very little

tuning comparatively and allows for simulations to be performed in parallel to increase

computational efficiency.
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The SMC-ABC replenishment algorithm traverses a set of distributions defined by T

non-increasing tolerance levels ε1 ≥ · · · ≥ εT to sample from the approximate posterior:

πεt(θ|Sy) ∝ π(θ)

∫
x

1(‖Sy − Sx‖2 ≤ εt)π(x|θ) dx, for t = 1, ..., T

where the first target distribution is constructed by sampling from the prior distribu-

tion to attain a collection of parameter values (called particles) and their discrepancies,

{θi, ρi}Ni=1. The first tolerance threshold, ε1, is set as the maximum of the set of

discrepancies. Thereafter, to propagate particles through the sequence of target dis-

tributions, particles are first sorted in ascending order by their discrepancy and the

new tolerance is set as εt = ρN−Nα where Nα = bαNc, α is the proportion of particles

discarded and b·c is the floor function. Particles, {θi}Ni=N−Nα+1, which do not satisfy

the new tolerance are discarded and resampled, with replacement, from the remain-

ing particles to replenish the population. To prevent sample degeneracy (too many

duplicated particles), resampled particles are then perturbed according to an MCMC

kernel Rt times with an invariant distribution given by the current approximate pos-

terior πεt(θ|Sy). In each of the Rt iterations, the proposed particles are drawn from an

automatically tuned proposal distribution θi ∼ q(·|θi−1) and accepted with probability

pi,jacc (Equation 3.3) where i denotes the ith particle and j the jth MCMC iteration.

To ensure sample diversity, Rt can be dynamically set based on the overall MCMC

acceptance rate, pacc = 1
Nα×Rt

∑Nα
i=1

∑Rt
j=1 p

i,j
acc, such that there is a 1 − c chance that

all particles are moved at least once and is given by

Rt =

⌈
log(c)

log(1− pacc)

⌉
,

where the ceiling function d·e is used to be conservative and an estimate for pacc is

calculated from Rt−1/2 pilot MCMC iterations. A popular choice for the proposal

distribution is the multivariate normal distribution, q(θi|θi−1) = N (θi; θi−1,Σ), where

the covariance matrix Σ is the tuning parameter. To create a more efficient proposal

distribution, we can adaptively tune Σ by computing the empirical covariance matrix

of the {θ}N−Nai=1 particles which are already distributed according to the current target

distribution. In this application we do not worry about scaling the covariance matrix

as there are only six parameters. The algorithm finally stops once the overall MCMC

acceptance rate, pacc, is unreasonably low (≤ 1%) or the desired tolerance threshold

is reached. For the two tuning parameters, Drovandi and Pettitt (2011) suggest set-

ting α = 0.5 and c = 0.01. The SMC-ABC replenishment algorithm is presented in

Algorithm 7 and is hereafter referred to as SMC-ABC.

A crucial limitation of ABC methods is the curse of dimensionality, where despite the

addition of more data, the approximation to the posterior can become distorted as a
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result of the discrepancy between observed data and simulated data ρ(Sy, Sx) naturally

increasing with the dimension (Beaumont et al., 2002). In applications where increasing

the dimension of the summary statistics cannot be avoided, the discrepancy between

observed and summary statistics can be accounted for, at least approximately, with re-

gression adjustment (Beaumont et al., 2002; Blum et al., 2013). Regression adjustment

involves explicitly modelling the parameters against the discrepancy between observed

and simulated data. Assume for the moment that θ is a scalar parameter. Consider

the following regression model

θi = β0 + (Six − Sy)>β + εi,

where i = 1, . . . , N is the parameter sample index, β is the regression coefficients, β0

is the intercept and εi is the error term. Estimates for β0 and β can be computed by

minimising the weighted least squares criterion
∑N

i=1w
i(θi− β0− (Six−Sy)>β)2. Here

we choose to use the popular Epanechnikov weighting function (Epanechnikov, 1969),

defined as wi = 0.75(1− (ρi/max({ρi}Ni=1))2), but other weighting functions could also

be used. Using the estimated regression coefficients β̂, we then make the adjustment

θi
∗

= θi − (Six − Sy)>β̂ for i = 1, . . . , N.

The adjusted sample {θi∗}Ni=1 can often give a more accurate approximation of the

posterior. To ensure that the adjusted parameters remain within the support of the

prior distribution (if bounded), Hamilton et al. (2005) suggest transforming parameter

values before applying the regression adjustment. We use a logit transformation, θ̃ =

log((θ − a)/(b − θ)), where a and b are the respective lower and upper bounds of the

prior. Given that we have a vector of parameters, we apply a regression adjustment to

each component of the parameter vector separately.
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Algorithm 7 SMC-ABC (Drovandi & Pettitt, 2011)

1: Set facc, εT and Nα = bαNc
2: Set St the initial number of pilot MCMC iterations

3: for i = 1 to N do

4: Draw θi ∼ π(·)
5: Simulate xi ∼ π(·|θi)
6: Compute Six = S(xi)

7: Compute ρi = ρ(Sy, S
i
x)

8: end for

9: Sort θ by ρ such that ρ1 ≤ ρ2 ≤ ... ≤ ρN

10: Set εt = ρN−Nα

11: while pacc > facc OR ρN > εT do

12: Compute tuning parameters of MCMC kernel qt(·|·) using {θi}N−Nαi=1

13: for j = N −Nα + 1 to N do

14: Resample θj from {θi}N−Nαi=1

15: for k = 1 to St do

16: Propose θ∗ ∼ qt(·|θj)
17: Simulate x ∼ π(·|θ∗)
18: Compute Sx = S(x)

19: Compute MH ratio r =
π(θ∗)q(θj |θ∗)
π(θj)q(θ∗|θj)

1(ρ(Sy, Sx) < εt)

20: if U(0, 1) < r then

21: Set θj = θ∗, ρj = ρ(Sy, Sx) and Sjx = Sx

22: end if

23: end for

24: end for

25: Calculate pacc based on the overall acceptance rate from the pilot MCMC runs

26: Set Rt = d log(c)

log(1− pacc)
e

27: Repeat steps 13-24 with St = max(0, Rt − St)
28: Set εt = ρN−Nα and St = dRt/2e
29: end while

30: Implement regression adjustment (optional)

3.4.3 Prior Knowledge

The cell cycle time, which is related to the doubling time, can be thought of as the

summation of the time spent in each phase of the cell cycle. Estimates of the cell

doubling time for melanoma cells range from 16-47 h (Haass et al., 2014; Simpson et al.,

2020). Furthermore, Simpson et al. (2020) estimate the average time 1205Lu FUCCI-

transduced melanoma cells spend in the G1 to be between 8-30 h. This means that the
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transition from G1 to S/G2/M phase is approximately 1/30 − 1/8 /h. Additionally,

the duration spent in S/G2/M phases were reported as 8-17 h. This means that the

transition from S/G2/M to G1 phase is approximately 1/17 − 1/8 /h. Therefore, we

propose that our prior information of the transition rates is uniform over the range

0− 1 /h to be conservative.

Cell diffusivity, D, the measurement of motility rate for particles undergoing random

diffusive migration, can be used to quantify the cell motility rate M ∈ {Mr,My,Mg},
by D = M∆2/4 (Codling et al., 2008), where ∆ is the cell diameter. Empirical evidence

finds estimates for cell diffusivity to range from 0−3304 µm2/h (Cai et al., 2007; Maini

et al., 2004; Treloar et al., 2013). Furthermore, Simpson et al. (2018) suggest the cell

diffusivity to be approximately 400 µm2/h, so that the rates are approximately 4 /h.

We propose that the prior information of the motility rates to be uniform over the

range 0−10 /h; attributing the larger interval to the greater variation of cell diffusivity

estimates in existing literature.

3.5 Results

For SMC-ABC we generate samples from the approximate posteriors using N = 1000

particles. From preliminary trials, we found it more useful to use the overall MCMC

acceptance rate as the stopping rule for the SMC-ABC algorithm and adopt the sensible

choice for the final acceptance rate as facc = 1% and εT = 0 for the target tolerance.

3.5.1 Developing summary statistics and validation with synthetic

data

The accuracy and precision of ABC methods in approximating the posterior distribution

is sensitive to the quality of the summary statistics used (Beaumont et al., 2002). We

first trial and validate different summary statistics with multiple synthetic data sets

such that the true parameter values are known. In this way, we are able to compare

the performance of different summary statistics and determine which are the most

effective. While trying to replicate the environment of the experimental data as close

as possible, such as domain size, boundary conditions and initial number of cells, we do

not calibrate the initial location of cells but rather randomly distribute the cells within

a 200 µm by 1745.35 µm region on either side of the scratch. We attain the initial cell

counts of red, yellow, and green cells by using the procedure outlined in section 3.5.2

(steps 1-4) and report them here to be 119, 35 and 121, respectively.

In our analysis of the simulation model, agents with relatively higher transition rates

were found to correspond to lower population sizes, and vice versa. Therefore, we use

the number of agents in each population (Nr, Ny, Ng) at the end of the experiment

as summary statistics that may be informative about the transition rates Rr, Ry, Rg,
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respectively. We test the suitability of this summary statistic on four synthetic data

sets produced by varying the transition rates amongst biologically plausible values and

keeping the motility rates known and constant. Estimates in existing literature of cell

transition rates are similar (Haass et al., 2014; Simpson et al., 2020) and the efficiency

of the simulation model is dependent on the number of agents in the system (higher

transition rates increase the overall proliferation rate and the frequency of events).

Therefore, we choose to keep the transition rates rather close to the estimates of Haass

et al. (2014), instead of varying them over the extents of the prior domain. Thus, the

four parameter configurations we choose to generate the synthetic data sets are θ ∈
{(0.04, 0.17, 0.08, 4, 4, 4), (0.25, 0.15, 0.22, 4, 4, 4), (0.12, 0.07, 0.03, 4, 4, 4), (0.3,

0.36, 0.28, 4, 4, 4)}. In Section 3.12.2 of the Supplementary Material we present the

marginal posterior distributions produced and confirm the suitability of this summary

statistic.

For the motility parameters we explore and compare two sets of summary statistics,

namely cell density and cell trajectory data. Of these two data sets, cell density data

is desirable due to less manual effort needed to generate the data while cell trajectory

data could offer more information but is more challenging to collect. For the cell density

data, we first segment the imaged region at the end of the experiment (t = 48 h) directly

down the centre of the image in the y direction and calculate the median position and

interquartile ranges of the red, yellow, and green agent populations in the x direction

for cells on the left and right sides. For the cell trajectory data, we average the distance

of multiple cell trajectories through each cell phase until the cell returns to the initial

phase or the simulation is terminated. We select cells to be tracked provided that the

cell is initially in G1 (red) phase and the cell is located on the leading edge of the

cell monolayer toward the gap in the scratch assay. The reasoning behind beginning

tracking from the G1 phases is due to a short period of fluorescent negativity in between

S/G2/M phases and G1 phase (Haass et al., 2014) which makes tracking between these

phases difficult. Therefore, by starting from the G1 phase we avoid having to track

between these two phases. Furthermore, cells were identified as being on the leading

edge if their path toward the middle of the scratch was unhindered. The process of

manually tracking cell trajectories can be time consuming. Thus, we are interested

in finding the minimum number of cells to track such that sufficient information is

acquired. In Section 3.12.2 of the Supplementary Material, we draw samples from the

posterior distribution using 10, 20, 30, 40 and 50 cell trajectories with four synthetic

data sets generated from θ ∈ {(0.04, 0.17, 0.08, 4, 4, 4), (0.04, 0.17, 0.08, 2, 5, 8),

(0.04, 0.17, 0.08, 8, 2, 5), (0.04, 0.17, 0.08, 5, 8, 2)}. Our analysis finds diminishing

returns of parameter precision as the number of cell trajectories increases. We find that

using 20 cell trajectories achieves a good balance between precision and the number of

cell trajectories used. Using the same four synthetic data sets we also attempt to draw
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samples from the posterior distribution using cell density data with the cell transition

rates held constant in Section 3.12.2 of the Supplementary Material. However, under

these settings, we found the motility parameters to be non-identifiable.

We now combine the summary statistics formulated to estimate the cell cycle transition

and motility rates together with four synthetic data sets. Due to the similarity in

estimates for cell cycle transition rates in existing literature (see Haass et al., 2014;

Simpson et al., 2020), we adopt estimates for the cell cycle transition rates from Haass

et al. (2014) for all four parameter configurations. Since estimates for motility rates

have been reported to vary by two orders of magnitude (see Cai et al., 2007; Maini

et al., 2004; Treloar et al., 2013), we choose to vary the motility rates over the range

of the prior for the four parameter configurations. That is, we generate four synthetic

data sets with θ ∈ {(0.04, 0.17, 0.08, 4, 4, 4), (0.04, 0.17, 0.08, 2, 5, 8), (0.04, 0.17,

0.08, 8, 2, 5), (0.04, 0.17, 0.08, 5, 8, 2)}. In Figure 3.3 we present the marginal posterior

distributions produced when using the number of cells in each subpopulation and cell

density data as summary statistics. In Figure 3.4 we present the marginal posterior

distributions when using cell trajectory data in place of cell density data. Again,

we see that the motility parameters are practically non-identifiable when cell density

data is used while both cell cycle transition and motility parameters are practically

identifiable when cell trajectory data is included. Furthermore, it is clear from the

concentration of the marginal posterior distributions around the true parameter values

(dashed line) in Figure 3.4 that the cell count and cell trajectory data are highly

informative about the transition and motility parameters, respectively. We note that

the precision of these distributions is greater for the cell cycle transition parameters

than the motility parameters. Importantly, these results show for the first time that

practical parameter inference on both transition and motility parameters of a FUCCI

scratch assay experiment using Bayesian inference techniques is possible. These results

justify the choice of the Markov process model compared to simpler continuum models

which do not give insight into cell trajectory data (see Simpson et al., 2020).
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Figure 3.3: Estimating cell cycle transition and cell motility parameters, θ =
(Rr, Ry, Rg,Mr,My,Mg), with the number of cells in each phase at t = 48 h and cell
density data as summary statistics across several synthetic data sets. Synthetic data
sets were produced from simulations with true parameter values indicated by dashed
vertical lines (note that in (e) the lines overlap). (a,e) Estimated marginal posteriors
produced with θ = (0.04, 0.17, 0.08, 4, 4, 4). (b,f) Estimated marginal posteriors pro-
duced with θ = (0.04, 0.17, 0.08, 2, 5, 8). (c,g) Estimated marginal posteriors produced
with θ = (0.04, 0.17, 0.08, 8, 2, 5). (d,h) Estimated marginal posteriors produced with
θ = (0.04, 0.17, 0.08, 5, 8, 2).
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Figure 3.4: Estimating cell cycle transition and cell motility parameters, θ =
(Rr, Ry, Rg,Mr,My,Mg), with the number of cells in each phase at t = 48 h and cell
tracking data as summary statistics across several synthetic data sets. Synthetic data
sets were produced from simulations with true parameter values indicated by dashed
vertical lines (note that in (e) the lines overlap). (a,e) Estimated marginal posteriors
produced with θ = (0.04, 0.17, 0.08, 4, 4, 4). (b,f) Estimated marginal posteriors pro-
duced with θ = (0.04, 0.17, 0.08, 2, 5, 8). (c,g) Estimated marginal posteriors produced
with θ = (0.04, 0.17, 0.08, 8, 2, 5). (d,h) Estimated marginal posteriors produced with
θ = (0.04, 0.17, 0.08, 5, 8, 2).
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3.5.2 Image analysis of experimental data

We analyse the experimental images using ImageJ (Rueden et al., 2017) to record

the Cartesian coordinates of cells. Of primary interest is processing the initial frame

such that we can replicate the experimental settings as accurately as possible in the

simulation but we also repeat this procedure for the final frame to retrieve the final

cell counts and cell density data, which we use as summary statistics. The process is

as follows:

Step 1: Read in image: File > Open > select image (Figure 3.5 (a)).

Step 2: Convert image to 8-bit: Image > Type > 8-bit (Figure 3.5 (b)).

Step 3: Identify cell edges: Convert the image to black and white (Process > Binary

> Convert to Mask) and then distinguish conjoined cells (Process > Binary >

Watershed) (Figure 3.5 (c)).

Step 4: Compute Cartesian coordinates: Analyze > Analyze Particles... > OK.

(a) (b) (c) (d)

x μm
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0                   500                1000    

1500

1000

500
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Figure 3.5: ImageJ procedure. (a) Original image loaded (WM983C FUCCI-
transduced melanoma cells). (b) Image after compression to 8-bit. (c) Image after
converting to black and white and watershedding. (d) Simulation initial geometry re-
covered from data processing of WM983C FUCCI-transduced melanoma cells in ImageJ
and R

A limitation of using the watershed tool is that we must convert the image to black and

white. In doing so, we lose the cell phase identity associated with the cell coordinates

recovered from ImageJ. To overcome this, we use R (R Core Team, 2020) to retrieve

the RGB decimal color code and Cartesian coordinates of pixels. Matching pixel co-

ordinates recovered from R and the coordinates of the centroid of the cells recovered

in ImageJ, we create a data set of cell coordinates and their associated RGB decimal

codes. To classify the RGB coordinates into one of the three cell cycle phases we use

the conditions outlined in Table 3.1.

To extract summary statistics from the experimental data, we repeat the image pro-
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Table 3.1: Cell phase classification rule using RGB decimal codes.

State
RGB decimal code
Red Green

G1 >100 ≤100
eS >100 >100

S/G2/M ≤100 >100

cessing procedure previously outlined above with the final frame (t = 48 h) and extract

the final cell counts and cell density data. Additionally, we extract cell trajectory data

by processing the entire sequence of still images in ImageJ with the “Multi-point” tool

to manually track cell coordinates between frames. We use a similar process as before

to identify cell phases in these summary statistics using R and present them in Table

3.2 and the cell trajectory data in Figure 3.6.

Finally, we calibrate the hexagonal lattice used in the simulation model with the data

set of Cartesian coordinates recovered previously by rearranging Equation 3.1 to find

their associated lattice row and column indices denoted

(i, j) =

(
b 2x√

3∆
+ 1e, b y

∆
e
)
,

where b·e rounds to the nearest integer. We treat the rare instances (<1%) where

multiple coordinates are mapped to the same lattice space as duplicated values and

omit them rather than place them on the next closest lattice site. The result from this

translation of data is presented in Figure 3.5 (d). We repeat this process for the initial

frame of the cell trajectory data to identify the starting position. However, due to

manually tracking cell trajectories, often the coordinate retrieved was not centred on

the cell which in some cases caused the starting position to be mapped to an unoccupied

lattice site. We intervene prior to transforming the starting position and adjust the

coordinate values to the closest occupied lattice site which is chosen such that the radial

distance between the coordinate and the lattice site is minimised.
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Figure 3.6: Trajectories of WM983C FUCCI-transduced melanoma cells where each
box ((a)-(t)) corresponds to one of the twenty cell trajectories. Tracking begins in red
phase (red circles) then progresses through the yellow phase (yellow triangles) and is
terminated at end of green phase (green squares).
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Table 3.2: Observed summary statistics of WM983C FUCCI-transduced melanoma
cells

Summary Statistic Description Value

S1 Number of red cells at 48 hours 566 cells
S2 Number of yellow cells at 48 hours 111 cells
S3 Number of green cells at 48 hours 166 cells
S4 Average distance travelled through red

phase by 20 cells
105 µm

S5 Average distance travelled through yellow
phase by 20 cells

40 µm

S6 Average distance travelled through green
phase by 20 cells

100 µm

S7 Median position of red cells on the left and
right side

(155, 1170) µm

S8 Median position of yellow cells on the left
and right side

(158, 1189) µm

S9 Median position of green cells on the left
and right side

(177, 1129) µm

S10 Interquartile range of the red cells position
on the left and right side

(196, 197) µm

S11 Interquartile range of the yellow cells posi-
tion on the left and right side

(164, 144) µm

S12 Interquartile range of the green cells posi-
tion on the left and right side

(213, 207) µm
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3.5.3 Estimating Model Parameters with Experimental Data

After calibrating the simulation to the experimental data of WM983C FUCCI-transduced

melanoma cells, we first attempt to sample from the posterior distribution using the

number of cells in each subpopulation and cell density data (summary statistics S1 to

S3 and S7 to S12 in Table 3.2, respectively) and present the samples from the posterior

distribution in Figure 3.7. Consistent with results found in Section 3.5.1 and Simpson

et al. (2020), estimates for the motility rates are practically non-identifiable when cell

density data is used.
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Figure 3.7: Marginal posterior distributions using number of cells in each subpopula-
tion and cell density data. (a) Marginal posterior distributions for transition rates of
WM983C FUCCI-transduced melanoma cells. (b) Marginal posterior distributions for
motility rates of WM983C FUCCI-transduced melanoma cells.

Next, we attempt to sample from the posterior distribution using the number of cells in

each subpopulation and cell trajectory data (summary statistics S1 to S3 and S4 to S6

in Table 3.2, respectively). We present the marginal posterior distributions produced

in Figures 3.8 (a)-(b) along with the mean, standard deviation, (2.5%, 50%, 97.5%)

quantiles, and the coefficient of variation (CV) in Table 3.3. The practical identifiab-

ility in the transition and motility parameters clearly shows the benefits of using cell

tracking data as the distributions are unimodal and concentrated. We estimate the cell

cycle transition rates to be between 0.0411−0.193 /h which is consistent with estimates

in existing literature (Haass et al., 2014; Simpson et al., 2020). Our estimates for cell

motility were found to range between 0.316 − 1.12 /h which corresponds to estimates

of cell diffusivity between 31.6 and 112 µm2/h which is reasonable considering the de-

gree of uncertainty in existing estimates which can vary between 0 and 3304 µm2/h

(Cai et al., 2007; Maini et al., 2004; Treloar et al., 2013). The precision in parameter

estimates can be quantified by the CV which is a standard measure for the dispersion

of data around the mean. Using the CV, the dispersion in the transition rates range

from 2.65−5.31% and the motility rates range from 10.9−18.4%. To validate the para-
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meter estimates recovered, we also present the posterior predictive distributions for the

summary statistics retained from each parameter value in the posterior in Figures 3.8

(c)-(d). These distributions are formed by plotting the distribution of simulated sum-

mary statistics produced from the posterior samples and is compared to the observed

summary statistics (dashed line). These results suggest that the Markov process model

developed by Simpson et al. (2018) is promising as it is able to recover the observed

summary statistics of the experimental data. However, further model validation should

be considered in future research to determine if the simulated cell trajectories produce

similar paths to those which were observed.
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Figure 3.8: Marginal posterior distributions using number of cells in each subpopulation
and cell trajectory data. (a) Marginal posterior distributions for transition rates of
WM983C FUCCI-transduced melanoma cells. (b) Marginal posterior distributions for
motility rates of WM983C FUCCI-transduced melanoma cells. (c) Distribution of
simulated summary statistics (informative of transition rates) compared to observed
summary statistics (dashed line). (d) Distribution of simulated summary statistics
(informative of motility rates) compared to observed summary statistics (dashed line).

Table 3.3: Posterior summaries (3 significant figures): mean, standard deviation, (2.5%,
50%, 97.5%) quantiles, and the coefficient of variance (CV).

Parameter Mean Std. Dev. (2.5%, 50%, 97.5%) CV (%)

Rr 0.0411 0.00109 (0.039, 0.0411, 0.0432) 2.65
Ry 0.192 0.0102 (0.173, 0.191, 0.214) 5.31
Rg 0.193 0.00957 (0.177, 0.192, 0.213) 4.96
Mr 0.316 0.0343 (0.256, 0.313, 0.385) 10.9
My 0.514 0.0945 (0.353, 0.502, 0.725) 18.4
Mg 1.12 0.169 (0.836, 1.10, 1.48) 15.1

3.6 Discussion

In this study, we calibrate the 2D hexagonal-lattice random walk model developed by

Simpson et al. (2018) to scratch assay data where the cell cycle is revealed in real time
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using FUCCI technology. While this model is well suited to describing the stochastic

nature of cell proliferation and migration, the likelihood function consequently becomes

intractable. This makes conventional Bayesian approaches to parameter inference in-

feasible. We resort to using the class of Bayesian methods known as ABC which

bypass evaluating the likelihood function. After evaluating the appropriateness of dif-

ferent ABC algorithms in Section 3.4.2 we find the SMC-ABC replenishment algorithm

developed by Drovandi and Pettitt (2011) to be suitable.

In this study we work with uniform prior distributions. This may be considered as a

reasonably vague prior, but it can also be interpreted as providing more support to

larger rate parameters when the prior ranges over several orders of magnitude. To dis-

courage larger rate parameter values, other priors could be considered, such as Jeffry’s

prior over all positive reals. If a proper prior (i.e. integrates to unity) is desired, the

Jeffrey’s prior could be truncated or an exponential prior used instead. We leave such

extensive prior sensitivity analysis and performance for future research.

In Section 3.4.1 we previously discussed the intractability of the likelihood function.

Although, we did not discuss particle filtering methods to construct a continuous time

likelihood function which can be considerably more tractable than those based off dis-

crete data. However, given that the model is highly stochastic, very different cell tra-

jectories can be produced with the same parameter values. This would make filtering

approaches difficult to apply. Instead, it is more efficient to match summary statistics

of the cell trajectories (here we consider the average time spent in each phase). Addi-

tionally, Pseudo-marginal MCMC (Andrieu & Roberts, 2009) could be used to sample

from the exact posterior distribution if an unbiased likelihood estimator (based on the

full dataset) with a small enough variance can be constructed. Unfortunately, due to

the complexity of the model and the need to summarise the data, it does not seem

feasible to construct such a likelihood estimator here. Therefore, the nature of the

modelling approach and the use of summary statistics naturally lends itself to using

ABC methods.

The accuracy of ABC methods in approximating the posterior distribution is sensit-

ive to the quality of the summary statistics used (Beaumont et al., 2002). We trial

various summary statistics with multiple synthetic data sets to determine which sum-

mary statistics are the most informative. We find using the number of cells in each

cell cycle phase at the end of the experiment to be highly informative about the cell

cycle transition rates. We trial and compare two sets of summary statistics for the

motility parameters: the median position and interquartile range of the cells in the x

direction on the left and right side of the scratch assay (which we refer to as cell density

data); and the average distance travelled through each cell phase by 20 individual cells

(which we refer to as cell trajectory data). Using these two sets of summary statistics



Chapter 3. Estimating parameters of a stochastic cell invasion model with fluorescent cell
cycle labelling using Approximate Bayesian Computation 38

in conjunction with the cell count data, we attempt to draw samples from the posterior

distribution using the SMC-ABC replenishment algorithm with multiple biologically

plausible synthetic data sets. We find that when using cell trajectory data as summary

statistics the parameters are practically identifiable; however this is not the case when

cell density data is used. Importantly, this is the first time practical parameter identifi-

ability for both cell cycle transition and motility has been successfully conducted with

fluorescent cell cycle labelling scratch assay experiments.

In this study we summarise cell trajectory data by taking the average distance travelled

in each phase across 20 cell trajectories. However, additional features of cell trajectories

could also be considered (for example the variance). Although, the addition of more

summary statistics may increase ABC error due to the increased dimensionality of

the summary statistic despite our efforts to treat this with regression adjustment. An

additional method which could be used is semi-automatic ABC (Fearnhead & Prangle,

2012) which constructs a set of summary statistics with the same dimension as the

parameter space by modelling the importance of the initial set of summary statistics.

However, exploration of these additional summary statistics and the the effects on the

precision of the posterior distribution are left for future research.

We extend on the work of previous studies (Simpson et al., 2020; Simpson et al.,

2018) by calibrating our model to real data and performing Bayesian inference. Using

experimental data of WM983C FUCCI-transduced melanoma cells, we estimate the

approximate posterior using the SMC-ABC algorithm with our cell cycle transition

rate summary statistics and our two sets of motility summary statistics. Under the

experimental setting, our results again find the estimates for the motility parameters to

be practically non-identifiable when cell density data is used but practically identifiable

when cell trajectory data is used. These results are consistent with Simpson et al. (2020)

and justify the motivation to use a stochastic model capable of generating multiple

data types. When using the number of cells in each subpopulation and cell trajectory

data, we find estimates for the average cell cycle transition rates to range between

0.0411− 0.193 /h and estimates for average cell motility to range between 0.316− 1.12

/h. Interestingly, we find that the motility rates appear to depend upon the cell cycle

phase and for this data the motility of cells in S/G2/M phase is higher than the motility

rate in the in G1 or eS phase. We quantify the precision of these estimates through

the CV which is a standard measure of dispersion about the mean. We find the CV to

be suitably small for all parameters as it ranges from 2.65 − 5.31% and 10.9 − 18.4%

for the transition and motility marginal posteriors, respectively. To validate our results

we also draw samples from the posterior predictive distribution to determine whether

the simulated data sets recovered accurately reflect the observed data sets. These

results confirm that the model and summary statistics are recovering the underlying

mechanisms present in the experiment.
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Now that the recovery of precise parameter estimates from a fluorescent cell cycle

labelling model has been demonstrated, further models can be built which are more

biologically realistic. For instance, the Markov process model we used in this study

describes a discrete exclusion based random walk on a 2D hexagonal lattice. However, a

more biologically realistic and meaningful model would incorporate a three-dimensional

(3D) environment (for example Jin et al., 2021). By constraining our model to a

2D hexagonal lattice, we ultimately omit realistically modelling: the spatial supply

of oxygen, nutrients and drugs; the orientation in 3D space; and interactions with

the extracellular matrix (Beaumont et al., 2014; Smalley et al., 2006). Although,

increasing model complexity tends to require additional parameters in the model which

in some applications may render ABC methods ill suited to inference due to their poorer

performance in higher dimensions (Fearnhead & Prangle, 2012). Such modeling and

inference implications would need to be considered in future work. Nevertheless, we

demonstrate that the 2D stochastic model developed by Simpson et al. (2018) is able

to recover key features of the experimental data set we examined and can be used to

provide a quick and inexpensive alternative to in vitro experiments.

Finally, to bypass evaluating the likelihood function we resort to using ABC techniques.

However, ABC requires many model simulations, which can be computationally expens-

ive if the simulation model is relatively inefficient. In our application, the computation

time for the model is largely dependent on the value of the transition and motility

parameters, where larger values will require more computation. We compute the com-

putational cost of 1000 simulations with parameter configurations drawn from the prior

distribution and report the computational cost of the model as a 95% empirical confid-

ence interval that ranges between 1.08-57.33 seconds per simulation. Using an Intel(R)

Xeon(R) Gold 6140 CPU at 2.3GHz and paralysing over the 16 cores results in the

total computation time of the SMC-ABC algorithm taking approximately 23 hours to

run when using cell count and cell trajectory data and 16 hours when using cell count

and cell density data. We find these computation times to be reasonable but future

work may need to consider more computationally efficient modelling and/or statistical

methods, particularly if more summary statistics are to be considered.
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3.12 Supplementary Material

3.12.1 Gillespie Algorithm

Algorithm S1 Simulation Model utilising Gillespie Algorithm (Gillespie, 1977) with
input parameter θ = (Rr, Ry, Rg,Mr,My,Mg)

1: Calculate number of red, yellow and green agents in system as Nr, Ny, Ng

2: while t < tmax do

3: Set ar = Mr ×Nr and tr = Rr ×Nr

4: Set ay = My ×Ny and ty = Ry ×Ny

5: Set ag = Mg ×Ng and tg = Rg ×Ng

6: Set a0 = ar + ay + ag + tr + ty + tg

7: Draw R ∼ U(0, 1)

8: if R < ar/a0 then

9: Do red migration

10: else if R < (ar + ay)/a0 then

11: Do yellow migration

12: else if R < (ar + ay + ag)/a0 then

13: Do green migration

14: else if R < (ar + ay + ag + tr)/a0 then

15: Do red transition

16: Set Nr = Nr − 1

17: Set Ny = Ny + 1

18: else if R < (ar + ay + ag + tr + ty)/a0 then

19: Do yellow transition

20: Set Ny = Ny − 1

21: Set Ng = Ng + 1

22: else if R < (ar + ay + ag + tr + ty + tg)/a0 then

23: Do green transition

24: Set Ng = Ng − 1

25: Set Nr = Nr + 1

26: end if

27: Draw time step τ ∼ exp(a0)

28: Increment time t = t+ τ

29: end while

3.12.2 Developing Summary Statistics

Cell Cycle Transition Rates

The summary statistic we explore for the cell cycle transition rates is the number of

agents within each phase of the cell cycle (red, yellow, green) at time t = 48 hours. We
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believe that the count of each cell type to be a good choice because the transition rates

will only influence the number of cells. Therefore, we expect higher relative transition

rates to correlate to lower cell counts and vice versa. For simplicity, we will assume

the motility rates to be known and equal while we estimate the cell cycle transition

parameters using multiple synthetic data sets generated from θ ∈ {(0.04, 0.17, 0.08, 4,

4, 4), (0.25, 0.15, 0.22, 4, 4, 4), (0.12, 0.07, 0.03, 4, 4, 4), (0.3, 0.36, 0.28, 4, 4, 4)}. Using

the SMC-ABC algorithm with the same summary statistics for the simulated data, we

present the marginal posterior distribution of the cell cycle transition rates in Figure

S1. Since the posterior distributions are all centred on the “true” value we confirm the

summary statistics suitability at identifying the cell cycle transition parameters when

the motility parameters are held constant and known.
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Figure S1: Using number of cells in each cell cycle phase as summary statistics for
the transition rates. (a)-(d) Posterior distributions produced using synthetic data sets
generated from θ ∈ {(0.04, 0.17, 0.08, 4, 4, 4), (0.25, 0.15, 0.22, 4, 4, 4), (0.12,
0.07, 0.03, 4, 4, 4), (0.3, 0.36, 0.28, 4, 4, 4)} (respectively) with true parameter values
indicated by vertical dotted line.

Cell Motility Rates

We analyse the effectiveness of two summary statistics which are used to estimate the

motility parameters with four synthetic data sets generated with θ ∈ {(0.04, 0.17, 0.08,

4, 4, 4), (0.04, 0.17, 0.08, 2, 5, 8), (0.04, 0.17, 0.08, 8, 2, 5), (0.04, 0.17, 0.08, 5, 8, 2)}
where the transition rates are held constant. The first summary statistic we consider is

the median position and interquartile range of each cell type on the left and right side

of the scratched region; which we refer to as cell density data. The marginal posterior

distributions are presented in Figure S2. We see that the estimates for cell motility

are practically non-identifiable when cell density data is used, which is consistent with

findings from Simpson et al. (2020). We believe that this may be due to interference

from cells transitioning between phases and the associated difficulty in attributing the

distance travelled in a phase with a single time point.



Chapter 3. Estimating parameters of a stochastic cell invasion model with fluorescent cell
cycle labelling using Approximate Bayesian Computation 43

(a) (b) (c) (d)

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

0.0

0.1

0.2

h−1

de
ns

ity Mr

My

Mg

Figure S2: Using cell density data as summary statistics for the motility rates. (a)-(d)
Posterior distributions produced using synthetic data sets generated from θ ∈ {(0.04,
0.17, 0.08, 4, 4, 4), (0.04, 0.17, 0.08, 2, 5, 8), (0.04, 0.17, 0.08, 8, 2, 5), (0.04, 0.17, 0.08,
5, 8, 2)} (respectively) with true parameter values indicated by vertical dotted line.

We next consider the average distance cells travels through each cell phase of the cell

cycle until the cell returns to the G1 phase or the simulation is terminated. We refer to

this summary statistic as cell trajectory data and test its effectiveness with the same

four synthetic data sets which were used with the cell density data with 10, 20, 30, 40

and 50 individual cell trajectories. We present the marginal posterior distributions in

Figure S3. We see from the concentration of the distributions around the true value

(dashed line) that cell trajectory data is highly informative about the motility rates.

Furthermore, we analyse the marginal benefit of increasing the number of cells to track

by 10 and find that the benefit plateaus after 20 cells. Therefore, we chose the minimally

suitable number of cell trajectories which produced well defined distributions to be 20

(corresponding to Figure S3 (b,g,l,q)).
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Figure S3: Using cell tracking data as summary statistics for the motility rates. Syn-
thetic data sets generated from θ ∈ {(0.04, 0.17, 0.08, 4, 4, 4), (0.04, 0.17, 0.08, 2, 5,
8), (0.04, 0.17, 0.08, 8, 2, 5), (0.04, 0.17, 0.08, 5, 8, 2)} are varying down the rows and
number of cells tracked increases by 10 across the columns.



Chapter 4
Conclusion

4.1 Summary

In this thesis, we develop a parameter estimation method for estimating parameters of

a stochastic cell invasion model which considers proliferation, migration and crowding

effects. To achieve this goal, in Chapter 3, we assess the strengths and weaknesses of

multiple ABC algorithms relative to the applicaiton and find the SMC-ABC algorithm

(Drovandi & Pettitt, 2011) to be suitable for this application. Additionally, we explore

the informativeness of several summary statistics to estimate the model parameters

with respect to multiple biologically plausible synthetic data sets. Our analysis finds

using the number of cells in each phase of the cell cycle at the end of the experiment

and the average distance travelled by 20 cells to be highly informative about the cell

cycle transition and motility rates, respectively. Finally, using the experimental data,

we successfully estimate the parameters of the stochastic cell spreading model using

the aforementioned summary statistics. Furthermore, we demonstrate that cell density

data (median position and interquartile range of cells in each cell phase on left and

right side of scratched region) in place of cell trajectory data provides insufficient in-

formation about the motility parameters such that they are non-identifiable. These

results are consistent with Simpson et al. (2020) who investigate a simpler determin-

istic model of collective cell spreading with multiple cell cycle phases. Importantly,

this thesis demonstrates the first successful parameter calibration of a stochastic model

with multiple phases of the cell cycle.

4.2 Discussion and Future Research

In this thesis, we adopt the stochastic cell invasion model developed by Simpson et

al. (2018). Although, there are several limitations associated with this modelling ap-

proach. Firstly, we consider a discrete exclusion based random walk on a 2D hexagonal

45
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lattice to mimic scratch assay experiments. However, a more biologically realistic and

meaningful model would incorporate 3D environment (for example see Jin et al., 2021)

which mimics tumour spheroids. Previous studies have indicated that results from ex-

periments which have been conducted under a 2D study do not necessarily translate to

a 3D environment (Desoize et al., 1998). This is due to the 2D model omitting rational

features such as the spatial supply of oxygen, nutrients and drugs; the orientation in

3D space; and interactions with the extracellular matrix (Beaumont et al., 2014; Smal-

ley et al., 2006). Nevertheless, the 2D model used in this study still provides a quick

and inexpensive alternative to in vitro experiments. In future research, one possible

extension of this study would be to construct a 3D model and estimate the parameters.

One of the key motivations for adopting a stochastic modelling approach was its flex-

ibility to generate multiple data types. In our study, we found that using the number

of cells in each cell phase and the average distance travelled by 20 cell trajectories to

be informative summary statistics and lead to a well defined posterior being produced.

However, working with cell trajectory data can be challenging due to the time consum-

ing nature of manually tracking cells and the need for experiments to be performed in

low density to make tracking easier. An alternative approach to cell tracking of interest

uses cell positional data over multiple time points to measure cells aggregation toward

an area (Hywood et al., 2021). This study measures cell aggregation by repeatedly

simulating a 2D biased agent based random walk at each time step to estimate the

drift and diffusion coefficients in the PDE model. The directional bias of the cells is

governed by the idealised chemokine concentration with the angle of movement drawn

from the von Misses distribution. They demonstrate the effectiveness of this method

with a PDE model of cytotoxic T cells interacting with tumour spheroid cells and find

that good estimates for the drift and diffusivity are produced. Using a similar approach,

where the directional bias of melanoma cells in a scratch assay is modeled to estimate

cell diffusivity and drift, could be a worthwhile future endeavour.

In our research we resolve the issue of the computationally intractable likelihood func-

tion by using ABC techniques. However, since many simulations are required ABC

itself can be computationally intensive - especially when the model is expensive to

simulate. Furthermore, development of more realistic but more complex models can

be hindered by poor performance of ABC in higher dimensions if too many additional

parameters are incorporated. Therefore, alternative approaches which are both more

computationally efficient and scale better to higher dimensions are necessary to develop

more realistic models. A more recent likelihood-free inference method which we did not

explore in this study is Bayesian Synthetic Likelihood (BSL). This method assumes a

Gaussian parametric form of the likelihood π(Sy|θ) ≈ N (Sy;µn(θ),Σn(θ)) where un-

biased estimates for µn(θ) and Σn(θ) can be estimated (provided that the summary
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statistics are Gaussian (Andrieu & Roberts, 2009)) with Monte Carlo integration:

µn(θ) =
1

n

n∑
i=1

S(xi), and

Σn(θ) =
1

n− 1

n∑
i=1

(S(xi)− µn(θ))(S(xi)− µn(θ))>.

Importantly, the value of n can be chosen to maximise computational efficiency, where

large n produces precise estimates but slow estimates and small n produces imprecise

but fast estimates (Price et al., 2018). Frazier et al. (2019) demonstrate, under some

assumptions, that BSL is more computationally efficient than ABC for any dimension

of the summary statistic due to using a parametric approximation to the likelihood.

Moreover, the difference in computational efficiency has empirically been shown to be

more prominent as the dimension of the summary statistics increases (Price et al., 2018).

However, BSL is ill suited when the distribution of summary statistics is non-Gaussian

and can produce unreliable estimates when the model is misspecified. Although, es-

timates can still be reasonable when the summary statistics are non-Gaussian but the

distribution remains regular (An et al., 2020; Price et al., 2018). Furthermore, Frazier

and Drovandi (2021) addresses BSL’s poor performance under model misspecification

with a robust BSL algorithm. Hence, in future research, the use of BSL may be of

interest to explore for computationally expensive stochastic cell models and/or those

with high dimensional parameter spaces.
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