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Abstract

Cell proliferation assays are routinely used to study collective cell behaviour, and
can be interpreted with mathematical models. Often, it is assumed that cells
proliferate logistically, and the classical mean-field logistic equation is employed
to study how interactions between cells cause the growth rate to reduce as the
population approaches confluence. Rarely is this assumption tested, particularly
by applying experimental data. In this thesis, we apply a stochastic, on-lattice,
individual based model to explore the experimental duration required to gain in-
sight into a crowding mechanism that can best describe experimental data. Next,
we demonstrate a technique to calibrate an off-lattice individual based model to
three independent experimental data sets. Our model is able to both describe and
predict the evolution of the population and spatial structure in a cell proliferation

assay.
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Chapter 1

Introduction

1.1 Overview

The collective behaviour of cell populations is routinely investigated using two-
dimensional in vitro cell biology experiments (Liang et al., 2007). Understanding
the behaviour of cell populations is relevant to many normal and pathological
processes, such as tissue regeneration and malignant spreading, respectively. One
of the most common in vitro experimental methods employed to understand these
processes is called a cell proliferation assay (Bosco et al., 2015; Bourseguin et al.,
2016). Cell proliferation assays involve a monolayer of cells, placed uniformly at
relatively low density, on a two-dimensional substrate. Individual cells proliferate
and move, and the assay is observed as the density of the monolayer increases
(Tremel et al., 2009). Comparing the behaviour of the cells with and without
application of a putative drug plays an important role in drug design (Bosco et al.,
2015; Bourseguin et al., 2016). In this thesis, the experimental results involve cell
proliferation assays conducted using 3T3 fibroblast cells and PC-3 prostate cancer
cells (Kaighn et al., 1979).

Typically, data collected from a cell proliferation assay consists of a series of
images, collected over time, that comprise of a field-of-view that represents the
centre of each proliferation assay (Figure 1.1). This data may be summarised as a
time-series of the approximate number of cells or approximate cell density. Spatial
structure at any point in time can be characterised with measures of the numbers
of pairs separated by distance. Commonly, the cell behaviour is summarised by
a proliferation rate, which can then be used to compare a target and control as-
say (Johnston et al., 2015). A typical initial density of a cell proliferation assay is

about 10% of carrying capacity, and a typical cell doubling time is approximately
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15 hours (Jin et al., 2016b; Treloar et al., 2014). The classical logistic equation
(Pearl, 1927; Edelstein-Keshet, 1988; Murray, 2002) is commonly applied to de-
scribe the growth of a cell population (Jin et al., 2016a; Cai et al., 2007; Maini
et al., 2004b; Sherratt and Murray, 1990), and is given by

dN(t) N(t)
g = AN (1 - Nmax> : (1.1)

which has the exact solution

Nmax

N = T T e

(1.2)

where N (t) is the number of cells, A is a proliferation rate and Ny, is the carrying
capacity population. A is chosen to ensure the population at t = 0 is N(0). The
solution to Equation (1.2) is shown in Figure 1.2(a) for parameters corresponding
to a typical cell doubling time of 15 hours, and a typical initial density of 10%.
For N(t) < Nmax, Equation (1.2) implies N(t) ~ N(0)exp(At), and for small ¢,
N(t) ~ N(0)(1 + M + O(t?)). This behaviour is observed in Figure 1.2(b), where
the solution to the logistic equation 1.2 is presented for a typical experimental
duration of 24 hours. These qualitative observations demonstrate that, for a typical
initial cell density, the growth of a population of cells is initially approximately
exponential. This means that a standard experimental duration of 24 hours is long
enough to calculate the cell proliferation rate, but crowding effects that inhibit the
net proliferation rate are not clearly observable. Additional cost is involved in
extending the duration of these experiments. Exploration into the experimental
duration required to gain information about these crowding effects is discussed in
Chapter 2 of this thesis.

Applying a mathematical model to understand a cell proliferation assay pro-
vides quantitative insight into the mechanisms involved (Maini et al., 2004b; Sen-
gers et al., 2007). A calibrated mathematical model can be used to form experi-
mental hypotheses and guide experimental design (Stoll et al., 2003). A standard
approach to modelling a cell proliferation assay is to use a mean-field model, which
is equivalent to assuming that individuals interact in proportion to the mean pop-
ulation density (Tremel et al., 2009; Sengers et al., 2007; Maini et al., 2004b;
Sarapata and de Pillis, 2014; Sherratt and Murray, 1990), neglecting spatial struc-
ture. Additionally, most previous studies that interpret cell biology assays using
continuum mathematical models make the implicit assumption that cells prolif-
erate logistically (Cai et al., 2007; Maini et al., 2004b,a; Sheardown and Cheng,
1996). While the classical logistic equation (Equation (1.1)) is commonly used to
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(b)
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Figure 1.1: (a) An experimentalist holding a 96-well plate, used to conduct cell
proliferation assays. Each well has diameter 9 mm. (b) A simple schematic of
a single well in (a). (c) Example image taken from the centre 1440 x 1440 pm
of a well, during a cell proliferation assay with PC-3 prostate cancer cells. (d)
Enlargement of the centre 500 x 500 pm region of (c¢), as indicated. Individual
cells are visible.
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Figure 1.2: Solution to the classical logistic equation (1.2) with Npyax = 550,
N(0) =55 and X\ = 0.045, corresponding to a doubling time of approximately 15
hours, and a initial density of 10% of carrying capacity. (a) The solution to late
time where the population is observed to asymptote to the carrying capacity. (b)
The solution over a typical experimental duration of 24 hours, when the population
is observed to grow exponentially.

model populations (Pearl, 1927; Edelstein-Keshet, 1988; Murray, 2002), this choice
is often made without a careful examination of its validity (Treloar et al., 2014).
There is awareness that biological populations do not always grow according to
the classical logistic equation (Gerlee, 2013; Zwietering et al., 1990). Recent work
of Sarapata and de Pillis (2014) explores a range of sigmoid growth models for
different types of tumours, including those of the bladder, breast, liver, lung, and
melanoma tumours. Sarapata and de Pillis (2014) show that the classical logistic
model does not always provide the best match to observed data, and they test
a range of other sigmoidal growth models for each different kind of tumour. A
key difference between these sigmoidal growth models is the way in which they
characterise crowding effects, which, as mentioned, are not clearly observable in
experimental data from a typical experimental duration of 24 hours. In our work,
we implement a generalised logistic growth model (Tsoularis and Wallace, 2002;
Jin et al., 2016a), and explore our ability to distinguish between sigmoidal growth

models as the experimental duration is effectively increased.

Mean-field models, such as ordinary and partial differential equations, do not
consider the spatial structure of a population. By definition, these models assume
that cells interact according to a mean population density (Maini et al., 2004b;
Sarapata and de Pillis, 2014; Sherratt and Murray, 1990). Baker and Simpson
(2010) saw that, in a simulation-based study, some initial random spatial arrange-

ments of cells can lead to clustering at later times. In this work, we see spatial
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structure present in the experimental data at early time, which disappears as
the population approaches confluence. An alternative to continuum mathematical
models are stochastic discrete models, such as individual based models (IBMs).
More recently, increased computation power has meant that these models have
been used to directly model cell-level behaviour (Johnston et al., 2014; Binny
et al., 2016a). IBMs are attractive for modelling biological phenomena because
they can be used to represent properties of individual agents, such as cells, in
the system of interest. For example, an IBM of a cell proliferation assay may
describe the proliferation and movement rates of individual agents, which may de-
pend on interactions between neighbouring agents (Jin et al., 2016a; Binny et al.,
2016b). In addition, more complex mechanisms, such as directional movement
bias, can be studied with an IBM. Because IBMs do not assume that interac-
tions between individuals occur randomly, as in mean-field models, they are able
to model populations without first making simplifying assumptions about spatial
structure. Typical IBMs restrict the position of agents to be on a lattice, restrict-
ing both the position, and direction of movement, of agents (Codling et al., 2008).
In contrast, lattice-free IBMs are more realistic as they allow agents to move in
continuous space, in any direction. However, the extra freedom associated with
lattice-free models come at the cost of higher computational requirements (Plank
and Simpson, 2012). This thesis will consider both approaches to implementing
an IBM.

In this thesis, we connect stochastic mathematical models to experimental and
in silico data. Taking a Bayesian approach, we assume that cell proliferation
assays are stochastic processes, and the model parameters are random variables.
There is an awareness that, as stochastic models account for variation between
experimental replicates, inferences can be drawn independent of the variability
present in the experimental data (Ramin and Arhonditsis, 2013). This is evident in
our results in Chapter 3, where we calibrate a mathematical model to multiple sets
of experimental data. We use approximate Bayesian computation (Tanaka et al.,
2006; Sunnaker et al., 2013; Liepe et al., 2014) to update our knowledge of the
unknown model parameters as data is applied, to produce posterior distributions
for each parameter, from which a point estimate can be calculated. We explore how
uncertainty in the recovered parameters is decreased as the experimental duration
is effectively increased. We also perform inference on the parameters in a lattice-
free IBM using experimental data. We are unaware of any existing work calibrating
a lattice-free IBM to experimental data. The point estimates for the parameters
that produce the best fit vary between experimental replicates, however posterior

distributions that describe the parameters agree between the data sets. As well as



suggesting the model is valid, the agreement of these posterior distributions implies
that a combined posterior distribution may be formed as an attempt to remove
variation between experimental replicates. This allows us to validate the model
further by comparing a model prediction to experimental data, for an additional,

independent, data set.

1.2 Structure of this thesis

This thesis comprises of two main chapters, each forming a submission to an aca-
demic journal. Chapter 2 has been accepted for publication in the Bulletin of
Mathematical Biology. Chapter 3 is under consideration in the Journal of Theo-
retical Biology. The works are presented in this thesis as the original submission,
with minor typographical changes for notational consistency. In this section, we

provide an overview of the contents of each chapter.

In Chapter 2, we explore the optimal duration of a cell proliferation assay.
To do this, we present a suite of in silico cell proliferation assays where the cells
proliferate according to a generalised logistic growth model. Using approximate
Bayesian computation, we then demonstrate that data from a standard cell prolif-
eration assay, with duration 24 hours, cannot reliably distinguish between growth
models. We then effectively increase the duration of the in silico experiments and
quantify the decrease in uncertainty in the recovered parameters in the crowding

mechanism.

In Chapter 3, we use data from a series of cell proliferation assays to calibrate
a spatially continuous (lattice-free) IBM of collective cell migration and prolif-
eration. We repeat this for three independent experimental data sets. As the
posterior parameter estimates from each data set are similar, we combine them to
form a combined posterior distribution for each unknown parameter. We then use
this combined posterior distribution to confirm the predictive power of the cali-
brated IBM by accurately forecasting the evolution of an additional, independent,

experimental replicate.

In Chapter 4, we summarise our work and the main findings of this thesis. We
also provide a summary of possible future extensions to the work presented in this

thesis.
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1.3 Statement of joint authorship

In this section, we outline the contribution of the Masters student and the co-

authors of each paper.

Chapter 2: Exploring the optimal duration of a cell proliferation assay

This chapter is derived from a paper titled “A Bayesian computational approach
to explore the optimal duration of a cell proliferation assay”, to appear in the
Bulletin of Mathematical Biology (accepted June 2017) (Browning et al., 2017).

Co-authors for this paper are listed with their contributions below.

e« Browning, AP implemented the methodology, performed all data analysis,
contributed to the writing of the manuscript and produced all figures and

supplementary material.

e McCue, SW oversaw the research, provided technical assistance, helped in-

terpret the results and critically reviewed the manuscript.

e Simpson MJ initiated the concept for the manuscript, oversaw and directed
the research, contributed to the writing of the manuscript, critically reviewed

and revised the manuscript, and is listed as the corresponding author.

Chapter 3: Inferring parameters for a lattice-free model using experimental
data

This chapter is derived from a paper titled “Inferring parameters for a lattice-free
model of cell migration and proliferation using experimental data” under consid-
eration in the Journal of Theoretical Biology (submitted June 2017). Co-authors

for this paper are listed with their contributions below.

e Browning, AP extracted and processed experimental data, implemented
the mathematical methodology, performed all data analysis, contributed to
the writing of the manuscript and produced all figures and supplementary

material.

e McCue, SW oversaw the research, provided technical assistance, helped in-

terpret the results and critically reviewed the manuscript.

e Binny, RN helped in implementing the methodology, helped interpret the

results and critically reviewed the manuscript.



Plank, MJ helped interpret the results and critically reviewed the manuscript.
Shah, ET performed the experiments.

Simpson, MJ initiated the concept for the manuscript, oversaw and directed
the research, contributed to the writing of the manuscript, critically reviewed

and revised the manuscript, and is listed as the corresponding author.
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Exploring the optimal duration of a
cell proliferation assay

A paper to appear in the Bulletin of Mathematical Biology as

A Bayesian computational approach to explore the optimal duration of a cell

proliferation assay.

Alexander P Browning, Scott W McCue, Matthew J Simpson
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Abstract

Cell proliferation assays are routinely used to explore how a low density monolayer
of cells grows with time. For a typical cell line with a doubling time of 12 hours
(or longer), a standard cell proliferation assay conducted over 24 hours provides
excellent information about the low-density exponential growth rate, but limited
information about crowding effects that occur at higher densities. To explore
how we can best detect and quantify crowding effects, we present a suite of in
silico proliferation assays where cells proliferate according to a generalised logistic
growth model. Using approximate Bayesian computation we show that data from
a standard cell proliferation assay cannot reliably distinguish between classical
logistic growth and more general non-logistic growth models. We then explore,
and quantify, the trade-off between increasing the duration of the experiment and

the associated decrease in uncertainty in the crowding mechanism.
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2.1 Introduction

Two-dimensional in wvitro cell biology experiments play an invaluable role in im-
proving our understanding of the collective behaviour of cell populations (Liang
et al., 2007). Understanding collective cell behaviour is relevant to a number
of normal and pathological processes, such as tissue regeneration and malignant
spreading, respectively. One of the most common in vitro cell biology experiments
is called a proliferation assay (Bosco et al., 2015; Bourseguin et al., 2016). Cell
proliferation assays are initiated by uniformly placing a monolayer of cells, at low
density, on a two-dimensional substrate. Individual cells in the population undergo
both movement and proliferation events, and the assay is observed as the density
of the monolayer of cells increases. Comparing cell proliferation assays with and
without a putative drug plays an important role in drug design (Bosco et al., 2015;
Bourseguin et al., 2016).

One approach to interpret a cell proliferation assay is to use a mathemati-
cal model. This approach can provide quantitative insight into the mechanisms
involved (Maini et al., 2004b; Sengers et al., 2007). For example, it is possible
to estimate the proliferation rate of cells by calibrating a mathematical model to
data from a cell proliferation assay. Results can then be used to compare a tar-
get and control assay (Johnston et al., 2015). Typically, most previous studies
that interpret cell biology assays using continuum mathematical models make the
assumption that cells proliferate logistically (Cai et al., 2007; Dale et al., 1994;
Doran et al., 2009; Jin et al., 2016b; Maini et al., 2004b,a; O’Dea et al., 2012;
Savla et al., 2004; Sengers et al., 2007; Sheardown and Cheng, 1996; Sherratt and
Murray, 1990). The classical logistic equation is given by

dC(t)

3 =B - o), (2.1)

where C(t) is the scaled cell density, such that C(t) = 1 represents the carrying
capacity density, ¢ is time and A is the cell proliferation rate. For example, by
calibrating the solution of Equation (2.1) to data from a cell biology assay, Treloar
et al. (2014) showed that the proliferation rate of 3T3 fibroblast cells is approxi-
mately 0.048 /hour. However, while the classical logistic model is routinely used to
study biological population dynamics (Pearl, 1927; Edelstein-Keshet, 1988; Mur-
ray, 2002), this choice is often made without a careful examination of whether the

classical logistic model is valid (Treloar et al., 2014).
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In the literature, there is an awareness that biological populations do not always
grow according to the classical logistic equation (Gerlee, 2013; Zwietering et al.,
1990). For example, West and coworkers investigate the growth of cell populations
from a wide range of animal models and find that the growth is not logistic; instead,
they find that a more general model provides a better match to the experimental
data (West et al., 2001). Likewise, Laird (1964) examines tumour growth data and
shows that the Gompertz growth law matches the data better than the classical
logistic model. Similar observations have also been made more recently for different

types of tumour growth by Sarapata and de Pillis (2014).

Therefore, it is not always clear that the classical logistic model ought to be
used to describe cell proliferation assays. The classical logistic model, and its
generalisations (Tsoularis and Wallace, 2002), all lead to similar growth dynam-
ics during the early phase of the experiment when the density is small. The key
differences between these models occur at larger densities as the cell population
grows towards the carrying capacity density. The question of whether cells in a
proliferation assay grow logistically, or by some other mechanism, is obscured by
the fact that most cell proliferation assays are conducted for a relatively short
period of time. To illustrate this, we note that a typical cell proliferation rate of
A = 0.048 /hour (Treloar et al., 2014) corresponds to a doubling time of approx-
imately 14 hours. Given that a typical initial cell density in a cell proliferation
assay is approximately C'(0) = 0.1, and the typical time scale of a cell proliferation
assay is no more than 24 hours, the cell density will grow to be no more than 0.4,
Figure 2.1(a)-(d). Indeed, the evolution of the cell density data in Figure 2.1(d)
shows that the cell density grows approximately linearly over the standard experi-
mental duration of 24 hours. This linear increase is consistent with the early time
behaviour of the exponential growth phase, but provides less information about
later time behaviour where crowding effects play a role. Therefore, standard ex-
perimental durations are inappropriate for the purposes of examining how cells
grow at high densities. The focus of the current work is to explore how we can de-
termine the optimal duration of a cell proliferation assay so that it can be used to
reliably distinguish between classical logistic and generalised logistic growth mod-
els. In summary, this study is the first time that an individual based model has
been used to explore the duration of a cell proliferation assay, in order to reliably
distinguish between different types of growth models. This chapter is organised as
follows. We first present a suite of results from a stochastic in silico cell prolifera-
tion assay. The benefit of working with an in silico assay is that it can be used to

describe the evolution of a cell proliferation assay corresponding to a known, but
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Figure 2.1: Snapshots of experimental and in silico cell proliferation assays. (a)-
(c) show experimental images obtained from a typical cell proliferation assay per-
formed using 3T3 fibroblast cells, shown at 12 hour intervals, as indicated. The
position of each cell is identified with a yellow marker. Each scale bar corresponds
to 100 pm. (d) shows the scaled cell density from this experiment at each time
point, and a least squares linear fit. (e),(i) and (m) show the initial distribution of
agents in the in silico assays. The location of agents in (e),(i) and (m) are identical,
and chosen so that the location of each cell in (a) is mapped to a hexagonal lattice,
and placed on the nearest vacant lattice site. Simulation results are shown for:
Case 1 in (e)-(g); Case 2 in (i)-(k); and, Case 3 in (m)-(0). The crowding function
used in each Case is shown (h),(1) and (p) for Cases 1, 2 and 3 respectively. All
simulations correspond to parameters I = 25, J = 22, P, = 0.579, P, = 0.002,
7 = 0.0417 hour and A = 25 pm, which are introduced in Section 2.2.1. These dis-
crete parameters correspond to A = 0.048 /hour and D = 2200 pym? /hour. Images
in (a)-(c) are reprinted with permission from the Bulletin of Mathematical Biol-
ogy (2013) Simpson et al. Experimental and modelling investigation of monolayer
development with clustering. 75, 871-8809.
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general, proliferation mechanism,

dc(t)
TR AC(t) f(O), (22)

where f(C) € [0,1] is a crowding function of our choice (Jin et al., 2016a). The
crowding function is a smooth decreasing function that satisfies f(0) = 1 and
f(1) = 0. In general, we could study any choice of f(C) that satisfies these
conditions. However, for the purposes of this study we restrict our attention to

the family of crowding functions given by
F(C) =1 -0, (2.3)

where « and [ are positive constants (Tsoularis and Wallace, 2002). This choice
of f(C) is still general and we note that different choices of o and 8 correspond to
well-known biological growth models such as the classical logistic growth model,
the Gompertz growth model, and the von Bertalanaffy growth model (Tsoularis
and Wallace, 2002). Our choice of f(C) is partly motivated by the recent work of
Sarapata and de Pillis (2014), who explore a range of sigmoid growth models for
different types of tumours, including bladder, breast, liver, lung, and melanoma
tumours. Sarapata and de Pillis (2014) show that the classical logistic growth
model does not always provide the best match to observed data, and they test
a range of other sigmoid growth models for each different kind of tumour. The
different forms of sigmoid growth models that Sarapata and de Pillis (2014) explore
are encompassed in our choice of crowding function, Equation (2.3), simply by
making different choices of the constants o and f.

In this work we focus on three particular choices of f(C):

Case 1: a =1 and 8 = 1. Here, f(C) is a linear function that corresponds

to the classical logistic equation 2.1. See Figure 2.1(h);

Case 2: a« =2 and § = 1. Here, f(C) is a non-linear, concave-down function.

See Figure Figure 2.1(1); and,

Case 3: a =1 and 8 = 2. Here, f(C) is a non-linear, concave-up function.

See Figure Figure 2.1(p).

Setting « = 1 and 5 = 1 recovers the classical logistic equation 2.1, whereas
other choices of « and 3 lead to different, general logistic growth models. Typical
in silico experiments showing snapshots of the growing populations are given in
Figure 2.1(e)-(g) for Case 1, Figure 2.1(i)-(k) for Case 2 and Figure 2.1(m)-(o) for

Case 3. After we have generated typical in silico results for these different choices
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of f(C), we then examine our ability to distinguish between data corresponding to
different choices of f(C') using approximate Bayesian computation (ABC) (Liepe
et al., 2014; Sunnaker et al., 2013; Tanaka et al., 2006; Collis et al., 2017) to
estimate the parameters a and 3. This procedure clearly shows that the duration
of a standard cell proliferation assay is too short to reliably recover the values of «
and 8. Therefore, to provide quantitative insight into the benefit of performing the
experiment for a longer duration, we quantify the decrease in our uncertainty of the
parameters and the increase in information as we effectively run the experiment

for longer periods of time.

2.2 Methods

2.2.1 Discrete mathematical model

We use a lattice-based random walk model to describe a cell proliferation assay
(Liggett, 1999). Throughout the work, we will refer to a realisation of the stochastic
model as either an in silico experiment, or a simulation. In the model cells are
treated as equally-sized discs, and this is a typical assumption (Deroulers et al.,
2009; Vo et al., 2015) that is supported by experimental measurements (Simpson
et al., 2013). We use a hexagonal lattice, with no more than one agent per site.
The lattice spacing, A, is chosen to be equal to the mean cell diameter (Jin et al.,
2016a). This means we have a circular packing of agents, which corresponds to
the maximum carrying capacity for a population of uniformly sized discs. The
relationship between the scaled density, C(t), and the number of agents, N(t), is
N(t)

Clt) =3 (2.4)

so that C(t) = 1 corresponds to the carrying capacity of Npax agents, which is
the number of lattice sites. Motivated by the experimental images of the cell
proliferation assay in Figure 2.1(a)-(c), that is conducted with 3T3 fibroblast cells,
we set A = 25 pum to be the mean cell diameter (Simpson et al., 2013). As the
images in Figure 2.1(a)-(c) show a fixed field of view that is much smaller than
the spatial extent of the uniformly distributed cells in the experiment, we apply

zero net flux boundary conditions (Johnston et al., 2015).
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Each lattice site, indexed (7, ) where 4,j € Z™, has position

(iA, jAV3/2) if j is even,

) = ((i 4+ 1/2)A,jAVE/2)  if j is odd,

such that 1 <¢ < 7T and 1 < j < J. To match a typical physical domain, such as
the experiment in Figure 2.1(a)-(c) where the field of view is 625 pm x 480 pm and
the cell diameter is A = 25 um, we set I = 25 and J = 22. When this domain is

packed to confluence, the field of view can hold no more than Ny.x = 550 agents.

In any single realisation of the discrete model, the occupancy of site s is denoted
Cs, with Cg = 1 if the site is occupied, and Cg = 0 if vacant. We report results
from the model by summing the total number of agents at time ¢, which we denote
N(t). Each site s is associated with a unique index (i,j). We denote the set
of nearest neighbour sites surrounding site s as A'{s}, and the size of N'{s} is
IN{s}|. For a typical lattice site, not on any boundary, N'{s} corresponds to the
usual six nearest neighbour sites and |[N'{s}| = 6. However, for any lattice site on a
boundary, we adjust N'{s} and |N{s}| as appropriate to enforce no-flux boundary

conditions.

To initiate simulations of a cell proliferation assay, we randomly select a lattice
site and place an agent on that site, provided the site is vacant. We repeat this
process until N(0) = 55 agents have been randomly placed. This corresponds to
each simulation starting with C'(0) = 0.1, which is typical of the initial density,
such as in Figure 2.1(a). The following algorithm is used to simulate the way in
which cells migrate and proliferate during the experiment. At any time, ¢, there
are N (t) agents on the lattice. In each discrete time step, of duration 7, we allow

motility and proliferation events to occur in the following two sequential steps.

First, N(t) agents are selected independently at random, one at a time with
replacement, and given the opportunity to move with probability P, € [0,1]. A
motile agent attempts to move to one of the six nearest neighbour sites, selected
at random. To simulate crowding effects, potential motility events are aborted if
an agent attempts to move to an occupied site or attempts to move outside the

domain.

Second, another N (t) agents are selected independently, at random, one at a
time with replacement, and given the opportunity to proliferate with probability
P, € [0,1]. To assess how crowding affects the ability of a cell to proliferate, we
follow the approach of (Jin et al., 2016a) and assume that an agent at site s senses

the occupancy of the six nearest neighbour sites, and can detect a measure of the
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average occupancy of those sites,

- 1
Cs = >y Cy. (2.5)
Ol v

This means that Cs € [0, 1] is a measure of the local crowdedness in NV (s). We use
Cs to determine whether a potential proliferation event succeeds by introducing
a crowding function, f(C) € [0,1] with f(0) = 1 and f(1) = 0. To incorporate
crowding effects we sample a random number, R ~ U(0,1). If R < f(Cs), a
daughter agent is placed at a randomly chosen, vacant, nearest neighbouring site,
whereas if R > f(Cs), the potential proliferation event is aborted. After the N (t)
potential proliferation events have been attempted, N(t + 7) is updated.

These two steps are repeated until the desired end time, T, is reached.

As previously demonstrated (Jin et al., 2016a), the continuum limit description

of this discrete model gives rise to

OC(x,y,t) . (0*Cla,y,t) | 9*Clx,y,t)
&—D< s+ T ) 0@ 0O, (20)
where,
A= lim &, (2.7)
AT—0 T
. PpA?
b= 28)

Here, ) is the proliferation rate, and the motility of agents is characterised by
a diffusivity, D. Since the agents are initially distributed uniformly we have
0C(z,y,t)/0x ~ 0C(z,y,t)/0y ~ 0. This means that the partial differential
equation simplifies to an ordinary differential equation,

dC(t)

g = emfo), (2.9)

which is a generalised logistic growth model.

In this study, we only ever vary the parameters in the crowding function, o and
B. All other parameters are fixed, and chosen to represent a typical cell population.
As previously stated, we set N(0) = 55, I = 25 and J = 22, to accommodate the
typical geometry and initial condition of a cell proliferation assay with a population
of cells whose mean diameter is A = 25 ym (Simpson et al., 2013). To describe
the rate at which cells move, we set P, = 0.579 and 7 = 0.0417 hours. This
corresponds to D = 2200 um?/hour, which is a typical value of the cell diffusivity
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for a mesenchymal cell line (Simpson et al., 2014). To describe the rate at which
cells proliferate, we set P, = 0.002 and 7 = 0.0417 hours. This corresponds to
A = 0.048 /hour, which is a typical value of the cell proliferation rate (Treloar
et al., 2014). This proliferation rate is consistent with the experimental data in
Figure 2.1(d).

Using these parameter estimates, we show the evolution of C(t) for a single
realisation of the discrete model, for each choice of crowding function, in Fig-
ure 2.2(a)-(b), for T'= 24 and 96 hours, respectively. Results in Figure 2.2(a)-(b)
show some stochastic fluctuations, as expected. To approximate the expected be-
haviour, we perform 20 identically prepared realisations of the discrete model and
show the mean density profile, C'(t), in Figure 2.2(c)-(d), for T = 24 and 96 hours,
respectively. Comparing the single realisations with the mean behaviour confirms
that there are minimal fluctuations, at this scale. Furthermore, we see minimal dif-
ferences in the overall behaviour of the model when we consider a profile of a single

realisation and the mean from an ensemble of 20 identically prepared realisations.

2.2.2  Parameter estimation using ABC rejection

Using a Bayesian framework, we consider the crowding function parameters 8 =
(ar, B) as random variables, and the uncertainty in the 6 is updated using observed
data (Gelman et al., 2004; Sunnaker et al., 2013; Tanaka et al., 2006; Collis et al.,
2017). Under this assumption, we note that the cell density profile, C(¢), is also a
random variable. In this section we refer to the variables using vector notation to
keep the description of the inference algorithm as succinct as possible. However,
in the main text we refer to the variables using ordered pairs, («, 3), so that our

results are presented as clearly as possible.

To begin with, we perform three in silico experiments with fixed, known pa-
rameter values, which we refer to as the target parameters, 6., corresponding to
each Case considered. We take care to ensure that the three in silico experiments
lead to typical C(t) data, as we demonstrate in Figure 2.2. The data from these
experiments is treated as observed data, denoted Xg,s. Then, we use an ABC ap-
proach to explore, and quantify, how well the target values of @ can be estimated
using the observed data. In particular, we are interested in the effect of varying

the duration over which the observation data is collected, T

In the absence of any experimental observations, information about 6 is char-

acterised by a specified prior distribution (Gelman et al., 2004; Sunnaker et al.,
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Figure 2.2: The role of the crowding function and timing for a typical proliferation
assay. Results show the evolution of: (a) C(t), for T' = 24 hours; (b) C(t), for
T = 96 hours; (c) C(t), for T = 24 hours; and, (d) C(t), for T = 96 hours. All
simulations correspond to N(0) = 55, I = 25, J = 22, P,, = 0.579, P, = 0.002,
7 = 0.0417 hours and A = 25 um. These discrete parameters correspond to
A = 0.048 /hour and D = 2200 pum?/hour. The carrying capacity is Npax = 550.




22

2013). For our choices of a and 3, we set the prior to be
1
() = 9’ 6 < (0,3) x (0,3), (2.10)

which is a uniform distribution across (¢, 8) € (0, 3) x (0, 3).

We summarise data, X, with a lower-dimensional summary statistic, .S. Under
a Bayesian framework, the information from the prior is updated by the likelihood
of the observations, p(Syps|@), to produce posterior distributions, p(€|Sops), of
6. In this study, we use the most fundamental ABC algorithm, known as ABC
rejection (Liepe et al., 2014; Tanaka et al., 2006; Sunnaker et al., 2013). Our aim
is to quantify the trade off between the duration of the experiment, 7', and the

reduction in uncertainty of the value of 8 as well as the information gain.

In this work, we choose S to be the number of agents observed at equally
spaced intervals of 24 hours. Let Nops(t) and Ngim (t) denote the number of agents
present in the observed data and a simulated cell proliferation assay at time ¢,
respectively. We choose a discrepancy measure, p(Sops, Ssim ), to be the cumulative
sum of the square difference between Ny, (t) and Nops(t) at each 24 hour interval,

up to the duration of the experiment, 7', such that

T /24

p(Sobs, Ssim) = D [Neim(247) — Nobs(244)]? . (2.11)
=1

With these definitions, the ABC rejection algorithm is given by Algorithm 2.1.

Algorithm 2.1 ABC rejection sampling

: Set P, = 0.579, P, =0.002, A =25 pm, 7 = 0.0417 hours, N(0) = 55.

: Draw 0; ~ ().

: Simulate cell proliferation assay with 6;.

: Record Sgim; = {Nsim(24))}, 7 =1,2,3,4.

. Compute €; = p(Sobs, Ssim; ), given in Equation (2.11).

. Repeat steps 2-5 until 10° samples {6;, 61}3261 are simulated.

: Retain a small proportion, v = 0.01, with the smallest discrepancy, ¢;, as
posterior samples.

N O Utk W

To present and perform calculations with posterior distributions, we use a ker-
nel density estimate with grid spacing 0.01 to form an approximate continuous
posterior distribution from the samples. We do this using the ksdensity function
in the MATLAB Statistics Toolbox (Mathworks, 2017). All ABC posterior results
presented in the main part of the chapter correspond to retaining the 10,000 simu-

lations out of 1,000,000 simulations with the smallest discrepancy, giving v = 0.01.
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To confirm that our results are insensitive to this choice of u we also present equiv-

alent results with v = 0.02 in Appendix 2.A.

Kullback-Leibler divergence

To quantitatively compare posterior distributions, we calculate the Kullback-Leibler
(KL) divergence (Kullback and Leibler, 1951; Burnham and Anderson, 2002),
Dkr(p||7), for each posterior distribution. The KL divergence is a measure of
the information gain in moving from the prior, m(8), to the posterior, p(8|Sops),
in Bayesian inference, and is defined as

Dics (015 7(0) = [[ pioisiertos (M58 ) a0, ey

o ()

where © = (0, 3) x (0, 3) is the prior support. To calculate Dg 1 (p(8]Sons)||7(0)) we
use quadrature to estimate the integral in Equation (2.12), taking care to ensure
that the result is independent of the discretisation. Note that Dy is a measure
of the amount of information gained when moving from the prior distribution to

the posterior distribution.

Other measures

We also make use of several other measures to help quantify various properties
of the posterior densities. For each Case we always know, in advance, the target
parameter values, 0., and we also estimate the mode, 8,,, using the kernel density
estimate. Note that the mode is the value of @ corresponding to the maximum
posterior density,

0,, = argmax p(0|Sops)- (2.13)
7]

It is useful to report the posterior density at the target, p(6.|Sobs), for various
values of T. It is also instructive to report the posterior density at the mode,
(01| Sobs), for various values of T. Another useful measure is the Euclidean

distance between the target and the mode, given by
d =10« — 0p]l2, (2.14)

where || - ||2 denotes the Euclidean norm.
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2.3 Results and discussion

Results from a typical cell proliferation assay are shown in Figure 2.1(a)-(c). The
cell density profile, shown in Figure 2.1(d), increases approximately linearly with
time. This indicates that the experimental duration is not long enough for us
to observe crowding effects, which occur at higher densities, and cause the net
growth rate to reduce so that cell density profile, C(t), becomes concave down at
later times. Therefore, by using typical experimental data, it is unclear whether
the growth process follows a classical logistic model, or some other more general
growth model.

To provide further insight into the limitations of this standard experimental
design, we show results from the discrete model in Figure 2.2(a) for a standard
experimental duration of T = 24 hours, for three different crowding functions.
These results show several interesting features: (i) the cell density profile for each
Case appears to increase linearly with time, which is similar to the experimental
results in Figure 2.1(d); (ii) it is difficult to distinguish between the three different
profiles, despite each profile corresponding to a different crowding function; and
(iii) comparing the cell density profiles of a single realisation in Figure 2.2(a) to
the expected behaviour in Figure 2.2(c) confirms that the expected cell density
profiles for each Case are similar for the first 24 hours.

To examine when crowding effects begin to significantly influence the cell den-
sity profile, we perform simulations over longer durations of time. In particular,
we examine T < 96 hours. Results for a single realisation in Figure 2.2(b) show
that the cell density profiles for each Case are indistinguishable during the first 24
hours. However the profile for each Case does become increasingly distinguishable
at times greater than 24 hours. For example, each Case is clearly discernible by 72
hours. Comparing the cell density profiles of a single realisation in Figure 2.2(b)
to the expected behaviour in Figure 2.2(d) confirms that each Case is only dis-
tinguishable at times greater than 24 hours. These observations motivate several
questions that we will explore. The two main questions we focus on are: (i) what
experimental duration is required to reliably distinguish between Cases 1, 2 and
3; and, (ii) can we quantify the trade off between allowing the experiment to run
for a sufficiently long period of time to distinguish between the Cases, while still
minimising the duration of the experiment.

To quantify the increase in information we can obtain by running the exper-
iment for longer durations of time, we attempt to recover the parameters in the
crowding function for each Case using ABC to produce a posterior distribution for

a and B, which we refer to as the ordered pair («, ). To achieve this aim, we
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produce in silico observed data, using a target parameter set for each Case: Case
1 corresponds to («a, 8) = (1,1); Case 2 corresponds to («, ) = (2,1); and Case
3 corresponds to (a, 8) = (1,2). All other parameters in the simulations are held
fixed at the values given previously.

The data we use to perform inference takes the form of the size of the popu-
lation, N(t), recorded at equally spaced intervals, each of duration 24 hours. In
particular, we examine the effect of varying the total duration of the experiment,
T. This means that if we consider an experimental design with 7" = 24 hours,
then we record N(24) only. In contrast, if we consider an experimental design
with T" = 72 hours, we record N(24), N(48) and N(72). Overall, we examine four
durations, T' = 24,48, 72 and 96 hours.

Results in Figure 2.3(a)-(d) show the bivariate posterior distributions of «
and g for Case 1, with T" = 24,48,72 and 96 hours, respectively. Recall that
the target parameters for Case 1 are (a, ) = (1,1). The results indicate that
the choice of prior, (@), on the domain (0,3) x (0, 3), is reasonable because the
posterior distribution has full support within this region. The distribution in
Figure 2.3(a) shows there are many parameter combinations that are likely to
match the observed data, with T = 24 hours. This observation is consistent
with the results in Figure 2.2(a) where we observe that setting 7" = 24 hours
is insufficient to distinguish between the three Cases. Comparing the posterior
distributions in Figure 2.3(a)-(d), we see that increasing T leads to a narrowing
of the posterior distribution, and the mode of the distribution moves toward the
target parameter combination. For this Case, we see the largest benefit when
increasing T from 48 to 72 hours. For example, for T' = 48 hours, the mode of the
distribution is (1.82, 2.16), which means that each parameter estimate is almost
double each target value. In contrast, the mode of the distribution at T" = 72
hours is (1.06, 0.95), so each parameter is able to be estimated within 6% of the
target.

To quantify the properties in the posterior distributions, Figure 2.3(a)-(d),
there are many features that we may consider. Figure 2.3(e) compares the posterior
density at the target parameter values and the maximum posterior density of the
distribution, which corresponds to the mode. The maximum posterior density
increases with T', confirming that the posterior distribution narrows as the duration
of the experiment is increased. Results in Figure 2.3(f) show that d eventually
decreases with T, indicating that the mode of the distribution moves towards the
target as T' increases. Together, these results show that the density at the mode
is close to the density at the target, and that both these quantities increase with

T. This indicates that the target parameter combination is always as likely as the
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Figure 2.3: Posterior distributions for Case 1: (o, 5) = (1,1). (a)-(d) ABC poste-
rior distributions for: (a) T' = 24 hours; (b) 7" = 48 hours; (¢) T = 72 hours and
(d) T = 96 hours. The posterior distributions are approximated using the best
10,000 samples from 1,000,000 prior samples (u = 0.01), as measured by p, given
by Equation (2.11). The red circles show the location of the target parameters
used to generate the observed data (o« = 1, 8 = 1). The black squares indicate the
mode of the posterior distribution. The modes are (1.32, 2.43), (1.82, 2.16), (1.06,
0.95) and (0.96, 0.86) in (a)-(d), respectively. (e)-(g) Show measures of accuracy
and precision. (e) Quantitatively compares the posterior density at the mode and
the target parameter values. (f) Shows d, the Euclidean distance between the
mode and target parameter values, given by Equation (2.14). (g) Shows Dk, the
Kullback-Leibler divergence from the prior, for each posterior distribution, given
by Equation (2.12).
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Figure 2.4: Posterior distributions for Case 2: («, ) = (2,1). (a)-(d) ABC poste-
rior distributions for: (a) 7" = 24 hours; (b) T' = 48 hours; (¢) 7' = 72 hours and
(d) T = 96 hours. The posterior distributions are approximated using the best
10,000 samples from 1,000,000 prior samples (u = 0.01), as measured by p, given
by Equation (2.11). The red circles show the location of the target parameters
used to generate the observed data (o« = 2, 8 = 1). The black squares indicate the
mode of the posterior distribution. The modes are (1.89, 1.81), (2.55, 1.38), (2.54,
1.46) and (2.53, 1.41) in (a)-(d), respectively. (e)-(g) Show measures of accuracy
and precision. (e) Quantitatively compares the posterior density at the mode and
the target parameter values. (f) Shows d, the Euclidean distance between the
mode and target parameter values, given by Equation (2.14). (g) Shows Dk, the
Kullback-Leibler divergence from the prior, for each posterior distribution, given
by Equation (2.12).
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Figure 2.5: Posterior distributions for Case 3: («, ) = (1,2). (a)-(d) ABC poste-
rior distributions for: (a) 7" = 24 hours; (b) T' = 48 hours; (¢) 7' = 72 hours and
(d) T = 96 hours. The posterior distributions are approximated using the best
10,000 samples from 1,000,000 prior samples (u = 0.01), as measured by p, given
by Equation (2.11). The red circles show the location of the target parameters
used to generate the observed data (o« = 1, 8 = 2). The black squares indicate the
mode of the posterior distribution. The modes are (1.13, 1.70), (1.09, 2.57), (1.20,
2.67) and (1.03, 2.11) in (a)-(d), respectively. (e)-(g) Show measures of accuracy
and precision. (e) Quantitatively compares the posterior density at the mode and
the target parameter values. (f) Shows d, the Euclidean distance between the
mode and target parameter values, given by Equation (2.14). (g) Shows Dk, the
Kullback-Leibler divergence from the prior, for each posterior distribution, given
by Equation (2.12).
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mode. Results in Figure 2.3(g) shows how the KL divergence (Equation (2.12))
also increases with T. We see that the largest gain in information for this Case
occurs when 7' is increased from 24 hours (Dg, = 0.33) to 48 hours (Dg 1, = 0.84).
The quantitative measures in Figure 2.3(e)-(g) suggest that there is always value
in increasing 7', however the value of increasing 1" varies. For example, there is a
substantial benefit in extending the experiment from 7" = 48 to 72 hours, whereas
the benefit in extending the experiment from 1" = 72 to 96 hours is less pronounced.

Results in Figure 2.4(a)-(d) and Figure 2.5(a)-(d) show the bivariate poste-
rior distributions of @ and g for Cases 2 and 3, respectively. Note that all data
presented for Cases 2 and 3 is given in the same format as used for the results cor-
responding to Case 1 in Figure 2.3. As before, we always observe a narrowing of
the posterior distribution as T increases. Results in Figure 2.4(e) and Figure 2.5(e)
clearly show that the target parameter combination becomes more likely as T is
increased. Data for d in Figure 2.4(f) confirms that the distance between the tar-
get and the mode is reduced for larger values of T. Data for d in Figure 2.5(f)
shows that the distance between the target and the mode increases, at first, when
T is increased from 24 to 48 hours. However, the most important feature is that
d always decreases eventually for large enough T. Again, as T is increased, D,
increases in both Figure 2.4(g) and Figure 2.5(g).

Overall, the essential trends in Figure 2.4 and Figure 2.5 are consistent with
those in Figure 2.3, namely: (i) the standard choice of T' = 24 hours is insufficient
to determine the parameters in the crowding function and hence it is impossible
to reliably distinguish between classical logistic growth and more general logistic
growth models; and, (ii) as the value of T is increased, our ability to recover
the parameters in the crowding function increases. However, certain details differ
between the cases. For example, choosing T = 72 hours allows us to recover
estimates of a and 3 to an accuracy of at least 6, 46 and 34% in Cases 1, 2 and 3,
respectively. Therefore, with this choice of T' we are able to recover the parameters
for Case 1 relatively accurately. In contrast, if we choose T' = 96 hours, we recover
estimates of o and B to an accuracy of at least 14, 41 and 6% in Cases 1, 2 and 3,
respectively. Therefore, with this choice of T" we are able to recover the parameters

for Cases 1 and 3 relatively accurately, yet Case 2 remains relatively unclear.

2.4 Conclusion

In this work, we implement a random walk model to simulate a cell prolifera-

tion assay. In particular, we focus on exploring whether the typical experimental
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design of a cell proliferation assay, with C(0) ~ 0.1, A ~ 0.05 /hour and 7" = 24
hours, is sufficient to make a clear distinction between classical logistic growth and
more general logistic growth models. We are motivated to explore this question
because many theoretical modelling studies choose to represent cell proliferation
with the classical logistic model, yet this assumption is rarely tested using ex-
perimental data. Furthermore, there is a growing awareness in the mathematical
biology literature that the choice of using a classical logistic model can be inappro-
priate. For example, Sarapata and de Pillis (2014) show that a range of tumour
growth data is more accurately predicted using a generalised logistic model rather
than the classical logistic model. Therefore, the question of whether standard de-
signs of cell proliferation assays can make a clear and unambiguous distinction
between classical logistic growth and more general logistic growth is important as
cell proliferation assays are commonly employed. It is currently unclear whether
the standard experimental design is sufficient to distinguish between different sig-
moid growth mechanisms. This study discusses the first time that a stochastic
individual based model has been used to explore the optimal duration of a cell
proliferation assay. In particular, we explore how to choose the duration of the

assay to reliably distinguish between different types of growth models.

One of the main conclusions of our study is that the typical experimental de-
sign for a cell proliferation assay, with C'(0) ~ 0.1, A ~ 0.05 /hour and T' = 24
hours, cannot be used to make a distinction between classical logistic growth and
more general logistic growth. Further, we use our stochastic modelling and pa-
rameter inference tools to explore how the experimental design can be altered so
that this distinction can be made with confidence. In particular we explore the
option of increasing the duration of the experiment, T. Our parameter inference
results show that increasing 1" always provides more information about the crowd-
ing function parameters. However, the trends are subtle, and there is no simple
guideline for prescribing the ideal experimental duration that one could implement
in practice. Our results show that we can recover the crowding function for the
case of classical logistic growth (Case 1: a =1, § = 1) to within an accuracy of 6%
if the experimental duration is increased to T' = 72 hours. Beyond this duration,
we encounter diminishing returns for this Case. For example, further increasing
the duration of the experiment to 7' = 96 hours leads to only a small increase in
additional information about the crowding function. In other cases where we con-
sider generalised logistic growth (Case 2: v = 1, § = 2), we see that the parameter
estimates remain relatively poor, even if the experimental duration is increased to
T = 72 hours. For Case 2 we recover the parameters to an accuracy of within 33%
if T'= 72 hours, and to within 5% if T' = 96 hours. Therefore, it is not possible
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to make a simple conclusion that cell proliferation assays ought to be conducted
until 7' = 48 or T = 72 hours since the increase in information with 7' is subtle.
Despite this complication, our results certainly show that the standard choice of
T = 24 hours is insufficient, and that the experiment ought to be conducted for a

long as practically possible.

One aspect of a cell proliferation assay that we have not explored is the de-
pendence of the results on the initial cell density, C'(0). All results in this work,
both the in vitro experimental data in Figure 2.1, and the in silico data in Fig-
ures 2.2-2.5, deal with initial densities of C'(0) ~ 0.1, where C' = 1 corresponds to
the maximum carrying capacity of the confluent monolayer. This initial density
corresponds to a fairly standard choice of initiating a cell proliferation assay with
approximately 20,000 cells placed into the wells of a 24-well tissue culture plate
where each well has a diameter of approximately 15 mm. Alternatively, a similar
initial density can be obtained by initiating a cell proliferation assay with approx-
imately 10,000 cells placed into the wells of a 96-well tissue culture plate, where
each well has a diameter of approximately 9 mm. While it is true that crowding
effects in a cell proliferation assay might be more clearly discernable by initiating
the experiment with larger numbers of cells, we warn against this for two reasons.
First, from a practical point of view, our experience in initiating a two-dimensional
in vitro cell biology assay with large numbers of cells is problematic as the cells can
tend to cluster together, and pile up in the vertical direction instead of spreading
as a monolayer (Treloar et al., 2013). Second, established methods for initiating
cell proliferation assays with C'(0) =~ 0.1 are perfectly well suited to observe the low
density exponential phase of the growth process, which is important to estimate
the intrinsic proliferation rate, A. For example, the data shown in Figure 2.1(a)-(c)
corresponds to a cell proliferation assay initialised with 20,000 cells in a 24-well
tissue culture plate, and results in Figure 2.1(d) show C(t) grows linearly over the
first 24 hours. This result is consistent with the early part of the growth process
where we expect C(t) ~ C(0)exp(At) = C(0) [1+ At + O(t?)]. Therefore, we do
not suggest that the standard experimental design for a cell proliferation assay
ought to be altered by increasing C'(0). This is why, throughout this study, we

have treated A and C'(0) as known, constant values, in the experimental design.

All of the results presented here have focused on exploring whether we can make
a reliable distinction between classical logistic growth and more general logistic
growth in a cell proliferation assay. To achieve this we use in silico simulations in
which the crowding function can be specified. While the discrete simulation algo-
rithm can be used to model a cell proliferation assay with any crowding function,

f(C), to illustrate the key points of our study we focus on three particular cases.
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Case 1 corresponds to classical logistic growth, while Cases 2 and 3 are examples
of more general logistic growth. Of course, the methods outlined in this work ap-
ply equally well to any other choice of crowding function. Furthermore, while all
crowding functions explored here involve two parameters, o and 3, it is possible
that other choices of crowding function might contain additional parameters. Un-
der these conditions, the procedures described here to quantitatively measure the
potential for parameter recovery as a function of the experimental design apply
in exactly the same way regardless of the number of unknown parameters in the

crowding function.



Chapter 2: Supplementary material

2.A Posterior distributions

In the main chapter we present a series of ABC posterior distributions that are
constructed using the top 10,000 samples from a total of 1,000,000 prior samples,
giving v = 0.01. In this supplementary material chapter we present equivalent pos-
terior distributions that are constructed using the top 20,000 of the same 1,000,000
samples, giving © = 0.02. Results in Figures 2.6-2.8 correspond to the results in
Figures 2.3-2.5 in the main part of the chapter. Both a qualitative and quantita-
tive comparison of these two sets of results shows that the results are insensitive

to our choice of setting v = 0.01.
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Figure 2.6: Posterior distributions for Case 1: (o, ) = (1,1). (a)-(d) ABC pos-
terior distributions for: (a) T' = 24 hours; (b) T' = 48 hours; (¢) 7' = 72 hours
and (d) 7" = 96 hours. The posterior distribution is approximated using the best
20,000 samples from 1,000,000 prior samples (u = 0.02), as measured by p, given
by Equation (2.11). The red circles shows the location of the target parameters
used to generate the observed data (o = 1, § = 1). The black squares indicate
the mode of the posterior density. The modes are (1.32, 2.43), (1.82, 2.16), (1.06,
0.95) and (0.96, 0.86) in (a)-(d), respectively. (e)-(g) Show measures of accuracy
and precision. (e) Quantitatively compares the posterior density at the mode and
the target parameter values. (f) Shows d, the Euclidean distance between the
mode and target parameter values, given by Equation (2.14). (g) Shows Dk, the
Kullback-Leibler divergence from the prior, for each posterior distribution, given
by Equation (2.12).
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Figure 2.7: Posterior distributions for Case 2: («, ) = (2,1). (a)-(d) ABC pos-
terior distributions for: (a) 7' = 24 hours; (b) T' = 48 hours; (c) T' = 72 hours
and (d) T' = 96 hours. The posterior distribution is approximated using the best
20,000 samples from 1,000,000 prior samples (u = 0.02), as measured by p, given
by Equation (2.11). The red circles shows the location of the target parameters
used to generate the observed data (o = 2, § = 1). The black squares indicate
the mode of the posterior density. The modes are (1.89, 1.81), (2.55, 1.38), (2.54,
1.46) and (2.53, 1.41) in (a)-(d), respectively. (e)-(g) Show measures of accuracy
and precision. (e) Quantitatively compares the posterior density at the mode and
the target parameter values. (f) Shows d, the Euclidean distance between the
mode and target parameter values, given by Equation (2.14). (g) Shows Dk, the
Kullback-Leibler divergence from the prior, for each posterior distribution, given
by Equation (2.12).
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Figure 2.8: Posterior distributions for Case 3: («a, ) = (1,2). (a)-(d) ABC pos-
terior distributions for: (a) 7' = 24 hours; (b) T' = 48 hours; (c) T' = 72 hours
and (d) T' = 96 hours. The posterior distribution is approximated using the best
20,000 samples from 1,000,000 prior samples (u = 0.02), as measured by p, given
by Equation (2.11). The red circles shows the location of the target parameters
used to generate the observed data (o = 1, § = 2). The black squares indicate
the mode of the posterior density. The modes are (1.13, 1.70), (1.09, 2.57), (1.20,
2.67) and (1.03, 2.11) in (a)-(d), respectively. (e)-(g) Show measures of accuracy
and precision. (e) Quantitatively compares the posterior density at the mode and
the target parameter values. (f) Shows d, the Euclidean distance between the
mode and target parameter values, given by Equation (2.14). (g) Shows Dk, the
Kullback-Leibler divergence from the prior, for each posterior distribution, given
by Equation (2.12).
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Abstract

Collective cell spreading takes place in spatially continuous environments, yet it
is often modelled using discrete lattice-based approaches. Here, we use data from
a series of cell proliferation assays, with a prostate cancer cell line, to calibrate
a spatially continuous individual based model (IBM) of collective cell migration
and proliferation. The IBM explicitly accounts for crowding effects by modify-
ing the rate of movement, direction of movement, and the rate of proliferation by
accounting for pair-wise interactions. Taking a Bayesian approach we estimate
the free parameters in the IBM using rejection sampling on three separate, in-
dependent experimental data sets. Since the posterior parameter estimates from
each experiment are similar, we combine the estimates. Performing simulations
with parameters sampled from the combined distribution allows us to confirm the
predictive power of the calibrated IBM by accurately forecasting the evolution of
a fourth, experimental data set. Overall, we show how to calibrate a lattice-free
IBM to experimental data, and our work highlights the importance of interactions
between individuals. Despite great care taken to distribute cells as uniformly as
possible experimentally, we find evidence of significant spatial clustering over short

distances, suggesting that standard mean-field models could be inappropriate.
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3.1 Introduction

One of the most common in vitro cell biology experiments is called a cell prolif-
eration assay (Bosco et al., 2015; Bourseguin et al., 2016; Browning et al., 2017).
These assays are conducted by placing a monolayer of cells, at low density, on a
two-dimensional substrate. Individual cells undergo proliferation and movement
events, and the assay is monitored over time as the density of cells in the mono-
layer increases (Tremel et al., 2009). One approach to interpret a cell proliferation
assay is to use a mathematical model. Calibrating the solution of a mathematical
model to data from a cell proliferation assay can provide quantitative insight into
the underlying mechanisms, by, for example, estimating the cell proliferation rate
(Tremel et al., 2009; Sengers et al., 2007). A standard approach to modelling a cell
proliferation assay is to use a mean-field model, which is equivalent to assuming
that individuals within the population interact in proportion to the average pop-
ulation density and that there is no spatial structure, such as clustering, present
(Tremel et al., 2009; Sengers et al., 2007; Maini et al., 2004a; Sarapata and de Pillis,
2014; Sherratt and Murray, 1990). More recently, increased computational power
has meant that individual based models (IBMs) have been used to directly model
the cell-level behaviour (Binny et al., 2016a; Frascoli et al., 2013; Johnston et al.,
2014). IBMs are attractive for modelling biological phenomena because they can
be used to represent properties of individual agents, such as cells, in the system of
interest (Binny et al., 2016a,b; Frascoli et al., 2013; Peirce et al., 2004; Read et al.,
2012; Treloar et al., 2013). Typical IBMs use a lattice, meaning that both the
position of agents, and the direction of movement, are restricted (Codling et al.,
2008). In contrast, lattice-free IBMs are more realistic because they enable agents
to move in continuous space, in any direction. However, this extra freedom comes

at the cost of higher computational requirements (Plank and Simpson, 2012).

In this chapter we consider a continuous-space, continuous-time IBM (Binny
et al., 2016b). This IBM is well-suited to studying experimental data from a
cell proliferation assay with PC-3 prostate cancer cells (Kaighn et al., 1979), as
shown in Figure 3.1(a)-(d). The key mechanisms in the experiments include cell
migration and cell proliferation, and we note that there is no cell death in the
experiments on the time scales that we consider. Therefore, agents in the IBM
are allowed to undergo both proliferation and movement events. Crowding effects

that are often observed in two-dimensional cell biology experiments (Cai et al.,
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2007) are explicitly incorporated into the IBM as the rates of proliferation and
movement in the model are inhibited in regions of high agent density. In this
study we specifically choose to work with the PC-3 cell line because these cells are
known to be highly migratory, mesenchymal cells (Kaighn et al., 1979). This means
that cell-to-cell adhesion is minimal for this cell line, and cells tend to migrate as
individuals. We prefer to work with a continuous-space, lattice-free IBM as this
framework gives us the freedom to identically replicate the initial location of all
cells in the experimental data when we specify the initial condition in the IBM.
In addition, lattice-free IBMs do not restrict the direction of movement like a
lattice-based approach.

Taking a Bayesian approach, we assume that cell proliferation assays are stochas-
tic processes, and model parameters are random variables, allowing us to update
information about the model parameters using ABC (Collis et al., 2017; Tanaka
et al., 2006). For this purpose we perform a large number of IBM simulations using
parameters sampled from a prior distribution. Previous work, based on mean-field
models, suggests that the proliferation rate and cell diffusivity for PC-3 cells is
A ~ 0.05 /hour and D a 175 um?/hour, respectively (Johnston et al., 2015).
The prior distribution for the IBM parameters are taken to be uniform and to
encompass these previous estimates. We generate 10° realisations of the IBM us-
ing parameters sampled from the prior distribution, and accept 1% of simulations
that provide the best match to the experimental data. Our approach to connect
the experimental data and the IBM is novel, we are unaware of any previous work
that has used ABC to parameterise a lattice-free IBM of a cell proliferation assay.

Applying the ABC algorithm to data from three sets of identically prepared
experiments leads to three similar posterior distributions. This result provides
confidence that the IBM is a realistic representation of the cell proliferation assays
and leads us to produce a combined posterior distribution from which we use
the mode to give point estimates of the model parameters. To provide further
validation of the IBM, we use the combined posterior distribution and the IBM to
make a prediction of the fourth experimental data set. Simulating the IBM with
parameters sampled from the combined posterior distribution allows us to predict
both the time evolution of the population size, N(t), and the pair correlation within
a small neighbourhood of radius 50 um, P(t), which provides a measure of spatial
structure. These results indicate that the in silico predictions are consistent with
the experimental observations.

This chapter is organised as follows. Section 3.2.1 and Section 3.2.2 describe
the experiments and the IBM, respectively. In Section 3.2.3 we explain how to

apply the ABC algorithm to estimate the IBM parameters. In Section 3.3 we
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Figure 3.1: (a)-(c) Experimental data set 3 at t = 0, 12 and 36 hours. The position
of each cell is identified with a yellow marker. The field of view is a square of
length 1440 pum. (d) Population size, N (t) for experimental data set 3. (e)-(h) One
realisation of the IBM with v, = 0 pum, leading to an overly clustered distribution of
agents. (i)-(1) One realisation of the IBM with ~, = 4 pum, leading to a distribution
of agents with similar clustering to the experimental data. (m)-(p) One realisation
of the IBM with v, = 20 pum, leading to an overly segregated distribution of agents.
All IBM simulations are initiated using the same distribution of agents as in (a),
with m = 0.56 /hour, p = 0.041 /hour, and o = 24 pm.
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present the marginal posterior distributions of the IBM parameters using data
from the first three sets of experiments. The predictive power of the calibrated
IBM is demonstrated by using the combined marginal posterior distributions to
predict the fourth experimental data set. The predictive power of the calibrated
IBM is compared with the standard mean-field logistic equation (Murray, 2002).
While both models can accurately predict N(t), the logistic equation provides
no information about the spatial structure in the experimental data. Finally, in

Section 3.4, we conclude and summarise opportunities for further research.

3.2 Methods

3.2.1 Experimental methods

We perform a series of proliferation assays using the IncuCyte ZOOM™ live cell
imaging system (Essen BioScience, MI USA) (Jin et al., 2017). All experiments
are performed using the PC-3 prostate cancer cell line (Kaighn et al., 1979). These
cells, originally purchased from American Type Culture Collection (Manassas, VA,
USA), are a gift from Lisa Chopin (April, 2016). The cell line is used according to
the National Health and Medical Research Council (NHMRC) National statement
on ethical conduct in human research with ethics approval for the QUT Human
Research Ethics Committee (QUT HREC 59644, Chopin). Cells are propagated
in RPMI 1640 medium (Life Technologies, Australia) with 10% foetal calf serum
(Sigma-Aldrich, Australia), 100 U/mL penicillin, and 100 pg/mL streptomycin
(Life Technologies), in plastic tissue culture flasks (Corning Life Sciences, Asia
Pacific). Cells are cultured in 5% COg and 95% air in a Panasonic incubator
(VWR International) at 37 °C. Cells are regularly screened for Mycoplasma.

Approximately 8,000 cells are distributed in the wells of the tissue culture
plate as uniformly as possible. After seeding, cells are grown overnight to allow for
attachment and some subsequent growth. The plate is placed into the IncuCyte
ZOOM™ apparatus, and images showing a field of view of size 1440 x 1440 pm
are recorded every 12 hours for a total duration of 48 hours. An example of a set
of experimental images is shown in Figure 3.1(a)-(c¢), while images from the other
three data sets are provided in Appendix 3.A, Figure 3.8.

Experimental images are recorded at five time points, at intervals of 12 hours,
giving ¢’ = 0,12,24,36 and 48 hours. Comparing the evolution of N (') in Fig-

ure 3.2(a) shows the number of cells in some experiments do not increase appre-
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Figure 3.2: Summary statistics for experimental data sets 1, 2 and 3, shown in
blue, red and green, respectively. (a) Population size, N(¢). (b) Pair correlation,
P(t). Unprocessed experimental data is given in Appendix 3.A.

ciably during the first 12 hours. This suggests that the cells may experience a
settling phase, so some time is required for the cells to commence normal prolif-
eration (Tremel et al., 2009; Jin et al., 2017). Therefore, we treat the image at
t’ = 12 hours as the first image after the settling phase, and shift time, ¢t = — 12
hours. Therefore, excluding the first experimental image at ¢’ = 0 hours, we have
images recorded at four time points after the settling time, ¢t = 0,12,24 and 36

hours.

3.2.2 Mathematical model

Individual based model

We consider an IBM describing the proliferation and movement of individual cells
(Binny et al., 2016a,b). Since cell death is not observed in the experiments, the
IBM does not include agent death. The IBM allows the net proliferation rate
and the net movement rate of agents to depend on the spatial arrangement of
other agents. To be consistent with previous experimental observations, the IBM
incorporates a biased movement mechanism so that agents tend to move away
from nearby crowded regions (Cai et al., 2007). We use the IBM to describe the
dynamics of a population of agents on a square domain of length L = 1440 pym to
match the field-of-view of the experimental data (Figure 3.1(a)-(c)). Agents in the

model are treated as a series of points which we may interpret as a population of
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uniformly-sized discs with diameter o = 24 um (Appendix 3.B). Each agent has
location x,, = (x1,x2), for n = 1,..., N(t). Since the field-of-view of each image is
much smaller than the size of the well in the tissue culture plate, we apply periodic

boundary conditions (Jin et al., 2017).

Proliferation and movement events occur according to a Poisson process over
time (Binny et al., 2016b). The nth agent is associated with neighbourhood-
dependent rates, P,, > 0 and M,, > 0, of proliferation and movement, respectively.
These rates consist of intrinsic components, p > 0 and m > 0, respectively. Crowd-
ing effects are introduced by reducing the intrinsic rates by a contribution from
other neighbouring agents. These crowding effects are calculated using a kernel,

w(')(r), that depends on the separation distance, » > 0, so that

N(t)

P, =max | 0,p — Z w®(r) |, (3.1)
N(t)

M,, = max [ 0,m — Z w™(r) ] . (3.2)

Following Binny et al. (2016b), we specify the kernels to be Gaussian with width

corresponding to the cell diameter, o, giving

7,,2
w(P)(r) = "}/p exp <_M> ; (33)

w™ (1) = ~,, exp (—2’"022> . (3.4)

Here, v, is the value of w((0) and 7, is the value of w(™ (0). These parameters
provide a measure of the strength of crowding effects on agent proliferation and
movement, respectively. The kernels, w® (1) and w(™)(r), ensure that the inter-
actions between pairs of agents separated by more than roughly 2-3 cell diameters
lead to a negligible contribution. For computational efficiency, we truncate the
Gaussian kernels so that w® (r) = w(™(r) = 0, for r > 30 (Law et al., 2003).

To reduce the number of unknown parameters in the IBM, we specify v, and 7,
by invoking an assumption about the maximum packing density of the population.
Here we suppose that the net proliferation and net movement rates reduce to zero
when the agents are packed at the maximum possible density, which is a hexagonal

packing (Figure 2.3(a)). For interactions felt between the nearest neighbours only
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(b)

Figure 3.3: (a) Hexagonal packing of uniformly sized discs. The focal agent (red)
is surrounding by six nearest neighbouring agents (blue), and twelve next nearest
neighbouring agents (green). (b) Hexagonal packing around a focal agent (red)
showing the six nearest neighbours only.

(Figure 2.3(b)), we obtain

P 1
Tp = €XP (§> , (3.5)

1
SWE 50

which effectively specifies a relationship between v, and p, and between ,, and
m. Note that this assumption does not preclude a formation of agents in which
some pairs have a separation of less than ¢ and densities greater than hexagonal
packing, which can occur by chance.

When an agent at x,, proliferates, the location of the daughter agent is selected
by sampling from a bivariate normal distribution with mean x,, and variance o2
(Binny et al., 2016b). Since mesenchymal cells in two-dimensional cell culture
are known to move with a directional movement bias away from regions of high
density (Cai et al., 2007), we allow the model to incorporate a bias so that the
preferred direction of movement is in the direction of decreasing agent density. For
simplicity, the distance that each agent steps is taken to be a constant, equal to
the cell diameter, o (Plank and Simpson, 2012).

To choose the movement direction, we use a crowding surface, B(x), to measure

the local crowdedness at location x, given by

N(t)

B(x) = Zw(b)(llx—xz'\l)- (3.7)
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Figure 3.4: (a) Example distribution of agents on a 1 x 1 periodic domain. (b)
Level curves of the corresponding crowding surface, B(x), for this arrangement of
agents. The arrows show the preferred direction of movement, B,,. To illustrate
how the direction of movement is chosen, (c) shows the probability density of the
von Mises distribution for the red and green agents highlighted in (a) and (b). The
preferred direction, arg(B,,), is shown as dotted vertical lines for both agents. The
red agent is in a crowded region so ||B,|| is large, meaning that the agent is likely
to move in the preferred direction arg(B,). The green agent is in a low density
region and ||B,|| is small, meaning that the bias is very weak and the agent’s
direction of movement is almost uniformly distributed. To illustrate the effects of
the crowding surface as clearly as possible, we set 7, = 1, 0 = 0.1, L = 1 in this
schematic figure to draw attention to the gradient of the crowding surface.

The crowding surface is the sum of contributions from every agent, given by a
bias kernel, w®) (). The contributions depend on the distance between x and the
location of the ith agent, x;, given by r = ||x — x;||. Again, we choose w(® to be
Gaussian, with width equal to the cell diameter, and repulsive strength, v, > 0,
so that

202

) = e - ). (38)

where 7, is value of w(®(0), and has dimensions of length. Note that B(x) is
an increasing function of local density, and approaches zero as the local density
decreases. A typical crowding surface is shown in Figure 3.4(b) for the arrangement
of agents in Figure 3.4(a).

To determine the direction of movement we use the shape of B(x) to specify

the bias, or preferred direction, of agent n, B,,, given by
B, = —VB(xy,), (3.9)

which gives the magnitude and direction of steepest descent. Results in Fig-

ure 3.4(b) show B,, for the arrangement of agents in Figure 3.4(a). To deter-
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mine the direction of movement, we consider the magnitude and direction of
B,, and sample the actual movement direction from a von Mises distribution,
von Mises(arg(B,,), ||B,||) (Binny et al., 2016b; Forbes et al., 2011). Therefore,
agents are always most likely to move in the direction of B,,, however as | B, | — 0,
the preferred direction becomes uniformly distributed.

To illustrate how the direction of movement is chosen, we show, in Figure 3.4(h),
the bias vector for each agent, B,,. Note that B,, does not specify the movement
step length, and the direction of B,, does not necessarily specify the actual direc-
tion. Rather, arg(B,,) specifies the preferred direction. To illustrate this property,
we highlight two agents in Figure 3.4(a). The red agent is located on a relatively
steep part of the crowding surface, so ||B,,|| is large. The green agent is located on
a relatively flat part of the crowding surface, so ||B,,|| is close to zero. Figure 3.4(c)
shows the von Mises distributions for the red and green agent. Comparing these
movement distributions confirms that the crowded red agent is more likely to move
in the direction of B,. The bias is weak for the green agent, so the direction of
movement is almost uniformly distributed since ||B,,|| is smaller.

Under the assumption that proliferation and movement events are exponen-
tially distributed, we follow Baker and Simpson (2010) and apply a modified Gille-
spie algorithm (Gillespie, 1977) to implement the IBM. To initialise each simulation
we specify the initial number and initial location of agents to match to the exper-
imental images at ¢ = 0 hours (Appendix 3.A) for experimental data sets 1, 2, 3
and 4. In all simulations we set ¢ = 24 ym and L = 1440 pym. The remaining
three parameters, m, p and =, are varied with the aim of producing posterior
distributions using a Bayesian framework.

If v, = v = 0, and the variance of the dispersal distribution is large, the IBM
corresponds to logistic growth (Binny et al., 2016b; Browning et al., 2017). Under
these simplified conditions, a uniformly distributed initial population of agents
will grow, at rate p, to eventually reach a uniformly distributed maximum average
density of p/ (27r'ypa£). We do not consider this case here as our initial distribution
of cells in the experiments is clustered, and so the logistic growth model is, strictly

speaking, not valid (Binny et al., 2016b).

Summary statistics

To match the IBM simulations with the experimental data we use properties that
are related to the first two spatial moments (Law et al., 2003). The first spatial
moment, the average density, is characterised by the number of agents in the pop-

ulation, N (t). The second spatial moment characterises how agents are spatially
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distributed, and is often reported in terms of a pair correlation function (Binny
et al., 2016a,b; Law et al.; 2003). In this work we consider the pair correlation

within a distance of ér, given by
N(t) N()
L? Z Z ]I||x,~ij~H§6r
i=1 j=1
J#i
N(t)2mor? ’

P(t) = (3.10)
where I is an indicator function so that the double sum in Equation (3.10) gives
twice the number of distinct pairs within a distance dr, which we set to be 50 pm.
Therefore, P(t) is the ratio of the number of pairs of agents, separated by a distance
of less than 50 pum, to the expected number of pairs of agents separated by a
distance of less than 50 pm, if the agents were randomly distributed. This means
that, P(t) = 1 corresponds to randomly placed agents; P(t) > 1 corresponds to
a locally clustered distribution; and, P(t) < 1 corresponds to a locally segregated

distribution.

3.2.3 Approximate Bayesian computation

We consider m, p and , as random variables, and the uncertainty in these param-
eters is updated using observed data (Collis et al., 2017; Tanaka et al., 2006). To
keep the description of the inference algorithm succinct, we refer to the unknown
parameters as @ = (m, p, ).

In the absence of any experimental observations, information about @ is char-
acterised by specified prior distributions. The prior distributions are chosen to be
uniform on an interval that is wide enough to encompass previous estimates of
m and p (Johnston et al., 2015). To characterise the prior for 73, we note that
this parameter is related to a length scale over which bias interactions are felt.
Preliminary results (not shown) use a prior in the interval 0 < ~, < 20 pm and
suggest that a narrow prior in the interval 0 < ~, < 10 pm is appropriate. In

summary, our prior distributions are uniform and independent, given by

m(m) = U(0,10) /hour, (3.11)
7(p) = U(0,0.1) /hour, (3.12)
() = U(0, 10) pm. (3.13)

We always summarise data, X, with a lower-dimensional summary statistic, S.

Data and summary statistics from the experimental images are denoted X,ps and



Inferring parameters for a lattice-free model using experimental data 51

Sobs, respectively. Similarly, data and summary statistics from IBM simulations
are denoted Xy, and Sgm, respectively. Information from the prior is updated by
the likelihood of the observations, 7(Sops|@®), to produce posterior distributions,
m(O|Seps). We employ the most fundamental ABC algorithm, known as ABC
rejection (Liepe et al., 2014; Tanaka et al., 2006), to sample from the approxi-
mate posterior distribution. The approximate posterior distributions are denoted
Tu (O] Sobs)-

In this chapter we use a summary statistic that is a combination of N(¢) and
P(t) at equally spaced intervals of duration 12 hours. A discrepancy measure,

p(Sobs, Ssim ), is used to assess the closeness of Sgps and Sgim,

3 . . . .
o [Nsim(12.7) - Nobs(12])]2 [Psim(12]> — Pobs(12])]2
p(Sobm Ssim) = Z N 9712 97)2
= obs(1 ]) 73OIDS(1 ])
(3.14)
Algorithm 3.1 is used to obtain 10%u samples, {(—)i}}g}l“, from the approximate

joint posterior distribution, m,(®|Sons), for each data set. Here, u < 1 is the

accepted proportion of samples.

Algorithm 3.1 ABC rejection sampling algorithm to obtain 105u samples from
the approximate posterior distribution, m,(®|Sops).

1: Set 0 =24 pm, L = 1440 pm, and set x, to match experimental data X,ps at
t=0.

2: Draw parameter samples from the prior ®; ~ 7(©).

3: Simulate cell proliferation assay with &; and ¢ < 36 hours.

4: Record summary statistic Sgim; = {Nsim(125), P(12) ?:1’ where j is an index
that denotes the three observation time points, t = 12,24 and 36 hours.

: Compute the discrepancy measure ¢; = p(Sobs, Ssim, ), given in Equation (3.14).

. Repeat steps 2-5 until 10° samples {©;, ez}llfl are simulated.

: Order {@i,ei}gﬁl by €; such that e; < ey < ....

: Retain the first 1% (u = 0.01) of prior samples ©;, as posterior samples,
(CH

o N o O

To present and perform calculations with posterior samples, we use a kernel
density estimate to form approximate marginal posterior distributions, for each
parameter, and each data set using the ksdensity function in MATLAB (Math-
works, 2017). This is done by treating the components of the joint posterior sam-
ples as samples from each marginal distribution. The ksdensity function gives
a discrete distribution for each marginal posterior, with grid spacing Am = 0.01,
Ap = 0.0001 and A~ = 0.01, for m, p and -3, respectively. This discretisation
ensures that the marginal posterior densities are approximated using 1000 equally

spaced values across the prior support.
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Generating and sampling from the combined posterior distribution

The marginal posterior distributions for each parameter are similar for each in-
dependent experimental data set. Therefore, we combine the marginal posterior
distributions for each independent experimental data set to obtain a combined
posterior distribution. If the approximate marginal posterior distribution for m is
Wu(m\S[()ﬁl), where S(()E)S is the summary statistic from the kth experimental data

set, then the combined marginal posterior distribution for m is

3
ru(ml{SSo0) o< T mu(mlISE)). (3.15)
k=1

Combined marginal posterior distributions for p and -y, are calculated similarly.
To test the predictive power of the calibrated IBM, we sample parameters from
the combined joint posterior distribution by sampling each parameter separately
from the corresponding combined marginal posterior distributions. This approach
amounts to assuming that m, p and ~, are independent random variables, and we
will make a comment on the validity of this assumption later. For m, we generate a
discrete combined posterior distribution, m, (m/|{ sk Obs 3_,), using the kernel-density
estimate for each data set and Equation (3.15). This gives a discrete distribution
with bin width Am = 0.01, where each bin is denoted by an index, [ = 0,1, ..., and
has probability density Wu(lAm\{Sgg)s}izl). If m is uniformly distributed within
each bin, we apply Algorithm 3.2 to obtain 10* samples. Repeating this process

in a similar way gives 10* samples for both p and ~;.

Algorithm 3.2 Rejection sampling algorithm for sampling from the combined
approximate posterior distribution, 7ru(m|{S(()bl b))

1: Set Am = 0.01, mmax = 10, which is the upper limit of the prior support.
2: Set maximum density v = max wu(m|{50ﬁl 5 )

3: Sample proposal bin index [, from {0, ..., mpax/Am — 1}.

4: Sample 1 ~ U(0,v).

5 If ry < mu(lAm; {Solg)s 3_1), accept Ly, else repeat steps 3-5.

6

7

: Sample the location Wlthln the chosen bin, m; ~ U(l.Am, (I, + 1)Am).
. Repeat steps 3-6 until 10* samples, {mi}z-lfl, are obtained.

Predicting experimental data set 4 using the combined posterior distribution

We sample 10* parameter sets, { @i}ilfl, from the combined posterior distribution,

Tu(O{S, bs}k 1)- Using these samples, we simulate the IBM initialised with the
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actual initial arrangement of cells in data set 4 at t = 0. For each parameter com-
bination Sgi, is recorded at 12 hour intervals, and used to construct distributions
of N(t) and P(t). These distributions are represented as box plots and compared

with summary statistics from experimental data set 4.

3.3 Results and discussion

To qualitatively illustrate the importance of spatial structure we show, in rows 2-4
of Figure 3.1, snapshots from the IBM with different choices of parameters. In
each case the IBM simulations evolve from the initial condition specified in Fig-
ure 3.1(a). Results in the right-most column of Figure 3.1 compare the evolution
of N(t) and we see that the parameter combination in the second row underesti-
mates N (t), the parameter combination in the fourth row overestimates N (), and
the parameter combination in the third row produces a reasonable match to the
experimental data. A visual comparison of the spatial arrangement of agents in
rows 2-4 of Figure 3.1 suggests that these different parameter combinations may
lead to different spatial structures. This illustration of how the IBM results vary
with the choice of parameters motivates us to use ABC rejection to estimate the
joint distribution of the parameters. To do this we will use summary statistics
from three identically prepared, independent sets of experiments. The summary
statistics for these experiments, N(t) and P(t), are summarised in Figure 3.2, and
tabulated in Appendix 3.B.

The approximate marginal posterior distributions for m, p and ~; are shown
in Figure 3.5(a)-(c), respectively, for experimental data sets 1, 2 and 3. There
are several points of interest to note. In each case, the posterior support is well
within the interior of the prior support, suggesting that our choice of priors is
appropriate. An interesting feature of the marginal posterior distributions for all
parameters is that there is significant overlap for each independent experimental
data set. There is some variation in the mode between experimental data sets,
for each parameter, which is expected under the assumption that cell proliferation
assays are stochastic processes.

Since the marginal posterior distributions for each experimental data set over-
lap, we produce a combined marginal posterior distribution for each parameter
using Equation (3.15). The combined marginal posterior distributions are super-
imposed, and the mode is given by 0.56 /hour, 0.041 /hour and 4.0 pm for m,
p and 7, respectively. These estimates of p and m give a cell doubling time of

In(2)/p = 17 hours, and a cell diffusivity of approximately 320 ym?/hour, which
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Figure 3.5: (a)-(c) Kernel-density estimates of the approximate marginal posterior
distributions for each data set, for parameters m, p and -, respectively, with
u = 0.01. The combined posterior distribution (black), given by Equation (3.15),
is superimposed. The modes of the combined marginal posterior distributions are
m = 0.56 /hour, p = 0.041 /hour and =, = 4.0 pm. All distributions are scaled so
that the area under the curve is unity.

are typical values for PC-3 cells at low density (Johnston et al., 2015; Jin et al.,
2016b). All results in the main chapter correspond to retaining the top 1% of
samples (u = 0.01) and additional results (Appendix 3.C) confirm that the results
are relatively insensitive to this choice.

To assess the predictive power of the calibrated IBM, we attempt to predict
the time evolution of a separate, independently collected data set, experimental
data set 4, as shown in Figure 3.6(a)-(d). We use the mode of the combined
posterior distribution and the initial arrangement of agents in experimental data
set 4 to produce a typical prediction in Figure 3.6(e)-(h). Visual comparison of
the experimental data and the IBM prediction suggests that the IBM predicts a
similar number of agents, and a similar spatial structure, with some clustering
present. To quantify our results, we compare the evolution of N(t) in Figure 3.6(i)
which reveals an excellent match. Furthermore, we predict the evolution of P(t) in
Figure 3.6(j) confirming similar trends. The quality of match between the predicted
distribution of N(t) and P(t) supports our assumption that m, p and v, can be
treated as independent random variables as posited in Section 3.2.3. Nonetheless,
the predicted decay in P(t) is not as rapid as in the experimental data. There are
many potential explanations for this, including the choice of summary statistics,
and assumption relating p and v,, and m and ~,,.

In addition to examining a single, typical realisation of the calibrated model,
we now examine a suite of realisations of the calibrated IBM, and compare re-
sults with experimental data set 4. The suite of IBM realisations is obtained by

sampling from the joint posterior distribution. Results in Figure 3.7(a) compare
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Figure 3.6: (a)-(d) Experimental images for data set 4. The position of each cell
is identified with a yellow marker. The field of view is a square of length 1440 pm.
(e)-(h) One realisation of the IBM with parameters corresponding to the posterior
mode: m = 0.56 /hour, p = 0.041 /hour and v, = 4.0 um, with the same initial
arrangement of agents as in (a). (i) N(¢) for the experimental data (purple) and

the IBM prediction (dashed black). (j) P(t) for the experimental data (purple)
and the IBM prediction (dashed black).
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N(t) from experimental data set 4 with distributions of N(t) from the suite of
IBM simulations, showing an excellent match. The spread of the distributions of
N(t) increases with time, which is expected. Results in Figure 3.7(b) compare the
evolution of P(t) from experimental data set 4 with distributions of P(¢) from the
suite of IBM simulations, showing the predicted distributions of P(t) overlap with
the experimental data. Overall, the quality of the match between the prediction
and the experimental data is high, as the prediction captures both qualitative and
quantitative features of the data. To illustrate the importance of considering spa-
tial structure in the IBM, we also calibrate the solution of the classical mean-field

logistic equation (Murray, 2002) to experimental data sets 1, 2 and 3. The logistic

d](gt) — AN() <1 - gn(fi) , (3.16)

equation is given by

where A is the cell proliferation rate and Npx is the maximum number of agents
(Murray, 2002; Jin et al., 2017). Following a similar procedure (Appendix 3.D), we
use ABC rejection to form combined posterior distributions of A and Nyax. The
modes of the combined posterior distributions are A = 0.036/hour and Nyax =
4017. This estimate leads to a doubling time of approximately 19 hours, which
is slightly longer than the doubling time predicted using the calibrated IBM. We
then examine a suite of solutions to Equation (3.16), where we sample from the
joint posterior distribution for A and Npax. The predicted distribution of N (t)
is compared with experimental data set 4 in Figure 3.7(c), revealing an excellent
match. However, implicit in the logistic equation is the mean-field assumption,
which amounts to ignoring spatial structure. Therefore, the logistic equation ef-
fectively predicts P(t) = 1 for all ¢ > 0, which clearly is unable to match the
spatial structure inherent in the experiments, as demonstrated in Figure 3.7(d).
Overall, both calibrated models are able to predict the evolution of N(t) over 36
hours. However, the logistic model is unable to describe, or predict, any informa-
tion relating to spatial structure in the arrangement of cells. The differences in the
way that the logistic model and the IBM treat interactions between individuals
could explain why the calibration process leads to different estimates of the low
density cell proliferation rates, A and p. These differences affirm that the inter-
actions between individuals at different spatial scales appear to be important for

our experimental data.
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Figure 3.7: (a)-(b) Predictive distributions for N(t) and P(t), respectively, gen-
erated using the IBM. 10 parameter samples were taken from the combined pos-
terior distribution, and a model realisation produced for each sample, initiated as
in Figure 3.6(a). Box plots show the distribution of N(¢) and P(t) across these
realisations in (a) and (b), respectively. (c)-(d) Show the equivalent predictive dis-
tributions as box plots, using the same procedure for the mean-field logistic growth
model. The procedure and kernel-density estimates of the marginal distributions
for the mean-field logistic model are outlined in Appendix 3.D.
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3.4 Conclusion

In this work we explore how to connect a spatially continuous IBM of cell migration
and cell proliferation to novel data from a cell proliferation assay. Previous work
parameterising IBM models of cell migration and cell proliferation to experimental
data using ABC have been restricted to lattice-based IBMs (Johnston et al., 2014).
This is partly because ABC methods require large numbers of IBM simulations,
and lattice-based IBMs are far less computationally expensive than lattice-free
IBMs (Plank and Simpson, 2012). We find it is preferable to work with a lattice-
free IBM when dealing with experimental data as a lattice-based IBM requires
approximations when mapping the distribution of cells from experimental images
to a lattice (Johnston et al., 2014, 2016). This mapping can be problematic. For
example, if multiple cells in an experimental image are equally close to one lattice
site, ad hoc assumptions have to be introduced about how to arrange those cells on
the lattice without any overlap. These issues are circumvented using a lattice-free
method.

To help overcome the computational cost of using ABC with a lattice-free IBM,
we introduce several realistic, simplifying assumptions. The IBM originally pre-
sented by Binny et al. (2016b) involves 12 free parameters, which is a relatively
large number for standard inference techniques. The model is simplified by noting
that our experiments do not involve cell death, and specifying the width of the in-
teraction kernels to be constant, given by the cell diameter. Another simplification
is given by assuming that crowding effects reduce the proliferation and movement
rates to zero when the agents are packed at the maximum hexagonal packing den-
sity. This leads to a simplified model with three free parameters: m, p and ~,.
Using ABC rejection, we arrive at posterior distributions for these parameters for
three independent experimental data sets. The marginal posterior distributions
for the three parameters are similar, leading us to combine the marginal posterior
distributions. The mode of the combined posterior distributions for m and p are
consistent with previous parameter estimates (Johnston et al., 2015) and the mode
for =y, is consistent with previous observations that mesenchymal cells in this kind
of two-dimensional experiment tend to move away from regions of high cell density
(Cai et al., 2007).

In the field of mathematical biology, questions about how much detail to in-
clude in a mathematical model, and what kind of mathematical model is preferable
for understanding a particular biological process are often settled in an ad hoc man-
ner, as discussed by (Maclaren et al., 2015). Our approach in this work is to use a

mathematical model that incorporates just the key mechanisms, with an appropri-
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ate number of unknown parameters. Other approaches are possible, such as using
much more complicated mathematical models that describe additional mechanisms
such as: (i) detailed information about the cell cycle in individual cells (Fletcher
et al., 2012); (ii) concepts of leader and follower cells (Kabla, 2012); (iii) explicitly
coupling cell migration and cell proliferation to the availability of nutrients and
growth factors (Tang et al., 2014); or (iv) including mechanical forces between cells
(Stichel et al., 2017). However, we do not include these kinds of detailed mecha-
nisms because our experimental data does not suggest that these mechanisms are
relevant to our situation. Furthermore, it is not always clear that using a more
complicated mathematical model, with additional mechanisms and additional un-
known parameters, necessarily leads to improved biological insight. In fact, simply
incorporating additional mechanisms and parameters into the mathematical model
often leads to a situation where multiple parameter combinations lead to equiva-
lent predictions which limits the usefulness of the mathematical model (Simpson
et al., 2006). In this study, our approach is to be guided by experimental data
and our ability to infer the parameters in a mathematical model based on realistic
amounts of experimental data (Maclaren et al., 2015). In particular we use three
experimental data sets to calibrate the IBM, and an additional data set to sepa-
rately examine the predictive capability of the calibrated IBM. We find that the
process of calibrating the IBM leads to well defined posterior distributions of the
model parameters, and that the calibrated IBM produces a reasonable match to
the experimental data. The process of calibrating the IBM, and then separately
testing the predictive capability of the calibrated IBM, provides some confidence

that the level of model complexity is appropriate for our purposes.

An interesting feature of our approach is that the ABC marginal posterior dis-
tributions for each parameter overlap for each independent experimental data set.
This is reassuring as it suggests that the same IBM mechanism matches the three
independent experimental data sets using similar parameters. Another approach
would be to use ABC to parameterise the IBM by matching all the experimental
data sets simultaneously. Although this alternative approach is valid, it does not
allow us to examine whether the parameter estimates are consistent across the
three independent experiments. Additional confidence in the calibrated IBM is
provided by predicting the evolution of a fourth independent experimental data
set by performing IBM simulations with parameters sampled from the combined
marginal posterior distributions.

An interesting feature of all experimental data at early time, when the cell
density is relatively low, is that the pair correlation measure suggests that the cells

are clustered at short intervals, and that this clustering becomes less pronounced
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with time. This observation is very different to the way that previous theoretical
studies have viewed the role of spatial structure. For example, previous simulation-
based studies assume that some initial random spatial arrangement of cells can
lead to clustering at later times (Baker and Simpson, 2010). In contrast, our
experimental data suggests it could be more realistic to consider that the spatial
structure is imposed by the initial arrangement of cells. Moreover, since all of our
experimental data involves some degree of spatial clustering, our work highlights
the importance of using appropriate models to provide a realistic representation
of key phenomena. Almost all continuum models of collective behaviour in cell
populations take the form of ordinary differential equations and partial differential
equations that implicitly invoke a mean-field assumption (Tremel et al., 2009;
Sengers et al., 2007; Maini et al., 2004a; Sarapata and de Pillis, 2014; Sherratt
and Murray, 1990). Such assumptions ignore the role of spatial structure. While
pair-wise models that avoid mean-field assumptions are routine in some fields, such
as disease spreading (Sharkey et al., 2006; Sharkey, 2008) and ecology (Law et al.,
2003), models that explicitly account for spatial structure are far less common for
collective cell behaviour.

Using our parameter estimates, the continuum spatial moment description
could be used to interpret experimental data sets with larger numbers of cells
(Binny et al., 2016b), such as experimental images showing a wider field-of-view,
or experiments initiated with a higher density of cells. Our approach to estimate
the parameters in the model is to work with the IBM since this allows us more
flexibility in connecting with the experimental data, such as choosing the initial
locations of the agents in the IBM to precisely match the initial locations of cells
in the experimental images.

There are many ways that our study could be extended. For example, here
we choose a summary statistic encoding information about the first two spatial
moments. However, other summary statistics may provide different insight, and
it could be of interest to explore the effect of this choice. For example, here we
describe the spatial structure over a relatively short spatial interval, approximately
20. It could be of interest to repeat our analysis with a wider interval, however
this would incur additional computational costs. Another approach to extend our
work would be to repeat the inference procedure without making any assumptions
relating p and 7, and m and 7y,,. Such an approach would be more computationally
expensive and probably require additional experimental data. Therefore, we leave

these topics for future consideration.
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3.A  Experimental data

We conduct all analysis using four independently generated experimental data sets.
To analyse the data we determine the location of the centre of each cell in each
experimental image using ImageJ (Schneider et al., 2012). To provide a visual
check on the ImageJ results, we superimpose the experimental images and the
estimated cell locations in Figure 3.8. In each image the field of view is a square
of length 1440 pm.

Using the (1, x2) coordinate data, we calculate the size of the population, N(t),
and the pair correlation locally in the interval [0,50] pm, P(t). These summary
statistics are given in Table 3.1.

N(—12) N(0) N(12) N(24) N(36)
Data set 1 340 415 618 883 1264

Data set 2 476 501 634 941 1289
Data set 3 452 475 675 997 1336
Data set 4 393 482 690 953 1333

P(—12) P(0) P(12) P(24) P(36)
Dataset 1 || 2.3342 2.3332 1.7075 1.3389 1.0817
Data set 2 || 1.9343 1.9481 1.6158 1.3572 1.0465
Data set 3 || 1.6335 1.7389 1.4904 1.2239 1.0535
Data set 4 || 2.7009 1.6751 1.3631 1.0872 0.9539

Table 3.1: Summary statistics. N(t¢) is the population size at time ¢t. P(t) is the
pair correlation in the interval [0, 50] pm at time ¢.
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Figure 3.8: Images of each data set at 12 hour intervals. Yellow markers indicate
the approximate location of each cell as determined by ImageJ.
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Figure 3.9: (a) A typical experimental image taken from data set 1 at ¢ = 12 hours.
(b) Shows how the perimeter of randomly chosen cells is traced to determine the
area of each cell, and the equivalent cell diameter. (c) Distribution of cell diameter
estimates using measurements of 58 cells from data set 1 at t = 12. The mean cell
diameter is ¢ = 24 pm.

3.B  Mean cell diameter

Here we present two independent methods to estimate the mean cell diameter.
First, we make direct measurements of the area of a reasonable number of randomly
chosen cells. Second, we examine the pair correlation function over a range of
distances. Both approaches suggest that the mean cell diameter is approximately
o = 24 pm. This estimate is consistent with previous estimates (Jin et al., 2016b).

We approximate the shape and size of the cells by treating them as a population
of uniformly sized discs. We follow the procedure of (Treloar et al., 2014) to
approximate the average cell diameter. The area, A, enclosed by the outline of
a number of randomly chosen cells is converted into an equivalent diameter, by
assuming that, on average, the cell is circular, giving d = 2\/A_/77. Results in
Figure 3.9(c) show the distribution of cell diameters from 58 randomly chosen
cells. On average, this gives the average cell diameter to be ¢ = 24 um.

In addition to directly measuring the area of certain cells, another way to
estimate the average cell diameter is to calculate the pair correlation function over
a larger range of distances. The pair correlation function, C(r,t), describes the
ratio of pairs of cells, separated by distance of r, to the expected number of pairs of
cells separated by the same distance if the population were distributed randomly.

The pair correlation function for N(t) objects distributed in a square domain of
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Figure 3.10: Pair correlation function, C(r,t), calculated for small intervals of
width dr = 2 pm at (a) ¢ = 0 hours and (b) ¢t = 36 hours.

length L is given by (Binny et al., 2016b)
N(t) N(t)
L? Z Z Hr§||xifo‘H<r+6r
i=1 j=1
J#i
N(t)2mor(2r +or)

C(r,t) = (3.17)
where I is an indicator function so that the double sum gives the number of pairs
within a sufficiently thin annulus, [r,7 + dr). If C(r,t) > 1, we have a greater
number of pairs at distance r than we would expect if the population is distributed
randomly, and we refer to this distribution as being clustered. However, if C < 1,
we have a smaller number of pairs at distance r than we would expect if the
population is distributed randomly, and we refer to this distribution as being

segregated.

We calculate the pair correlation function with dr = 2 ym. Results in Fig-
ure 3.10(a) show that C(r,0) is a maximum at approximately r = 24 pm, meaning
that pairs of cells are most likely to be separated by a distance of 24 pm. This is
consistent with the diameter of cells being approximately 24 pm. Results in Fig-
ure 3.10(b) show that there is a change in the pair correlation function at r =~ 24
pm. Cells are approximately randomly distributed at distances r > 24 pum, and
there is a lack of pairs of cells at shorter distances, » < 24 pm. Again, this is

consistent with our estimate of the cell diameter being approximately 24 pm.
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Figure 3.11: (a)-(c) show the accepted proposals, or 10* samples from the approx-
imate posterior distribution 7, (®) with v = 0.01, for each data set 1, 2 and 3 in
(a)-(c), respectively. (e)-(g) Corresponding accepted proposals for v = 0.02.

3.C Posterior distributions

In the main part of the chapter, we show a series of ABC marginal posterior dis-
tributions constructed using the top 1% of samples, or u = 0.01. In addition to
showing the approximate marginal distributions, here we also show the joint poste-
rior distributions in Figure 3.11(a)-(c) for data sets 1-3, respectively. Furthermore,
the joint posterior distributions in Figure 3.11(d)-(f), for data set 1-3, respectively,
are given for the top 2% samples, or u = 0.02. Visually comparing the joint dis-
tributions in Figure 3.11(a)-(c) with the joint distributions in Figure 3.11(d)-(f)
suggests that the joint distributions have a similar shape, regardless of these choices
of u. Furthermore, the mode of the approximate continuous joint posterior distri-
bution is (0.56,0.041,4.0) for u = 0.01, whereas the mode is (0.59,0.040, 3.8) for
u = 0.02. This measure provides a quantitative confirmation that the key features
of the posterior distributions are relatively insensitive to these choices of u. Results

in Figure 3.12 show the marginal distributions when u = 0.02.
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Figure 3.12: (a)-(c) Kernel-density estimates of the approximate marginal posterior
distributions for each data set, for parameters m, p and -, respectively, with
u = 0.01. The combined posterior distribution (black), given by Equation (3.15),
is superimposed. The modes of the combined marginal posterior distributions are
m = 0.59 /hour, p = 0.040 /hour and =, = 3.8 um. All distributions are scaled so
that the area under the curve is unity.

3.D Mean-field logistic model

In the main chapter, we compare the predictive performance of the IBM to that

of the standard mean-field continuum logistic model. The logistic model is given

by
dzzt(t) AN (1 _ x:i) 7 (3.18)

where A > 0 is the proliferation rate, and Npyayx is the carrying capacity.

We implement an ABC rejection algorithm, similar to Algorithm 3.1 in the
main chapter, to estimate A\ and Npy.x. However, when we infer the parameters
for the logistic model we use a slightly different discrepancy measure, p’, that only
includes N(t), so that

3

pl(Sobs; Ssim) = Z[N51m(122) - Nobs(12i)]27 (319)
=1

where S = {N(12),N(24),N(36)}. To apply ABC rejection we set the prior
distributions to be uniform and independent, given by

m(A) = U(0,0.1) /hour, (3.20)
7(Nmax) = U(1000, 5000) agents. (3.21)

Kernel-density estimates of the marginal posterior distributions for each pa-

rameter are shown in Figure 3.13, and we note the mode of the combined marginal



Chapter 3: Supplementary material 67

(a) (b)

400,

X
[
o

Data set 1
Data set 2
Data set 3
Combined

(o))
T

w
o
o

Posterior Density
N
o

‘ S ‘

Posterior Density
N

=
o
o
N
T

% 0.0 002 003 004 005 1000 2000 3000 4000 5000 6000
)\(/hour) Nmax

Figure 3.13: Kernel-density estimates of the marginal posterior distributions are
shown for each data set, for parameters in the continuum logistic model, Equa-
tion (3.18), A and Npax in (a) and (b) respectively. The combined posterior
distribution (black) is the product of the marginal distributions. The combined
posterior mode gives a point estimate of A = 0.0357 /hour and Ny, = 4017. All
marginal distributions are scaled to an area of unity.

posteriors gives point estimates of A = 0.0357 /hour and Np,ax = 4017.






Chapter 4

Conclusion

In this thesis, we apply mathematical modelling techniques to describe and inter-
pret cell proliferation assays. In particular, we consider stochastic individual based
models (IBMs) to describe the behaviour of individual cells in proliferation assays,
as well as capture experimental variability. We take a Bayesian approach to infer-
ence, and treat unknown parameters, and experimental results, as random vari-
ables. As the models considered in this thesis have intractable likelihoods, we apply
approximate Bayesian computation (ABC) (Tanaka et al., 2006; Sunnaker et al.,
2013; Liepe et al., 2014) to produce posterior distributions of the unknown param-
eters, given experimental and in silico data. Previous work calibrating IBMs to
experimental data using ABC has been restricted to lattice-based IBMs (Johnston
et al., 2014). This is partly due to the fact that ABC based inference techniques
require a large number of IBM simulations, and lattice-free models are computa-
tionally expensive. We consider both lattice-based and lattice-free models in this
thesis. First, we summarise experimental data with only the number of cells in a
population to investigate the optimal duration of a cell proliferation assay, using a
lattice-based IBM, and in silico data. Next, we also summarise experimental data
from a cell proliferation assay with a measure of spatial structure, and calibrate a
lattice-free IBM that describes the evolution of both the number of cells and the
spatial structure.

Cell proliferation assays may be interpreted using mathematical models, which
can provide insight into the mechanisms involved (Maini et al., 2004b; Sengers
et al., 2007). A common assumption is that a cell population grows according to
the classical logistic equation. However, this assumption is rarely tested against
experimental data. Recent work of Sarapata and de Pillis (2014) show that, while
the classical logistic model is appropriate in some cases, other generalised logistic
growth models are better suited to describe different types of tumours. In Chapter

2, we explore whether a typical experimental design for a cell proliferation assay,
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with a duration of 24 hours, is enough to distinguish between classical logistic and
more generalised logistic growth. Our approach represents the first time that a
stochastic IBM has been used to explore the optimal duration of a cell proliferation
assay. Our results show that a typical experimental design is not enough to reliably
distinguish between classical and generalised logistic growth models. We further
explore how the experimental duration can be increased to reduce the uncertainty
in the growth mechanism.

The question of the experimental duration required to reliability determine
the growth mechanism of a cell proliferation assay has never been explored with
an IBM. Our study in Chapter 2 incorporates the inherit stochasticity of experi-
mental data with ABC inference techniques to explore how the uncertainty in the
growth mechanism is reduced as the experimental duration is increased. While
we restricted our study to a small family of growth mechanisms, with two key pa-
rameters, the techniques and measures we present can be trivially extended to any
growth mechanism, with any number of unknown parameters. We demonstrate
that a standard experimental duration of 24 hours is inadequate to determine the
growth mechanism of a cell proliferation assay. As such, while the proliferation
rate may still be calculated and used to compare cell proliferation assays from a
typical experimental duration, calibrated mathematical models that assume the
classical logistic equation should not be used to predict high density behaviour.

Typically, mathematical models that describe cell proliferation assays neglect
the importance of spatial structure. Mean-field models, by definition, do not con-
sider spatial structure, and it is common to summarise experimental data by only
the population. While pair-wise models that capture spatial structure are routine
in some fields, including disease spreading (Sharkey et al., 2006; Sharkey, 2008)
and ecology (Law et al., 2003), they are rarely employed to study collective cell
behaviour. In this work, we find evidence of clustering at short intervals, in the
experimental data, at early time. We summarise spatial structure using a pair cor-
relation measure, which also shows that spatial structure becomes less pronounced
with as the cell density increases. In Chapter 3 we present a lattice-free IBM to
describe novel experimental data. Our model captures the key mechanisms ob-
served in the experimental data, namely proliferation, motility and a directional
movement bias. While more complicated models have been studied (Kabla, 2012;
Tang et al., 2014; Stichel et al., 2017), it is not clear whether calibration of these
models to experimental data provides improved biological insight (Simpson et al.,
2006).

In Chapter 3, we also calibrate a lattice-free IBM to the experimental data.

Our approach is novel as lattice-free models are rarely calibrated to experimental
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data to describe collective cell behaviour. Despite lattice-free IBMs being more
computationally expensive than lattice-based IBMs, we find that it is preferable
to work with lattice-free models as they make less simplifying assumptions. For
example, lattice-based IBMs require approximations when mapping the distribu-
tion of cells in experimental images to a lattice (Johnston et al., 2014, 2016). In
addition, lattice-based models restrict the separation of pairs of cells to discrete
values. As such, they may be less effective in describing spatial structure than
lattice-free models. High performance computing infrastructure, and an appro-
priate number of unknown parameters, allow us to calibrate three independent
experimental data sets. We find that the posterior distributions for each unknown
parameter, between experimental data sets, are similar. Observing that the pa-
rameters are only weakly correlated, we combine the posterior distributions from
each experimental data set, to produce a combined posterior distribution for each
parameter. To investigate the predictive power of the calibrated model, we predict
distribution estimates for each of summary statistics for an additional experimen-
tal data set. We find that the model is able to produce a reasonable match to the

additional experimental data set.

There are many ways our study could be extended. In Chapter 2, we assume
relatively simple, general logistic models, and explore our ability to distinguish
between growth models as the experimental duration is increased. However, we
only summarise data by the number of cells, and assume that there is no spatial
structure. While this may be true for typical experimental data, we could extend
our study to examine this question for higher quality experimental data, such as
the experimental data we present in Chapter 3. In addition, we may apply our
modelling and inference techniques from Chapter 3 to explore how experimental
duration affects our ability to infer the unknown parameters in an IBM.

In Chapter 3, we connect three independent, relatively low density, experimen-
tal data sets to a lattice-free IBM. However, we only summarise experimental data
by the number of cells, and a relatively simple pair correlation measure. Additional
summary statistics that could be employed include the pair correlation at more
distances, and the density of triples. This study could be extended by testing the
predictive capability of the IBM against an additional summary statistic. Also,
these additional summary statistics could be applied in the calibration process. To
increase our confidence in the recovered parameters, and the predictive power of
the model, we could also repeat our methods with more experimental data sets,
including those with larger initial number of cells. We could relax some of the
simplifying assumptions, and explore how increasing the number of unknown pa-

rameters affects both the parameter estimates, and the predictive power of the



72

calibrated IBM. Finally, the techniques we employ to calibrate, and test, our IBM
can be applied to any model, with any number of parameters.

Connecting mathematical models to experimental data can provide insight into
the mechanisms involved in cell proliferation assays. A common assumption is that
cells proliferate according to the classical logistic equation, however this assump-
tion is rarely tested by applying experimental data. In this thesis, we describe
a technique for determining the optimal duration of a cell proliferation assay in
order to determine whether cells proliferate according to classical logistic growth
or another growth mechanism. We are able to demonstrate how a typical experi-
mental design, with a duration of 24 hours, provides only very limited insight into
the mechanisms that describe the growth of a cell population. We also calibrate a
mathematical model that can describe both population growth and spatial struc-
ture observed in new experimental data. We test the validity of the calibrated
model by accurately predicting the growth of a cell population in an additional
independent experimental data set. This thesis highlights the unique ability of
mathematical modelling tools to interpret the mechanisms involved in collective

cell behaviour.
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