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Abstract

Localised interactions among individuals in a population are fundamental to many processes
in cell biology and ecology. These interactions can be cell-to-cell interactions or cell-to-
extracellular substrate interactions in cell biology and interactions between animals or between
plants or between animals and plants in ecology. The short-range interactions, such as com-
petition and cooperation between individuals, and limited dispersal, lead to the formation of
macro-scale spatial structures in the population. The most common spatial structures are clus-
tered spatial structure where individuals tend to be seen in close aggregates, and segregated
spatial structure where individuals tend to stay away from others. As a result of these specific
spatial arrangements, the number of individuals present in the close proximity of an individual
will be significantly different from a population without any spatial structure. This subtle ef-
fect can influence individuals’ event rates and, hence, play a significant role in determining the
overall population dynamics. Despite the numerous evidence for the role of spatial structure in
determining the dynamics of the population, mathematical models in these contexts are often
based on a mean-field assumption. Under the mean-field assumption, the interactions between
individuals are assumed to be proportional to the average density of individuals and neglect
the spatial correlation between individuals’ locations. In this thesis, we develop individual-
based models (IBM) that consider various short-range interactions between individuals and
accurately predict the resulting spatial structure formation in the population. A mathematically
tractable continuum approximation of the IBM is derived in terms of the dynamics of spatial
moments. Using these modelling frameworks, we explore the role of spatial structure in bio-
logically and ecologically relevant scenarios, such as the dynamics of cells in the presence of
obstacles, chase-escape dynamics, predator-prey dynamics and Allee kinetics.
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Chapter 1

Introduction

1.1 Background

Interactions between individuals play a crucial role in many biological and ecological pro-
cesses, such as tissue development and repair, immune response, diseases and predator-prey
dynamics, to mention a few (Weijer 2009; Shaw and Martin, 2009; Ilina and Friedl, 2009;
Williams and Solnica-Krezel, 2017; Barbosa and Castellanos, 2005). The interaction an in-
dividual experiences locally can significantly influence its motility and proliferation. For in-
stance, the interaction through release and detection of chemical signals or mechanical forces
such as cell-cell adhesion leads to cells moving in a direction towards or away from other
cells, creating a directional bias to the movement (Raz and Mahabaleshwar, 2009; Tambe et al.,
2011). Another interaction mechanism is crowding effects such as contact inhibition or stimu-
lation of movement and proliferation, where the event rates of an individual depend on the local
cell density (Abercrombie, 1979; Roycroft and Mayor, 2015; Pavel et al., 2018). Similar to the
biological systems, localised interactions are ubiquitous in ecosystems and play a significant
role in determining the population dynamics. For example, in a predator-prey ecosystem, a
prey located close to a group of predators experiences increased mortality due to the high risk
of predation. Similarly, the competitive interactions within a population for shared resources
can amplify the death rate of conspecifics. Another interesting interaction mechanism com-
monly observed in various animal communities is the chase escape interaction (Vicsek, 2010;
Romanczuk et al., 2009). These interactions are characterised by the presence of two types of
individuals, namely chasers and escapees, where the chasers are biased to move towards the
escapees, and the escapees are biased to move away from the chasers.

Experimental observations in ecology and cell biology suggest that the short-range inter-
actions at the individual level often lead to the development of a macroscale spatial structure
in the population, which in turn can influence the population dynamics (Wood and Ackland,
2007; Strombom et al., 2014; Binny et al., 2015; Dini et al., 2018). The typical forms of spatial
structures observed are clustering and segregation (Simpson et al., 2013; Gerum et al.2018).

1



1.1. BACKGROUND CHAPTER 1. INTRODUCTION

In a clustered spatial structure, individuals tend to gather together, such as in Figure 1.1(a). In
contrast, in a segregated spatial structure, individuals seem to spread out as much as possible
from others, as shown in Figure 1.1(b). When a strong spatial structure is present in the popu-
lation, the effective density of individuals in the local neighbourhood of a reference individual
will be significantly different from that without spatial structure. These effects influence the
encounter rates of individuals. For example, under clustering, an individual encounters more
neighbours in its close neighbourhood than in a population without spatial structure. Similarly,
under spatial segregation, an individual encounters fewer neighbours than in a population with-
out spatial structure. These differences influence the event rates and hence impact the overall
population dynamics.

-10
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y

-10
x

-10

0

10

y

100-10
x

100

(a) (b)
Figure 1.1: An illustration of the most common types of spatial structures. a cluster spatial structure. b segregated
spatial structure.

Mathematical models are convenient tools to enhance our understanding of ecological and
biological processes. They enable us to make predictions about the dynamics of the system
in question and help us to underpin various mechanisms that lead to the observed dynamics.
Traditional mathematical models considering the population dynamics in ecological and bi-
ological systems are based on the mean-field assumption (Murray, 1989; Edelstein-Keshet,
2005). Under the mean-field approximation, the population is assumed to be well mixed, and
the interaction between the constituent individuals are considered to be proportional to the av-
erage density (Law et al., 2003). The use of mean-field approximation means that the spatial
correlations between individuals’ locations are neglected, and the presence of an individual at
one location is independent of the presence or absence of an individual at any other location.
Some of the mean-field models, such as the classical logistic growth model and the Lotka-
Volterra model of predator-prey dynamics do not incorporate any spatial information. These
models are written as ordinary differential equations that govern the time evolution of average
density. Spatially explicit mean-field models where the density dynamics is often described
using partial differential equations such as the Fisher-Kolmogorov equation are also popular

2
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(Murray, 1989; Hillen and Painter, 2009; Johnston et al., 2015). Even though these spatially
explicit models express the density of individuals as a function of spatial location, the inter-
actions between individuals are implicitly assumed to be given by local mean-field conditions
described by the average density alone.

While the use of mean-field models is ubiquitous in mathematical biology literature, these
frameworks neglect spatial correlations in individual positions because they assume that in-
dividuals occupy uniformly the whole extent of the population (Young et al., 2001). Hence,
the probability of finding an individual at a particular location is independent of the locations
of other individuals. As a result, in a population of N(t) individuals, the interactions between
individuals is proportional to N(t)(N(t) − 1) ≈ N2(t) and amounts to the neglect of spatial
structure, such as clustering and segregation. A useful alternative is to consider the stochas-
tic individual-based model (IBM) framework, which does not invoke any approximation on
the interactions between individuals (Grimm et al., 2006; Surendran et al., 2020b). Typically,
IBMs are algorithmic in nature and simulated using stochastic simulation algorithms such as
the Gillespie algorithm (Gillespie, 1977). Depending upon the physical domain over which in-
dividuals interact and undergo specific events, the IBMs can be classified into two major types
(Plank and Simpson, 2012). In the first type known as the lattice-based IBM, the domain is
divided into discrete lattice sites. In this framework, each individual is assumed to be of con-
stant size, which occupies one or a few lattice sites. The interactions between individuals and
crowding effects are incorporated into the modelling framework by considering an exclusion
process, where only a single individual occupies each lattice site (Simpson et al., 2009; Jin
et al., 2018). Some of the lattice-based models allow several individuals to occupy the same
lattice site (Khalil et al., 2017). The movement of individuals is restricted to a discrete set
of directions corresponding to adjacent lattice sites. The restriction of cell movements only
to distinct lattice sites enables the simulation of IBM to be computationally efficient, but this
comes at an added cost that the model’s prediction can be biologically unrealistic. In contrast,
for the second type of IBM known as the lattice-free IBM, individuals’ location is not restricted
to distinct lattice sites (Plank and Simpson, 2013). Instead, the individuals have the freedom
to move in any direction on a continuous spatial domain. This framework is more biologically
realistic since the movement of cells or animals is not restricted to fixed lattice directions.

As we have shown in Figure 1.1, the number of individuals that an individual encounters
in its close vicinity depends on the nature of the spatial structure present in that population.
For example, the competition between individuals will be severe in Figure 1.1(a) due to many
individuals being crowded together. In contrast, the competition between individuals will be
lower in Figure 1.1(b), since the individuals are segregated. To model how spatial structure in-
fluences the event rates of individuals (the competition induced death rate in this case), we need
to construct a method that accurately accounts for the interactions between individuals. One
method to incorporate the interactions between individuals into the lattice-free IBM framework
is by using an interaction kernel. To illustrate it, if we consider a population where individuals

3
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compete with each other, the competition interaction kernel measures the competition an indi-
vidual experiences from another individual in the population depending on the inter-individual
distance. The interaction kernels are constructed as a decreasing function of the separation
distance between individuals such that the interaction is strongest when individuals are at close
proximity, and the extent of interaction decays as the distance between individuals increases.
Now we define the competition interaction kernel, denoted by ω(|xk − xn|), to measure the
competition a reference individual located at xn experiences from another individual at xk. We
can then define the net death rate of the reference individual at xn as the overall competition
experienced from all of the N individuals present in the population as,

Dn =

N∑
k=1
k,n

ω(|xk − xn|). (1.1)

A realistic choice for the functional form of the interaction kernel is Gaussian, given by,

ω(|ξ|) = γ exp
(
−
|ξ|2

2σ2

)
, (1.2)

where γ and σ are the interaction strength and range, respectively. A Gaussian kernel implies
that the interactions are strongest when individuals are very close and decays with the sepa-
ration distance |ξ|. It is also possible to use other decreasing functions of the pair separation
distance as the interaction kernel (Plank et al., 2020). However, we choose a Gaussian ker-
nel in order to be consistent with the previous studies in this field (Law et al., 2003; Binny
et al., 2016b). We model various types of interactions such as competition, co-operation and
predation by defining an interaction kernel similar to that in Equation 1.2. In the definition of
ω(|ξ|) in Equation 1.2, the parameter σ determines the range over which the interaction is sig-
nificant. By controlling this parameter, we generate long-range or short-range interactions be-
tween individuals. A population with long-range interaction between individuals is analogous
to a population under mean-field conditions (Binny et al. 2016b; Law et al., 2003). That means
each individual interacts with every other individual as would happen in a well-mixed system.
On the other hand, short-range interactions correspond to very localised interactions occurring
between closely placed individuals. Note that when the dispersal rate is low, the short-range
interactions generate spatial structures in the population. In chapters 2-5, we demonstrate and
explore in detail the development of spatial structures from various types of short-range inter-
actions.

We illustrate the difference between long-range (large σ) and short-range (small σ) interac-
tions by considering a sample population where individuals compete with each other, as shown
in Figure 1.2. The arrangement of individuals in Figure 1.2(a) and (c) are identical but we con-
sider a long-range competition kernel in Figure 1.2(a)-(b) and a short-range competition kernel
in Figure 1.2(c)-(d). In Figure 1.2 we compute the death rate of a test individual located at any

4
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Figure 1.2: Visualising long- and short-range competition interactions. a, c shows locations of individuals (dots)
superimposed with level curves of Dn for long- and short-range competition, respectively. b, d shows the long-
(σ = 4.0) and short-range (σ = 0.5) competition kernels, respectively, where these kernels are centred at the
origin.

location x. This allow us to treat Dn as a continuous function of position. Level curves of the
death rate, Dn, are superimposed in Figure 1.2(a) and (c), and we see that the differences in
the length-scale of interaction lead to very different local death rates. For example, when the
competition is long-range in Figure 1.2(a)-(b), the death rate for the relatively isolated green
individual is non-zero. In contrast, when the competition is short-range in Figure 1.2(c)-(d),
the death rate of the same individual is zero, which is very different from the previous case.
Note that when the competition is short-range, only those individuals that are very closer to a
focal individual contribute to the death rate. The effect of individuals that are further away is
very negligible.

Defining various event rates similar to the definition in Equation 1.1 and simulating the
IBM using stochastic simulation algorithms such as the Gillespie algorithm (Gillespie, 1977)
will reveal the realistic population dynamics. A limitation of stochastic IBMs is that the com-
putational cost becomes prohibitively expensive as we consider large populations. Also, the
algorithmic nature of the IBM means that they provide limited mathematical insight into the
population dynamics.

The continuum approximation of the IBM in terms of the dynamics of the spatial moments
that track the time evolution of the density of individuals, pairs, triplets and so on is a use-
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ful tool to explore the impact of spatial structure on population dynamics (Bolker and Pacala,
1997; Murrell and Law, 2000; Plank and Law, 2015). The spatial moment models provide a
mathematically tractable description of the IBM, and since there is no stochastic simulation in-
volved, the computation time is independent of the population size. Previous studies reveal that
the spatial moment dynamics models provide an accurate continuum description of the IBM
when populations have a complete absence of spatial structure or segregated spatial structure
(Binny et al., 2015). While the moment closure approximation fails to completely replicate the
population dynamics when the population is highly clustered, it provides better results than the
traditional mean-field assumption (Binny et al., 2020). Initial studies that used spatial moment
modelling framework were predominantly in ecology (Bolker and Pacala, 1997, 1999; Lewis
and Pacala 2000; Law et al., 2003; Law et al., 2009). More recently, these ecological models
have been extended to consider processes that are motivated by observations from cell biology
experiments (Binny et al., 2015, 2016a, 2016b; Middleton et al., 2014; Browning et al., 2018,
2020).

The first spatial moment is defined as the average density of individuals. Note that the
mean-field model deals with the time evolution of the average density of individuals, which
does not hold any information on the population’s spatial configuration. Considering the sec-
ond spatial moments defined as the average density of pairs of individuals helps us to explore
the spatial structure of the population. The second moment is often expressed in terms of a
pair correlation function C(|ξ|, t) (Binder and Simpson, 2013; Ovaskainen et al., 2014). The
pair-correlation function denotes the average density of pairs of individuals with separation
distance |ξ|, at a time, t, normalised by the density of pairs in a population with the complete
absence of spatial structure. Hence, for a population without any spatial structure, C(|ξ|, t) = 1.
When C(|ξ|, t) < 1, there are fewer pairs of individuals with a separation distance, |ξ|, than
in a population without any spatial structure. We refer to this spatial configuration as being
segregated. When C(|ξ|, t) > 1, we have more pairs of individuals with a separation dis-
tance, |ξ|, than we would have in a population without any spatial structure and this spatial
configuration is referred to as being clustered. To compute the pair-correlation from IBM,
we need to calculate the distance between all N individuals. Now, binning the distances that
fall into the interval,

[
|ξ| − δ|ξ|/2, |ξ| + δ|ξ|/2

]
and normalising this bincount using a factor of

2π|ξ|δ|ξ|N(t)(N(t) − 1)/L2 gives the C(|ξ|, t). Note that the normalisation of bincount is essen-
tial to ensure that C(|ξ|, t) = 1 in the absence of spatial structure. An illustration of a population
in the absence of spatial structure as well as with clustered and segregated spatial structure are
shown in Figure 1.3(a)-(c). The corresponding pair-correlation functions are shown in Figure
1.3(d)-(f).

Constructing a dynamical equation for the time evolution of second spatial moments helps
us to explore how the spatial structure of the population changes over time and whether a steady
spatial pattern arises in the population at sufficiently large time. Note that the dynamics of the
second moment often depend on third-order moments, which can be defined as the average
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density of triplets of individuals. Higher-order moments can be defined in a similar fashion and
leads to a hierarchy of equations for spatial moments. Typically, moment closure methods are
used in approximating higher-order moments in terms of the lower order moments to obtain a
solvable system of equations (Murrell et al., 2004; Raghib et al., 2011).
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Figure 1.3: An illustration of spatial structures a-c and the corresponding pair-correlation functions C(|ξ|, t) d-f.
a, d a population in the absence of spatial structure. b, e cluster spatial structure. c, f segregated spatial pattern.

1.2 Research questions

This thesis explores and answers the following questions:

1. How can we develop models of birth-death-movement processes for cells in an obsta-
cle field by incorporating the realistic effects of short-range interactions, crowding
effects and spatial structure?

A realistic scenario of cell migration and proliferation often involves an environment
characterised by various biological structures, such as the extracellular matrix (ECM).
The ECM, composed of macromolecules such as polysaccharides and proteins, can be
thought of as biological obstacles that influence cell migration in different ways. They
mediate cell migration by providing biochemical cues for the movement of cells and
by physical forces such as cell-to-substrate adhesion (Harley et al., 2008; Zaman et al.,
2006; Yue, 2014). These biological obstacles with varying size and adhesive properties
are known to regulate the motility of cancer and immune cells (Condeelis and Segail,

7



1.2. RESEARCH QUESTIONS CHAPTER 1. INTRODUCTION

2003; Bajenoff et al., 2006). Another factor relevant in this context is the crowding effects
such as contact inhibition of proliferation and contact inhibition of movement, where the
presence of many cells at close proximity leads to a reduction in the proliferation and
movement rates (Abercrombie, 1979; Roycroft and Mayor, 2015; Warne et al., 2017).

Standard models of population dynamics based on mean-field approximation is insuffi-
cient to consider these intricate details. For instance, in a population exhibiting cluster
spatial structure, the crowding effects become significant due to the presence of a greater
number of cells in a close neighbourhood. Mean-field models in this context disregard
the impact of short-range interactions and the spatial configuration of the population and
do not account for the local density dependence in the event rates. In Chapter 2, we
propose to develop an IBM and its continuum approximation in terms of the dynamics
of spatial moments to describe these scenarios accurately. The construction of such a
modelling framework also helps us to explore how various properties of obstacles such
as density, size, and adhesive properties influence the cell population dynamics.

2. How does the directional movement of individuals arising out of chase-escape inter-
actions generate macroscale spatial structures in a multispecies conservative com-
munity?

Chase-escape interactions between two types of individuals, namely chasers and es-
capees, corresponds to a scenario where chasers are biased to move towards the escapees,
and the escapees are biased to move away from the chasers. These types of interactions
are known to influence many biological and ecological systems. Chase-escape dynamics
between two types of pigment cells, known as melanophores and xanthophores, is criti-
cal in the development of skin patterns in zebrafish (Inaba et al., 2012). Other examples
include chase-escape dynamics in herding behaviour, such as in the case of dogs herding
sheep (King et al., 2012; Strombom et al., 2014). These interactions result in the forma-
tion of spatial structure, such as cellular aggregation or animal clusters (Thomas et al.,
2006; Wood and Ackland, 2007).

An interesting problem here is to model how the movement of individuals in response
to the directional interactions they experience from other individuals leads to the de-
velopment of spatial structures. To achieve this, we require a multispecies modelling
framework that allows various intraspecies and interspecies interactions. To exclusively
explore the role of motility and directional bias in generating the spatial structure, we
need to consider conservative communities where the population size of each species
remains constant. In Chapter 3 we propose to develop an IBM and spatial moment dy-
namics modelling framework that incorporates all of these details.

3. What impact do short-range interactions and spatial structure have on the predator-
prey dynamics?

8
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Classical models of predator-prey dynamics such as the Lotka-Volterra model are based
on a mean-field approximation that ignores short-range interactions and spatial structure.
In reality, short-range interactions can have a significant role in determining the popula-
tion dynamics. In a realistic scenario, individual prey can experience increased mortality
when close to a cluster of predators. Similarly, in a group of conspecifics, competition
for shared resources can increase mortality. Hence the prediction of mean-field models
about the long-time behaviour of the population can be erroneous.

To obtain accurate predator-prey population dynamics, we need to consider short-range
interactions such as short-range predation, competition and dispersal of offsprings. Hence,
in Chapter 4, we focus on developing an IBM that considers various short-range interac-
tions. Comparing the simulation results of IBM with solutions of the classical mean-field
model helps us to find out the scenarios where the mean-field model fails.

4. What impact do short-range interactions and spatial structure have on the Allee
dynamics?

Mathematical models of population dynamics are routinely built upon the classical logis-
tic growth assumption where a population survives and grows to finite carrying capacity
for all initial densities (Murray, 1989; Kot, 2003). Allee effects describe populations that
deviate from the logistic growth model, where the long-term survival of a population
depends on the initial density (Taylor and Hastings, 2005; Courchamp et al., 2008). A
strong Allee effect is associated with a net negative growth rate at low densities leading to
population extinction below the Allee threshold density. In contrast, a net positive growth
rate at higher densities leads to the survival of the population when the initial density is
greater than the Allee threshold (Courchamp et al., 1999a). Another type of Allee effect,
known as the weak Allee effect, describes population growth with a reduced but positive
growth rate at low densities (Taylor and Hastings, 2005). Unlike the strong Allee effect,
a weak Allee effect does not exhibit any threshold density due to the net positive growth
rate.

Mean-field models of population dynamics neglect spatial structure that can arise through
short-range interactions, such as competition and cooperation. While spatial effects are
well studied for the case of logistic growth (Law et al., 2003), the influence of non mean-
field effects has not been studied in the presence of an Allee effect. In Chapter 5, we
focus on developing novel IBM and spatial moment dynamics framework to explore the
impact of spatial structure and short-range interactions on the Allee type dynamics. Here,
we focus only on the strong Allee effect since we are interested in exploring the threshold
effects and how spatial structure impacts the Allee threshold.

In Chapters 2-5, which address each of these four research questions, respectively, we em-
ploy a common overall approach in modelling and analysis. We first develop stochastic and
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continuum mathematical models that incorporate interactions between individuals and the spa-
tial structure of the population. Here the specific types of interactions considered or the number
of species considered are different in each chapter and depend on the particular application. The
population dynamics of the system is computed by repeated simulation of the stochastic model
and through numerically solving the continuum models. From these different methods, we ex-
amine the long-time behaviour of the system. We analyse the population’s density dynamics by
looking at the time evolution of the first spatial moment, and the information about the spatial
configuration is revealed by the second moment expressed as a pair correlation function. We
use these results to infer how spatial structure and interactions impact the population dynamics
in each of the specific applications.

1.3 Objectives and outcomes

The primary objective of this thesis is to develop new mathematical models that incorporate
short-range neighbour-dependent interactions and spatial structure of the population into the
modelling framework.

The specific objectives of this thesis that addresses each of the four research questions
described in Section 1.2, respectively are as follows:

1. Develop an IBM and spatial moment model of birth-death-movement processes for cells
in an obstacle field by incorporating the realistic effects of neighbour-dependent interac-
tions, crowding effects and spatial structure.

2. Extend the modelling frameworks developed in objective 1 to consider chase-escape in-
teractions observed in ecology and cell biology processes.

3. Develop an IBM that incorporates predator-prey dynamics and compare the simulation
results to the classical mean-field model’s solutions to gain insight into scenarios where
the mean-field approximation fails.

4. Develop a novel IBM and spatial moment model that incorporate the Allee effect and
compare the results to the classical mean-field model’s solutions to gain insight into how
spatial structure impacts the Allee kinetics.

To achieve the four specific objectives of the thesis, we start by developing a generalized
IBM and spatial moment dynamics framework that incorporates short-range interactions and
the development of spatial structure from these interactions in Chapter 2. These models con-
sider birth-death-movement processes for a multispecies population. The directional interac-
tions between individuals are incorporated into the modelling framework. We first employ this
model to study cell migration and proliferation in the presence of obstacles. In this case, we as-
sume one subpopulation to be motile proliferative cells and other subpopulation to be stationary
non-proliferative obstacles.

10
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In Chapter 3, we consider a particular application of the models developed in Chapter 2,
where we exclusively look at the importance of the movement and directional bias. In this
case, we do not consider proliferation and death. These considerations are particularly in-
teresting since many previous studies focusing on spatial moment dynamics were originally
developed to study plant ecology. In those contexts, birth and death are the fundamental mech-
anisms that generate spatial structure in the population, and the motility is irrelevant (Bolker
and Pacala, 1997; Bolker and Pacala, 1999; Murrell and Law, 2003; Law et al., 2003). The
recent extensions of these frameworks to model cell biology experiments attributed simulta-
neous movement and proliferation as the drivers of spatial structure formation (Binny et al.,
2016b; Browning et al., 2018). With the model considerations of Chapter 3 we will be able
to demonstrate the development of spatial structure in conservative communities solely arising
due to the directional movement.

In Chapter 4, we extend the model developed in Chapter 2, to consider the ecologically
relevant predator-prey interactions. Here we extend the modelling framework by considering
the effect of predation interactions on individuals’ event rates.

In Chapter 5, we extend the model developed in Chapter 2, to consider the strong Allee
effect. To accommodate the Allee effect into the modelling framework, we have to make sub-
stantial changes to the way we defined event rates in Chapters 2-4. We see that incorporating
the Allee effect into the modelling framework requires a non-linear dependency of density on
the event rates, which is different from all three previous cases. To reflect these differences, we
derive a novel IBM and spatial moment dynamics framework in Chapter 5.

This thesis is presented by publication and incorporates four publications in peer reviewed
journals. Three of these publications are published in Q1 journals (Bulletin of Mathematical
Biology, Scientific Reports and Theoretical Ecology). The final paper is submitted to another
Q1 journal (Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences) and is currently under review. The PhD candidate is the first author and contributed
significantly to all four publications. The work presented in this thesis fulfils Queensland Uni-
versity of Technology criteria for the thesis by publication.

This thesis incorporates the following publications:

1. Surendran Anudeep, Plank Michael J., Simpson Matthew J. 2018 Spatial moment de-
scription of birth-death-movement processes incorporating the effects of crowding and
obstacles. Bulletin of Mathematical Biology 80: 2828–2855. DOI:10.1007/s11538-018-
0488-1. bioRxiv Preprint.

Abstract Birth-death-movement processes, modulated by interactions between individ-
uals, are fundamental to many cell biology processes. A key feature of the movement
of cells within in vivo environments are the interactions between motile cells and sta-
tionary obstacles. Here we propose a multi-species model of individual-level motility,
proliferation and death. This model is a spatial birth-death-movement stochastic process,
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a class of individual-based model (IBM) that is amenable to mathematical analysis. We
present the IBM in a general multi-species framework, and then focus on the case of a
population of motile, proliferative agents in an environment populated by stationary, non-
proliferative obstacles. To analyse the IBM, we derive a system of spatial moment equa-
tions governing the evolution of the density of agents and the density of pairs of agents.
This approach avoids making the usual mean-field assumption so that our models can be
used to study the formation of spatial structure, such as clustering and aggregation, and
to understand how spatial structure influences population-level outcomes. Overall the
spatial moment model provides a reasonably accurate prediction of the system dynam-
ics, including important effects such as how varying the properties of the obstacles leads
to different spatial patterns in the population of agents.

2. Surendran Anudeep, Plank Michael J., Simpson Matthew J. 2019 Spatial structure aris-
ing from chase-escape interactions with crowding. Scientific Reports 9: 14988. DOI:10.
1038/s41598-019-51565-3. bioRxiv Preprint.

Abstract Movement of individuals, mediated by localised interactions, plays a key role
in numerous processes including cell biology and ecology. In this work, we investigate
an individual-based model accounting for various intraspecies and interspecies interac-
tions in a community consisting of two distinct species. In this framework we consider
one species to be chasers and the other species to be escapees, and we focus on chase-
escape dynamics where the chasers are biased to move towards the escapees, and the
escapees are biased to move away from the chasers. This framework allows us to ex-
plore how individual-level directional interactions scale up to influence spatial structure
at the macroscale. To focus exclusively on the role of motility and directional bias in
determining spatial structure, we consider conservative communities where the number
of individuals in each species remains constant. To provide additional information about
the individual-based model, we also present a mathematically tractable deterministic ap-
proximation based on describing the evolution of the spatial moments. We explore how
different features of interactions including interaction strength, spatial extent of inter-
action, and relative density of species influence the formation of the macroscale spatial
patterns.

3. Surendran Anudeep, Plank Michael J., Simpson Matthew J. 2020 Small-scale spatial
structure affects predator-prey dynamics and coexistence. Theoretical Ecology 13: 537–
550. DOI:10. 1007/s12080-020-00467-6. bioRxiv Preprint.

Abstract Small-scale spatial variability can affect community dynamics in many eco-
logical and biological processes, such as predator-prey dynamics and immune responses.
Spatial variability includes short-range neighbour-dependent interactions and small-scale
spatial structure, such as clustering where individuals aggregate together, and segregation
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where individuals are spaced apart from one another. Yet, a large class of mathematical
models aimed at representing these processes ignores these factors by making a clas-
sical mean-field approximation, where interactions between individuals are assumed to
occur in proportion to their average density. Such mean-field approximations amount to
ignoring spatial structure. In this work, we consider an individual based model of a two-
species community that is composed of consumers and resources. The model describes
migration, predation, competition and dispersal of offspring, and explicitly gives rise to
varying degrees of spatial structure. We compare simulation results from the individual
based model with the solution of a classical mean-field approximation, and this compari-
son provides insight into how spatial structure can drive the system away from mean-field
dynamics. Our analysis reveals that mechanisms leading to intraspecific clustering and
interspecific segregation, such as short-range predation and short-range dispersal, tend to
increase the size of the resource species relative to the mean-field prediction. We show
that under certain parameter regimes these mechanisms lead to the extinction of con-
sumers whereas the classical mean-field model predicts the coexistence of both species.

4. Surendran Anudeep, Plank Michael J., Simpson Matthew J. 2020 Population dynamics
with spatial structure and an Allee effect. Proceedings of the Royal Society A: Mathemat-

ical, Physical and Engineering Sciences 476: 20200501. DOI:10.1098/rspa.2020.0501.
bioRxiv Preprint.

Abstract Allee effects describe populations in which the long-term survival of individu-
als depends on the population density. A simple mathematical model of an Allee effect
is one where initial densities below the threshold lead to extinction, whereas initial den-
sities above the threshold lead to survival. Mean field models of population dynamics
neglect spatial structure that can arise through short-range interactions, such as compe-
tition and dispersal. The influence of non mean-field effects has not been studied in the
presence of an Allee effect. To address this we develop an individual-based model that
incorporates short-range interactions and an Allee effect. To explore the role of spatial
structure we derive a mathematically tractable continuum approximation of the IBM in
terms of the dynamics of spatial moments. In the limit of long-range interactions where
the mean-field approximation holds, our modelling framework recovers the mean-field
Allee threshold. We show that the Allee threshold is sensitive to spatial structure ne-
glected by mean-field models. For example, there are cases where the mean-field model
predicts extinction but the population actually survives. Through simulations we show
that our new spatial moment dynamics model accurately captures the modified Allee
threshold in the presence of spatial structure.
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1.4 Structure of the thesis

Since the thesis is presented as a thesis by published papers, each of the main chapters (Chap-
ters 2, 3, 4 and 5) are comprised of the publications mentioned in Section 1.3, respectively. Each
of the main chapters contains an introduction section that describes our problem of interest, rel-
evant background information and literature review. Since all these chapters are independent
publications, there is a slight overlap in the background information of these different chapters.
Each of these chapters also includes mathematical methods sections describing the discrete and
continuum modelling frameworks developed in the thesis and results and discussion section
demonstrating our findings and a discussion on the results. We also provide a conclusion sec-
tion that summarises our research findings and proposes future avenues for the extension of the
study in all of these chapters. The Chapters 2A, 3A and 5A correspond to the supplementary
materials associated with the respective publications. These chapters present additional results,
definitions and derivations that are not included in the main publications.

Chapter 1 constitute the introduction for the thesis. This chapter introduces the relevant
background information from ecology and cell biology, where short-range interactions and
spatial structure play a significant role in population dynamics. Also, the chapter provides an
overview of mathematical modelling techniques relevant to the study of these systems. The
major research questions of the thesis and the objectives and outcomes of the thesis are then
stated. The details about the contribution of the candidate and all co-authors to each of the
publication are described in Section 1.5.

Chapter 2 addresses objective 1 of the thesis described in Section 1.3. Chapter 2 contains
publication 1, where we construct models of birth-death-movement processes for cells in an
obstacle field. The key features of cell migration and proliferation in realistic situations, such
as the interactions between motile cells and stationary obstacles, crowding effects and spatial
structure, are considered while developing the modelling framework. Using the models, we
explore important effects such as how varying the properties of the obstacles lead to different
spatial patterns in the population and how it influences the population dynamics. Additional
information, such as more detailed derivations and definitions associated with publication 1,
are described in Chapter 2A.

Chapter 3 addresses objective 2 of the thesis described in Section 1.3. Chapter 3 contains
publication 2, where we study how the directional movement of individuals arising out of chase-
escape interactions generate macroscale spatial structures. Here, we develop an IBM and a
spatial moment dynamics model for the two-species community of chasers and escapees, by
carefully considering various interspecies and intraspecies interactions between them. To focus
exclusively on the role of motility and directional bias in determining spatial structure, we
consider conservative communities where the number of individuals in each species remains
constant. We explore how different features of interactions, including interaction strength,
the spatial extent of interaction, and relative density of species influence the formation of the
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macroscale spatial patterns. Additional results associated with publication 2, are presented in
Chapter 3A.

Chapter 4 addresses objective 3 of the thesis described in Section 1.3. Chapter 4 con-
tains publication 3, where we study the impact of short-range interactions and spatial structure
on predator-prey dynamics. We develop an IBM that consider a two-species community of
consumers and resources, where consumers predate on resources. Short-range predation, com-
petition and dispersal of offspring are incorporated into the IBM framework. We compare the
simulation results from the IBM with the solution of a classical mean-field approximation,
where interactions between individuals are assumed to occur in proportion to the average den-
sity and ignore the population’s spatial structure. This comparison provides insight into how
spatial structure can drive the system away from mean-field dynamics.

Chapter 5 addresses objective 4 of the thesis described in Section 1.3. Chapter 5 contains
publication 4, where we study the impact of short-range interactions and spatial structure on
the Allee dynamics. We develop models that incorporate short-range interactions and an Allee
effect, where survival of the population is only possible if the density is above some threshold
level. We investigate how sensitive the Allee threshold is to the spatial structure of the popula-
tion. A comparison of IBM, spatial moment model, and mean-field model is conducted to gain
insight on the effect of spatial structure. Additional results associated with publication 4, are
presented in Chapter 5A.

Chapter 6 outline a summary of the research findings from this thesis, and proposes further
avenues for future research.

1.5 Statement of joint authorship

In this section we summarize the contributions of the PhD candidate and the co-authors to each
publication. All co-authors have agreed to the presentation of these publications in this thesis.

1.5.1 Chapter 2: Spatial moment description of birth-death-movement
processes incorporating the effects of crowding and obstacles

The associated publication for this chapter is:

Surendran Anudeep, Plank Michael J., Simpson Matthew J. 2018 Spatial moment descrip-
tion of birth-death-movement processes incorporating the effects of crowding and obstacles.
Bulletin of Mathematical Biology 80: 2828–2855. DOI:10.1007/s11538-018-0488-1. bioRxiv
Preprint.

• Surendran Anudeep (Candidate) designed the study, derived the continuum moment
dynamics equations, developed the codes for numerical simulation of the IBM and spa-
tial moment model, performed numerical simulations, generated results, interpreted the
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results, drafted the manuscript, and revised the manuscript during peer-review process.

• Plank Michael J. designed the study, interpreted the results, edited the manuscript during
initial submission and subsequent revision during peer-review process.

• Simpson Matthew J. designed the study, supervised the research, interpreted the results,
edited the manuscript during initial submission and subsequent revision during peer-
review process and acted as the corresponding author.

1.5.2 Chapter 3: Spatial structure arising from chase-escape interactions
with crowding

The associated publication for this chapter is:
Surendran Anudeep, Plank Michael J., Simpson Matthew J. 2019 Spatial structure arising
from chase-escape interactions with crowding. Scientific Reports 9: 14988. DOI:10.1038/

s41598-019-51565-3. bioRxiv Preprint.

• Surendran Anudeep (Candidate) designed the study, derived the continuum moment
dynamics equations, developed the codes for numerical simulation of the IBM and spa-
tial moment model, performed numerical simulations, generated results, interpreted the
results, drafted the manuscript, and revised the manuscript during the peer-review pro-
cess.

• Plank Michael J. designed the study, interpreted the results, edited the manuscript during
the initial submission and subsequent revision during the peer-review process.

• Simpson Matthew J. designed the study, supervised the research, interpreted the results,
edited the manuscript during the initial submission and subsequent revision during the
peer-review process and acted as the corresponding author.

1.5.3 Chapter 4: Small-scale spatial structure affects predator-prey dy-
namics and coexistence

The associated publication for this chapter is:
Surendran Anudeep, Plank Michael J., Simpson Matthew J. 2020 Small-scale spatial structure
affects predator-prey dynamics and coexistence. Theoretical Ecology 13: 537–550. DOI:10.1007/

s12080-020-00467-6. bioRxiv Preprint.

• Surendran Anudeep (Candidate) designed the study, developed the codes for numer-
ical simulation of the IBM, performed numerical simulations, generated results, inter-
preted the results, drafted the manuscript, and revised the manuscript during the peer-
review process.
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• Plank Michael J. designed the study, interpreted the results, edited the manuscript during
initial submission and subsequent revision during the peer-review process.

• Simpson Matthew J. designed the study, supervised the research, interpreted the results,
edited the manuscript during the initial submission and subsequent revision during the
peer-review process and acted as the corresponding author.

1.5.4 Chapter 5: Population dynamics with spatial structure and an Allee
effect
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Chapter 2

Spatial moment description of
birth-death-movement processes
incorporating the effects of crowding and
obstacles

2.1 Preamble

This chapter is a paper published in the Bulletin of Mathematical Biology.

Surendran Anudeep, Plank Michael J., Simpson Matthew J. 2018 Spatial moment descrip-
tion of birth-death-movement processes incorporating the effects of crowding and obstacles.
Bulletin of Mathematical Biology 80: 2828–2855. DOI:10.1007/s11538-018-0488-1. bioRxiv
Preprint.

In this chapter, we address the research question 1 of the thesis: How can we develop
models of birth-death-movement processes for cells in an obstacle field by incorporating the
realistic effects of short-range interactions, crowding effects and spatial structure? We start by
describing the construction of our IBM and spatial moment dynamics modelling frameworks.
These fairly general models consider birth-death-movement processes in a multispecies pop-
ulation. Short-range interactions between individuals and spatial structure development from
these interactions are incorporated. We then use our models to study cell biology motivated
research question about cell migration and proliferation in the presence of obstacles. In this
case, we assume one subpopulation to be motile proliferative cells and other subpopulation to
be stationary non-proliferative obstacles. Note that the models constructed here act as refer-
ence models for further applications in the subsequent chapters, where extensions are made by
incorporating additional interaction mechanisms and features.
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2.2 Abstract

Birth-death-movement processes, modulated by interactions between individuals, are funda-
mental to many cell biology processes. A key feature of the movement of cells within in vivo

environments are the interactions between motile cells and stationary obstacles. Here we pro-
pose a multi-species model of individual-level motility, proliferation and death. This model
is a spatial birth-death-movement stochastic process, a class of individual-based model (IBM)
that is amenable to mathematical analysis. We present the IBM in a general multi-species
framework, and then focus on the case of a population of motile, proliferative agents in an en-
vironment populated by stationary, non-proliferative obstacles. To analyse the IBM, we derive
a system of spatial moment equations governing the evolution of the density of agents and the
density of pairs of agents. This approach extends the usual mean-field assumption so that our
models can be used to study the formation of spatial structure, such as clustering and aggre-
gation, and to understand how spatial structure influences population-level outcomes. Overall
the spatial moment model provides a reasonably accurate prediction of the system dynamics,
including important effects such as how varying the properties of the obstacles leads to different
spatial patterns in the population of agents.

2.3 Introduction

Movement, birth and death processes are important individual-level mechanisms that can in-
fluence population-level outcomes in both biological and ecological systems. Cell migration
and cell proliferation, modulated by interactions among neighbouring cells and obstacles, are
essential for development (Kurosaka and Kashina, 2008), repair (Martin, 1997) and disease
(Friedl and Wolf, 2003). Similarly, in many ecological systems, the movement of individu-
als, and interactions between individuals, can have important population-level consequences.
The emergence of spatial structure in predator-prey systems and plant communities are direct
results of interactions between individuals (Tobin and Bjornstad, 2003; Law and Dieckmann,
2000). These common observations from different areas of the life sciences suggest a role
for individual-level, mathematical models to represent molecules, cells, plants and animals.
Popular modelling frameworks include lattice-based models and continuous space lattice free
models (Plank and Simpson, 2012; Dyson and Baker, 2015). Some of these models consider
single species populations (Lewis, 2000; Middleton et al., 2014), while others incorporate the
influence of interactions among different subpopulations (Jin et al., 2018; Murrell, 2005; Smith
et al., 2017).

Cell migration in living tissues involves complicated heterogeneous environments that are
occupied by various biological structures and scaffolds of varying size, shape and adhesive
properties (Ellery et al., 2014; Ellery et al., 2016). Such obstacles can have a significant impact
on the migration of cells due to the interplay between crowding and cell-to-substrate adhesion

20



CHAPTER 2. CROWDING AND OBSTACLES 2.3. INTRODUCTION

(Welch, 2015; Sun and Zaman, 2017; Simpson and Plank, 2017). The extracellular matrix
(ECM), composed of polysaccharides and proteins, is an example of a biological obstacle which
influences the cell migration in many different ways, such as providing biochemical stimuli,
mechanical cues and steric hindrances (Zaman et al., 2006; Harley et al., 2008). ECM geometry
can regulate the motility of cancer (Condeelis and Segall, 2003) and immune cells (Bajenoff

et al., 2006). The highly compartmentalised structure of the cytoplasm and the presence of
macromolecular obstacles such as nucleic acids and proteins within intracellular environments
can have a significant impact on biochemical reactions (Tan et al., 2013; Hansen et al., 2016)
and physical transport processes inside the cell (Ghosh et al., 2016; Smith et al., 2017). These
examples from various biological organisational levels suggest that the incorporation of both
obstacles and their crowding effects in a mathematical model of cell migration is important.

Standard models of biological and ecological systems are based on the mean field assump-
tion which, roughly speaking, assumes that individuals in the population encounter each other
in proportion to their average density (Law and Dieckmann, 2000). Classical examples of
mean field models include Lotka-Volterra models of ecological competition (Murray 1989),
the Keller-Segel model of chemotaxis (Keller and Segel, 1971), the logistic growth model to
describe population dynamics (Edelstein-Keshet, 2005) and the Fisher-Kolmorogov model to
describe wound healing (Johnston et al., 2015). Standard mathematical models based on ordi-
nary and partial differential equations routinely invoke the mean field assumption. In this work
we take a more general approach by accounting for spatial correlations by developing contin-
uous descriptions of the dynamics of individuals, dynamics of pairs of individuals, and so on
(Plank and Law, 2015). In general this approach leads to an infinite hierarchy of equations
governing the spatial moments of the system which we approximate using a moment closure
assumption (Murrell et al., 2004; Raghib et al., 2011).

The first studies that used spatial moments focused on modelling birth-death processes
in ecology with a single species (Bolker and Pacala, 1997; Lewis, 2000), and later studies
examined competition and prey-predator interactions in a multi-species birth-death framework
(Murrell, 2005; Barraquand and Murrell, 2013). More recently these ecological models have
been extended to include movement processes that are motivated by observations from cell
biology experiments (Baker and Simpson, 2010; Simpson et al., 2013b). However, these first
models that include movement are lattice-based, which means that the movement of individuals
is restricted to an artificial lattice. Lattice-free moment dynamics models of cell migration and
cell proliferation are much more recent (Middleton et al., 2014; Binny et al., 2015, 2016a,
2016b). Unlike the lattice-based models in which volume exclusion is strictly enforced, lattice-
free models use interaction kernels to give a more realistic description of interactions because
cells are able to deform as they move close to neighbouring cells (Le Clainche and Carlier,
2008). In this work we present a lattice-free model of cell migration, cell proliferation and cell
death. In an attempt to make the model relevant to in vivo conditions, we take a multi-species
approach so that we can consider one species to be a population of motile and proliferative
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cells, whereas the other population represents an immobile subpopulation of obstacles.

2.4 Individual-based model

A key feature of the individual-based model (IBM) is that we consider the total population to
be composed of several different subpopulations. This gives great flexibility since the model
can be used to study the movement, proliferation and death of different types of individuals,
and it also allows for different types of interactions between the different subpopulations. The
state of the IBM depends on the position of each individual, and the properties of agents within
each subpopulation. In the model, we have a total of N(t) agents that are associated with I

subpopulations. The location of the nth agent is xn ∈ R
2, and each agent belongs to a particular

subpopulation, in ∈
{
1, 2, . . . , I

}
, where n = 1, 2, . . . ,N(t). We always initiate the IBM with

individuals distributed according to a spatial Poisson process, meaning that the IBM is relevant
to spatially homogeneous problems without macroscopic gradients in density of individuals
(Jin et al., 2018).

Individuals undergo movement, proliferation and death events with a rate per unit time
given by M̂n, P̂n and D̂n respectively. The IBM is a continuous-time Markov process, where
the probability of agent n undergoing a movement during a short time interval, of duration δt,
is M̂nδt + O(δt2). Similar expressions govern the probability of proliferation and death events
occurring within a short time interval. The total event rates are comprised of a neighbour
independent, intrinsic component, and a neighbour-dependent component accounting for in-
teractions with neighbouring individuals. The neighbourhood contribution is specified by an
interaction kernel that depends upon the distance, |ξ|, between pairs of individuals. We as-
sume the interaction kernel is isotropic and decays to zero at larger distances, |ξ|, ensuring that
only relatively close individuals interact. For movement events, the intrinsic component of the
movement rate of an individual from subpopulation i is denoted by mi, and the interactions
from a neighbouring agent from subpopulation j is governed by an interaction kernel ω(m)

i j (|ξ|).
Hence we write the net movement rate of individual n as,

M̂n = max

0,min +
∑
r,n

ω(m)
in jr

(|xr − xn|)

 . (2.1)

Here, in = 1 if individual n is from the first subpopulation, and in = 2 if individual n is from the
second subpopulation, and so on. Similarly, we write the net proliferation and net death rates
as,

P̂n = max

0, pin +
∑
r,n

ω
(p)
in jr

(|xr − xn|)

 , (2.2)

D̂n = max

0, din +
∑
r,n

ω(d)
in jr

(|xr − xn|)

 , (2.3)
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where pi and di are the intrinsic proliferation and death rates, respectively, for an individual
from subpopulation i. For simplicity, we assume a constant death rate and a fixed distribution
for the direction of placement of daughter agents which is unaffected by the interactions with
other individuals.

When an individual from subpopulation i undergoes a movement event, it travels a displace-
ment ξ that is drawn from a probability density function (PDF) µ(m)

i (ξ). If an individual from
subpopulation i proliferates, a daughter of the same subpopulation is placed at a displacement
ξ, that is drawn from a PDF µ(p)

i (ξ). We refer to the placement of daughter agents as a result of
a successful proliferation event as agent dispersal. Now we generalise the movement displace-
ment PDF by introducing a neighbour-dependent bias vector, to accommodate the influence of
neighbouring individuals upon the direction of movement. We introduce an interaction kernel,
ω(b)

i j (|ξ|), to account for neighbour-dependent directional bias acting on the reference individ-
ual, from subpopulation i, due to the presence of a second individual, from subpopulation j, at
a displacement ξ. The neighbour-dependent bias is defined as the gradient of the interaction
kernel, ∇ω(b)

i j (|ξ|). This definition is same as that of Binny et al. (2016b), however here we
generalise that previous model to account for the contributions to the directional bias arising
from multiple subpopulations. The net bias vector is the sum of contributions from each of the
neighbouring individuals, and a constant neighbour-independent global bias bin ∈ R

2, giving

B̂n = bin +
∑
r,n

∇ω(b)
in jr

(|xr − xn|). (2.4)

The angular direction of the net bias vector, denoted by arg(B̂n) ∈ [0, 2π], is the preferred
direction of movement for a particular individual. In this framework, the preferred direction of
movement is driven, in part, by the sum of the gradient of the interaction kernels. The strength
of bias is given by the magnitude of bias vector, |B̂n|. Now we assume that the neighbouring
individuals affect the direction of movement arg(ξ) ∈ [0, 2π], but not the actual distance moved,
|ξ|.

During a movement event, the direction of movement is drawn from a von Mises distribu-
tion, g(θ; B̂n) whose concentration parameter is |B̂n|, and the mean direction is given by arg(B̂n),

g(θ; B̂n) =
exp

(
|B̂n|cos

(
θ − arg(B̂n)

))
2πI0

(
|B̂n|

) , (2.5)

where I0 is the zero order modified Bessel function. This PDF ensures that individuals are
most likely move in the direction of arg(B̂n), and the bias to move in this preferred direction
increases with |B̂n|. When the net bias is zero, B̂n = 0, the von Mises distribution reduces to the
uniform distribution (Binny et al., 2016b). Individuals located where the gradient is steep will
have a large |B̂n|, and are more likely to move in the direction of B̂n. Individuals located where
the gradient is relatively flat will have a weaker bias and the direction of movement becomes
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almost uniformly distributed (Browning et al., 2017). We assume that the distance moved by
an agent is independent of local crowding, and is given by a fixed PDF, ui(|ξ|). Hence the net
movement displacement PDF is the product of the distance PDF and the direction PDF, giving

µ(m)
i (ξ; B̂n) =

ui(|ξ|) g(arg(ξ); B̂n)
|ξ|

. (2.6)

2.4.1 IBM for motile, proliferative agents and stationary obstacles

The IBM can be applied to numerous problems involving populations composed of various
combinations of motile and stationary subpopulations by appropriate choice of parameters.
Here we focus on an important scenario with two distinct subpopulations, I = 2. We consider
the first subpopulation, i = 1, to be a group of agents undergoing movement, proliferation
and death events. This first subpopulation can be thought of as a population of motile, pro-
liferative cells. The first subpopulation interacts with a second subpopulation, i = 2, that is
composed of stationary, non-proliferating obstacles. The event rates for individual agents in
the first subpopulation will be influenced by the presence of both obstacles and other agents in
their neighbourhood, given by Equations (2.1)-(2.3). Since the obstacles never undergo birth,
death or movement events, they contribute to the overall dynamics by interactions between the
obstacles and the agents.

We introduce interaction kernels: ω(m)
i j (|ξ|); ω(p)

i j (|ξ|); and ω(b)
i j (|ξ|), to account for the con-

tribution from surrounding agents and obstacles to the movement rate, proliferation rate, and
the directional bias of an agent, respectively. We choose these interaction kernels to be two-
dimensional Gaussian functions. The movement interaction kernel is given by,

ω(m)
i j (|ξ|) = γ(m)

i j exp

− |ξ|2

2(σ(m)
i j )

2

 , (2.7)

where γ(m)
i j and σ(m)

i j > 0 represent the interaction strength and the spatial extent of interaction,
respectively. We assume a similar form for the proliferation and bias kernels, given by,

ω
(p)
i j (|ξ|) = γ

(p)
i j exp

− |ξ|2

2(σ(p)
i j )

2

 , (2.8)

ω(b)
i j (|ξ|) = γ(b)

i j exp

− |ξ|2

2(σ(b)
i j )

2

 . (2.9)

In our simulations we have two subpopulations. The first subpopulation, denoted i = 1, cor-
responds to the motile and proliferative agents. The second subpopulation, denoted i = 2,
corresponds to the stationary, non-proliferative obstacles. The intrinsic rates of movement and
proliferation of agents are m1 and p1, respectively. These rates for obstacles are zero. The pres-
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ence of subpopulations of agents and obstacles results in different types of interactions. The
interactions involving the pairs of individuals of same type such as, agent-agent and obstacle-
obstacle pairs, are specified by ω(m)

11 (|ξ|) and ω(m)
22 (|ξ|), respectively. Similar kernels apply for

proliferation and bias. Interactions involving individuals from different subpopulations are
specified by the interaction kernels ω(m)

12 (|ξ|) and ω(m)
21 (|ξ|). Since obstacles are both stationary

and non-proliferative, the presence of neighbouring agents and obstacle do not affect the dy-
namics and spatial arrangement of obstacles in any way. Hence the interaction strengths γ(m)

21

and γ(m)
22 are both set to zero. Positive γ(m)

11 and γ(m)
12 values enhance the movement rate of agents,

and can be thought of as representing contact stimulation of migration (Barbaric et al., 2014;
Binny et al., 2015). In contrast, a negative interaction strength results in a reduction of the
movement rate, which can be thought of as representing contact inhibition of migration (Aber-
crombie, 1979; Cai et al., 2007). Similarly, the net proliferation rate of agents, and the nature
of directional bias depend on the sign of interaction strength (Green et al., 2010; Kim et al.,
2011; Kay et al., 2012; Binny et al., 2016a, 2016b).

We use a univariate Gaussian distribution, with mean µ(s)
1 and standard deviation σ(s)

1 , to
specify the distribution of movement distance for agents u1(|ξ|). The PDFs of movement dis-
placement, µ(m)

1 (ξ, t) and µ(m)
2 (ξ, t), also require the specification of the movement distance dis-

tribution, u1(|ξ|), and the neighbour-dependent direction probability density function given by
Equation (2.5). For simplicity, the PDF for the dispersal of daughter agents arising from pro-
liferation events, µ(p)

1 (ξ), is chosen to be neighbour independent, and specified as a bivariate
Gaussian distribution with zero mean and standard deviation σ(d)

1 .

2.4.2 Numerical implementation

We simulate the IBM using the Gillespie algorithm (Gillespie, 1977) implemented in FOR-
TRAN. In each simulation the population is initially composed of N1(0) agents and N2(0)
obstacles, distributed according to a spatial Poisson process across a square domain of size
L×L. The movement, proliferation and death rates of the agents are computed using Equations
(2.1)-(2.3). For this study, we use a constant death rate for all the agents, hence the neighbour-
dependent term in Equation (2.3) is set to zero. The sum of event rates of all agents is given
by,

λ(t) =

N1(t)∑
n=1

(
M̂n + P̂n + D̂n

)
. (2.10)

Since the event rates for obstacles are always zero, those terms do not contribute to λ(t). The
time interval between consecutive events is exponentially distributed with mean 1/λ(t). At each
event time, one of the three possible events occurs to an agent. The probability of occurrence
of an event is proportional to the rate of that event. For a movement event, the agent moves a
displacement specified by the bias vector and movement displacement PDF in Equation (2.4)
and Equation (2.6), respectively. For a proliferation event, the proliferative agent disperses a
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daughter agent at a displacement specified by the PDF µ
(p)
1 (ξ), and the total number of agents

increases by one. For a death event the total number of agents is reduced by one.

To provide a mathematical description of the IBM we analyse the dynamics of the first and
second spatial moments of the agents and obstacles. The first moment of agents and obstacles
is given by dividing the total number of agents and obstacles by the area of the domain, giving
N1(t)/L2 and N2(t)/L2, respectively. We use a pair correlation function (PCF) to quantify the
second spatial moment. Here the PCF depends on both the separation distance, r, and time, t

(Angew et al., 2014; Dini et al., 2018). However, to be consistent with previous studies, our no-
tation focuses on the separation distance, r, only. Since there are two different subpopulations,
we will have two different PCFs. First, we denote the auto-correlation PCF between agents
as C11(r). Second, we denote the cross-correlation between agents and obstacles as C12(r).
To compute the auto-correlation function, we consider a reference agent at xi, and calculate
all distances, r = |x j − xi|, to the other N1 − 1 agents. We follow the same procedure with
each of the remaining agents until all agents have acted as the reference agent. Note that we
always take care to measure distances across periodic boundaries. With this information, the
auto-correlation PCF is constructed by enumerating the distances between pairs of agents that
fall into the interval,

[
r − δr/2, r + δr/2

]
. That means we use a bin width of δr. To ensure

that C11(r) = 1 in the absence of spatial structure, we normalise the bin count by a factor of
N1(t)(N1(t) − 1)(2πrδr)/L2. When C11(r) > 1, we have a larger number of pairs of agents
separated by a distance r than we would have in the spatially random population. In contrast,
for C11(r) < 1, we have a smaller number of pairs of agents separated by a distance r than we
would have in the spatially random population. Similarly, we compute the cross-correlation
PCF, C12(r), by counting, binning and normalising all distances between agents and obstacles.
A similar calculation could be made for C22(r), by counting, binning and normalising all dis-
tances between pairs of obstacles. However, since obstacles are stationary, non-proliferative
and initialised at random, we always have C22(r) = 1. Only when C11(r) = C12(r) = C22 = 1
are agents and obstacles are arranged at random, which is an implicit assumption in all mean-
field models. One of the important features of our model and our analysis is that we can have
spatial structure, such as clustering or segregated spatial patterns, present in the population.
This is signified by having C11(r) , 1 and C12(r) , 1.

There are several key variables relevant to specifying different obstacle fields and different
obstacle properties. These include obstacle density, obstacle size and obstacle interactions, such
as whether obstacles are adhesive or repulsive. We will explore how systematically varying
these properties influences the development of spatial structure in a population of motile and
proliferative agents that are placed into an environment containing obstacles. We first explore
this by performing repeated realizations of the IBM and analysing averaged ensemble data in
terms of the first spatial moment and PCF. Second, we then compare these results with the
prediction from our analysis of spatial moment dynamics in Section 2.7. A summary of key
variables and notation for these calculations is given in Table 2.1.
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2.5 Continuous description

Here, we derive a continuum approximation for the IBM in terms of spatial moments. To keep
our work as general as possible, we present the derivation for an arbitrary number of motile
and proliferative subpopulations. Then we present a specific case of the continuous description
where there are two subpopulations: the first subpopulation is a population of motile and prolif-
erative agents and the second subpopulation is a population of stationary and non-proliferative
obstacles. As previously described, we consider a spatially homogeneous environment. This
means that the probability of finding an individual in a given small region is independent of the
position of that small region. Hence the key quantity of interest is the displacement between
individuals. The first spatial moment, Z1,i(t), is the average density of individuals from subpop-
ulation i. The second spatial moment, Z2,i j(ξ, t), is the average density of pairs of individuals,
consisting of an individual from subpopulation j at a displacement ξ from an individual belong-
ing to subpopulation i. The third spatial moment, Z3,i jk(ξ, ξ′, t), is the average density of triplets
of individuals. Here, this triplet consists of an individual from subpopulation j at displacement
ξ from an individual belonging to subpopulation i, and an individual from subpopulation k at
displacement ξ′ from the individual belonging to subpopulation i. Mathematical definitions of
these spatial moments are presented in Section 2A.1.

2.5.1 Dynamics of spatial moments

The expected rates of movement and proliferation of an individual, denoted M1,i(t) and P1,i(t),
depend on the contribution from another individual at a displacement ξ. The conditional prob-
ability of having an individual from subpopulation j located at x + ξ given that an individual
from subpopulation i is located at x, is Z2,i j(ξ, t)/Z1,i(t). The derivation of the conditional prob-
ability in terms of the spatial moments is provided in Section 2A.2. The expected movement
and proliferation rates of an individual from subpopulation i is given by multiplying this con-
ditional probability by the corresponding interaction kernels, ω(m)

i j (|ξ|) or ω(p)
i j (|ξ|), respectively,

and integrating over all possible displacements, and adding over all individuals j. These details
are outlined in Section 2A.3, and lead to

M1,i(t) = mi +
∑

j

∫
ω(m)

i j (|ξ|)
Z2,i j(ξ, t)

Z1,i(t)
dξ, (2.11)

P1,i(t) = pi +
∑

j

∫
ω

(p)
i j (|ξ|)

Z2,i j(ξ, t)
Z1,i(t)

dξ. (2.12)

We now consider the dynamics of the first moment. The first moment dynamics depends solely
on the balance between the expected rate of proliferation, P1,i(t), and death rate, di. The move-
ment and neighbour-dependent directional bias does not directly influence the dynamics of the
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first moment. The time evolution of the first moment is given by,

d
dt

Z1,i(t) =
(
P1,i(t) − di

)
Z1,i(t). (2.13)

The dynamics of the average density of pairs of agents depends on the conditional occu-
pancy of a third agent in the neighbourhood. The conditional probability of having an indi-
vidual from subpopulation k located at x + ξ′ given that an individual from subpopulation i is
located at x and an individual from subpopulation j located at x + ξ, is Z3,i jk(ξ, ξ′, t)/Z2,i j(ξ, t).
The expected movement and proliferation rates for an individual from subpopulation i, which
forms a pair with an individual from subpopulation j, separated by a displacement ξ, denoted
by M2,i j(ξ, t) and P2,i j(ξ, t), respectively. These rates depend on the conditional presence of
another individual from subpopulation k at a displacement ξ′. Hence, the expected rates are
found by multiplying Z3,i jk(ξ, ξ′, t)/Z2,i j(ξ, t) by the interaction kernels and integrating over all
possible displacements as follows,

M2,i j(ξ, t) = mi +
∑

k

∫
ω(m)

ik (|ξ′|)
Z3,i jk(ξ, ξ′, t)

Z2,i j(ξ, t)
dξ′ + ω(m)

i j (|ξ|), (2.14)

P2,i j(ξ, t) = pi +
∑

k

∫
ω

(p)
ik (|ξ′|)

Z3,i jk(ξ, ξ′, t)
Z2,i j(ξ, t)

dξ′ + ω
(p)
i j (|ξ|). (2.15)

The third term on the right of Equations (2.14)-(2.15) accounts for the direct influence of the
individual from subpopulation j at a displacement ξ from the individual from subpopulation i.

The gradient of the interaction kernel specifies the contribution of other individuals to the
bias vector. The expected net bias vector for an individual from subpopulation i, conditional on
presence of an individual from subpopulation j, is given by,

B2,i j(ξ, t) = bi +
∑

k

∫
∇ω(b)

ik (|ξ′|)
Z3,i jk(ξ, ξ′, t)

Z2,i j(ξ, t)
dξ′ + ∇ω(b)

i j (|ξ|). (2.16)

Again, the third term on the right of Equation (2.16) accounts for the direct influence of an
individual from subpopulation j, at a displacement ξ, from the individual belonging to subpop-
ulation i. We note that Equation (2.16) combines directional bias (Binny et al., 2016a, 2016b)
with multi-species spatial moment equations (Law and Dieckmann, 2000; Murrell, 2005; Plank
and Law, 2015) in a way that has not been considered previously. Now we consider the PDF
for the movement displacement ξ′ for an individual from subpopulation i conditional on the
presence of an individual from subpopulation j at displacement ξ as,

µ(m)
2,i j(ξ

′, ξ, t) = µ(m)
i (ξ′; B2,i j(ξ, t)). (2.17)

For the dynamics of the second moment, we must consider two factors: (i) the loss of pairs
of agents at displacement ξ; and (ii) the creation of pairs at displacement ξ. The loss of pairs
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occurs either by movement or death events, whereas the creation of pairs occurs through move-
ment or proliferation events. The time evolution of the second moment is given by,

∂

∂t
Z2,i j(ξ, t) = −

(
M2,i j(ξ, t) + M2, ji(−ξ, t) + di + d j

)
Z2,i j(ξ, t)

+

∫ (
µ(m)

2,i j(ξ
′, ξ′ + ξ, t)M2,i j(ξ′ + ξ, t)

+ µ
(p)
i (ξ′)P2,i j(ξ′ + ξ, t)

)
Z2,i j(ξ′ + ξ, t) dξ′ (2.18)

+

∫ (
µ(m)

2, ji(ξ
′, ξ′ − ξ, t)M2, ji(ξ′ − ξ, t)

+ µ
(p)
j (ξ′)P2, ji(ξ′ − ξ, t)

)
Z2, ji(ξ′ − ξ, t)dξ′

+ 2δi jµ
(p)
j (−ξ)P1, j(t)Z1, j(t).

In Equation (2.18), the two integral terms and the factor of two in the last term on the right
arises due to the fact that a pair can be created or destroyed by either of the individuals in that
pair. A detailed description of the derivation of the dynamics of the second spatial moment is
provided in Section 2A.4.

Just as the dynamics of the first moment depends on the second moment, we see that the
dynamics of the second moment depends on the third moment. If we continue in this way we
could develop an infinite hierarchy of equations which is difficult to analyse (Ovaskainen and
Cornell, 2006; Finkelshtein et al., 2009; Ovaskainen et al., 2014). However, previous studies
focusing on applications in cell biology (Binny et al., 2016a, 2016b) and ecology (Law and
Dieckmann, 2000) provide useful results by closing the infinite system of moment equations to
produce an approximate truncated system. Here we follow a similar approach and approximate
the third order terms in Equations (2.14)-(2.16) using a moment closure approximation. While
various approximations, such as the power-1 closure, power-2 closure and Kirkwood superpo-
sition approximation, are available (Murrell et al., 2004), in this study we focus on the power-2
closure scheme (Law et al., 2003) that is given by,

Z3,i jk(ξ, ξ′, t) =
1
5

(
4

Z2,i j(ξ, t)Z2,ik(ξ′, t)
Z1,i(t)

+
Z2,i j(ξ, t)Z2, jk(ξ′ − ξ, t)

Z1, j(t)

+
Z2,ik(ξ′, t)Z2, jk(ξ′ − ξ, t)

Z1,k(t)
− Z1,i(t)Z1, j(t)Z1,k(t)

)
. (2.19)

2.5.2 Spatial moment description for motile, proliferative agents and sta-
tionary obstacles

For clarity, we now present the governing equations for the specific case of a population of
motile, proliferative agents in an environment containing stationary, non-proliferative obstacles.
The first spatial moment of agents and obstacles are denoted Z1,1(t) and Z1,2(t), respectively. The
second spatial moments, corresponding to the density of pairs are denoted: Z2,11(ξ, t); Z2,12(ξ, t);
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Z2,21(ξ, t); and Z2,22(ξ, t). The terms Z2,11(ξ, t) and Z2,22(ξ, t) correspond to the average densities
agent-agent pairs and obstacle-obstacle pairs. The other two terms, Z2,12(ξ, t) and Z2,21(ξ, t),
corresponds to the average densities of agent-obstacle pairs, and obstacle-agent pairs.

The expected rate of movement of an agent, M1,1(t), is given by multiplying the interac-
tion kernels of movement, ω(m)

11 (|ξ|) or ω(m)
12 (|ξ|), by the conditional probability of having an

agent or obstacle present at a displacement ξ from the reference agent, and integrating over all
possible displacements. These conditional probabilities of either an agent or obstacle located
at a displacement ξ are given by Z2,11(ξ, t)/Z1,1(t) and Z2,12(ξ, t)/Z1,1(t), respectively. The ex-
pected proliferation rate is also calculated in the same way by replacing the movement kernels
with proliferation kernels, ω(p)

11 (|ξ|) and ω(p)
12 (|ξ|). Using this information, the expected rate of

movement and proliferation of an agent is given by,

M1,1(t) = m1 +
1

Z1,1(t)

∫ (
ω(m)

11 (|ξ|)Z2,11(ξ, t) + ω(m)
12 (|ξ|)Z2,12(ξ, t)

)
dξ, (2.20)

P1,1(t) = p1 +
1

Z1,1(t)

∫ (
ω

(p)
11 (|ξ|)Z2,11(ξ, t) + ω

(p)
12 (|ξ|)Z2,12(ξ, t)

)
dξ. (2.21)

The expected movement and proliferation rates of obstacles M1,2(t) and P1,2(t) are zero.

The time evolution of density of agents depends only on the expected rate of proliferation
and death of agents. The density of obstacles remains constant. Hence we have,

d
dt

Z1,1(t) = (P1,1(t) − d1)Z1,1(t), (2.22)

d
dt

Z1,2(t) = 0. (2.23)

The conditional probability of having an agent located at ξ′, given that an another agent is
present at ξ, is Z3,111(ξ, ξ′, t)/Z2,11(ξ, t). Similarly three more conditional probabilities can be
specified by considering different arrangements of agents and obstacles around the reference
agent at displacement 0. The expected event rates, M2,11(ξ, t) and P2,11(ξ, t), of an agent con-
ditional on the presence of another agent at displacement ξ can be computed by multiplying
these conditional probabilities by the corresponding interaction kernels and integrating over all
possible displacements. The expected rates are given by,

M2,11(ξ, t) =
1

Z2,11(ξ, t)

∫ (
ω(m)

11 (|ξ′|)Z3,111(ξ, ξ′, t) + ω(m)
12 (|ξ′|)Z3,112(ξ, ξ′, t)

)
dξ′

+ m1 + ω(m)
11 (|ξ|), (2.24)

P2,11(ξ, t) =
1

Z2,11(ξ, t)

∫ (
ω

(p)
11 (|ξ′|)Z3,111(ξ, ξ′, t) + ω

(p)
12 (|ξ′|)Z3,112(ξ, ξ′, t)

)
dξ′

+ p1 + ω
(p)
11 (|ξ|). (2.25)

Using similar arguments, we compute the remaining movement and proliferation rates of an
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agent arising from the presence of an obstacle at a displacement ξ as follows,

M2,12(ξ, t) =
1

Z2,12(ξ, t)

∫ (
ω(m)

11 (|ξ′|)Z3,121(ξ, ξ′, t) + ω(m)
12 (|ξ′|)Z3,122(ξ, ξ′, t)

)
dξ′

+ m1 + ω(m)
12 (|ξ|), (2.26)

P2,12(ξ, t) =
1

Z2,12(ξ, t)

∫ (
ω

(p)
11 (|ξ′|)Z3,121(ξ, ξ′, t) + ω

(p)
12 (|ξ′|)Z3,122(ξ, ξ′, t)

)
dξ′

+ p1 + ω
(p)
12 (|ξ|). (2.27)

The gradient of the bias kernel gives the contribution of agents and obstacles to the bias vector
of the neighbouring agent. The expected net bias vector of an agent conditional on presence of
another agent is given by,

B2,11(ξ, t) = b1 +
1

Z2,11(ξ, t)

∫ (
∇ω(b)

11 (|ξ′|)Z3,111(ξ, ξ′, t)

+ ∇ω(b)
12 (|ξ′|)Z3,112(ξ, ξ′, t)

)
dξ′ + ∇ω(b)

11 (|ξ|). (2.28)

Similarly, the expected net bias vector of an agent conditional on presence of an obstacle is
given by,

B2,12(ξ, t) = b1 +
1

Z2,12(ξ, t)

∫ (
∇ω(b)

11 (|ξ′|)Z3,121(ξ, ξ′, t)

+ ∇ω(b)
12 (|ξ′|)Z3,122(ξ, ξ′, t)

)
dξ′ + ∇ω(b)

12 (|ξ|). (2.29)

Now we develop the equations governing the dynamics of the second moments. The equations
for the density of pairs involving agents depends on the loss of pairs of agents at displacement
ξ, which can occur either by movement or death, and creation of pair at displacement ξ which
can occur through movement or proliferation. The density of pairs of obstacles, Z2,22(ξ, t),
remains constant over time. The equations governing the dynamics of second moments for the
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agent-obstacle population are given by,

∂

∂t
Z2,11(ξ, t) = −

(
M2,11(ξ, t) + M2,11(−ξ, t) + 2d1

)
Z2,11(ξ, t)

+

∫ (
µ(m)

2,11(ξ′, ξ′ + ξ, t)M2,11(ξ′ + ξ, t)

+ µ
(p)
1 (ξ′)P2,11(ξ′ + ξ, t)

)
Z2,11(ξ′ + ξ, t) dξ′ (2.30)

+

∫ (
µ(m)

2,11(ξ′, ξ′ − ξ, t)M2,11(ξ′ − ξ, t)

+ µ
(p)
1 (ξ′)P2,11(ξ′ − ξ, t)

)
Z2,11(ξ′ − ξ, t) dξ′

+ 2µ(p)
1 (−ξ)P1,1(t)Z1,1(t),

∂

∂t
Z2,12(ξ, t) = −

(
M2,12(ξ, t) + d1

)
Z2,12(ξ, t)

+

∫ (
µ(m)

2,12(ξ′, ξ′ + ξ, t)M2,12(ξ′ + ξ, t) (2.31)

+ µ
(p)
1 (ξ′)P2,12(ξ′ + ξ, t)

)
Z2,12(ξ′ + ξ, t) dξ′,

∂

∂t
Z2,21(ξ, t) = −

(
M2,12(−ξ, t) + d1

)
Z2,21(ξ, t)

+

∫ (
µ(m)

2,12(ξ′, ξ′ − ξ, t)M2,12(ξ′ − ξ, t) (2.32)

+ µ
(p)
1 (ξ′)P2,12(ξ′ − ξ, t)

)
Z2,12(ξ′ − ξ, t) dξ′,

∂

∂t
Z2,22(ξ, t) = 0. (2.33)

A description of the numerical methods we use to solve Equations (2.30)-(2.33) are given in
Section 2A.5.
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Table 2.1: Model parameters and typical values.

Parameter Symbol Value

Densities

Agents Z1,1(t) 0.25 to 0.9

Obstacles Z1,2(t) 0.0 to 0.375

Initial density of agents Z1,1(0) 0.25

Initial density of obstacles Z1,2(0) 0.0 to 0.375

Intrinsic rates
Birth p1, p2 1, 0

Death d1, d2 0.5, 0

Movement m1, m2 5, 0

Neighbour-dependent interaction strengths

Birth γ
(p)
11 , γ(p)

12 , γ(p)
21 , γ(p)

22 -0.38 to 0

Movement γ(m)
11 , γ(m)

12 , γ(m)
21 , γ(m)

22 0

Bias γ(b)
11 , γ(b)

12 , γ(b)
21 , γ(b)

22 -0.2 to 0.4

Spatial extent of interactions

Birth σ
(p)
11 , σ(p)

12 , σ(p)
21 , σ(p)

22 0.25 to 0.6

Movement σ(m)
11 , σ(m)

12 , σ(m)
21 , σ(m)

22 0.25 to 0.6

Bias σ(b)
11 , σ(b)

12 , σ(b)
21 , σ(b)

22 0.25 to 0.6

Movement and dispersal distance

Mean movement distance µ(s)
1 , µ(s)

2 0.4

Standard deviation movement distance σ(s)
1 , σ(s)

2 0.1

Standard deviation dispersal distance σ(d)
1 , σ(d)

2 0.5

2.6 Bias landscape

A key feature of the IBM is the neighbour-dependent bias. This formalism helps us understand
how the spatial arrangement of obstacles and other agents affects the movement of a particular
reference agent. To interpret and visualise the neighbour-dependent bias, we define the bias

landscape as,

Q(x) = Q1(x) + Q2(x), (2.34)
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where,

Q1(x) =
∑
n∈N1

ω(b)
11 (|xn − x|), (2.35)

Q2(x) =
∑
n∈N2

ω(b)
12 (|xn − x|), (2.36)

are contributions to overall bias landscape from the agents and the obstacles, respectively. For
an agent located at x, Q(x) acts as a measure of the degree of crowding. The neighbour-
dependent bias vector, Bn, is the negative gradient of the bias landscape, −∇Q(x). With these
definitions it is straightforward to see that agents move in response to the gradient of the bias
landscape. Writing the negative gradient of the bias landscape in terms of the contributions
from the two subpopulations, −∇Q(x) = −∇Q1(x) − ∇Q2(x), it is clear that the spatial arrange-
ments of both the agents and the obstacles play a role in influencing the movement of agents
in the IBM. The incorporation of bias owing to interactions within a particular subpopulation,
and interactions from other subpopulations is a very simple, yet powerful feature of our IBM
and this can be used to explore a range of behaviours such as enabling the simulation of attrac-
tion of individuals within the same subpopulation, and repulsion between pairs of individuals
from different subpopulations. This kind of detail, which has never been considered before
in the context of a spatial moment model, can be incorporated very simply in our modelling
framework.

The influence of bias depends on the spatial arrangement of the agents and obstacles, and
properties of the interaction kernels, ω(b)

11 (|ξ|) and ω(b)
12 (|ξ|), respectively. When the kernels are

decreasing functions of |ξ|, agents experience a repulsive bias that encourages them to move
away from the regions of high crowding. Figure 2.1 shows how the repulsive bias affects the
movement of agents in a particular arrangement. The bias landscape and corresponding level
curves due to agent-agent interactions alone are shown in Figure 2.1(a)-(b). The locations of
agents are represented by red dots, and the arrows indicate the preferred direction of movement.
The length of these arrows indicates the strength of bias. We note that crowded agents expe-
rience a repulsive bias, and prefer to move towards a lower density region. Figure 2.1(c)-(d)
shows the crowding effects generated by obstacles only, and Figure 2.1(e)-(f) shows how both
the agent-agent and agent-obstacle interactions sum to give the total bias landscape. Note that,
if the bias interaction strength is negative, then the interaction kernels ω(b)

11 (|ξ|) and ω(b)
12 (|ξ|) are

increasing functions of |ξ|. In that case, the orientation of the bias landscape structure would be
reversed, and we would have an attractive bias.
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Figure 2.1: Neighbour-dependent bias visualised for a particular arrangement of 20 agents (red open circles) and
20 obstacles (black dots). In this case we have a positive Gaussian interaction kernel to specify the interactions
among agents as well as the interactions between agents and obstacles. a Locations of agents (red open circles). c
Locations of obstacles (black dots). e Location of both agents (red open circles) and obstacles (black dots). In each
subfigure, a,c,e, the locations of individuals are superimposed with the level curves of various components of the
bias landscape. b,d,f shows the different components of the bias landscape: Q1(x); Q2(x); and Q(x), respectively.
The bias vectors are denoted by black arrows. The bias vectors in a show −∇Q1(xn), which is the negative gradient
of the component of the bias landscape corresponding to agent-agent interactions. For some agents where the bias
vector is sufficiently small we do not show the bias vector. In addition, the bias vectors for stationary obstacles
are omitted since the obstacles are stationary. The bias vectors in e show −∇Q(xn), which is the negative gradient
of the net bias landscape corresponding to the sum of agent-agent and agent-obstacle interactions. The length of
arrows indicate the strength of bias. Results in a-b correspond to interactions between agents only. Results in
c-d show interactions between obstacles. Results in e-f show the net interactions between agents and obstacles.
Parameters are γ(b)

11 = γ(b)
12 = 0.2 and σ(b)

11 = σ(b)
12 = 0.5.

35



2.6. BIAS LANDSCAPE CHAPTER 2. CROWDING AND OBSTACLES

Another key variable in the IBM is the size of the obstacles, which determines the spatial
extent of the obstacle-agent bias. We use the parameter describing the spatial extent of inter-
actions, σ(b)

12 , as a proxy for obstacle size. Here we make the natural assumption that larger
obstacles correspond to increased σ(b)

12 , so that larger obstacles tend to exert an influence over a
larger neighbourhood. Note that we maintain the bias strength, γ(b)

12 , as a constant and we only
vary σ(b)

12 to mimic the influence of obstacle size. Results in Figure 2.2 show the same spatial
arrangement of 20 agents and 20 obstacles as in Figure 2.1, except that we reduce σ(b)

12 so that
the obstacles in Figure 2.2 influence a smaller neighbourhood than the obstacles in Figure 2.1.
This change in obstacle size does not affect the agent-agent component of the bias landscape,
Q1(x), but it does affect the agent-obstacle component, Q2(x).
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Figure 2.2: Neighbour-dependent bias visualised for a particular arrangement of 20 agents (red open circles)
and 20 smaller obstacles (black dots). In this case we have a positive Gaussian interaction kernel to specify the
interactions among agents as well as the interactions between agents and obstacles. a Locations of agents (red
open circles). c Location of obstacles (black dots). e Locations of both agents (red open circles) and obstacles
(black dots). In each subfigure, a,c,e, the locations of individuals are superimposed with the level curves of various
components of the bias landscape. b,d,f shows the different components of the bias landscape: Q1(x); Q2(x); and
Q(x), respectively. The bias vectors are denoted by black arrows. The bias vectors in a show −∇Q1(xn), which is
the negative gradient of the component of the bias landscape corresponding to agent-agent interactions. For some
agents where the bias vector is sufficiently small we do not show the bias vector. In addition, the bias vectors for
stationary obstacles are omitted since the obstacles are stationary. The bias vectors in e show −∇Q(xn), which
is the negative gradient of the net bias landscape corresponding to the sum of agent-agent and agent-obstacle
interactions. The length of arrows indicate the strength of bias. Results in a-b correspond to interactions between
agents only. Results in c-d show interactions between obstacles. Results in e-f show the net interactions between
agents and obstacles. Parameters are γ(b)

11 = γ(b)
12 = 0.2, σ(b)

11 = 0.5 and σ(b)
12 = 0.25.
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2.7 Results and discussion

In this section we present snapshots from the IBM to explore the dynamics of the two species
agent-obstacle system. In these simulations we systematically vary the density of obstacles, the
size of obstacles, and the interactions between agents and obstacles. In addition to presenting
IBM simulations, we also present solutions of the spatial moment dynamics model to explore
how well the model predicts the dynamics of the different conditions we consider. Another
outcome is to examine how various properties of obstacle field influence spatial structure.

2.7.1 Effect of varying the obstacle density

Here we explore how variations in the density of obstacles influence the spatial structure and
the dynamics of the agent subpopulation. Results in Figure 2.3 show a series of snapshots
from the IBM. Each row shows snapshots at t = 0, 10, 20 and 60, whereas each column shows
results for different densities of obstacles. The initial number of obstacles is varied from N2(0)
= 0, 50, 100 to 150, in the columns from left-to-right, respectively. In all cases we consider
a constant initial number of agents, N1(0) = 100, and a random initial placement of obstacles
and agents. Results in Figure 2.3(a)-(d) show the most fundamental case where there are no
obstacles present, and we note that the multi-species model simplifies to the previous single
species model presented by Binny et al. (2016b) in this case. We use this first scenario to
emphasise the differences in the population dynamics for the agent subpopulation in presence
and absence of obstacles, which are shown in the second, third and fourth column of Figure
2.3. By repeating the stochastic simulations in Figure 2.3 many times, we can calculate the
density of obstacles, the density of agents, the auto-correlation PCF and the cross-correlation
PCF, as shown in Figure 2.4.

Results in Figure 2.3(a)-(d) show the evolution of the population of agents and the as-
sociated spatial structure in the absence of obstacles. Overall we see that the initially small
population of agents increases with time until there is a balance of net proliferation and death,
leading to the formation of a steady density of agents at later time. For this choice of parameters
we observe the formation of a segregated spatial pattern. The main reason for the emergence
of segregation is the choice of a positive bias strength, γ(b)

11 > 0 which means that agents tend to
move away from regions of high density. The segregated nature of the distribution of agents is
evident in the auto-correlation PCF as we see that C11(r) < 1 over relatively short distances, r.
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Figure 2.3: IBM snapshots showing the impact of increasing obstacle density. Each row shows a snapshot of the IBM at t = 0, 10, 20 and 60, respectively. Results in a-d show
the evolution of a population of agents in the absence of obstacles. Results in e-h, i-l and m-p show the evolution of a population of agents among a population of 50, 100 and
150 obstacles, respectively. In all cases agents are red and obstacles are black. Parameter values are p1 = 1, d1 = 0.5, m1 = 5, p2 = d2 = m2 = 0, γ(p)
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Figure 2.4: Comparison of spatial moment results and averaged data from 40 identically-prepared realizations of
the IBM. Results in a show the evolution of the first spatial moment for the agents, Z1,1(t). Various results are
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Z1,2(0) = 100/400 (dash-dotted) and Z1,2(0) = 150/400 (dashed). Results in b show the constant first spatial
moment for the obstacles. Results in c-d show the second spatial moment of agents expressed in terms of C11(r)
and C12(r), respectively. Both PCFs are given at t = 60. The curves in red correspond to results from the spatial
moment dynamics model, whereas curves in blue correspond to averaged data from the IBM. Parameter values
are p1 = 1, d1 = 0.5, m1 = 5, p2 = d2 = m2 = 0, γ(p)
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The incorporation of obstacles in the system leads to a reduction in the long time steady
density of agents, as shown in Figure 2.4(a). In general we see that the more obstacles present,
the smaller the steady state density of agents. This results makes intuitive sense as the pres-
ence of obstacles in the system increases the role of agent-obstacle interactions, which acts to
reduce the net proliferation rate. These results also show that the accuracy of the spatial mo-
ment prediction increases with the density of obstacles. Results in Figure 2.4(b) show the time
evolution of density of obstacles and we see the expected result that the density remains con-
stant. However, the presence of obstacles influences the spatial structure of the population of
agents by contributing to the directional bias. Since the obstacles are stationary, the obstacles
prevent agents residing in certain regions of the domain. As we increase the obstacle density,
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we observe a progressive shift from the long time segregated spatial pattern of agents over short
distances when there are no obstacles present, to a more clustered long time pattern of agents as
the obstacle density increases. The auto-correlation PCF for each of the cases shown in Figure
2.4(c) illustrates this transition. The cross-correlation PCF between agents and obstacles ap-
pears to be less sensitive to the density of obstacles than the auto-correlation PCF. For all cases
we see that C12(r) < 1 over relatively short distances, r, for all the cases considered, indicating
segregated spatial pattern of agents and obstacles.

2.7.2 Effect of varying the obstacle size

Next, we explore how variations in obstacle size influence the spatial structure and dynamics of
the agent subpopulation. The notion of obstacle size is incorporated into the model by varying
the spatial extent of the interaction of obstacles, σ(p)

12 and σ(b)
12 . We assume that larger obstacles

interact with agents over a greater distance than smaller obstacles. Therefore, we vary the size
of the obstacles and examine how this impacts the evolution of the density of agents, and the
spatial structure. We consider a total population composed of agents and obstacles with initial
population sizes, N1(0) = N2(0) = 100, respectively, as shown in Figure 2.5. We then consider
increasing the obstacle size, shown from left-to-right in Figure 2.5, where we have σ(p)

12 = σ(b)
12 =

0.25, 0.4, 0.5, and 0.6, respectively. By repeating the stochastic simulations in Figure 2.5 many
times, we can calculate the density of obstacles, the density of agents, the auto-correlation PCF
and the cross-correlation PCF, as shown in Figure 2.6.

Results in Figure 2.6(a)-(b) show the time evolution of the density of agents and the density
of obstacles in each of the four cases considered. As the size of obstacles increase, we observe
a decrease in the long time steady agent density. The wider range of interactions for the larger
obstacles enables them to influence the proliferation rate of more distant agents. Even though
the obstacle density is same, the proliferation rate of more agents reduces in the presence of
large obstacles, leading to a reduced long time density of agents. Another mechanism that
plays a crucial role in reducing long time steady agent density is the indirect effect of reduction
in the effective system size (i.e., the fraction of the domain available for agents) as obstacle
size increases. This reduction in system size increases agent-agent interaction and effectively
enhances the contact inhibition of agents’ proliferation, leading to lower long time steady agent
density.

Figure 2.5 shows the snapshot of the spatial structure of population for each case considered
and corresponding auto-correlation and cross-correlation PCFs are given in Figure 2.6(c)-(d).
The population consisting of small obstacles shows a small-scale segregated spatial pattern of
agents. Due to the narrow interaction range of the smaller obstacles, a relatively small number
of agents are affected by the obstacles. However, the agents are also subject to a repulsive bias
from other agents, which results in a small scale segregated spatial pattern of agents for this
choice of parameters. The cross-correlation PCF is less than unity over short displacements,
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thereby suggesting segregated spatial structure between agents and obstacles, but the effects are
less pronounced than the spatial patterns between agents. As the obstacle size increases, the
agent population became less segregated, and the case we consider with the largest, σ(p)

12 = 0.6,
leads to agent clustering over short distances.
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2.7.3 Effect of varying the obstacle interaction strength

Finally, we explore how variations in interaction strength, and the nature of the interactions
between agents and obstacles, influence the spatial structure and the dynamics of the agent
population. We examine the influence of both attractive interactions, as well as repulsive inter-
actions. Similar to the previous simulations in Figure 2.5, we consider a random initial spatial
distribution of agents and obstacles with initial population size N1(0) = N2(0) = 100. We then
vary the strength of interactions, γ(b)

12 , between 0.4 and -0.2. This means that we consider both
attractive and repulsive interactions between agents and obstacles in this suite of simulations.
Snapshots from the IBM are shown in Figure 2.7, and by repeating these stochastic simulations
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many times, we can calculate the density of obstacles, the density of agents, the auto-correlation
PCF and the cross-correlation PCF, as shown in Figure 2.8.

Results in Figure 2.7(a)-(d) show the spatial structure arising when there is a relatively
strong repulsive bias between the obstacles and agents. This repulsion means that agents tend
to move away from the obstacles, leading to the formation of a segregated spatial structure
among agent-obstacle pairs. The PCFs, given in Figure 2.8(c)-(d), are consistent with this as
we have C12(r) < 1 over small distances. Here we note that the repulsive interactions between
agents are sufficiently strong to counteract the short-range dispersal of agents. Hence we also
observe a segregated spatial pattern among agents over short distances. Results in Figure 2.7(e)-
(h) and Figure 2.7(i)-(l) show a similar spatial pattern, but the effects are less pronounced due to
the reduced repulsion. Results in Figure 2.7(m)-(p) are quite different since we have attraction
between the agents and obstacles, and the agents are biased to move towards the obstacles.

Figure 2.8(a) shows the density dynamics of agents for each of the cases considered. The
agent density decreases as the bias strength decreases and the density is lowest when bias
strength is negative. When the obstacle bias strength is negative, corresponding to attractive
obstacles, agents form clusters around obstacles. Since a large number of agents present at short
distances, the proliferation rate of agents in clusters reduces significantly. Hence the population
size increases more slowly than the case where obstacles are repulsive. Figure 2.8(b) shows the
constant density of obstacles in each of the four cases.
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Figure 2.7: IBM snapshots showing the impact of varying the obstacle interaction strength. Each row shows a snapshot of the IBM at t = 0, 10, 20 and 60, respectively. Results
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Figure 2.8: Comparison of spatial moment results and averaged data from 40 identically-prepared realizations
of the IBM. Results in a show the evolution of the first spatial moment for agents, Z1,1(t). Various results are
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2.8 Conclusions

In this chapter, we develop an IBM describing multi-species neighbour-dependent birth-death-
movement processes, and we derive a continuum approximation of the stochastic dynamics
using a spatial moment framework. We incorporate various processes such as neighbour-
dependent directional bias from multiple subpopulations, and crowding effects such as contact
inhibition of proliferation and contact inhibition of motility. We use this general framework to
explore the case where one subpopulation is stationary and non-proliferative, and we treat this
subpopulation as acting like biological obstacles in an in vivo environment. This framework
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allows us to explore how different properties of obstacles such as density, size and interaction
strength influence the dynamics and emergence of spatial structure in the population.

Repeated simulations of the IBM are computationally inexpensive when the total number
of individuals in the population is relatively small. However, such repeated simulations be-
come computationally prohibitive as the population size increases. A useful feature of the
spatial moment dynamics approximation is that the computational overhead is independent of
the population size. Furthermore, if we were to explore the parameter space using the IBM to
understand how variations in the interaction strength and the spatial extent of interactions lead
to the emergence of spatial patterns, we would need to consider a large number of repeated
stochastic simulations for each point in the parameter space. As we have shown in Figure 2.4
and Figure 2.6, simulations with certain parameter values lead to larger populations than other
parameter combinations and the computational overhead associated with the IBM to describe
these situations with larger population size could be significant. Under these situations, it might
be more convenient to explore the parameter space using the spatial moment approximation
since the computational cost is independent of the final population size.

Some previous models of cell movement treat individuals as hard spheres with a fixed ra-
dius to incorporate volume exclusion effects (e.g. Bruna and Chapman, 2012; Dyson and
Baker, 2015; Plank and Simpson, 2012). The main assumption behind these models is that
the individual cells occupy space in the domain and any events would lead to other individuals
overlapping the same space are prohibited. Our modelling framework does not impose abso-
lute restrictions on the locations an individual can occupy. Instead, the probabilistic motility of
individuals along with the neighbour-dependent bias kernel mean that events that lead to indi-
viduals being very close are assigned a low probability. Specifying neighbourhood interaction
through an interaction kernel can be thought of as a proxy model for deformable, non-spherical
individuals. This is an advantage of our model over volume exclusion models because cells are
known to deform in the vicinity of other cells or obstacles (Hu et al., 2007; Le Clainche and
Carlier, 2008; Simpson et al., 2010b).

Overall we see that the details of the dynamics of the population of agents and the spatial
structure predicted using many identically prepared realisations of the IBM is reasonably well
approximated by the solution of the spatial moment model. Our results reveal some interesting
features that are not obvious without careful consideration. For example, results in Figure 2.3-
2.4 show that as we increase the obstacle density, we observe that the steady state density of
agents decreases, as we might expect. However, when we find that the accuracy of the spatial
moments prediction increases with the density of obstacles, which is not obvious. Through our
exploration we see the emergence of interesting spatial patterns as we vary the properties of
obstacles. For example, results in Figure 2.3-2.4 shows that the long time steady arrangement
of agents is segregated at short distances when there is a sufficiently low density of obstacles
present. In contrast, we see a clustered arrangement of agents at short distances when there is
a sufficiently large density of obstacles present.
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While our modelling framework is relatively general, there are many ways that it could
be extended. For example, in this work we consider a spatially uniform initial distribution of
individuals, and this kind of simulation is relevant to study certain cell biology experiments,
such as a proliferation assay. However, other kinds of experiments, such as scratch assays, are
initiated by considering an initial density of cells that varies spatially. To deal with this gen-
eralisation, both the IBM and our analysis needs modification. Furthermore, in this study we
always consider stationary obstacles. However, in some applications it is thought that mobile
obstacles are more relevant (Wedemeier et al., 2009), and this could be dealt with by setting
the obstacle motility rate to be positive. Previous studies in ecology focusing on the birth-death
processes of sessile organisms such as plants, consider fixed points in space corresponding to
the locations of maximum resource availability in the habitats with an associated kernel (North
and Ovaskainen, 2007). Evaluating and summing the kernel over all these points leads to an
environmental surface which measures the quality of habitats in the context of the evolution
of dispersal. We note that the neighbour-dependent birth-death-movement model presented
here can be extended to include the dispersal dependent upon densities of conspecifics or het-
erospecifics, or on habitat quality for both sessile and motile organisms (North et al., 2011).
We leave these extensions for future consideration.
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Chapter 2A

Additional results for Chapter 2

2A.1 Definition of spatial moments for general multi-species
model

We define a random variable, Ni(A), to be the number of individuals from subpopulation i in a
region A ⊂ R2 at a given time t. Let Dh(x) ⊂ R2 denote a disc of radius h centred on x ∈ R2.
Since we are considering population dynamics in a spatially homogeneous environment, we
assume without loss of generality that one of the individual is located at the origin, x = 0.
In our simulations, we approximate the first spatial moment, Z1,i(t), by dividing the population
size of individuals from subpopulation i, given by Ni(t), by the area of the domain, L2. Formally
we have,

Z1,i(t) = lim
h→0

1
h
E
[
Ni

(
Dh(0)

)]
. (2A.1)

The second spatial moment, Z2,i j(ξ, t), is the average density of pairs of individuals. For a
pair of individuals consisting of an individual from subpopulation i present at x = 0, and an
individual from subpopulation j present at a displacement ξ, we have

Z2,i j(ξ, t) = lim
h→0

1
h2E

[
Ni(Dh(0))N j(Dh(ξ)) − δi jNi(Dh(0) ∩ Dh(ξ))

]
. (2A.2)

The second term in the expectation in Equation (2A.2) is necessary to avoid counting self-
pairs. If the discs Dh(0) and Dh(ξ) are non-overlapping, this term becomes zero (Plank and
Law, 2015). The third spatial moment is the density of triplets of individuals, and is similarly
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defined as,

Z3,i jk(ξ, ξ′, t) = lim
h→0

1
h3E

[
Ni(Dh(0))N j(Dh(ξ))Nk(Dh(ξ′))

− δi jNi(Dh(0) ∩ Dh(ξ))Nk(Dh(ξ′))

− δikNi(Dh(0) ∩ Dh(ξ′))N j(Dh(ξ)) (2A.3)

− δ jkN j(Dh(ξ) ∩ Dh(ξ′))Ni(Dh(0))

+ 2δi jkNi(Dh(0) ∩ Dh(ξ′) ∩ Dh(ξ))
]
.

Again, the extra terms in Equation (2A.3) are needed to avoid counting non-distinct triplets.

2A.2 Conditional probabilities for the presence of individu-
als

In this section, we derive an expression for the probability of finding individuals separated by
a given displacement, conditional on the presence of other individuals. The conditional prob-
ability of finding an individual from subpopulation j at a displacement ξ, given the reference
individual from subpopulation i is located at 0, is defined as,

lim
h→0

1
h
P
[
N j(Dh(ξ)) = 1 | Ni(Dh(0)) = 1

]
. (2A.4)

Using the following property of conditional probability,

P[A | B] =
P[A ∩ B]
P[B]

, (2A.5)

we rewrite Equation (2A.4) as,

lim
h→0

1
h

P
[
N j(Dh(ξ)) = 1 ∩ Ni(Dh(0)) = 1

]
P
[
Ni(Dh(0))

] . (2A.6)

Using the definitions of spatial moments, as defined in Section 2A.1, we write the probabilities
appearing in the numerator and denominator of Equation (2A.6) as,

P
[
Ni(Dh(0)) = 1

]
= Z1,i(t)h, (2A.7)

P
[
N j(Dh(ξ)) = 1 ∩ Ni(Dh(0)) = 1

]
= Z2,i j(ξ, t)h2. (2A.8)
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Hence the conditional probability of finding an individual from subpopulation j at a displace-
ment ξ from the reference individual from subpopulation i at 0 can be written as,

lim
h→0

1
h
P
[
N j(Dh(ξ)) = 1 | Ni(Dh(0)) = 1

]
=

Z2,i j(ξ, t)
Z1,i(t)

. (2A.9)

Similarly, we write the conditional probability of finding an individual from subpopulation k at
a displacement ξ′, given that a pair of individuals from subpopulations j and i, located at ξ and
0, respectively, as

lim
h→0

1
h
P
[
Nk(Dh(ξ′)) = 1 | N j(Dh(ξ)) = 1 ∩ Ni(Dh(0)) = 1

]
= lim

h→0

1
h

P
[
Nk(Dh(ξ′)) = 1 ∩ N j(Dh(ξ)) = 1 ∩ Ni(Dh(0)) = 1

]
P
[
N j(Dh(ξ)) = 1 ∩ Ni(Dh(0)) = 1

] ,

=
Z3,i jk(ξ, ξ′, t)

Z2,i j(ξ, t)
. (2A.10)

2A.3 Calculating the expected event rates and net bias vector

Here, we derive expressions for expected event rates and net bias vector using Equations
(2A.9)-(2A.10). These expected rates are required to develop the equations for the time evolu-
tion of the density of individuals and the density of pairs of individuals. The expected move-
ment rate for an individual from subpopulation i depends on the presence of an individual from
subpopulation j at a displacement ξ. The contribution from the neighbouring individual to the
expected movement rate is given by the interaction kernel, ω(m)

i j (|ξ|). To compute the net contri-
bution, we multiply the interaction kernel by the conditional probability of having an individual
present, and integrate over all possible displacements. This gives,

M1,i(t) = mi + lim
h→0

∑
j

∫
ω(m)

i j (|ξ|)
P
[
N j(Dh(ξ)) = 1 | Ni(Dh(0)) = 1

]
h

dξ, (2A.11)

where mi is the intrinsic contribution to the expected movement rate. Now we use the expres-
sion for the conditional probability for the presence of individual, Equation (2A.9), to rewrite
Equation (2A.11) in terms of the spatial moments, giving

M1,i(t) = mi +
∑

j

∫
ω(m)

i j (|ξ|)
Z2,i j(ξ, t)

Z1,i(t)
dξ. (2A.12)
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Similarly, we compute the expected proliferation rate of an individual from subpopulation i as,

P1,i(t) = pi + lim
h→0

∑
j

∫
ω

(p)
i j (|ξ|)

P
[
N j(Dh(ξ)) = 1 | Ni(Dh(0)) = 1

]
h

dξ,

= pi +
∑

j

∫
ω

(p)
i j (|ξ|)

Z2,i j(ξ, t)
Z1,i(t)

dξ. (2A.13)

To derive the dynamics of the second spatial moments, we need to compute the expected
event rates for an individual from subpopulation i, which forms a pair with another individual
associated with subpopulation j and separated by a displacement ξ. In this case, the neighbour-
dependent component of the event rates depends on the conditional presence of another in-
dividual from subpopulation k at a displacement ξ′. We compute the neighbour-dependent
component of the expected movement rate of an individual from subpopulation i, that forms
a pair with another individual from subpopulation j. To do this we multiply the movement
interaction kernel, ω(m)

i j (|ξ|), with the conditional probability of having a pair of individuals, at
a displacement ξ, given that an individual from subpopulation k is present at a displacement ξ′,
and integrating over all possible displacements, ξ′. The integration over ξ′ does not account for
the contribution of the individual from subpopulation j located at displacement ξ, which forms
a pair with the reference individual, and so an additional term, ω(m)

i j (|ξ|), must be added to in-
corporate contributions from all neighbouring individuals. Hence the net expected movement
rate is given by,

M2,i j(ξ, t) = mi + ω(m)
i j (|ξ|) (2A.14)

+ lim
h→0

∑
k

∫
ω(m)

ik (|ξ′|)
P
[
Nk(Dh(ξ′)) = 1 | N j(Dh(ξ)) = 1 ∩ Ni(Dh(0)) = 1

]
h

dξ′

Now we use Equation (2A.10) to re-write Equation (2A.11) in terms of the spatial moments as,

M2,i j(ξ, t) = mi +
∑

k

∫
ω(m)

ik (|ξ′|)
Z3,i jk(ξ, ξ′, t)

Z2,i j(ξ, t)
dξ′ + ω(m)

i j (|ξ|). (2A.15)

Similarly, we compute the expected proliferation rate of an individual from subpopulation i,
which is in pair with an individual of subpopulation j as,

P2,i j(ξ, t) = pi + ω
(p)
i j (|ξ|)

+ lim
h→0

∑
k

∫
ω

(p)
ik (|ξ′|)

P
[
Nk(Dh(ξ′)) = 1 | N j(Dh(ξ)) = 1 ∩ Ni(Dh(0)) = 1

]
h

dξ′,

= pi +
∑

k

∫
ω

(p)
ik (|ξ′|)

Z3,i jk(ξ, ξ′, t)
Z2,i j(ξ, t)

dξ′ + ω
(p)
i j (|ξ|). (2A.16)
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Next, we compute the net bias vector B2,i j(ξ) for an individual from subpopulation i condi-
tional on the presence of an another individual from subpopulation j at a displacement ξ. The
contribution of the neighbouring individual to the directional bias of the reference individual
is defined as the gradient of the bias kernel, ∇ω(b)

i j (|ξ|) (Binny et al. 2016a). We compute the
neighbour-dependent contribution to the net bias vector of an individual from subpopulation i

that forms a pair with another individual from subpopulation j, by multiplying the gradient of
the bias interaction kernel with the conditional probability of having a pair of individuals at a
displacement ξ, given that an individual from subpopulation k is present at a displacement ξ′,
and integrating over all possible displacements ξ′. As before, an additional term, ∇ω(b)

i j (|ξ|), is
required to account for the contribution of the individual from subpopulation j located at the
displacement ξ, which forms a pair with the reference individual. Hence the net bias vector is
given by,

B2,i j(ξ, t) = bi + ∇ω(b)
i j (|ξ|)

+ lim
h→0

∑
k

∫
∇ω(b)

ik (|ξ′|)
P
[
Nk(Dh(ξ′)) = 1 | N j(Dh(ξ)) = 1 ∩ Ni(Dh(0)) = 1

]
h

dξ′,

= bi +
∑

k

∫
∇ω(b)

ik (|ξ′|)
Z3,i jk(ξ, ξ′, t)

Z2,i j(ξ, t)
dξ′ + ∇ω(b)

i j (|ξ|). (2A.17)

2A.4 Dynamics of the second spatial moment

In this section, we outline the derivation of the equations governing the dynamics of the average
density of pairs of individuals. To derive the equation governing the rate of change of pair
density, we need to consider events that result in loss of existing pairs and events that lead to the
creation of new pairs. Figure 2A.1 shows a schematic representation of possible configurations
that lead to change in the total number of pairs separated by a displacement ξ. Figure 2A.1(a)
shows a pair of individuals, separated by a displacement ξ, where the pair is composed of
individuals from subpopulations i and j, respectively. A movement or death event for either of
these individuals results in the destruction of the pair. The movement of an individual occurs
with a rate M2,i j(ξ, t) and the death occurs with a rate di.

Now we consider the case where the creation of a new pair of individuals separated by a
displacement ξ occurs. Figure 2A.1(b) shows a pair composed of individuals from subpopu-
lation i and j, separated by a displacement ξ′ + ξ. When an individual moves a displacement
ξ′, or places a daughter at a displacement ξ′, as shown in Figure 2A.1(b), a pair of individu-
als is created at a displacement ξ. The movement of the individual from subpopulation i that
forms a pair with an individual from subpopulation j separated by a displacement ξ′ + ξ, to
a displacement ξ′ occurs at a rate µ(m)

2,i j(ξ
′, ξ′ + ξ, t)M2,i j(ξ′ + ξ, t). Similarly, the placement of

a daughter from subpopulation i at a displacement ξ′ after a proliferation event occurs at rate
µ

(p)
i (ξ′)P2,i j(ξ′ + ξ, t). Figure 2A.1(c) shows the case when an individual from subpopulation i
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proliferates, and places a daughter at a displacement -ξ, generating a pair of individuals at a dis-
placement of ξ. The rate for this event is µ(p)

i (−ξ) P1,i(t). By combining these terms describing
the rate at which pairs of individuals are lost and gained, we obtain,

∂

∂t
Z2,i j(ξ, t) = −

(
M2,i j(ξ, t) + M2, ji(−ξ, t) + di + d j

)
Z2,i j(ξ, t)

+

∫ (
µ(m)

2,i j(ξ
′, ξ′ + ξ, t)M2,i j(ξ′ + ξ, t)

+ µ
(p)
i (ξ′)P2,i j(ξ′ + ξ, t)

)
Z2,i j(ξ′ + ξ, t) dξ′ (2A.18)

+

∫ (
µ(m)

2, ji(ξ
′, ξ′ − ξ, t)M2, ji(ξ′ − ξ, t)

+ µ
(p)
j (ξ′)P2, ji(ξ′ − ξ, t)

)
Z2, ji(ξ′ − ξ, t)dξ′

+ 2δi jµ
(p)
j (−ξ)P1, j(t)Z1, j(t).

-ξξ

ξ

ξ’

ξ’ξ + 

(a) (b) (c)

i

j j i

i

Figure 2A.1: Schematic representation of the possible configurations of individuals which results in a change
of the density of pairs of individuals separated by a displacement ξ. a A pair of individuals associated with
subpopulations i and j separated by a displacement ξ. A movement or death event acting on either individual leads
to the loss of the pair. b A pair of individuals associated with subpopulations i and j separated by a displacement
ξ+ξ′. A movement event or the placement of a daughter individual after a proliferation event over a displacement
ξ′ results in the creation of a pair of individuals separated by a displacement ξ. c The placement of a daughter
individual at a displacement −ξ results in the creation of a pair of individuals separated by a displacement ξ.

2A.5 Numerical methods

The system of equations governing the dynamics of the second spatial moments, Equations
(2.30)-(2.33) are solved numerically using the forward Euler method. The numerical solutions
are obtained using the MATLAB programming language. The numerical scheme involves spa-
tially discretising the displacement, ξ = (ξx, ξy), over the domain {−ξmax ≤ ξx, ξy ≤ ξmax}, with
a grid spacing ∆ξ. In all cases we have ∆ξ = 0.2, and our calculations show that this choice is
sufficient to produce grid-independent results. We choose ξmax to be sufficiently large so that
Z2,i j(ξ, t) ≈ Z1,i(t) × Z1, j(t) at the boundary. The integral terms in Equations (2.20)-(2.21) and
Equations (2.24)-(2.33) are approximated using the trapezoid rule. To evaluate the integrals we
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need the values of Z2,i j(ξ + ξ′, t). For sufficiently large ξ and ξ′, these values will lie outside
of the computational domain. In that case, we replace those terms with the value of Z2,i j(ξ, t)
at the boundary, Z2,i j((ξmax, ξmax), t). The movement and dispersal PDFs are normalised us-
ing the trapezoid rule with the same spatial discretisation such that

∫
µ(m)

2,i j(ξ, ξ
′, t)dξ = 1 and∫

µ
(p)
i (ξ)dξ = 1, for a fixed value of ξ′.
To solve the system of equations corresponding to the second spatial moments, Equations

(2.30)-(2.33), we also need the values of Z1,1(t) and Z1,2(t). The large computational domain,
together with the fact that we only consider local interactions, means that the usual mean-
field condition will hold at large displacements. This means that we can evaluate the first
moments without solving the Equations (2.22)-(2.23). At each time step, we use values of
Z2,11(ξ, t) and Z2,22(ξ, t) at the boundary to compute the first moments since we have Z1,1(t) =√

Z2,11((ξmax, ξmax), t) and Z1,2(t) =
√

Z2,22((ξmax, ξmax), t), respectively. To compare predictions
from the spatial moment model with results from the IBM, we compute the auto-correlation
and cross-correlation PCFs, Z2,11(ξ, t)/Z1,1(t) and Z2,12(ξ, t)/(Z1,1(t)Z1,2(t)), respectively. The
initial condition used in solving the dynamics of the second spatial moment is Z2,i j(ξ, 0) =

Z1,i(0)Z1, j(0) at t = 0. For all results we set the time step to be dt = 0.1, which is sufficiently
small so that our numerical solutions are insensitive to this choice.
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Chapter 3

Spatial structure arising from
chase-escape interactions with crowding

3.1 Preamble

This chapter is a paper published in the Scientific Reports.

Surendran Anudeep, Plank Michael J., Simpson Matthew J. 2019 Spatial structure arising
from chase-escape interactions with crowding. Scientific Reports 9: 14988. DOI:10.1038/

s41598-019-51565-3. bioRxiv Preprint.

In this chapter, we address the research question 2 of the thesis: How does the directional
movement of individuals arising out of chase-escape interactions generate macroscale spatial
structures in a multispecies conservative community? This chapter can be viewed as a partic-
ular application of the models developed in Chapter 2. Here we exclusively look at the impor-
tance of the movement and directional interactions and do not consider proliferation and death.
Such considerations are of great interest because many previous studies that use spatial mo-
ment dynamics framework have origin in plant ecology, where birth and death are considered
as the mechanisms that drive spatial structure formation and movement is irrelevant (Bolker
and Pacala, 1997; Bolker and Pacala, 1999; Murrell and Law, 2003). Some of the more recent
studies that use spatial moment framework in the context of cell biology experiments attributed
simultaneous movement and proliferation as the drivers of spatial structure formation (Binny
et al., 2016b; Browning et al., 2018). Here we demonstrate that the biased movement of in-
dividuals due to directional interactions such as chase-escape interactions can generate spatial
structures.

3.2 Abstract

Movement of individuals, mediated by localised interactions, plays a key role in numerous pro-
cesses including cell biology and ecology. In this chapter, we investigate an individual-based
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model accounting for various intraspecies and interspecies interactions in a community con-
sisting of two distinct species. In this framework we consider one species to be chasers and the
other species to be escapees, and we focus on chase-escape dynamics where the chasers are bi-
ased to move towards the escapees, and the escapees are biased to move away from the chasers.
This framework allows us to explore how individual-level directional interactions scale up to
influence spatial structure at the macroscale. To focus exclusively on the role of motility and
directional bias in determining spatial structure, we consider conservative communities where
the number of individuals in each species remains constant. To provide additional information
about the individual-based model, we also present a mathematically tractable deterministic
approximation based on describing the evolution of the spatial moments. We explore how dif-
ferent features of interactions including interaction strength, spatial extent of interaction, and
relative density of species influence the formation of the macroscale spatial patterns.

3.3 Introduction

Movement of, and interaction between individuals is fundamental to various processes in cell
biology and ecology (Williams and Solnica-Krezel, 2017; Oliveira et al., 2016; Janosov et al.,
2017). These interactions are generated by a number of factors such as the release and detec-
tion of chemical signals, mechanical forces, as well as chase and escape dynamics between
animals (Baker et al., 2019; Raz and Mahabaleshwar, 2009; Tambe et al., 2011; Vicsek, 2010),
and such interactions can be associated with attractive or repulsive bias (Keeley et al., 2014;
Binny et al., 2016a). Typically, chase-escape interactions in animal communities involve in-
terspecies interactions between two species where the chasers are biased to move towards the
escapees, and the escapees are biased to move away from the chasers (Vicsek, 2010; Oshanin
et al., 2009). Such chase-escape interactions are relevant to the development of skin patterns
in zebrafish involving the movement of two types of pigment cells: melanophores and xan-
thophores. Here, melanophores tend to move away from xanthophores as xanthophores pursue
the melanophores (Inaba et al., 2012). An example of chase-escape interaction among a single
species is in the case of locusts. Cannibalism within the population is an important source of
nutrients for locusts. Here, individual locusts tend to escape in response to the threat of being
attacked by its conspecifics. Concurrently, they pursue others in the migratory band in search of
nutrients (Bazazi et al., 2008; Guttal et al., 2015; Romanczuk et al., 2009). Another example of
chase-escape dynamics includes herding behaviour, such as in the case of dogs herding sheep
(King et al., 2012; Wood and Ackland, 2007; Strombom et al., 2014). Neighbour dependent
movement and directional bias can act in unison to generate distinct spatial patterns in the cell
population such as cellular aggregation (Thomas et al., 2006). Similarly, interactions in ani-
mal herds or bird flocks can also lead to the creation of spatial patterns (Delcourt et al., 2016).
These observations suggest that individual level interactions have significant implications in
the macroscale outcomes and motivates us to develop mathematical models to study how the
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directional movement of individuals as they respond to cues from the neighbourhood, leads to
the development of spatial structure.

Mathematical modelling frameworks used to describe the movement of individuals within
a population include both discrete individual-based models (IBM) and continuum models that
are often described in terms of differential equations (Gavagnin and Yates, 2018; Treloar et
al., 2014; Binny et al., 2015). To understand the impact of key factors relating to motility,
in this work we focus solely on movement processes and neglect proliferation and mortal-
ity. Many previous studies focusing on spatial moment dynamics were originally developed to
study plant ecology where birth and death are the key mechanisms and motility is irrelevant
(Bolker and Pacala, 1997; Bolker and Pacala, 1999; Murrell and Law, 2003; Law et al., 2003).
Recently, this framework has been extended to model cell biology experiments where simulta-
neous movement and proliferation drives the formation of spatial structure (Binny et al., 2016b;
Browning et al., 2018). In our previous work (Surendran et al., 2018), we considered a general
spatial moment model of birth, death and movement process which is relevant to experimental
cell biology where motility and proliferation mechanisms act in unison to generate the spatial
structure. Development of spatial structure in conservative communities, solely due to motility
and interactions such as chase-escape interactions is an interesting problem and to the best of
our knowledge, has not been explored in a spatial moment dynamics framework. Therefore,
the present work can be viewed as a particular application of our previous work (Surendran et
al., 2018), where we now focus exclusively on the role of motility, and motility bias in a con-
servative population and we systematically explore how these interactions give rise to spatial
structure in the absence of proliferation and death.

In this work we use a lattice-free IBM since this approach allows movement in any direction
(Plank and Simpson, 2012). We also employ interaction kernels to specify the interactions
between individuals (Plank and Law, 2015). Under this model, individuals are either attracted
towards or repelled from neighbouring individuals, depending on their species and distance.
Unlike models with strict volume exclusion, here there is no absolute restriction on the location
an individual occupies and the strength of the interaction is weighted by a distributed interaction
kernel. One of the novel features of our study is the extension of previous structure-forming
mechanisms of neighbour-dependent directional bias in single species having identical intrinsic
properties (Binny et al., 2016a; 2016b) to two species with differential attractive/ repulsive
effects on one another. This significantly expands the types of mechanism that can be modelled,
because with a single species it is either attraction or repulsion (or neutral), but with two species
there are four types of interaction each of which can be either attraction, repulsion or neutral.
In this work the four interactions are: chaser-chaser (c-c); chaser-escapee (c-e); escapee-chaser
(e-c); and escapee-escapee (e-e).

Spatial moment analysis is a continuum approximation that tracks the dynamics of the
density of individuals, pairs, triples and so on, to describe the spatial correlation present in a
population (Bolker and Pacala, 1999; Law and Dieckmann, 2000; Barraquand and Murrell,
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2013). Classical macroscale continuum models such as the logistic growth model, disregard
the influence of spatial structure by invoking a mean-field approximation such that the inter-
actions between individuals are in proportion to their average density (Murray, 1989). Spatial
moment analysis is advantageous over traditional mean-field analysis because it accounts for
short-range, neighbour-dependent interactions and spatial correlations, thereby allowing for the
analysis of clustered and segregated populations (Plank and Law, 2015).

3.4 Stochastic, individual-based model

We consider a community of two species: chasers and escapees. We construct the IBM for a
spatially homogeneous environment, where the probability of finding an individual in a small
region is independent of the location of that region. Hence, the IBM is relevant for communities
that do not involve macroscopic density gradients meaning that we do not consider moving
fronts or travelling waves (Jin et al., 2018; Johnston et al., 2017). We consider a community
with Nc chasers and Ne escapees, distributed over a continuous two-dimensional finite space,
Ω ∈ R2. At any instant of time t, the state of the IBM is characterised by the locations of the
two types of individuals xn ∈ Ω, where n = 1, 2, . . . ,Nc + Ne. The intrinsic movement rates
of chasers and escapees are mc and me, respectively. We consider a continuous time Markov
process where the probabilities that an isolated chaser or an isolated escapee moves during a
short time interval of duration δt is mcδt and meδt, respectively.

An important feature of the IBM is the neighbour dependent directional bias where move-
ment directions of individuals are influenced by the interactions with other individuals in the
neighbourhood. The interaction between two chasers at a displacement ξ is specified by the bias
interaction kernel, ωcc(|ξ|). We choose these kernels to be two-dimensional Gaussian functions,
given by,

ωcc(|ξ|) = γcc exp
(
−
|ξ|2

2σ2
cc

)
, (3.1)

where γcc and σcc > 0 represent the interaction strength and the spatial extent of interaction, re-
spectively. The intraspecies interaction of escapees as well as interspecies interactions between
chasers and escapees are specified by similar interaction kernels, ωee(|ξ|), ωce(|ξ|), and ωec(|ξ|),
respectively. The Gaussian shape of the bias kernel means that individuals interact strongly
with their immediate neighbours while interactions between more distant pairs are negligible.
We ensure that the size of the computational domain is sufficiently large relative to σi j so that
pairs of agents only interact in some local neighbourhood of the domain. The interaction kernel
in Equation 3.1 is symmetric, implying that we obtain steady spatial patterns. However, our
modelling framework is sufficiently general to incorporate asymmetric kernels if that were of
interest. In this case, asymmetric kernels could lead to other types of spatial structures such as
stable moving configurations of chasers following escapees (Romanczuk et al., 2009).

The sign of the interaction strength determines the nature of the interaction. A negative
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bias strength corresponds to attractive interactions while positive bias strength corresponds to
repulsive interactions, and we refer to these interactions are as chase and escape interactions,
respectively. The relationship between the directional bias and the nature of the local interac-
tions is best illustrated by considering a few of the possible scenarios in a community of chasers
and escapees as shown in Figure 3.1. In Figure 3.1(a), we see that a reference chaser does not
have a preferred direction since they feel no bias from neighbouring chasers, because γcc = 0.
For the intraspecies interactions of escapees, shown in Figure 3.1(b), a positive γee results in the
reference escapee moves away from other escapees. Similarly, for the interspecies interaction
of chasers and escapees, shown in Figure 3.1(c)-(d), a negative γce results in chaser attracted to
escapees, whereas a positive γec results in escapees repelled from chasers. In this way, we have
the flexibility of choosing the interspecies interaction to be asymmetric and later we will show
that this flexibility can give rise to some very interesting results.

(a) (b) (c) (d)

γ
cc

= 0 γ
ee

> 0 γ
ce

< 0 γ
ec

> 0

Figure 3.1: Schematic representation of some of the possible interactions arising in a community of chasers
(red) and escapees (black). The bias strength of intraspecies interactions of chasers and escapees are γcc and
γee, respectively. The bias strengths of interspecies interactions are γce and γec, respectively. a No intraspecies
interaction between chasers. b Intraspecies repulsion between escapees. c Chasers attracted to escapees. d
Escapees repulsed from chasers.

We define a function, Q(x, t), called the bias landscape, which allows us to quantity crowd-
edness and interactions at location x and time t. The bias landscape for a chaser is defined as a
sum of bias kernels around each individual in the community:

Qc(x, t) = Qcc(x, t) + Qce(x, t), (3.2)

where Qcc(x, t) =
∑
n∈Nc

ωcc(|xn − x|) and Qce(x, t) =
∑
n∈Ne

ωce(|xn − x|). The bias landscape for es-

capees is defined very similarly Qe(x, t) = Qec(x, t) + Qee(x, t). For any individual n, we define
the net bias vector to be

B̂n =
∑
r,n

∇ωin jr (|xr − xn|), (3.3)

where i, j ∈ {c, e}. Two key features of the bias vector are the magnitude, |B̂n|, and angular
direction, arg(B̂n) ∈ [0, 2π]. The preferred direction of movement is taken to be the angular di-
rection of the net bias vector and this allows us to bias the direction of movement of individuals
in response to the local crowdedness. The definition of the bias vector, Equation 3.3, shows
that the bias vector is the negative gradient of the bias landscape meaning that each individual
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is biased to move in the direction of the steepest descent on the surface. The strength of the
bias is determined by the steepness of the bias landscape at any particular individual’s location.

The construction of the bias landscape and bias vectors in a community of chasers and es-
capees is shown in Figure 3.2. The level curves of the intraspecific components of the bias land-
scapes, Qcc(x, t) and Qee(x, t), are shown in Figure 3.2(a)-(b), respectively. The individual bias
vectors point in the direction of steepest descent. In this example we assume no interspecies
interaction of chasers (γcc = 0), meaning that their bias vector is B̂n = 0. This explains why
there are no vectors in Figure 3.2(a), and so the direction of movement of chasers is unaffected
by other chasers. In contrast, the bias vectors for escapees in Figure 3.2(b) are directed away
from each other due to their intraspecies repulsion. The net bias landscape for chasers, Qc(x, t),
shown in Figure 3.2(c), includes the additional interspecies contribution from escapees so that
the chasers are attracted to escapees. Note that, the chaser at approximately (x, y) = (−0.5, −5)
is not influenced by the interspecies interaction because it is too far away from the clusters of
escapees. Similarly, including the interspecific component of the bias landscape for escapees,
shown in Figure 3.2(d), reorients the escapees’ bias vectors away from any nearby chasers.
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Figure 3.2: Visualisation of directional bias for a community of chasers (red dots) and escapees (black dots). In
each subfigure, a-d, the locations of individuals are superimposed with the level curves of the bias landscapes.
The bias vectors shown with black arrows represent the preferred direction of individuals. The length of arrows
indicate the strength of bias. Results in a correspond to intraspecies interactions of chasers only. Results in b show
intraspecies interactions of escapees only. Results in c and d show the net interaction for both species. Parameter
values are γcc = 0.0, γce = −0.2, γec = γee = 0.3 and σcc = σce = σec = σee = 0.5. Note that γcc = 0, meaning
that there are no interactions between chasers in (a), which explains why there is no colour bar on this subfigure.
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We now specify the probability density function (PDF) for the displacement that a chaser
traverses during a movement event as,

µc(ξ; B̂n) =
uc(|ξ|) g(arg(ξ); B̂n)

|ξ|
, (3.4)

where uc(|ξ|) and g(arg(ξ); B̂n) are two independent PDFs. A derivation of the movement dis-
placement PDF is provided in Section 3A.1. A similar definition holds for the movement
displacement PDF of escapees, µe(ξ; B̂n). Here, uc(|ξ|) is the PDF for the movement distance,
|ξ| moved by a chaser. For simplicity, we treat uc(|ξ|) as a PDF that is independent of the local
environment. It is possible to use a constant, deterministic step length in the IBM (Browning
et al., 2018). However, since we are interested in deriving a continuous mathematical descrip-
tion of the IBM we use a continuous distribution to describe the step length. Note that the
expression for µc(ξ; B̂n) involves a factor of 1/|ξ| and so evaluating µc(ξ; B̂n) at ξ = 0 results
in the PDF becoming infinite. To avoid this, we use a non-zero mean

(
µ(s)

c

)
normal distribu-

tion with a relatively narrow standard deviation
(
σ(s)

c

)
, where µ(s)

c > 3σ(s)
c for the movement

distance PDF, uc(|ξ|). When we evaluate the movement displacement PDF, we set uc(|ξ|) = 0
at distances greater than ±3σ(s)

c from the mean distance. It is also possible to use other strictly
positive distributions for the step length, such as a gamma distribution. However, we choose
the truncated Gaussian PDF to be consistent with the previous studies in this field (Binny et al.,
2016b; Surendran et al., 2018). Provided the PDF has a relatively narrow distribution around
the mean and has zero density at the origin, the exact choice of step length distribution does
not qualitatively change the results. Now, g(arg(ξ); B̂n) is the PDF describing the angular direc-
tion of movement, arg(ξ) ∈ [0, 2π], of a chaser due to the presence of other individuals in the
neighbourhood. We choose the PDF for the angular direction of movement to be a von Mises
distribution, with mean direction arg(B̂n) and concentration parameter given by |B̂n|,

g(θ; B̂n) =
exp

(
|B̂n|cos

(
θ − arg(B̂n)

))
2πI0

(
|B̂n|

) , (3.5)

where I0 is the zero order modified Bessel function. In the absence of net bias, B̂n = 0, the von
Mises distribution reduces to the uniform distribution so that there is no preferred direction of
movement (Binny et al., 2016b). This choice of PDF means that the likelihood of individuals
moving in the preferred direction, arg(B̂n), increases with the magnitude of the bias vector.
Individuals with large |B̂n|, are more likely to move in the direction of B̂n. The direction of
movement of individuals with a weaker bias becomes almost uniformly distributed. Note that,
the magnitude of B̂n does not affect the distance moved.

We implement the IBM using the Gillespie algorithm (Gillespie, 1977) with an initial con-
dition where individuals of each species are distributed uniformly at random in the domain.
An alternative simulation method would be to use a constant time-stepping approach, but this
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can be less accurate because there is a possibility that multiple events occur in the same time
step (Simpson et al., 2010a). Note that, our model considers only the movement direction to
be neighbour dependent, and movement rates are chosen to be independent of neighbourhood
interactions. In general, our framework could be extended to allow both the movement rates
and movement direction to depend upon the crowding surface. However, we choose to work
with the simplest implementation where the movement rate does not depend upon the crowding
surface since this simpler mechanism gives rise to very interesting spatial patterns.

3.4.1 Numerical simulation of the individual-based model

In our IBM simulations, we consider a community of chasers and escapees with population
sizes Nc and Ne, respectively, distributed uniformly at random in a domain of size L × L. The
intrinsic movement rates of chasers and escapees are mc and me, respectively. The net move-
ment rate of the community is given by,

λ = mc Nc + me Ne. (3.6)

The time interval between successive movement events is exponentially distributed with mean
1/λ. When a motility event takes place, an individual is chosen to move at random. Depending
upon whether the chosen individual is a chaser or escapee, it moves a displacement ξ specified
by either of the movement displacement PDFs, µc(ξ; B̂n), and µe(ξ; B̂n). We employ periodic
boundary conditions over the L × L domain in all of our simulations. Typically, the length
scales over which interactions take place between individuals are much smaller compared to
the overall domain size (σi j � L). Under these circumstances, the edge effects are negligible,
and the periodic boundary condition is a reasonable choice. Also, many previous works that
focus on modelling the motility and interactions in ecological and biological systems employ
periodic boundary conditions (Wood and Ackland, 2007; Romanczuk et al., 2009; Binny et al.,
2016a; Surendran et al., 2018).

We use spatial moments to characterise the spatial structure in the population. The first
spatial moment of chasers is Z1,c = Nc/L2 and that of escapees is Z1,c = Ne/L2. We analyse
the spatial structure of the community using second spatial moments expressed as the pair
correlation function (PCF). Since we have two different types of species in the community,
we have three distinct PCFs. These include the auto-PCF of chasers describing the density of
pairs of chasers, the auto-PCF of escapees that describes the density of pairs of escapees and
the cross-PCF describing the density of pairs involving a chaser and an escapee. To compute
the auto-PCF of chasers, Ccc(r), we choose a reference chaser located at xn and compute all
distances, r = |xr − xn| from all other chasers. We repeat this procedure until each of the
remaining Nc − 1 chasers act as a reference individual. The PCF is constructed by counting
all the distances that fall into the interval [r − δr/2, r + δr/2]. Normalising the bin count by
a factor of Nc (Nc − 1)(2πrδr)/L2 gives Ccc such that Ccc(r) = 1 corresponds to a complete
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absence of spatial structure among chasers. To compute Cee and Cce, we repeat this procedure
by considering pairs of escapees and pairs involving both chasers and escapees, respectively.

3.5 Spatial moment dynamics

In this section, we derive a macroscale continuum approximation of the IBM by considering the
dynamics of spatial moments. For convenience, we present the spatial moment dynamics for a
multispecies framework and specific details corresponding to the two species case are presented
in Section 3A.2. The spatial point process defined by the IBM is stationary, meaning that
statistics of the population in any observation window are independent of the window’s location
(Plank and Law, 2015). This means that the first spatial moment Z1,i, the average density of
species i, is independent of location. Since we do not consider the proliferation and death of
individuals, the first moment remains constant in time. The second spatial moment, Z2,i j(ξ, t),
is the average density of pairs composed of individuals of species i and species j, separated by
a displacement ξ. The third spatial moment, Z3,i jk(ξ, ξ′, t), is defined as the average density of
triplets consisting of individuals of species i, species j and species k where the individuals of
species j and k are displaced by ξ and ξ′, respectively from the individual of species i. Note
that since the subpopulations are conservative we refer to the average density as Z1,i whereas
the second and third moments are time dependent, so we explicitly show the dependence on
distance and time by writing Z2,i j(ξ, t) and Z3,i jk(ξ, ξ′, t), respectively.

3.5.1 General spatial moment formulation

To derive the equations governing the dynamics of the second spatial moment, we need to de-
rive the expected net bias vector for an individual of species i that is in pair with an individual
of species j. This depends on the contribution from another individual of species k at a dis-
placement ξ′. Conditional on a pair consisting of individuals of species i and j existing at a
displacement ξ, the probability of an individual of species k being present at a displacement ξ′

is Z3,i jk(ξ, ξ′, t)/Z2,i j(ξ, t). The expected net bias vector of an individual of species i, conditional
on the presence of an individual of species j can be computed by multiplying the gradient of
bias kernel with the conditional probability and integrating over all possible displacements,
giving,

B2,i j(ξ, t) =
∑

k

∫
∇ωik(|ξ′|)

Z3,i jk(ξ, ξ′, t)
Z2,i j(ξ, t)

dξ′ + ∇ωi j(|ξ|). (3.7)

The second term in Equation 3.7, ∇ωi j(|ξ|), accounts for the direct contribution of the individual
of species j at displacement ξ. Now we can write the PDF for the movement of an individual
of species i over a displacement ξ′, conditional on the presence of an individual of species j at
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a displacement ξ as,
µ2,i j(ξ′, ξ, t) = µi(ξ′; B2,i j(ξ, t)). (3.8)

We now consider the dynamics of the second spatial moment by considering the change in
the density of pairs of individuals at a displacement ξ as a result of the movement of individuals.
An existing pair of individuals at displacement ξ can be lost if one of the individuals of the
pair moves. Similarly, a new pair with displacement ξ is formed when one of the individuals
from an existing pair at a displacement ξ + ξ′ moves a displacement ξ′. Accounting for these
possibilities means that the time evolution of the second moment is given by,

∂

∂t
Z2,i j(ξ, t) = −

(
mi + m j

)
Z2,i j(ξ, t) + mi

∫
µ2,i j(ξ′, ξ′ + ξ, t) Z2,i j(ξ′ + ξ, t) dξ′

+ m j

∫
µ2, ji(ξ′, ξ′ − ξ, t) Z2, ji(ξ′ − ξ, t) dξ′.

(3.9)

Given estimates of the first and second moments, we can describe the spatial structure of the
community in terms of a pair correlation function (PCF), Ci j(r, t), expressed as a function of
separation distance, r = |ξ|, given by,

Ci j(r, t) =
Z2,i j(ξ, t)
Z1,i Z1, j

. (3.10)

The normalisation of the second spatial moment by a factor of Z1,i Z1, j in Equation 3.10 ensures
that Ci j(r, t) = 1 in the absence of spatial structure. If Ci j(r, t) > 1, we have more pairs of an
individual of species i separated by a distance r from an individual of species j than if they
were in a spatially random configuration. This is referred to as a clustered spatial structure. If
Ci j(r, t) < 1, we have fewer pairs of individuals at a separation distance r than if they were in
a spatially random configuration and this is known as a segregated spatial pattern. The PCF
is called an auto-PCF when describing the density of pairs involving individuals of the same
species and cross-PCF when individuals are from two different species (Binder and Simpson,
2013).

The dynamics of the second spatial moment depend on the third spatial moment via Equa-
tion 3.7. To obtain a closed system of equations, we use a moment closure scheme to ap-
proximate the third moment as a function of first and second moments (Sharkey et al., 2006;
Frasca and Sharkey, 2016). Different closure schemes have been used in the literature including
the power-1 closure, power-2 closure and the power-3 Kirkwood superposition approximation
(Murrell et al., 2004). A comparison of the performance of various closure methods for the
kinds of problems we consider is summarised in Section 3A.3. We find that the asymmetric
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power-2 closure (Law et al., 2003) given by,

Z3,i jk(ξ, ξ′, t) =
1
5

[
4

Z2,i j(ξ, t) Z2,ik(ξ′, t)
Z1,i(t)

+
Z2,i j(ξ, t) Z2, jk(ξ′ − ξ, t)

Z1, j(t)

+
Z2,ik(ξ′, t) Z2, jk(ξ′ − ξ, t)

Z1,k(t)
− Z1,i(t) Z1, j(t) Z1,k(t)

]
,

(3.11)

provides the best results for the range of parameters we consider.

3.5.2 Summary statistics

In our analysis of both the IBM and spatial moment model, we focus on examining sufficiently
long-time simulations so that we can treat the higher moments and Ci j(r, t) as quasi-steady
quantities (Simpson et al., 2013b). Under these circumstances, we specify Ci j(r) as a function
of r only. To summarise the key features of the various possible combinations of spatial struc-
ture, we need a simplified measure of spatial structure. Plotting and comparing the various
PCFs as a function of distance for each parameter value becomes increasingly challenging as
we consider a large parameter space. Under these circumstances, it is more convenient to use
a simple measure of spatial structure that expresses the type and extent of the spatial structure
as a scalar quantity. A summary statistic based on the difference in the area under the curve
of the PCF and the area under a curve made by a constant pair correlation function for a ran-
domly distributed population, Ci j(r) = 1, is one convenient way to simply express the nature
and extent of the spatial structure as a single number. In this work we use,

Ai j =

∫ ∞

0

(
Ci j(r) − 1

)
dr, (3.12)

as such a summary statistic where Ai j quantifies the spatial structure between of species i and
j as a function of Ci j(r). Binny et al. (2016) use a similar measure of spatial structure to
describe spatial patterns in a single species framework. Here we use a slightly more general
summary statistic since we are interested in populations composed of multiple species. Our
definition of Ai j is such that, if individuals of species i are more (less) likely to be located in
proximity to individuals of species j, then Ai j > 0 (Ai j < 0). If there is no correlation between
locations of individuals of species i and j then Ai j = 0. Even though, it is possible to have a
positive correlation (Ci j(r) > 1) at some scales and negative correlation (Ci j(r) < 1) at other
scales, in practice we do not observe this situation. We find that Ai j is insensitive to R when we
choose R to be sufficiently large since the PCFs approach unity for large separation distances. A
summary of the PCF and simple measure of spatial structure values and corresponding spatial
structures is provided in Table 3.1.
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Table 3.1: A summary of PCF and simple measure of spatial structure values and corresponding spatial structure

Value of PCF Type of spatial structure

Ci j(r) = 1 no spatial structure
Ci j(r) > 1 clustering between species i and j

Ci j(r) < 1 segregation between species i and j

Value of simple measure of spatial structure Type of spatial structure

Ai j = 0 no spatial structure
Ai j > 0 clustering between species i and j

Ai j < 0 segregation between species i and j

3.5.3 Numerical methods for spatial moment dynamics

The numerical solution for the dynamical equation of the second spatial moment, Equation 3.9,
is computed using the forward Euler method. This scheme involves a spatial discretisation of
the displacement, ξ = (ξx, ξy), using a square grid with constant spacing, ∆ξ, over the domain
{−ξmax ≤ ξx, ξy ≤ ξmax}. Here, ξmax is chosen to be sufficiently large such that the second spatial
moments are given by a mean field condition at the domain boundaries, giving, Z2,i j(ξ, t) ≈
Z1,i × Z1, j. The integral terms in Equation 3.7 and Equation 3.9 are approximated using the
trapezoid rule. To compute these integrals, we need to evaluate Z2,i j(ξ ± ξ′, t) for different
combinations of ξ and ξ′. Some of these combinations require values of Z2,i j(ξ ± ξ′, t) that lie
beyond the computational domain. Whenever this scenario arises, we approximate those terms
with the values of Z2,i j(ξ, t) at the boundary, Z2,i j((ξmax, ξmax), t).

The initial condition used for solving the spatial moment dynamics is Z2,i j(ξ, 0) = Z1,i×Z1, j.
We use a constant grid spacing ∆ξ = 0.2, time step dt = 0.1 and ξmax = 8 in all our results.
Additional results (not shown) confirms that this choice of spatial and temporal discretisation
is sufficient to produce grid-independent results. We compare the numerical solution of the
spatial moment dynamics model with the IBM simulation results by computing the auto-PCF
and cross-PCF Z2,ii(ξ, t)/Z2

1,i and Z2,i j(ξ, t)/(Z1,i Z1, j), respectively.

3.6 Results

Here, we explore how different features of the intraspecies and interspecies interactions in-
fluence the spatial structure of a two species community using the IBM and spatial moment
models. We examine the influence of variation in factors such as interaction strength, spa-
tial extent of interaction and relative density of species, in determining the macroscale spatial
patterns. Our results show that, at a sufficiently large time, t = 20, a steady spatial pattern
establishes in the community. The evolution of the spatial structure of the community to steady
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state is shown in Section 3A.4. Since our interest lies in understanding the long-time impact
of individual-level interactions, we focus on presenting and interpreting steady-state solutions
of our models. While the time required to attain a steady-state depends on the specific ini-
tial distribution of individuals in the domain, the actual steady-state spatial pattern formed is
independent of the initial configuration. To illustrate, we provide additional results in Sec-
tion 3A.5. In all our simulations, the individuals are initially distributed uniformly at random.
This choice helps in reducing the computational time and comparing the influence of different
types of interactions. A summary of the key parameters in the simulations is given in Table 3.2.
Before presenting the details about how different features of interactions influence the spatial
structure, we illustrate the types of spatial structure that could arise in a community of chasers
and escapes by showing the snapshots of locations of individuals from IBM in Figure 3.3. A
community with a complete absence of spatial structure is shown in Figure 3.3(a), where there
is no correlation between the locations of chasers and escapees. Figure 3.3(b) shows the inter-
species clustering of chasers and escapees, formed due to the interspecies attraction of chasers
towards escapees. Here we see more chasers and escapees in close vicinity of each other than
in a spatially random configuration. Figure 3.3(c) shows the interspecies segregation formed
due to interspecies chase-escape interactions. In this case, the repulsive bias of escapees from
chasers is stronger than the attraction of chasers to escapees. Hence we see that escapees are
placed away from chasers. Note that, the identification of the spatial structure of a community
purely through visual inspection can be challenging in certain cases. Under these scenarios,
PCFs are very useful in revealing the type of spatial structure and quantifying it.
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Figure 3.3: Snapshots of the locations of chasers and escapees to illustrate the types of spatial structure arise in our
model. a Complete absence of spatial structure (γce = γec = 0). b Interspecies cluster spatial structure (chasers and
escapees form aggregates, γce = −0.25, γec = 0, γee = −0.06). c Interspecies segregation (chasers and escapees
are segregated, γce = −0.1, γec = 0.3). Other parameter values are γcc = γee = 0, σcc = σce = σec = σee = 0.5,
mc = me = 5.0, µ(s)

c = µ(s)
e = 0.4, σ(s)

c = σ(s)
e = 0.1.
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Table 3.2: Description of model parameters and variables

Parameter symbol Description Default value

γee bias strength with which escapees are repelled by other escapees 0.3
γce bias strength with which chasers are attracted to escapees -0.2
γec bias strength with which escapees are repelled from chasers 0.3
γcc bias strength with which chasers interact with other chasers 0
σee spatial extent of bias over which escapees are repelled from other escapees 0.5
σce spatial extent of bias over which chasers are attracted to escapees 0.5
σec spatial extent of bias over which escapees are repelled from chasers 0.5
σcc spatial extent of bias over which chasers interact with other chasers 0.5
µ(s)

e mean movement distance of escapees 0.4
µ(s)

c mean movement distance of chasers 0.4
σ(s)

e standard deviation movement distance of escapees 0.1
σ(s)

c standard deviation movement distance of chasers 0.1
Ne population size of escapees 200
Nc population size of chasers 200
me intrinsic movement rate of escapees 5
mc intrinsic movement rate of chasers 5
L domain length for IBM 20

Variable Description

t time
r separation distance between a pair of individuals

Ccc(r) PCF corresponding to the pair densities of chasers (auto-PCF of chasers)
Cee(r) PCF corresponding to the pair densities of escapees (auto-PCF of escapees)
Cce(r) PCF corresponding to the densities of pairs involving a chaser and escapee (cross-PCF)

Acc simple measure of spatial structure computed from Ccc(r)
Aee simple measure of spatial structure computed from Cee(r)
Ace simple measure of spatial structure computed from Cce(r)

3.6.1 Effect of varying the interaction strength

Here, we investigate how variations in bias interaction strength impact the spatial structure. In
our simulations, we consider a two species community of chasers and escapees with population
sizes, Nc = 200 and Ne = 200, distributed according to a spatial Poisson process. We systemat-
ically vary the interaction strengths γce, γec, and γee to explore the role of different interactions.
For simplicity, we assume γcc = 0, which means that the chasers have no intraspecific interac-
tions. We compute the PCFs, Ccc(r), Cce(r), and Cee(r) along with simple measures of spatial
structure, Acc, Ace and Aee, to quantify the resulting spatial patterns generated in the community,
as shown in Figure 3.4.

In Figure 3.4(a)-(d) we vary the bias interaction strength, γec, which controls the strength
with which escapees are repelled from chasers. When escapees are not repelled from chasers
(γec = 0), the chasers move close to escapees due to their attractive bias, leading to the accumu-
lation of chasers around escapees. This results in intraspecies clustering of chasers (Ccc(r) > 1)
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as well as interspecies cluster formation (Cce(r) > 1). This is also confirmed by, simple mea-
sures of spatial structure, Acc and Ace being positive when γec = 0. We also see a segregated
pattern among escapees due to their intraspecies repulsion (Cee(r) < 1 and Aee < 0). When
escapees are repelled from chasers (γec > 0), the clustering we previously observed weakens
as the repulsion counteracts the attractive bias of chasers. For a sufficiently large choice of γec,
here γec = 0.3, spatial structure changes becomes segregated due to the overall segregation of
chasers and escapees (Ccc(r) < 1 and Acc < 0 as well as Cce(r) < 1 and Ace < 0). In spite of
the intraspecies repulsion between escapees, the enhanced interspecies repulsion from chasers,
force the escapees to come closer to each other. This results in weakening of the segregated
spatial structure of escapees as γec increases.

In Figure 3.4(e)-(h) we vary γce, which controls the strength with which chasers are attracted
to escapees. When chasers are not attracted to escapees (γce = 0), the movement of chasers
is unbiased so their distribution remains spatially random (Ccc(r) = 1). In this case, there is
no effect opposing the repulsion of escapees from chasers. This results in escapees staying
away from chasers, forming an interspecies segregated pattern, as indicated by Cce(r) < 1
for small distances and Ace < 0. Also, intraspecies repulsion among escapees contributes to
the segregated pattern of escapees, indicated by Cee(r) < 1 and Aee < 0. When chasers are
attracted to escapees (γce < 0), an intraspecies segregated spatial structure emerges among
chasers (Ccc(r) < 1 and Acc < 0). This is because chasers tend to move towards escapees
and the segregated arrangement of escapees forces chasers to occupy spaces around escapees.
As the attraction strength is increased (γce more negative), the interspecies segregated pattern
becomes less pronounced, since the enhanced attractive bias starts to counteract the repulsion
from escapees. As γce is made more negative, Ace gets closer to zero also confirm this behaviour.

In Figure 3.4(i)-(l) we vary γee, which controls the strength with which escapees are re-
pelled by other escapees. As we increase the intraspecies repulsion strength of escapees, we
observe a strong segregated spatial pattern emerges among escapees, as indicated by Cee(r) di-
verges form unity towards zero. The Aee becomes more negative with the increase in γee also
confirms this behaviour. The development of more pronounced intraspecies segregated spatial
structure among escapees can be attributed to the increased repulsion between escapees as γee

increases. Finally, we observe that the accuracy of the spatial moment prediction increases with
the increase in the magnitude of the bias strength.
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Figure 3.4: Effects of varying the interaction strength. a-c show the PCFs Ccc(r), Cce(r) and Cee(r) as a function of separation distance for different choices of γec. d show
simple measures of spatial structure Acc, Ace and Aee as a function of γec. e-g shows PCFs Ci j(r) for different choices of γce. h shows simple measures of spatial structure Ai j

as a function of γce. i-k show PCFs Ci j(r) for different choices of γee. l shows simple measures of spatial structure Ai j as a function of γee. In the subfigures showing the PCFs
as a function of r, solid curves show the averaged results from 1000 identically prepared realisations of the IBM, whereas dashed curves correspond to results from spatial
moment dynamics model. In all cases Ci j(r) and Ai j are evaluated at t = 20. Parameter values are γcc = 0, σcc = σce = σec = σee = 0.5, mc = me = 5.0, µ(s)

c = µ(s)
e = 0.4,

σ(s)
c = σ(s)

e = 0.1.
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3.6.2 Effect of varying the spatial extent of interaction

Here, we investigate how varying the range of interactions impacts the formation of spatial
structure. The spatial extent of interaction, σi j determines the range over which the interac-
tions between individuals are significant. A small choice of σi j leads to short-range interac-
tions, whereas a large σi j corresponds to long-range interactions between individuals. Again,
we consider a two species community of chasers and escapees with Nc = 200 and Ne = 200, re-
spectively. As before we set γcc = 0, meaning the interactions in between chasers are switched
off.

In Figure 3.5(a)-(d) we vary the spatial extent of interaction σec, which controls the spatial
extent over which escapees are repelled from chasers. For small values of σec, we observe a
small scale intraspecies clustering among chasers as indicated by the PCF Ccc(r) > 1 and the
simple measure of spatial structure Acc > 0. We also observe interspecies clustering between
chasers and escapees (Cce(r) > 1) as well as a segregated spatial pattern between escapees
(Cee(r) < 1) at small values of σec. Our results showing that Ace > 0 and Aee < 0 also
confirm this behaviour for small σec. As σec increases, the intraspecies clustering of chasers
and interspecies clustering becomes weaker and changes to a segregated spatial structure at a
sufficiently large values of σec. As the range over which escapees are repelled increases, the
escapees experience stronger repulsion due to the influence of more distant chasers resulting
in the segregation of chasers and escapees. As we increase σec from 0.25 to 0.6, both Acc

and Ace change sign from positive to negative. These observations confirm the formation of a
segregated spatial structure.

In Figure 3.5(e)-(h) we vary σce, which controls the spatial extent over which chasers are
attracted to escapees. At small values of σce we observe an interspecies segregated spatial
structure between chasers and escapees as indicated by Cce(r) < 1 and Ace < 0. For sufficiently
small σce, the escapees are repelled from chasers strongly since the small range attraction of
chasers to escapees cannot compensate for the relatively long range repulsion. Hence, chasers
and escapees segregate from each other forming an interspecies segregated spatial structure.
As σce increases, we observe the cross-PCF Cce(r) approaches unity and Ace becomes less neg-
ative. This suggests a shift from the interspecies segregated spatial structure between chasers
and escapees to a less segregated spatial structure. With the increase of the spatial extent of
interaction, the distance over which chasers get attracted to escapees increases and results in
an enhanced attractive bias. This enhanced attraction counteracts the interspecies repulsion
leading to the loss of the segregated spatial pattern between chasers and escapees.

Finally, in Figure 3.5(i)-(l) we vary σee, which controls the spatial extend over which es-
capees repel other escapees. As σee increases, we see the Cee(r) diverges from unity and Aee

becomes more negative, suggesting the development of stronger segregated spatial structure
among escapees. The increase in σee enables an escapee to influence more distant escapees,
resulting in the enhancement of the segregated structure.
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Figure 3.5: Effects of varying the spatial extent of interaction. a-c show the PCFs Ccc(r), Cce(r) and Cee(r) as a function of separation distance for different choices of σec. d
show simple measures of spatial structure, Acc, Ace and Aee as a function of σec. e-g shows PCF Ci j(r) for different choices of σce. h shows simple measures of spatial structure
Ai j as a function of σce. i-k shows PCFs Ci j(r) for different choices of σee. l shows simple measures of spatial structure Ai j as a function of σee. In the subfigures showing
the PCFs as a function of r, solid curves show the averaged results from 1000 identically prepared realisations of the IBM, whereas dashed curves correspond to results from
spatial moment dynamics model. In all cases Ci j(r) and Ai j are evaluated at t = 20. Parameter values are γcc = 0, γce = −0.2, γec = γee = 0.3, mc = me = 5.0, µ(s)

c = µ(s)
e = 0.4,

σ(s)
c = σ(s)

e = 0.1.
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3.6.3 Effect of varying the relative density of species

We now explore how varying the relative density of chasers and escapees, Z1,c/Z1,e, impacts the
spatial configuration of the community. We consider a community composed of three different
density ratios: Z1,c/Z1,e = 1/7, Z1,c/Z1,e = 1 and Z1,c/Z1,e = 7. To vary the relative density of
chasers, the total number of individuals in the community is fixed at Nc + Ne = 400 and the
population sizes of chasers are varied as N1 = 50, 200 and 350, respectively. We investigate the
behaviour of spatial pattern in the community by plotting Ci j(r) and Ai j in Figure 3.6.
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Figure 3.6: Effects of varying the relative density. a-c shows Ccc(r), Cce(r) and Cee(r) as a function of separation
distance, respectively. d show simple measures of spatial structure, Ai j as a function of relative density. In (a)-(c)
solid curves show the averaged results from 1000 identically prepared realisations of the IBM, whereas dashed
curves correspond to results from spatial moment dynamics model. In all results, PCFs and simple measures of
spatial structure are given at t = 20. Parameter values are γcc = 0, γce = −0.2, γec = γee = 0.3, σcc = σce = σec =

σee = 0.5, mc = me = 5.0, µ(s)
c = µ(s)

e = 0.4, σ(s)
c = σ(s)

e = 0.1.

When the density of chasers is much lower than the density of escapees, the attraction of
chasers towards escapees leads to chasers being placed far apart from other chasers. This leads
to the formation of segregated spatial structure (Ccc < 1 and Acc < 0) among chasers. In
contrast, at a high relative density of chasers, more chasers tend to move towards a particular
escapee, resulting in an accumulation of chasers at short distances and a less segregated spatial
structure, as indicated by Ccc(r) becomes close to unity and Acc becomes closer to zero. An-
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other observation is that Cee(r) decreases and Aee becomes more negative with the increase of
relative density of chasers. This indicates the emergence of a stronger intraspecies segregation
among escapees. This is a potentially counter-intuitive result since we see stronger segrega-
tion in escapees as its population size decreases. This is an indirect effect of interactions of
escapees with chasers. At a high relative density of chasers, each escapee will be surrounded
by many chasers. The repulsive bias of escapees to chasers forbids the possible movement of
any escapee, towards other escapees, that are surrounded by chasers. This results in the segre-
gation of escapees. We see Cce(r) becomes close to one and Ace approaches zero as we increase
the relative density of chasers, suggesting the weakening of the interspecies segregation. As
we increase the relative density of chasers, the attraction of chasers to escapees outweighs the
repulsive bias of escapees from chasers, to create a less segregated spatial pattern. We also pro-
vide another set of results in Section 3A.6 to emphasise that the impact of variation in relative
density is strongly dependent on the choice of interaction strengths.

3.7 Conclusions

The most striking feature of our analysis is that we find the formation of spatial structures that
are driven purely by motility. This is interesting because most spatial moment models and
analysis have their origin in plant ecology where birth and death, rather than motility, are the
key mechanisms (Bolker and Pacala, 1997; Bolker and Pacala, 1999; Law and Dieckmann,
2000; Law et al., 2003). More recent spatial moment models have been developed to mimic
cell biology experiments where simultaneous movement and proliferation are important, and
these previous studies attribute the formation of spatial structure to the combined effects of
motility and proliferation (Binny et al., 2016b; Browning et al., 2018). While other studies
have investigated the formation of spatial structures driven by density-dependent movement
(Liu et al., 2013, 2016; Delfau et al., 2016), this is the first study to apply spatial moment
analysis to a conservative community, composed of multiple distinct populations, without birth
or death events. These considerations enable us to focus on how motility alone drives significant
spatial patterning, and we find that this is particularly relevant when we consider asymmetric
interactions between distinct populations within the community. Our IBM and spatial moment
dynamics modelling framework allows us to capture different features of the individual-level
motility mechanisms such as neighbour dependent directional bias emerging as a consequence
of the interactions among individuals. We explore a range of complex spatial structure arising
from the combined impacts of various intraspecies and interspecies interactions, which involve
different types of attractive or repulsive bias between individuals in a stereotypical community
consisting of two distinct species. We provide an extensive analysis of different features of the
intraspecies and interspecies interaction by varying the interaction strength, the spatial extent
of interaction and relative densities of individuals of both the species. Our results include
several interesting and possibly counter-intuitive results. For example, under self-repulsion of
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escapees and chase-escape behaviour, the increase in density of chasers relative to escapees
results in weakening of segregated pattern between chasers and enhancement of segregated
pattern among escapees.

An interesting extension of the model presented here would be to include interactions which
affect the proliferation and mortality of individuals, such as predator-prey interactions or intra
and interspecific competition (Dittmann and Schausberger, 2017; Lin et al., 2018). The popu-
lation dynamics resulting from such interactions will depend on the types of spatial structure
examined in this work. Another extension would be to consider spatial processes such as mov-
ing fronts that are relevant to many biological processes including malignant invasion and de-
velopmental morphogenesis (Smith and Yates, 2018). In this study, we consider the movement
of individuals in a two-dimensional spatial domain. However, realistic modelling of in vivo

cell migration requires consideration of three-dimensional (3D) space. While the extension of
the IBM framework and moment dynamics analysis to 3D is relatively straight forward, the
numerical evaluation of moment dynamics in 3D can become increasingly complicated. We
leave these extensions for future work.
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Chapter 3A

Additional results for Chapter 3

3A.1 Derivation of movement displacement PDF

Here, we derive an expression for the probability density function (PDF), for the displace-
ment that a chaser traverses during a movement event. Let us assume that the distance moved
is a random variable with PDF uc(|ξ|) and the direction of movement is specified by an in-
dependent random variable with PDF g(θ). Now, we have the movement vector, (ξx, ξy) =

(|ξ| cos(θ), |ξ| sin(θ)) and the PDF for this bivariate random variable can be computed as,

µc(ξ) =
P(movement vector (ξx, ξy) is in a region of area dA ∈ R2)

dA
,

=
uc(|ξ|)d|ξ| × g(θ)dθ

|ξ| d|ξ| dθ
,

=
uc(|ξ|) g(θ)
|ξ|

.

(3A.1)

A similar derivation holds for the movement displacement PDF, µe(ξ), of escapees.

3A.2 Spatial moment dynamics for a community consisting
of two distinct species

Now, we present the details about the spatial moment dynamics for a specific case of the gen-
eralised model, where the community consists of individuals from two distinct species. The
average densities of chasers and escapees are denoted by Z1,c and Z1,e, respectively. Four dif-
ferent second spatial moments correspond to the average density of pairs of individuals are
denoted by Z2,cc(ξ, t),Z2,ce(ξ, t),Z2,ec(ξ, t), and Z2,ee(ξ, t), respectively.

The gradient of the bias kernel gives the contribution of individuals of both species to the
bias vector of the neighbouring individual. The expected net bias vector of a chaser conditional
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on the presence of another chaser is given by,

B2,cc(ξ, t) =
1

Z2,cc(ξ, t)

∫ (
∇ωcc(|ξ′|)Z3,ccc(ξ, ξ′, t)

+ ∇ωce(|ξ′|)Z3,cce(ξ, ξ′, t)
)

dξ′ + ∇ωcc(|ξ|).
(3A.2)

Similarly, the expected net bias vector of a chaser conditional on the presence of an escapee is
given by,

B2,ce(ξ, t) =
1

Z2,ce(ξ, t)

∫ (
∇ωcc(|ξ′|)Z3,cec(ξ, ξ′, t)

+ ∇ωce(|ξ′|)Z3,cee(ξ, ξ′, t)
)

dξ′ + ∇ωce(|ξ|).
(3A.3)

The expected net bias vectors of an escapee conditional on the presence of chaser and escapee,
respectively are given by,

B2,ec(ξ, t) =
1

Z2,ec(ξ, t)

∫ (
∇ωec(|ξ′|)Z3,ecc(ξ, ξ′, t)

+ ∇ωee(|ξ′|)Z3,ece(ξ, ξ′, t)
)

dξ′ + ∇ωec(|ξ|),
(3A.4)

B2,ee(ξ, t) =
1

Z2,ee(ξ, t)

∫ (
∇ωec(|ξ′|)Z3,eec(ξ, ξ′, t)

+ ∇ωee(|ξ′|)Z3,eee(ξ, ξ′, t)
)

dξ′ + ∇ωee(|ξ|).
(3A.5)

We now develop the equations governing the dynamics of the second moments. The equations
for the density of pairs depends on the loss and gain of pairs at displacement ξ. The equations
governing the dynamics of second moments for the community of chasers and escapees are
given by,

∂

∂t
Z2,cc(ξ, t) = − 2 mc Z2,cc(ξ, t)

+ mc

∫
µ2,cc(ξ′, ξ′ + ξ, t) Z2,cc(ξ′ + ξ, t) dξ′

+ mc

∫
µ2,cc(ξ′, ξ′ − ξ, t) Z2,cc(ξ′ − ξ, t) dξ′,

(3A.6)

∂

∂t
Z2,ce(ξ, t) = −

(
mc + me

)
Z2,ce(ξ, t)

+ mc

∫
µ2,ce(ξ′, ξ′ + ξ, t) Z2,ce(ξ′ + ξ, t) dξ′

+ me

∫
µ2,ec(ξ′, ξ′ − ξ, t) Z2,ec(ξ′ − ξ, t) dξ′,

(3A.7)
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∂

∂t
Z2,ec(ξ, t) = −

(
mc + me

)
Z2,ec(ξ, t)

+ me

∫
µ2,ec(ξ′, ξ′ + ξ, t) Z2,ec(ξ′ + ξ, t) dξ′

+ mc

∫
µ2,ce(ξ′, ξ′ − ξ, t) Z2,ce(ξ′ − ξ, t) dξ′,

(3A.8)

∂

∂t
Z2,ee(ξ, t) = − 2 me Z2,ee(ξ, t)

+ me

∫
µ2,ee(ξ′, ξ′ + ξ, t) Z2,ee(ξ′ + ξ, t) dξ′

+ me

∫
µ2,ee(ξ′, ξ′ − ξ, t) Z2,ee(ξ′ − ξ, t) dξ′.

(3A.9)

3A.3 Moment closure schemes

Here, we compare the accuracy of four popular moment closure schemes. The closure schemes
considered include the power-1 closure (P1), symmetric power-2 closure (P2S), asymmetric
power-2 closure (P2A) and Kirkwood superposition approximation (KSA) (Murrell et al., 2004;
Raghib et al., 2011).
The power-1 closure (P1) is given by,

Z3,i jk(ξ, ξ′, t) =Z1,i Z2, jk(ξ′ − ξ, t) + Z1, j Z2,ik(ξ′, t)

+ Z1,k Z2,i j(ξ, t) − 2Z1,i Z1, j Z1,k.
(3A.10)

The power-2 closure is given by,

Z3,i jk(ξ, ξ′, t) =
1

α + γ

[
α

Z2,i j(ξ, t) Z2,ik(ξ′, t)
Z1,i

+ β
Z2,i j(ξ, t) Z2, jk(ξ′ − ξ, t)

Z1, j

+ γ
Z2,ik(ξ′, t) Z2, jk(ξ′ − ξ, t)

Z1,k
− βZ1,iZ1, jZ1,k

]
.

(3A.11)

For the symmetric power-2 closure (P2S), we choose α = β = γ = 1, and for the asymmetric
power-2 closure (P2A), we use α = 4, β = 1, and γ = 1 (Law et al., 2003).
The Kirkwood superposition approximation (KSA) is given by,

Z3,i jk(ξ, ξ′, t) =
Z2,i j(ξ, t) Z2,ik(ξ′, t) Z2, jk(ξ′ − ξ, t)

Z1,i Z1, j Z1,k
. (3A.12)

We compute PCFs using these different closure schemes for a community consisting of two
species with Nc = Ne = 100 and compare with the averaged results of IBM simulation. Again,
in these simulations, we consider a randomly distributed initial arrangement of individuals.
Results in Figure 3A.1 compare the auto-PCFs, Ccc(r) and Cee(r), and the cross-PCF, Cce(r),
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for each of the closure schemes with results from the IBM simulation. Overall, when we
consider all three PFCs, we see that the power-2 asymmetric closure provides the best match
with the prediction of the IBM simulation for the parameters considered in Figure 3A.1. Our
approach in this work is not to promote one particular closure approximation over another
closure approximation. Instead, we present a general spatial moment framework that can be
implemented with a range of closure assumptions should one particular closure approximation
be preferred to another.
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3A.4 Evolution of spatial structure

Here, we explore how the spatial structure evolve as individuals undergo movement events. To
illustrate, we consider a sample community consisting of individuals from two distinct species
with population sizes Nc = 30 and Ne = 30. In this suite of simulations, we use a negative γce,
meaning that the chasers are attracted to escapees. All remaining bias strength parameters are
chosen to be positive, which correspond to conspecific repulsions and repulsion of escapees to
chasers. Results in Figure 3A.2 show a series of snapshots of the location of individuals and
PCFs computed at t = 0, 1, 20, and 40, respectively.

As time progresses, the locations of individuals change due to the movement of individuals
as shown in Figure 3A.2(a)-(d). That implies, the local environment around individuals keeps
changing and hence the neighbourhood contribution to the bias vector of an individual also
varies. The transition of the spatial structure of the community from the initial spatial Pois-
son process is explored by plotting the PCFs Ccc(r),Cee(r) and Cce(r), respectively as shown
in Figure 3A.2(e)-(h). Comparing the results at t = 20 and t = 40, suggests that we have an
approximately steady spatial pattern established by t = 20. As time progresses, we observe
the development of a segregated spatial pattern among subpopulations of chasers and escapees
since Ccc(r) < 1 and Cee(r) < 1 for small distances. The reason for the segregated spatial struc-
ture is the intraspecies repulsion among both species. Each chaser (escapee) tries to stay apart
from other chasers (escapees), hence leading to a segregated spatial structure among chasers
(escapees). We also observe a less pronounced interspecies segregation between chasers and
escapees. Here, the attractive bias of chasers to escapees counteracts the repulsive bias of
escapees to chasers, reducing the extent of the interspecies segregation.

85



3A
.4.

E
V

O
L

U
T

IO
N

C
H

A
PT

E
R

3A
.

A
D

D
IT

IO
N

A
L

R
E

SU
LT

S

-5

0

5

y

-5 0 5
x(a)

0 1 2 3 4
r

0

1

2

3

C
ij
(r
)

(e)

-5

0

5

y

-5 0 5
x(b)

0 1 2 3 4
r

0

1

2

3

(f)

0 0.5 1 1.5 2 2.5
r

0.3

1.1

C
ij
(r
)

-5

0

5

y

-5 0 5
x(c)

0 1 2 3 4
r

0

1

2

3

(g)

0 0.5 1 1.5 2 2.5
r

0.3

1.1

C
ij
(r
)

-5

0

5

y

-5 0 5
x(d)

0 1 2 3 4
r

0

1

2

3

(h)

0 0.5 1 1.5 2 2.5
r

0.3

1.1

C
ij
(r
)

t = 0 t = 1 t = 20 t = 40

Ccc(r)

Cce(r)

Cee(r)

Ccc(r)

Cce(r)

Cee(r)

Ccc(r)

Cce(r)

Cee(r)

Ccc(r)

Cce(r)

Cee(r)

C
ij
(r
)

C
ij
(r
)

C
ij
(r
)
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3A.5 Dependence of steady-state spatial patterns on the ini-
tial configuration of individuals

In this section we present additional results which show that the steady-state spatial structure
is independent of the initial distribution of individuals. To illustrate, we consider two different
initial configurations shown in Figure 3A.3(a)-(b), respectively. Here, the first case corresponds
to a uniform distribution of chasers and escapees with population sizes, Nc = 200 and Ne = 200,
respectively. The second case considered corresponds to a spatially non-uniform distribution
of chasers and escapees. In this second case, chasers and escapees are placed at the opposite
corners of the domain. The population sizes of both the species are kept the same as that
in Figure 3A.3(a). To examine whether these different initial conditions affect the long-time
spatial structure, we simulate the IBM with these two different types of initial distributions
of individuals. In both of these simulations we use identical interaction strengths and spatial
extents of interactions.

We observe that a steady spatial pattern emerges in the case of simulation with uniform
initial arrangement of chasers and escapees by approximately t = 20, whereas the second initial
condition requires a longer duration to approach a steady distribution, t = 100. To examine the
resulting spatial structure we plot the auto and cross-PCFs in Figure 3A.3(c) and these results
confirm that the two different initial configurations leads to identical spatial structure.
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3A.6 Effect of varying the relative density of species

Here, we present another set of results, as shown in Figure 3A.4, to emphasise that the impact
of variation in relative density is strongly dependent on the choice of interaction strengths. To
illustrate, we consider a scenario with same parameters and initial placement of individuals as
in Figure 3.6, except that we use a positive γce that corresponds to repulsion of chasers from
escapees. In contrast to the results in Figure 3.6, we observe a strong clustering of chasers
at low relative densities of chasers. The presence of more escapees creates a strong repulsion
to fewer chasers and the choice of γce = 0.3 forces chasers to move away from the escapees.
Since there is no interaction between chasers, both these factors act together to form clusters
of chasers. As we increase the relative density, the clustering weakens and leads to a random
spatial structure. This is also confirmed by the lowering of simple measure of spatial structure,
Acc, from 1.5 at Z1,c/Z1,e = 1/7 to close to zero at Z1,c/Z1,e = 7.
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At low relative densities of chasers we observe an intraspecies segregation of escapees due
to the repulsive interaction between escapees. As we increase the relative density of chasers,
we observe a peak in PCF, Cee(r), at approximately r = 1.25. This peak corresponds to an ex-
treme case of segregation where almost all escapees are separated by approximately the same
distance. This case represents the overabundance of a specific distance between pairs of indi-
viduals, and hence we call this spatial pattern a regular spatial pattern. The more pronounced
regular pattern arises due to the combined effect of the enhanced repulsion of chasers to es-
capees, due to the increase in the number of chasers compared to escapees, and the repulsive
intraspecies interaction of escapees. Overall, we summarise that the interspecies regular spatial
structure between chasers and escapees becomes more pronounced as the relative density of
chasers increases.
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Figure 3A.4: Effects of varying the relative density of species. a shows the auto-PCF of chasers as a function of
separation distance. b shows the cross-PCF as a function of separation distance. c shows the auto-PCF of escapees
as a function of separation distance. d show simple measures of spatial structure, Ai j, as a function of relative
densities of species. In (a)-(c) solid curves show the averaged results from 1000 identically prepared realisations
of the IBM, whereas dashed curves correspond to results from spatial moment dynamics model. In all results, PCFs
and simple measures of spatial structure are given at t = 20. Parameter values are γcc = 0, γce = γec = γee = 0.3,
σcc = σce = σec = σee = 0.5, mc = me = 5.0, µ(s)

c = µ(s)
e = 0.4, σ(s)

c = σ(s)
e = 0.1.
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Chapter 4

Small-scale spatial structure affects
predator-prey dynamics and coexistence

4.1 Preamble

This chapter is a paper published in Theoretical Ecology.

Surendran Anudeep, Plank Michael J., Simpson Matthew J. 2020 Small-scale spatial structure
affects predator-prey dynamics and coexistence. Theoretical Ecology 13: 537–550. DOI:10.1007/

s12080-020-00467-6. bioRxiv Preprint.

In this chapter, we address the research question 3 of the thesis: What impact do short-range
interactions and spatial structure have on the predator-prey dynamics? Here, we extend the
modelling framework presented in Chapter 2, to incorporate the ecologically relevant predator-
prey interactions. In this extension, we consider a population consisting of two species, namely
consumers and resources, where consumers predate on resources. We construct an IBM by con-
sidering the effect of predation interactions as well as the conspecific competition interaction
of each species on birth and death rates. This chapter’s main objective is to elucidate whether
the short-range interactions lead to a qualitatively different population dynamics outcome from
that predicted by the classical mean-field predator-prey model. To address this, we derive a
continuum model by invoking the mean-field assumption. By comparing the results of IBM
simulations with the mean-field model solutions, we examine how short-range interactions and
spatial structure drive the population away from the mean-field dynamics.

4.2 Abstract

Small-scale spatial variability can affect community dynamics in many ecological and biolog-
ical processes, such as predator-prey dynamics and immune responses. Spatial variability in-
cludes short-range neighbour-dependent interactions and small-scale spatial structure, such as
clustering where individuals aggregate together, and segregation where individuals are spaced
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apart from one another. Yet, a large class of mathematical models aimed at representing these
processes ignores these factors by making a classical mean-field approximation, where inter-
actions between individuals are assumed to occur in proportion to their average density. Such
mean-field approximations amount to ignoring spatial structure. In this chapter, we consider
an individual based model of a two-species community that is composed of consumers and
resources. The model describes migration, predation, competition and dispersal of offspring,
and explicitly gives rise to varying degrees of spatial structure. We compare simulation results
from the individual based model with the solution of a classical mean-field approximation, and
this comparison provides insight into how spatial structure can drive the system away from
mean-field dynamics. Our analysis reveals that mechanisms leading to intraspecific clustering
and interspecific segregation, such as short-range predation and short-range dispersal, tend to
increase the size of the resource species relative to the mean-field prediction. We show that un-
der certain parameter regimes these mechanisms lead to the extinction of consumers whereas
the classical mean-field model predicts the coexistence of both species.

4.3 Introduction

Mathematical modelling of ecology and cell biology processes, such as predator-prey dynamics
and immune cell-pathogen interactions, can provide insight into the impact of various interac-
tion mechanisms that influence community dynamics. Traditional mathematical models are
based on making a mean-field approximation, where the community is assumed to be locally
well mixed and the presence of an individual at one location is independent of the presence or
absence of an individual at any other location (Law and Dieckmann, 2000; Law et al., 2003;
Baker and Simpson, 2010; Grunbaum, 2012). Mean-field models, such as the Lotka-Volterra
model of predator-prey dynamics and the logistic growth model do not incorporate any infor-
mation about the spatial correlation between the locations of individuals. These classical mean-
field models are typically written as ordinary differential equations that govern the time evolu-
tion of the average density of individuals (Edelstein-Keshet, 2005). Some prey-predator models
incorporate different types of functional responses, such as density dependence (Abrams and
Ginzburg, 2000; Wang et al., 2009), but do not explicitly consider the role of spatial structure.
Spatially explicit mean-field models are also commonly used to help understand various ecol-
ogy and cell biology processes, where the density dynamics is often described using partial
differential equations (Murray, 1989; Hillen and Painter, 2009). Other types of spatially ex-
plicit models include coupled map lattices, integro-difference equations, and various kinds of
metapopulation models (Britton, 2003). Even though these spatially explicit models express
the density of individuals as a function of spatial location, interactions between individuals are
implicitly assumed to be given by local mean-field conditions described by the average density
alone.

In many situations, short-range interactions are thought to play a significant role in deter-
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mining community dynamics (Penczykowski et al., 2016; Galetti et al., 2018). For example,
in a prey-predator community, an individual member of the prey population located nearby a
cluster of predators could experience increased mortality due to the high risk of predation. Sim-
ilarly, localised intraspecies competition for shared food resources could lead to an increase in
the death rates of conspecific individuals. Neighbour-dependent interactions are known to lead
to spatial structures (Tobin and Bjornstad, 2003; Santora et al., 2010). Typical forms of spatial
structures relevant to ecological and biological systems include: (i) clustering where individ-
uals aggregate together; and (ii) segregation where individuals tend to spread out as much as
possible (Binny et al., 2015; Treloar et al., 2015; Surendran et al., 2019). These types of spatial
structures can occur within communities composed of single or multiple species (Markham et
al., 2013; Gerum et al., 2018; Dini et al., 2018).

While spatial structure is known to impact the macroscale density dynamics of a commu-
nity, commonly-used mean-field models neglect these effects. In contrast, individual based
models (IBM) are useful to investigate the effects of short-scale interactions and the formation
of spatial structure. Many IBMs are lattice-based, where the interactions between individuals
are dictated by an artificial lattice structure (Mobilia et al., 2006; Mobilia et al., 2007; Baker and
Simpson, 2010; Dobramysl and Tauber, 2013). A more realistic approach is to consider lattice-
free IBMs, where interactions can be incorporated more realistically in a spatially continuous
framework. The IBM considered in this study is an extension of our previous work (Suren-
dran et al., 2018) examining the neighbour-dependent interactions between motile agents (e.g.
cells) and stationary agents (e.g. obstacles) in the context of experimental cell biology. Here,
we extend this framework to accommodate interactions relevant to ecological processes, such
as predation and competition. Similar IBMs have been used previously to study the impact
of motility and fecundity rates on density dynamics (Murrell, 2005) as well as exploring the
impact of spatial patterns on the evolution and natural selection of prey dispersal (Barraquand
and Murrell, 2012).

In this work, we explore various spatial structure forming mechanisms such as short-range
predation, short-range-dispersal of offspring and short-range intraspecies competition in a com-
munity of consumers and resources. We examine the effects of these mechanisms, both in
isolation and in combination, and specifically examine how these effects generate spatial struc-
tures that lead to deviations from mean-field dynamics. These investigations are conducted by
comparing IBM simulations with the solution of appropriate mean-field equations. The spatial
configuration of the community is analysed in terms of pair correlation functions (PCF) (Agnew
et al., 2014; Binny et al., 2016a, b). The PCFs measure spatial structure within and between
species. This analysis assists our interpretation of the impact of spatial structure. We demon-
strate scenarios where the mean-field model completely fails to capture the spatial effects and
predict qualitatively different behaviours.
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4.4 Individual-based model

We consider a community that consists of two distinct species, namely consumers and re-
sources. The consumers are a group of individuals undergoing proliferation, death and move-
ment events. They can be thought of as ecological predators or immune cells (Abrams, 2000;
Akira et al., 2006; Soehnlein et al., 2017). These consumers predate on the resources. The
resources are also motile and proliferative. The resources can be thought of as a population
of ecological prey or biological pathogens (Rincon et al., 2017; Hunt and Brown, 2018; Vijay,
2018). In our model, consumers and resources are distributed on a continuous two dimensional
domain of size L × L with population sizes Nc(t) and Nr(t), respectively. The IBM is con-
structed for spatially homogeneous problems, where the population density in a small region,
averaged over multiple realisations of the IBM, is independent of the location of that region
(Plank and Law, 2015). This means our framework is relevant to communities that do not have
macroscopic gradients in the density of individuals (Jin et al., 2018).

The death rate of the nth resource individual located at xrn ∈ R
2, where n = 1, 2, . . . ,Nr(t), is

taken to be a result of both interspecies predation and intraspecies competition that arise from
interactions with other individuals in the population,

Drn =

Nc(t)∑
l=1

ωp
rc(|xl − xrn |) +

Nr(t)∑
k=1

ωc
rr(|xk − xrn |). (4.1)

The first term on the right of Equation (4.1) is the death rate from predation by consumers,
specified by the kernel ωp

rc(|ξ|). The second term on the right of Equation (4.1) accounts for the
contribution of competition to the resources death rate, specified by the kernel ωc

rr(|ξ|). Both
kernels in Equation (4.1) are decreasing functions of distance, |ξ|. A schematic representation
summarising the impact of predation and competition on the event rates of individuals is given
in Figure 4.1.

We consider Gaussian interaction kernels to ensure the strength of interaction between in-
dividuals decreases with separation distance. The predation kernel describing the contribution
of a neighbouring consumer at a displacement, ξ, to the death rate of a reference resource
individual is given by,

ωp
rc(|ξ|) = γp

rc exp
− |ξ|2

2(σp
rc)

2

 , (4.2)

where γp
rc > 0 and σp

rc > 0 represent the predation strength and the spatial extent of predation,
respectively. There is no strict requirement on the functional form of the interaction kernel.
Non-Gaussian kernels can be incorporated into the IBM, depending on the specific applications
(Plank et al., 2019). Competition kernels also take the same functional form. For simplicity,
we assume that resources proliferate at a constant rate, Prn = pr, and that this rate is unaffected
by the presence of other individuals.
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Figure 4.1: Schematic representation of how neighbour-dependent interactions affect proliferation and death rates
of resources (black) and consumers (red). The green squares indicate the reference individual whose event rates
are altered by the interactions. a impact of predation interaction on a resource leading to an increased death rate,
Dr. b impact of intraspecies competition of resources, leading to an increased death rate, Dr. c impact of predation
interaction on consumers, leading to an enhanced the proliferation rate, Pc. d impact of intraspecies competition
of consumers, leading to an increase in the death rate, Dc.

Consumer reproduction is taken to be dependent on the predation and subsequent consump-
tion of resources, which provide the required biomass for offspring. We use a predation kernel,
ω

p
cr(|ξ|), to account for the contribution of resources in the enhancement of the proliferation rate

of consumers. Setting γp
cr < γ

p
rc reflects a realistic situation where the consumption of a single

resource is insufficient to generate a single consumer. We also make a reasonable assumption
that, σp

cr = σ
p
rc, so that the distance over which consumers and resources interact is symmetric.

The proliferation rate of consumers is computed by summing the contributions from all the
resources,

Pcn =

Nr(t)∑
l=1

ωp
cr(|xl − xcn |). (4.3)

The mortality of consumers depends on competitive interactions between consumers. The death
rate of consumers is given by,

Dcn = dc +

Nc(t)∑
l=1

ωc
cc(|xl − xcn |). (4.4)

The first term on the right of Equation (4.4) is a constant intrinsic death rate of consumers
which is unaffected by the presence of other individuals in the model. The second term on the
right of Equation (4.4) accounts for the contribution of competition between consumers. For
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simplicity we assume the movement rate of consumers and resources are constant, and given
by mc, and mr, respectively.

The IBM is simulated using the Gillespie algorithm (Gillespie, 1977). We use periodic
boundary conditions over the computational domain since the domain considered is large enough
to avoid any edge effects. Initial population sizes of consumers and resources are Nc(0) and
Nr(0), respectively, and the locations of these individuals are initially chosen at random. At
each time step, the neighbour-dependent event rates of individuals are computed according to
Equation (4.1) and Equations (4.3)–(4.4). The total event rate of all individuals is computed by
summing all the intrinsic and neighbour-dependent rates as,

λ(t) =

Nr(t)∑
n=1

(
Prn + Drn + mr

)
+

Nc(t)∑
n=1

(
Pcn + Dcn + mc

)
. (4.5)

The time intervals between successive events are distributed according to an exponential dis-
tribution with mean 1/λ(t). At each time increment of the Gillespie algorithm, one of the three
possible events occurs. The probability of the occurrence of an event is proportional to the rate
of that event (Baker and Simpson, 2010). When a consumer proliferates, a daughter consumer
is placed at a displacement, ξ, drawn from a bivariate normal distribution with mean zero and
standard deviation, σd

c , resulting in an increase of the consumer population by one. Here, σd
c

is the consumer dispersal range. Similarly, the proliferation of a resource individual involves
placing a daughter resource at a displacement sampled from a bivariate normal distribution
with mean zero and standard deviation σd

r . When a consumer undergoes a movement event,
it travels a displacement (|ξ| cos(θ), |ξ| sin(θ)), where the distance moved by a consumer, |ξ|, is
drawn from a truncated Gaussian distribution with a positive mean µs

c and a narrow standard
deviation σs

c, such that σs
c ≤ µs

c/4. To ensure the movement distance is always positive, we
truncate the Gaussian at distances greater than 4σs

c from the mean. The direction of movement,
θ ∈ [0, 2π], is uniformly distributed. Movement of a resource is specified by a similar Gaussian
distribution with mean µs

r and standard deviation σs
r .

To analyse the resulting community dynamics, we calculate the average density of con-
sumers and resource by dividing the number of individuals in both the species with the area
of the domain as, Zc(t) = Nc(t)/L2 and Zr(t) = Nr(t)/L2, respectively. The average density
of pairs of individuals reveals the correlation between the locations of individuals (Bolker and
Pacala, 1999; Law et al., 2009; Ovaskainen et al., 2014). We calculate several PCFs, defined
as the average densities of pairs normalised by the density of pairs in a community without any
spatial structure (i.e. a community that evolves in such a way that the mean-field assumption
is valid). We define the PCF as a function of the separation distance between pairs of individ-
uals, |ξ|, and time, t. Since there are two species in the model, there are three unique PCFs:
(i) the auto-PCF of consumers, Ccc(|ξ|, t); (ii) the auto-PCF of resources, Crr(|ξ|, t), and, (iii)
the cross-PCF, Ccr(|ξ|, t), respectively. In the complete absence of spatial structure we have
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Ccc(|ξ|, t) = Crr(|ξ|, t) = Ccr(|ξ|, t) = 1. When the auto-PCF of consumers is greater than unity,
Ccc(|ξ|, t) > 1, we have a larger number of pairs of consumers separated by a distance, |ξ|, than
we would have in a community with spatially random configuration. We refer to this config-
uration as clustered. When Ccc(|ξ|, t) < 1, we have a smaller number of pairs of consumers
separated by a distance, |ξ|, than we would have in a community with spatially random con-
figuration and this situation corresponds to a segregated spatial structure. Similarly, clustered
and segregated spatial patterns of resources correspond to Crr(|ξ|, t) > 1 and Crr(|ξ|, t) < 1,
respectively. Interspecies clustering and segregation of consumers and resources correspond to
Ccr(|ξ|, t) > 1 and Ccr(|ξ|, t) < 1, respectively.

To compute the auto-PCF of consumers, we consider one consumer individual as a refer-
ence individual and then calculate the distance between the reference individual and all other
Nc(t) − 1 consumers. We record the distances between the reference individual and other in-
dividuals of the same species. The auto-PCF is constructed by counting the distances that fall
into the interval

[
|ξ| − ∆|ξ|/2, |ξ| + ∆|ξ|/2

]
(Binder and Simpson, 2015). The bin count is nor-

malized by a factor of 2π|ξ|∆|ξ|Nc(Nc − 1)/L2 to ensure that Ccc(|ξ|, t) = 1 in the absence of
spatial structure. A similar procedure is followed to compute Crr(|ξ|, t) and Ccr(|ξ|, t).

4.4.1 Mean-field dynamics

Here, we present a continuum description of the IBM by invoking the mean-field assump-
tion. We denote the density of species i at time t, averaged over many identically-prepared
realisations of the IBM as Zi(t). Note that, in our model, average density is independent of
location owing to the combination of boundary conditions and initial condition used. In the
IBM, the presence of other individuals in the neighbourhood of a focal individual is affected
by the community’s spatial structure. However, the mean-field assumption ignores this depen-
dence by assuming that the probability that there is an individual of species i at any given
location ξ at time t is independent of the occupancy of other individuals, and is given by
Zi(t). For example, the expected proliferation rate of a consumer at location ξ and time t is,∫
ω

p
cr(|ξ|) Zr(t) dξ=2πγp

cr(σ
p
cr)2Zr(t). Approximating the other birth and death rates in the com-

munity in a similar way leads to

d
dt

Zc(t) = 2πγp
cr(σ

p
cr)

2 Zc(t)Zr(t) − dc Zc(t) − 2πγc
cc(σ

c
cc)

2 Zc(t)2, (4.6)

d
dt

Zr(t) = pr Zr(t) − 2πγp
rc(σ

p
rc)

2 Zc(t)Zr(t) − 2πγc
rr(σ

c
rr)

2 Zr(t)2. (4.7)

This system of equations can be derived rigorously from the IBM under the mean-field as-
sumption by replacing the second moment of the spatial point process with the product of the
first moments (Plank and Law, 2015), but we omit the details of this here. In this work we
study the solution of Equations (4.6)–(4.7) numerically using the ode45 routine in MATLAB
(Mathworks, 2019).
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4.5 Results

In this section, we compare averaged data from IBM simulations with the solution of the mean-
field model to explore the impact of spatial structure on the community dynamics. The auto-
and cross-PCFs help to distinguish between different spatial structures formed due to the in-
traspecies and interspecies interactions. Linking the PCFs and averaged densities from the IBM
with the solution of the mean-field model provides comprehensive insight into the role of spa-
tial structure in driving community dynamics. We first present simulation results that are in
good agreement with the solutions of the mean-field model. We then use these initial results as
a benchmark for exploring other parameter combinations. Mean-field dynamics are replicated
in the IBM by considering sufficiently large predation, competition and dispersal ranges. Under
these conditions the spatial configuration of individuals does not strongly influence community
dynamics, and the individuals interact weakly leading to negligible correlations. A summary
of parameter values for this first case are given in Table 4.1.

Table 4.1: Description of model parameters and variables

Parameter symbol Description Mean-field value
γc

cc competition strength of consumers γc
cc = 0.001

γc
rr competition strength of resources γc

rr = 0.001
γ

p
cr predation strength with which consumers attack resources γ

p
cr = 0.003

γ
p
rc predation strength with which resources are attacked by consumers γ

p
rc = 0.004

σc
cc competition range of consumers σc

cc = 4.0
σc

rr competition range of resources σc
rr = 4.0

σ
p
cr predation range over which consumers attack resources σ

p
cr = 4.0

σ
p
rc predation range over which resources are attacked by consumers σ

p
rc = 4.0

σd
c dispersal range of consumers σd

c = 4.0
σd

r dispersal range of resources σd
r = 4.0

Nc(0) initial population size of consumers Nc(0) = 100
Nr(0) initial population size of resources Nr(0) = 200

pr intrinsic proliferation rate of resources pr = 0.2
dc intrinsic death rate of consumers dc = 0.1
mr intrinsic movement rate of resources mr = 0.1
mc intrinsic movement rate of consumers mc = 0.1
µs

c mean movement distance of consumers µs
c = 0.4

µs
r mean movement distance of resources µs

r = 0.4
σs

c standard deviation movement distance of consumers σs
c = 0.1

σs
r standard deviation movement distance of resources σs

r = 0.1
L domain length L = 20

Variable Description
t time
|ξ| separation distance between a pair of individuals

Zc(t) average density of consumers
Zr(t) average density of resources

Ccc(|ξ|, t) PCF corresponding to the pair densities of consumers (auto-PCF of consumers)
Ccr(|ξ|, t) PCF corresponding to the densities of pairs involving a consumer and resource (cross-PCF)
Crr(|ξ|, t) PCF corresponding to the pair densities of resources (auto-PCF of resources)

In Figure 4.2, we show two scenarios where averaged simulation results from the IBM
match well with the solution of the mean-field model. The first case, shown in Figure 4.2(a)–
(d), corresponds to a scenario that exhibits co-existence of consumers and resources. In this
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case, we consider a community of consumers and resources distributed uniformly with Nc(0) =

100 and Nr(0) = 200, respectively, as shown in Figure 4.2(a). After a sufficiently long time,
t = 200, we observe that the densities of consumers and resources and the three PCFs appear to
become steady. The snapshot of the IBM at t = 200 in Figure 4.2(b) does not show any obvious
spatial structure, and the auto- and cross-PCFs are approximately unity in Figure 4.2(d), con-
firming the absence of spatial structure. The temporal dynamics of the community are tracked
by plotting the average densities of consumers and resources as a function of time, in Figure
4.2(c). Here, the mean-field model accurately matches the IBM results. These observations are
expected since we consider long-range interactions and long-range dispersal.

We present a different example of mean-field dynamics in Figure 4.2(e)–(h), where the
consumer species eventually becomes extinct. Here, we choose an identical initial arrangement
of individuals and interactions to that of the coexistence case in Figure 4.2(a)–(d). The only
difference between the results in Figure 4.2(e)–(h) and Figure 4.2(a)–(d) is that here we specify
a higher consumer death rate which leads to the extinction of consumers. The snapshot of the
IBM at t = 200 in Figure 4.2(f) shows that only resources remain at this time. Consistent with
this, the density of consumers in Figure 4.2(g) decays to zero by approximately t = 20. The
estimate of average densities from IBM and mean-field model match well for this case. Results
in Figure 4.2(h) indicate that Crr(ξ, t) ≈ 1, and this is consistent with the fact that the mean-field
approximation is accurate. Note that we only give Crr(ξ, t) in Figure 4.2(h) since consumers
are absent from the simulation by t = 200.

Given we have established that averaged data from the IBM is consistent with the solution
of the mean-field model for the choice of parameters in Figure 4.2, we systematically vary
the parameters in the IBM and explore how the resulting spatial structure affects the accuracy
of the mean-field description. In all of these subsequent comparisons, we fix the mean-field
equilibrium densities of consumers and resources. By fixing the equilibrium densities, we are
able to compare different mechanisms and their impacts on the dynamics. Under coexistence,
the equilibrium densities of consumers and resources are given by,

Z∗c = lim
t→∞

Zc(t) =
prγ

p
cr

(
σ

p
cr
)2
− dcγ

c
rr
(
σc

rr
)2

2π
[
γ

p
cr

(
σ

p
cr
)2
γ

p
rc

(
σ

p
rc
)2

+ γc
cc

(
σc

cc
)2 γc

rr
(
σc

rr
)2
] , (4.8)

Z∗r = lim
t→∞

Zr(t) =
prγ

c
cc

(
σc

cc
)2

+ dcγ
p
rc

(
σ

p
rc
)2

2π
[
γ

p
cr

(
σ

p
cr
)2
γ

p
rc

(
σ

p
rc
)2

+ γc
cc

(
σc

cc
)2 γc

rr
(
σc

rr
)2
] . (4.9)

When we compare different parameter combinations, we take care to choose the interaction
ranges and interaction strengths so that Z∗c and Z∗r remain constant. This ensures that the long-
time solution of the mean-field model is constant between the various conditions that we ex-
amine. The specific values of interaction range and strength parameters used in each of our
simulations are given in respective figure captions.
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Figure 4.2: Simulation results that match well with the solutions of the mean-field model. Results in a-d correspond to a case where consumers and resources coexist (pr = 0.2,
dc = 0.1). Results in e-h correspond to a case where consumer extinction occurs (pr = 0.1, dc = 0.4). a, e show locations of consumers (red dots) and resources (black dots) at
t = 0. b, f show locations of consumers and resources at t = 200. c, g show the densities of consumers (red lines) and resources (black lines) as a function of time. Solid lines
correspond to the averaged results from 1000 realisations of the IBM and dashed lines correspond to the solution of the mean-field model, Equations (4.6)-(4.7). c, f show the
PCFs computed at t = 200 as a function of separation distance. Other parameter values are given in Table 4.1.
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4.5.1 Short range dispersal creates intraspecies clustering

Here, we investigate the impact of short-range dispersal of consumers and resources on the spa-
tial structure of the community and how it influences the accuracy of the mean-field model. In
these simulations, the predation and competition interactions are long-range, as in Figure 4.2.
We first consider short-range dispersal of consumers, as shown in Figure 4.3(a)–(d). This leads
to the development of intraspecies clustering among consumers, as shown in Figure 4.3(b),
quantified by the auto-PCF with Ccc(|ξ|, t) > 1 for small |ξ| in Figure 4.3(d). In addition we
have, Crr(|ξ|, t) ≈ Ccr(|ξ|, t) ≈ 1, suggesting there is no intraspecies spatial structure among
resources and no interspecies spatial structure. Since the dispersal of resources is long-range,
there is little correlation between the locations of parent and daughter resources, which ex-
plains why there is no intraspecies spatial structure among resources. Even though consumers
exhibit strong clustering we do not see a large discrepancy between the IBM simulations and
the solution of the mean-field model. This observation is due to the long-range predation and
competition interactions, under which local spatial structure does not influence the dynamics
of the community.

Next, we consider the short-range dispersal of resources in Figure 4.3(e)–(h). After a suf-
ficiently long time, t = 200, we see more resource individuals at close distances compared
to the initial spatial random distribution. Results in Figure 4.3(h) show Ccc > 1, confirming
clustering of resources. Again, the cluster formation is due to short-range dispersal. Similar to
the case of short-range dispersal of consumers, we do not observe strong interspecies spatial
structure or any discrepancy between the mean-field model and IBM estimates of the densities
of consumers or resources. Finally, we consider the short-range dispersal of both consumers
and resources in Figure 4.3(i)–(l). Since resource and consumer parents now place their off-
spring close to them, we see the development of intraspecies clusters of both consumers and
resources.
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Figure 4.3: Short-range dispersal. Results in a-d correspond to short range dispersal of consumers (σd
c = 0.5). Results in e-h correspond to short range dispersal of resources

(σd
r = 0.5). Results in i-l correspond to short range dispersal of both species (σd

c = σd
r = 0.5). a, e, i show the locations of consumers (red dots) and resources (black dots) at

t = 0. b, f, j show the locations of consumers and resources at t = 200. c, g, k show the densities of consumers (red lines) and resources (black lines) as a function of time.
Solid lines correspond to the averaged results from 1000 realisations of the IBM and dashed lines correspond to the solution of the mean-field model, Equations (4.6)-(4.7). d,
h, l show the PCFs computed at t = 200 as a function of separation distance. All other parameters are same as in Table 4.1.
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4.5.2 Short range competition creates intraspecies segregation

We first consider short-range competition among consumers in Figure 4.4(a)–(d). After a suf-
ficiently long time, t = 200, consumers tend to stay apart from each other, forming an in-
traspecies segregated spatial pattern, confirmed by Ccc(|ξ|, t) < 1 in Figure 4.4(d). The intense
competition at short distances increases the death rates of nearby consumers, leading to a con-
figuration where consumers are well-separated. In addition we have Crr(|ξ|, t) ≈ Ccr(|ξ|, t) ≈ 1,
indicating there is no intraspecies spatial structure in resources and no interspecies spatial struc-
ture among consumers and resources. Since we consider long-range predation for this case, the
consumer-resource interspecies interactions are similar to that of the mean-field case in Figure
4.2. Hence, the spatial structure of consumers does not impact density dynamics, as evident
from the good agreement between the IBM results and the solution of the mean-field model in
Figure 4.4(b).

Results in Figure 4.4(e)-(h) and Figure 4.4(i)-(l) consider intraspecies competition of re-
sources and intraspecies competition of both species. In both cases, we observe competition-
induced segregation. In Figure 4.4(h), Ccc(|ξ|, t) < 1, confirms the segregation of resources,
whereas Ccc(|ξ|, t) < 1 and Crr(|ξ|, t) < 1, respectively in Figure 4.4(l) confirm the interspecies
segregation between consumers and resources. Again, we observe that the density dynamics
from IBM is in good agreement with the solution of the mean-field model.
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Figure 4.4: Short-range competition. Results in a-d correspond to short-range competition of consumers (σc
cc = 0.5 and γc

cc = 0.064). Results in e-h correspond to short-range
competition of resources (σc

rr = 0.5 and γc
rr = 0.064). Results in i-l correspond to short-range competition of both species (σc

cc = σc
rr = 0.5 and γc

cc = γc
rr = 0.064). a, e, i

show the locations of consumers (red dots) and resources (black dots) at t = 0. b, f, j show the locations of consumers and resources at t = 200. c, g, k show the densities
of consumers (red lines) and resources (black lines) as a function of time. Solid lines correspond to the averaged results from 1000 realisations of the IBM and dashed lines
correspond to the solution of the mean-field model, Equations (4.6)-(4.7). d, h, l show the PCFs computed at t = 200 as a function of separation distance. All other parameters
are same as in Table 4.1.
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4.5.3 Short range predation drives interspecies segregation

In this section we explore the impact of short-range predation. In these simulations we fix the
range of competition and dispersal to be the same as in Figure 4.2 so that any spatial structure
is driven by the influence of short-range predation. Results in Figure 4.5(a)-(b) show the initial
spatially random configuration of individuals and the long-time outcome of the IBM, respec-
tively. In this case, visually identifying the nature of the long-time steady spatial structure of the
community is difficult. The PCFs shown in Figure 4.5(d), provide insight into the spatial struc-
ture. Since the predation is short-range, there is a high probability that each consumer predates
upon nearby resources. Hence, the short-range predation by a consumer eventually depletes
the resources locally, creating an interspecies segregation. This is confirmed by Ccr(|ξ|, t) < 1
for short distances in Figure 4.5(d). There is some clustering among resources indicated by
Crr(|ξ|, t) > 1 at small distances. This is because consumers tend to predate upon nearby re-
sources. Those resources that are not consumed are more likely to be in regions with lower
consumer density, which therefore tend to contain small clusters of resources. These spatial
structures have an impact on the density dynamics. Results in Figure 4.5(c) show that the
mean-field model underestimates the density of resources. The spatial segregation between
consumers and resources assists the resources to avoid predation. Results in Figure 4.5(c)
also show that the mean-field model underestimates the density of consumers. This may be
counter-intuitive but can be attributed to the net increase in the resource population size more
than offsetting the decrease in per capita contact rate between consumers and resource due to
interspecific segregation.
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Figure 4.5: Short-range predation. a-b show the locations of consumers (red dots) and resources (black dots) at
t = 0 and t = 200, respectively. c shows the densities of consumers (red lines) and resources (black lines) as a
function of time. Solid lines correspond to the averaged results from 1000 realisations of the IBM and dashed
lines correspond to the solution of the mean-field model, Equations (4.6)-(4.7). d shows the PCFs computed at
t = 200 as a function of separation distance. Parameter values are σp

cr = σ
p
rc = 0.5, γp

cr = 0.192 and γp
rc = 0.256.

All other parameters are same as in Table 4.1.

4.5.4 Short-range dispersal and short-range predation enhances resources’
survival

Results in Sections 4.5.1–4.5.3 consider the impact of various mechanisms acting in isola-
tion whereas here we investigate multiple mechanisms acting in unison. Note that, when we
consider different mechanisms that generate contrasting effects on the density dynamics and
spatial structure in unison, the net effect observed in the community depends on the relative
strengths of those mechanisms. Hence we are always careful here to choose and report ap-
propriate parameter values relative to previous choices in Figures 4.2–4.5, for which the op-
posing mechanisms have comparable strengths, such that neither is dominant over the other.
If one mechanism is much stronger than others, the results will resemble the case with only
that mechanism considered. We start by considering the combined effect of short-range dis-
persal of consumers and short-range predation in Figure 4.6(a)-(d). In the long-time limit we
observe dispersal-induced clustering of consumers and predation-induced interspecies segrega-
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tion between consumers and resources, leading to Ccc(|ξ|, t) > 1 and Ccr(|ξ|, t) < 1. Segregation
between the two species minimises the chances of predation and results in an increase in the
density of resources compared to the solution of the mean-field model. Note that the density
of resources in Figure 4.6(c) is higher compared to the case in Figure 4.5, where there was
only short-range predation. Since the dispersal of resources is long-range, there is a possibil-
ity of daughter resources being placed in local neighbourhoods of consumers. The probability
of this happening is significantly lower when consumers are clustered rather than uniformly
distributed all over the domain as in the case in Figure 4.5.

Next, we consider short-range dispersal of resources with short-range predation in Figure
4.6(e)–(h). These conditions give rise to dispersal induced clustering of resources and predation
induced interspecies segregation, where Crr(|ξ|, t) > 1 and Ccr(|ξ|, t) < 1, respectively. The
density of consumers and resources from the IBM is greater than the solution from the mean-
field model, but the deviation is smaller than in the previous case with short-range dispersal
of consumers and short-range predation. Here the consumers are not concentrated on specific
regions as compared to the previous case. Hence, the probability of predation is, on average,
higher compared to the previous case.

Finally, we consider short-range dispersal of both consumers and resources along with
short-range predation in Figure 4.6(i)–(l). In this case we see distinct clusters of consumers
and resources due to short-range dispersal of both the species, confirmed by Ccc(|ξ|, t) > 1 and
Crr(|ξ|, t) > 1. Here, we observe an increase in the density of resources and a decrease in the
density of consumers. Since both the species form clusters and occupy specific regions in the
domain, the chances of pairs of consumers and resources separated by short distances is sig-
nificantly reduced. The short-range predation under these circumstances leaves the consumers
with reduced availability of resources for their survival. In contrast, resource grows rapidly due
to the reduced risk of predation.

107



4.5.
R

E
SU

LT
S

C
H

A
PT

E
R

4.
PR

E
D

A
TO

R
-PR

E
Y

D
Y

N
A

M
IC

S

0

1

2

0

4

8
10

(b) (c) (d)

Ccc(     , t)
Crr
Ccr

ξ||
(     , t)ξ||
(     , t)ξ||

Ccc(     , t)
Crr
Ccr

ξ||
(     , t)ξ||
(     , t)ξ||

Ccc(     , t)
Crr
Ccr

ξ||
(     , t)ξ||
(     , t)ξ||

(a) x
-10

0

10
y

-10               0                10

-10

0

10

y

-10               0                10

-10

0

10

y

-10               0                10

x
-10

0

10

y

-10               0                10

-10

0

10

y

-10               0                10

-10

0

10

y

-10               0                10

t
0 100 200

0 100 200
0

1

2

0 4 8
ξ||

C ij(|
ξ|

, t
)

0

4

8
10

0 4 8

C ij(|
ξ|

, t
)

0

4

8
10

0 4 8

C ij(|
ξ|

, t
)

0 500 1000 1500
0

1

2

Z  i
(t

)
Z  i

(t
)

Z  i
(t

)

Z c (t) 
Z c (t) 
Z r (t) 
Z r (t) 

Z c (t) 
Z c (t) 
Z r (t) 
Z r (t) 

Z c (t) 
Z c (t) 
Z r (t) 
Z r (t) 

(f) (g) (h)(e) x x t ξ||

(j) (k) (l)(i) x x t ξ||

t = 0 t = 200

t = 0 t = 200

t = 0 t = 200

Figure 4.6: Short-range dispersal and short-range predation. Results in a-d correspond to short range dispersal of consumers (σd
c = 0.5) and short-range predation (σp

cr = σ
p
rc =

0.5, γp
cr = 0.192 and γp

rc = 0.256). Results in e-h correspond to short-range dispersal of resources (σd
r = 0.5) and short-range predation. Results in i-l correspond to short-range

dispersal of both species (σd
c = σd

r = 0.5) and short-range predation. a, e, i show the locations of consumers (red dots) and resources (black dots) at t = 0. b, f, j show the
locations of consumers and resources at t = 200. c, g, k show the densities of consumers (red lines) and resources (black lines) as a function of time. Solid lines correspond
to the averaged results from 1000 realisations of the IBM and dashed lines correspond to the solution of the mean-field model, Equations (4.6)-(4.7). d, h, l show the PCFs
computed at t = 200 as a function of separation distance. All other parameters are same as in Table 4.1.
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4.5.5 Effect of short range predation and short range competition

We consider the combined effect of short-range competition of consumers and short-range
predation in Figure 4.7(a)–(d). Here, we see consumers tend to become isolated from other
consumers and resources. While short-range predation creates interspecies segregation, the
competition within the consumer subpopulation results in intraspecies segregation, confirmed
by Ccr(|ξ|, t) < 1 and Ccc(|ξ|, t) < 1, respectively. These results indicate that the density of
resources tends to be higher than the solution of the mean-field model since segregation of
consumers and resources reduces the effects of predation.

Combined effects of short-range competition of resources and short-range predation are
shown in Figure 4.7(d)–(f). These conditions lead to interspecies segregation due to short-range
predation. In addition, we see less pronounced intraspecies segregation developing among re-
sources due to the competition between resources. In Figure 4.5, we saw that the effect of short-
range predation, when considered in isolation, leads to a small scale clustering of resources.
Here we see that the additional effects of predation counteract the impact of competition among
resources to form a less pronounced intraspecies segregation of resources. Finally, we consider
the combined effect of the short-range competition of both consumers and resources and short-
range predation in Figure 4.7(g)–(i). We find competition-induced intraspecies segregation in
this case, and this is confirmed by Ccc(|ξ|, t) < 1 and Crr(|ξ|, t) < 1, respectively. We also ob-
serve interspecies segregation between consumers and resources confirmed by Ccr(|ξ|, t) < 1
due to the short-range predation.
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Figure 4.7: Short-range competition and short-range predation. Results in a-d correspond to short range competition of consumers (σc
cc = 0.5 and γc

cc = 0.064) and short-range
predation (σp

cr = σ
p
rc = 0.5). Results in e-h correspond to short-range competition of resources (σc

rr = 0.5 and γc
rr = 0.064) and short-range predation. Results in i-l correspond

to short-range competition of both species (σc
cc = σc

rr = 0.5 and γc
cc = γc

rr = 0.064) and short-range predation. a, e, i show the locations of consumers (red dots) and resources
(black dots) at t = 0. b, f, j show the locations of consumers and resources at t = 200. c, g, k show the densities of consumers (red lines) and resources (black lines) as a
function of time. Solid lines correspond to the averaged results from 1000 realisations of the IBM and dashed lines correspond to the solution of the mean-field model, Equations
(4.6)-(4.7). d, h, l show the PCFs computed at t = 200 as a function of separation distance. All other parameters are same as in Table 4.1.
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4.5.6 Spatial structure drives qualitative departure from the mean-field
model

In this final set of simulations, we present a dramatic case where three spatial structure forming
mechanisms act in unison to produce results that are fundamentally at odds with the predictions
of the mean-field model. These results highlight the danger in neglecting spatial structure since
the mean-field model leads to dramatically misleading predictions in this case.

The density dynamics of consumers and resources from the IBM simulation in Figure 4.8(a)
show the eventual extinction of consumers while the resource species continues to grow to
a steady density. In stark contrast, the solution of the mean-field model predicts the long-
time coexistence of consumers and resources. These results demonstrate that the mean-field
model and IBM can predict two qualitatively different outcomes when there is a strong spatial
structure. In Figure 4.8(b)–(g), we show the evolution of the spatial structure of the community
by presenting snapshots from the IBM as well as the PCFs at various points in time. We
see intraspecies clustering among both consumers and resources, confirmed by Ccc(|ξ|, t) > 1
and Crr(|ξ|, t) > 1, and interspecies segregation, confirmed by Ccr(|ξ|, t) < 1 at earlier times
before reaching the long-time limit. Strong clustering at these intermediate times is due to the
short-range dispersal of both consumers and resources (σd

c = σd
r = 0.1). Competition tends to

reduce the extent of clustering. But, dispersal dominates competition since we use very small
dispersal range compared to the competition range (σc

cc = σc
rr = 0.5). Short-range predation

separate consumers and resources from each other by the consumption of close-lying resources
by consumers. This results in interspecies segregation. As time progresses, these effects result
in consumers becoming isolated from resources and eventually go extinct.
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Figure 4.8: Short-range competition, short-range predation and short-range dispersal. a shows the densities of consumers (red lines) and resources (black lines) as a function of
time. Solid lines correspond to the averaged results from 1000 realisations of the IBM and dashed lines correspond to the solution of the mean-field model, Equations (4.6)-(4.7).
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r = 0.1. All

other parameters are same as in Table 4.1.
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4.6 Conclusion

In this chapter, we present a relatively simple IBM describing the dynamics of a community
of consumers and resources where we pay particular attention to the effects of short-range
interactions and small-scale spatial structure. The IBM simulation results are compared with
solutions of a mean-field model constructed by invoking the mean-field approximation. This
analysis reveals various situations where the IBM suggests qualitatively different outcomes
compared to the solution of the mean-field model. These observations highlight the importance
of considering the role of spatial structure in community dynamics. Mean-field models are
routinely used to explore various characteristics of population dynamics and predator-prey type
interactions. These include predicting whether certain subpopulations go extinct or whether
all subpopulation survive and co-exist (Kuperman et al., 2019). Our results suggest that the
predictions of the mean-field models in these scenarios could be inaccurate if the communities
in question exhibit significant spatial structure.

Many studies consider the comparison of IBMs and their mean-field approximations to ex-
plore scenarios where mean-field assumption breaks down and predicts conflicting outcomes
due to short-range interactions and spatial structure in a consumer resource community (Wil-
son, 1998; Cantrell and Cosner, 2004). While our present work explores cases where the
mean-field model fails to predict coexistence and extinction accurately, similar studies in the
literature consider other interesting scenarios where IBMs can exhibit stable dynamics when
mean-field models predict oscillatory dynamics (Hosseini, 2006; Brigatti et al., 2009). In these
IBMs, limited motility and short-range interactions dampen the magnitude of population oscil-
lations and stabilise the consumer-resource density dynamics (Cuddington and Yodzis, 2000;
Hosseini, 2003). Another remarkable difference between our model and these previous mod-
elling frameworks is here we use PCFs to identify the spatial configuration of the community.
We base our inference about any observed changes in the density dynamics on findings revealed
by PCFs about the spatial arrangement of the community. Additionally, we use a more realis-
tic lattice-free IBM compared to the lattice-based models considered in these previous studies,
which restrict the freedom of movement along fixed lattice directions.

Our modelling framework can be extended by incorporating various additional forms of
neighbour-dependent interactions that are not considered here. An interesting extension would
be to consider the effects of neighbour-dependent directional bias on the movement of con-
sumers and resources. For example, in this work we make the simple assumption that the
motility rate and direction of movement are independent of the local density. However, some
recent IBMs introduce attractive or repulsive interactions where the motility rate and direction
is affected by the local density, and these interactions can also drive significant differences in
the macroscale spatial structure (Browning et al., 2018, 2020; Surendran et al., 2019; Binny
et al., 2020). Incorporating these types of directional bias to the movement of consumers and
resources may further influence the community dynamics beyond the effects explored in the
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present study. Another important neighbour-dependent effect in the context of population dy-
namics in ecology and cell biology is the incorporation of an Allee effect where proliferation
and death rates are incorporated into the IBM so that there can be a net negative growth rate at
low density and a net positive growth rate at higher densities (Stephens et al., 1999; Johnston
et al., 2017; Fadai et al., 2020). Understanding how these kinds of interactions that lead to
Allee effects would influence the formation of spatial structure is an open question that could
be analysed by extending the modelling framework that we have presented here.
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Chapter 5

Population dynamics with spatial
structure and an Allee effect

5.1 Preamble

This chapter is a paper published in the Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences.

Surendran Anudeep, Plank Michael J., Simpson Matthew J. 2020 Population dynamics with
spatial structure and an Allee effect. Proceedings of the Royal Society A: Mathematical, Physi-

cal and Engineering Sciences 476: 20200501. DOI:10.1098/rspa.2020.0501. bioRxiv Preprint.

In this chapter, we address the research question 4 of the thesis: What impact do short-range
interactions and spatial structure have on the Allee dynamics? We address this research ques-
tion by extending the models developed in Chapter 2, to accommodate a strong Allee effect.
The incorporation of Allee effects into the modelling framework requires substantial changes
in the way we define birth and death rates of individuals compared to that in all of the previ-
ous Chapters 2-4. We notice that incorporating the Allee effect into the modelling framework
requires a non-linear dependency of density on the event rates, which is different from all three
previous cases. To reflect these differences, we derive a novel IBM and spatial moment dynam-
ics framework in Chapter 5. We first show that our new models match the classical mean-field
Allee dynamics in the long-range interaction limit (mean-field limit). We further demonstrate
some dramatic consequences of short-range interactions and spatial structure on the Allee dy-
namics.

5.2 Abstract

Population dynamics including a strong Allee effect describe the situation where long-term
population survival or extinction depends on the initial population density. A simple math-
ematical model of an Allee effect is one where initial densities below the threshold lead to
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extinction, whereas initial densities above the threshold lead to survival. Mean field models of
population dynamics neglect spatial structure that can arise through short-range interactions,
such as competition and dispersal. The influence of non mean-field effects has not been studied
in the presence of an Allee effect. To address this, we develop an individual-based model that
incorporates short-range interactions and gives rise to an Allee effect. To explore the role of
spatial structure we derive a mathematically tractable continuum approximation of the IBM
in terms of the dynamics of spatial moments. In the limit of long-range interactions where
the mean-field approximation holds, our modelling framework recovers the mean-field Allee
threshold. We show that the Allee threshold is sensitive to spatial structure neglected by mean-
field models. For example, there are cases where the mean-field model predicts extinction but
the population actually survives. Through simulations we show that our new spatial moment
dynamics model accurately captures the modified Allee threshold in the presence of spatial
structure.

5.3 Introduction

Mathematical models of biological population dynamics are routinely built upon the classical
logistic growth model where a population tends to a finite carrying capacity density for all
positive initial densities (Murray, 1989; Edelstein-Keshet, 2005; Kot, 2003). While the logistic
growth model is reasonable in some situations, there are other situations where the long-term
survival of a population depends on the initial density, often called an Allee effect (Courchamp
et al., 2008; Taylor and Hastings, 2005). A strong Allee effect is associated with a net negative
growth rate at low densities leading to population extinction below the Allee threshold density.
In contrast, a net positive growth rate at higher densities leads to the survival of the population
when the initial density is greater than the Allee threshold (Courchamp et al., 1999a; Musgrave
et al., 2015; Maciel and Lutscher, 2015). Another type of Allee effect, known as the weak Allee

effect, describes population growth with a reduced but positive growth rate at low densities
(Taylor and Hastings, 2005). Unlike the strong Allee effect, a weak Allee effect does not exhibit
any threshold density due to the net positive growth rate. In this study, we focus on the strong
Allee effect since we are interested in exploring threshold effects and factors that influence the
Allee threshold. Initial evidence for the Allee effect came from ecological systems for various
plant and animal populations (Allee and Bowen, 1932; Courchamp et al., 1999a; Groom, 1998;
Lamont et al., 1993; Kuussaari et al., 1998; Lewis and Kareiva, 1993; Wittmer et al., 2005;
Lutscher and Iljon, 2013), whereas more recent studies suggest a role for the Allee effect in
populations of biological cells (Neufeld et al., 2017; Fadai and Simpson, 2020; Korolev et al.,
2014; Johnston et al., 2017; Sarapata and dePillis, 2014; Johnston et al., 2020).

Most mathematical models of Allee population dynamics invoke a mean-field assumption
(Courchamp et al., 1999a; Edelstein-Keshet, 2005; Morozov et al., 2004; Courchamp et al.,
1999b) where, either implicitly or explicitly, interactions between individuals are assumed to
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occur in proportional to the average density. Such models neglect spatial correlations between
the locations of individuals (Law and Dieckmann, 2000). When short-range interactions are
present, such as short-range competition, the mean-field approximation can become inaccurate
(Bruna and Chapman, 2012a; Bruna and Chapman 2012b; Bruna et al., 2017; Martinez-Garcia
et al., 2020). Short-range interactions can lead to the development of spatial structure that can
affect the overall population dynamics (Law et al., 2003; Binny et al., 2016; Surendran et al.,
2020a). Spatial structure in biological populations includes both clustering and segregation
(Purves and Law, 2002; Gerum et al., 2018; Dini et al., 2018; Binder and Simpson, 2013;
Simpson et al., 2013; Martinez-Garcia et al., 2015). Stochastic individual-based models (IBM)
offer a straightforward means of exploring population dynamics without invoking a mean-field
approximation (Chaplain et al., 2020; Macfarlane et al., 2019). However, IBM approaches are
computationally prohibitive for large populations and provide limited mathematical insight into
the population dynamics, for example how particular biological mechanisms affect the carrying
capacity or the Allee threshold (Surendran et al., 2018).

A continuum approximation of the IBM in terms of the dynamics of spatial moments is a
useful way to study how short-range interactions and spatial structure can influence population
dynamics (Murrell and Law, 2000; Murrell 2009). Law et al. developed a spatial moment
model, called the spatial logistic model, that quantifies the impact of spatial structure on clas-
sical logistic growth dynamics (Law et al., 2003). This work shows that spatial structure has
a strong impact on the carrying capacity density. More recently, the spatial logistic model has
been extended to consider other relevant mechanisms including interspecies and intraspecies
interactions, neighbour-dependent motility bias, predator-prey dynamics and chase-escape in-
teractions (Plank and Law, 2015; Binny et al., 2015; Barraquand and Murrell, 2012; Surendran
et al., 2019).

In this chapter, we present an IBM and a novel spatial moment dynamics approximation
that incorporates a strong Allee effect. This model is a generalisation of the spatial logistic
model (Law et al., 2003). Localised density-dependent interactions, such as short-range com-
petition, short-range cooperation and short-range offspring dispersal are incorporated. In the
limit of large scale interactions where the mean-field approximation is valid, both the IBM and
the spatial moment model are consistent with the classical mean-field Allee growth model. In
contrast, when spatial structure is present, we find that the Allee threshold density can be very
sensitive to the spatial structure. For example, under a combination of short-range competi-
tion and short-range dispersal, all initial densities lead to population extinction, whereas the
classical mean-field model predicts that the population will survive. In contrast, the new spa-
tial moment approximation gives an accurate prediction of the long-time outcome even when
strong spatial structure is present.

In this chapter we broadly consider two different types of results. In the first set we focus on
population-level outcomes with regard to whether a population eventually becomes extinct or
whether it survives. We study these problems using a classical mean-field model, a new spatial
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moment dynamics model as well as using repeated, identically-prepared stochastic simulations.
For these results we are very careful to select initial conditions in the IBM simulations so that
the vast majority of the repeated simulations lead to the same long-time outcome. For example,
we consider parameter choices and initial conditions where more than > 99% of identically-
prepared IBM simulations all lead to either long-term extinction or long-term survival. The
extremely small proportion of outliers are then excluded from the calculation of ensemble data.
In the second set of results we focus on repeated IBM simulations in situations where stochastic
effects can lead to either long-term survival or long-term extinction. We characterise this tran-
sition in terms of a survival probability, defined as the fraction of IBM realisations in which the
population does not become extinct. Both the classical mean-field model and the new spatial
moment dynamics model are deterministic approximations of the IBM and do not describe any
stochastic effects.

5.4 Individual-based model

The IBM describes the dynamics of N(t) individuals, initially distributed randomly on a con-
tinuous two-dimensional domain of size L × L. The location of the nth individual is xn ∈ R

2,
and periodic boundary conditions are imposed. Individuals undergo birth, death and movement
events, with event rates influenced by interactions between individuals. The IBM is developed
for a spatially homogeneous, translationally-invariant environment, where the probability of
finding an individual in a small region, averaged over multiple realisations of the IBM, is inde-
pendent of the location of that region (Plank and Law., 2015; Surendran et al., 2019). Hence
the model is relevant to populations that do not involve macroscopic gradients in the density of
individuals (Jin et al., 2018).

Competition between individuals influences the death rate, modelling increased mortality
as a result of competition for limited resources. We use an interaction kernel, ωc(|ξ|), to de-
scribe the competition a particular reference individual experiences from another individual at
a displacement, ξ. We specify the competition kernel to be a function of separation distance,
|ξ|,

ωc(|ξ|) = γc exp
(
−
|ξ|2

2σ2
c

)
, (5.1)

where γc > 0 and σc > 0 are the competition strength and range, respectively. Specifying the
competition kernel to be Gaussian means that the impact of competition is a decreasing function
of separation distance, |ξ|. We define a random variable, Xn, that measures the neighbourhood
density of the nth individual weighted over by the competition kernel as,

Xn =

N(t)∑
k=1
k,n

ωc (|xk − xn|) . (5.2)

120



CHAPTER 5. ALLEE DYNAMICS 5.4. INDIVIDUAL-BASED MODEL

We consider the death rate of the nth individual to be some function of Xn,

Dn = F(Xn). (5.3)

For a specific choice of F(Xn), the key parameters controlling how competition influences
the death rate are σc and γc. Figure 5.1 illustrates two scenarios for the simplest choice of
F(Xn) = Xn. The arrangement of agents in Figure 5.1(a) and (c) are identical but we consider
a long-range competition kernel (large σc) in Figure 5.1(a)-(b) and a short-range competition
kernel (small σc) in Figure 5.1(c)-(d). In Figure 5.1 we compute the death rate of a test indi-
vidual located at any location x. This allow us to treatDn as a continuous function of position.
Level curves of Dn are superimposed in Figure 5.1(a) and (c) and we see that the differences
in the length-scale of interaction leads to very different local death rates. For example, when
competition is long-range in Figure 5.1(a)-(b) the death rate for the relatively isolated green
agent isDn = 0.275 whereas when the competition is short-range in Figure 5.1(c)-(d) the death
rate of the same agent is very different, Dn = 0. A similar set of results with a different choice
of F(Xn) in Section 5A.1 shows similar results.
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Figure 5.1: Visualising long- and short-range competition interactions. a, c locations of individuals (dots) su-
perimposed with level curves of Dn for long- and short-range competition, respectively. b, d shows the long-
(σc = 4.0) and short-range (σc = 0.5) competition kernels, respectively, where these kernels are centred at the
origin. Here, F(Xn) = Xn and γc = 0.1.

We also consider a cooperative interaction between individuals that enhances the prolifer-
ation rate of individuals (Johnston et al., 2017). This is a model for sexual reproduction or
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some other mutualistic interaction in which reproductive fitness increases in the presence of
near neighbours. Similar to the competition kernel, we define a cooperation kernel,

ωp(|ξ|) = γp exp
(
−
|ξ|2

2σ2
p

)
, (5.4)

to account for the contribution of a neighbour at a displacement ξ to the reference individual’s
proliferation rate. Here, γp > 0 and σp > 0 represent the strength and range of the interac-
tion, respectively. As with competition, we define a random variable, Yn, that measures the
neighbourhood density weighted by the cooperation kernel,

Yn =

N(t)∑
k=1
k,n

ωp (|xk − xn|) . (5.5)

The proliferation rate of the nth individual is taken to be some function of Yn,

Pn = G(Yn). (5.6)

When an individual undergoes proliferation, a daughter agent is placed at a displacement sam-
pled from a dispersal kernel, µp(ξ) that we choose to be a bivariate normal with mean zero and
standard deviation σd.

For simplicity, we assume the movement rate is density-independent with a constant rate,
m. An individual undergoing a motility event traverses a displacement, (|ξ| cos(θ), |ξ| sin(θ))
sampled from a movement kernel, µm(ξ) . The direction of movement, θ ∈ [0, 2π] is uniformly
distributed. The distance moved, |ξ|, is sampled from a relatively narrow, truncated Gaussian
distribution with mean, µs, and standard deviation, σs, where σs < µs/4. To ensure |ξ| is
positive, the Gaussian is truncated so that µs − 4σs < |ξ| < µs + 4σs.

This IBM is an extension of the spatial stochastic logistic model (Law et al., 2003), often
simply called the spatial logistic model, which focuses on understanding the impact of short-
range interactions and spatial structure on the classical logistic growth model (Murray, 1989).
In the spatial logistic model, the death rate is taken to be the sum of the competition from
the neighbours and the proliferation rate is constant, so there is no cooperation. Furthermore,
the spatial logistic growth model does not involve any agent motility. We recover the spatial
logistic model as a particular case of our model when we set F(Xn) = Xn, G(Yn) = p and
m = 0. In Figure 5.2(a)-(c), we summarise the dynamics of the spatial logistic model when the
interactions are long-range and the mean-field approximation is valid. Under these conditions
the death rate is a linearly increasing function of density and the proliferation rate is constant,
as shown in Figure 5.2(a). This choice leads to an unstable steady state Z

(1)
1 = 0 and a stable

steady-state Z
(2)
1 > 0 as shown in Figure 5.2(b). Hence the mean-field implies that all initial

population densities will eventually tend to Z
(2)
1 as t → ∞, as in Figure 5.2(c).
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Our generalised IBM framework accommodates various non-linear functional forms for
Dn and Pn. In Figure 5.2(d) we choose Dn to be a concave up quadratic function and Pn to
be linearly increasing function of density. This leads to three equilibrium densities: Z

(1)
1 , Z

(2)
1 ,

and Z
(3)
1 , as in Figure 5.2(e). Here, Z

(1)
1 and Z

(3)
1 are stable equilibria, and Z

(2)
1 is an unstable

equilibrium. The population dynamics here with the long-range interactions where the mean-
field approximation is valid is shown in Figure 5.2(f). Here we see that populations with an
initial density less than the Allee threshold, Z

(2)
1 , eventually go extinct. In contrast, any initial

density greater than the Allee threshold, Z
(2)
1 , eventually tends to Z

(3)
1 . This is the simplest

mean-field model of an Allee effect in which the net population growth rate is a cubic function
of population density (Kot, 2003). For the spatial logistic model, the stability of the mean-field
equilibrium depends on the model parameters. For example, the unstable equilibrium point
at Z

1
1 = 0, become a stable equilibrium point (population extinction) when competition and

dispersal are short-range. Results in Section 5.7 reveal that similar observations hold for the
IBM considered here.
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Figure 5.2: Comparison of the spatial logistic and Allee effect models under mean-field conditions. a, d prolifer-
ation (red) and death rates (blue) as functions of density. b, e density growth rate as a function of density. Stable
and unstable equilibrium points are highlighted with filled and empty cyan dots, respectively. c, f dynamics for
both models with the cyan lines indicating the equilibrium densities.

We simulate the IBM using the Gillespie algorithm (Gillespie, 1977) that is described in
Section 5A.2. The population dynamics arising from the IBM is analysed by considering the
average density of individuals, Z1(t) = N(t)/L2. Information about the spatial configuration of
the population can be studied in terms of the average density of pairs of individuals expressed
as a pair correlation function, C(|ξ|, t) (Surendran et al., 2020a; Binder and Simpson 2013;
Ovaskainen et al., 2014; Johnston et al., 2016). The pair-correlation function denotes the aver-
age density of pairs of individuals with separation distance |ξ|, at a time, t, normalised by the
density of pairs in a population with the complete absence of spatial structure. Therefore, for a
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population without any spatial structure, C(|ξ|, t) = 1. When C(|ξ|, t) < 1, there are fewer pairs
of individuals with a separation distance, |ξ|, than in a population without any spatial structure.
We refer to this spatial configuration as being segregated. When C(|ξ|, t) > 1, we have more
pairs of individuals with a separation distance, |ξ|, than we would have in a population without
any spatial structure and this spatial configuration is referred to as being clustered.

5.5 Spatial moment dynamics

In this section, we construct a continuum approximation of the IBM in terms of the dynamics
of spatial moments. The first spatial moment, Z1(t), for a point process of the kind considered
in the IBM is defined as the average density of individuals (Law et al., 2003; Plank and Law,
2015). The second spatial moment, Z2(ξ, t), is the average density of pairs of individuals sep-
arated by a displacement of ξ. The third spatial moment, Z3(ξ, ξ′, t), is the average density of
a triplet of individuals separated by displacements ξ and ξ′, respectively. A formal definition
of spatial moments is provided in Section 5A.3. It is possible to define higher-order moments
similarly, but for the present study, we restrict our attention to the first three spatial moments
(Plank and Law, 2015; Omelyan, 2020).

To derive dynamical equations for the evolution of the spatial moments, we need to find
expressions for the continuum analogue of the discrete event rates given in Equation (5.3) and
Equation (5.6). This can be achieved by finding the expected death and proliferation rates,
E[Dn] = E [F(Xn)] and E[Pn] = E [G(Yn)], respectively. To calculate these expected rates
expand F(Xn) and G(Yn) in a Taylor series about X = E[Xn] and Y = E[Yn]. For the death rate
we have

E [F(Xn)] = E

F(X) + F′(X)
(
Xn − X

)
+

F′′(X)
2!

(
Xn − X

)2
+

F′′′(X)
3!

(
Xn − X

)3
+ . . .

 ,
= F(X) +

F′′(X)
2!

Var[Xn] +
F′′′(X)

3!
E

[(
Xn − X

)3
]

+ . . . . (5.7)

While our IBM can incorporate any choice of F(Xn), the higher-order terms in the truncated
Taylor series in Equation (5.7) are, in general, non-zero. The most straightforward choice of
F(Xn) to generate the Allee effect is a quadratic, and this choice has the additional benefit that
third and higher derivatives vanish, so we have

E [F(Xn)] = F(X) +
F′′(X)

2!
Var[Xn]. (5.8)

The computation of expected death rates reduces to calculating E[Xn] and Var[Xn], and substi-
tuting these into Equation (5.8). If we suppose the L × L domain is divided into M = L2/δA

subregions, each of area δA, where these subregions are sufficiently small such that each sub-
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region contains at most one individual, we have

E[Xn] = E

 M∑
k=1

ωc(|xk − xn|) IδA(xk − xn)

 , (5.9)

where, IδA(xk − xn) = 1, if an individual is present in a region of area δA at a displacement
xk − xn, and IδA(xk − xn) = 0, otherwise. Using the property of the indicator function that
E [IδA(xk − xn)] = P [IδA(xk − xn) = 1] (Ross, 2009), we have,

E[Xn] =

M∑
k=1

ωc(|xk − xn|)P [IδA(xk − xn) = 1] . (5.10)

In the continuum limit, the right-hand side of Equation (5.10) is equivalent to multiplying the
conditional probability of having an individual in a small window of size δA at a displacement
ξ from the reference individual, with the corresponding interaction kernel and integrating over
all possible displacements as δA → 0 (Plank and Law, 2015). The conditional probability
for the presence of a neighbour individual is Z2(ξ, t) δA/Z1(t). A derivation of the conditional
probability is provided in Section 5A.4. Hence we have,

E[Xn] =

∫
ωc(|ξ|)

Z2(ξ, t)
Z1(t)

dξ. (5.11)

Note that the previous spatial moment models, including the spatial logistic model, assume
that F(Xn) is a linear function (Law et al., 2003; Plank and Law, 2015; Binny et al., 2016;
Surendran et al., 2018). In that case, the death rate in Equation (5.8) depends only on E[Xn].
But in the more general case where F(Xn) is nonlinear, such as an Allee effect, we also require
information about the variance. Therefore we compute Var[Xn] in a similar fashion,

Var [Xn] = Var

 M∑
k=1

ωc(|xk − xn|) IδA(xk − xn)

 ,
=

M∑
k=1

ω2
c(|xk − xn|) Var

[
IδA(xk − xn)

]
+

M∑
i=1, j=1

i, j

ωc(|xi − xn|)ωc(|x j − xn|) Cov
[
IδA(xi − xn), IδA(x j − xn)

]
.

(5.12)

Following a similar procedure used in the computation of continuum analogue of E[Xn] in
Equation (5.11), we derive the expression for Var[Xn] as,

Var [Xn] =

∫
ω2

c(|ξ|)
(
Z2(ξ, t)
Z1(t)

)
dξ

+

"
ωc(|ξ′|)ωc(|ξ′′|)

(
Z3(ξ′, ξ′′, t)

Z1(t)
−

Z2(ξ′, t) Z2(ξ′′, t)
Z2

1(t)

)
dξ′dξ′′.

(5.13)
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For brevity, we omit the intermediate steps involved in the derivation of Var[Xn] here. These
details are provided in Section 5A.5.

We consider specific functional forms as F(Xn) = d+X2
n and G(Yn) = p+Yn. We make these

choices because they are the simplest scenario that result in a strong Allee effect. To proceed,
we compute the expected death rate of an individual, D1(t), by substituting the expressions for
E[Xn] and Var[Xn] in Equation (5.8) to give,

D1(t) = d +

(∫
ωc(|ξ|)

Z2(ξ, t)
Z1(t)

dξ
)2

+

∫
ω2

c(|ξ|)
Z2(ξ, t)
Z1(t)

dξ

+

"
ωc(|ξ|)ωc(|ξ′|)

(
Z3(ξ, ξ′, t)

Z1(t)
−

Z2(ξ, t) Z2(ξ′, t)
Z2

1(t)

)
dξ dξ′.

(5.14)

Similarly the expected proliferation rate for an individual is,

P1(t) = p +

∫
ωp(|ξ|)

Z2(ξ, t)
Z1(t)

dξ. (5.15)

The dynamics of the first moment depend solely on the balance between proliferation and death.
The movement of individuals does not result in a change in the population size. Hence the time
evolution of the first spatial moment is given by,

d
dt

Z1(t) = P1(t)Z1(t)︸     ︷︷     ︸
Increase in density due to proliferation

−

Decrease in density due to death︷      ︸︸      ︷
D1(t)Z1(t). (5.16)

Note that the dynamics of the first moment depends on the second and third moments through
Equations (5.14)-(5.15), and to solve the dynamics of the first moment, we need to specify the
values of these higher-order moments.

Now we derive the dynamical equation for the density of pairs of individuals. For the
derivation, we need to calculate the event rates of individuals while they are in a pair with
another individual at a displacement, ξ. The conditional probability of finding an individ-
ual at displacement ξ′, given that a pair of individuals exist with separation displacement ξ
is Z3(ξ, ξ′, t) δA/Z2(ξ, t). The derivation of the expression for the conditional probability is
given in Section 5A.4. Using this expression for the conditional probability, and following
the same procedures used to arrive at Equation (5.11) and Equation (5.13), we compute E[Xn]
and Var[Xn] for an individual that forms a pair with another individual at a displacement ξ.
Hence, the expected death rate of an individual, conditional on the presence of a neighbour at
a displacement ξ, is given by,

D2(ξ, t) = d +

(∫
ωc(|ξ′|)

Z3(ξ, ξ′, t)
Z2(ξ, t)

dξ′ + ωc(|ξ|)
)2

+

∫
ω2

c(|ξ′|)
Z3(ξ, ξ′, t)

Z2(ξ, t)
dξ′. (5.17)

Note that the subscript in D2(ξ, t) indicates the fact that we are computing the expected rate

126



CHAPTER 5. ALLEE DYNAMICS 5.5. SPATIAL MOMENT DYNAMICS

for an individual that forms a pair with another individual at displacement ξ. The additional
factor of ωc(|ξ|) in the second term of Equation (5.17) accounts for the direct influence of
the individual at displacement ξ. Similarly, the expected proliferation rate of an individual,
conditional on the presence of a neighbour at a displacement ξ is,

P2(ξ, t) = p +

∫
ωp(|ξ′|)

Z3(ξ, ξ′, t)
Z2(ξ, t)

dξ′ + ωp(|ξ|). (5.18)

The time evolution of Z2(ξ, t) depends on the creation of new pairs and the loss of existing
pairs. The schematic in Figure 5.3 illustrates possible ways in which movement, proliferation
or death event leads to the creation or destruction of pairs of individuals separated by a displace-
ment of ξ. Figure 5.3(a) represents a pair of individuals at a separation displacement of ξ. A
movement of either individual destroys this pair, as does the death of either individual. Figure
5.3(b)-(c) demonstrates two different ways to generate a new pair separated by a displacement
ξ. When an individual among the pair separated by a displacement ξ′+ξ in Figure 5.3(b) moves
or places a daughter agent a displacement ξ′, a new pair is formed at a displacement ξ. In this
case, the movement and proliferation occurs with rates µm(ξ′) m and µp(ξ′)P2(ξ′ + ξ, t), respec-
tively. Another possibility for the creation of a pair with separation displacement ξ is when a
single individual, as shown in Figure 5.3(c), places a daughter agent over a displacement -ξ.
The rate for this event is µp(−ξ) P1(t). The dynamics of the second moment is obtained by
combining these possibilities as,

∂

∂t
Z2(ξ, t) = −2D2(ξ, t)Z2(ξ, t)︸                ︷︷                ︸

Loss of pairs at displacement ξ due to the death of either individual

(5.19)

−2m Z2(ξ, t)︸        ︷︷        ︸
Loss of pairs at displacement ξ due to the movement of either individual

+2
∫

µp(ξ′)P2(ξ + ξ′, t)Z2(ξ + ξ′, t) dξ′︸                                               ︷︷                                               ︸
Formation of pairs at displacement ξ due to the proliferation of individuals that form a pair at displacement ξ+ξ′

+2m
∫

µm(ξ′) Z2(ξ + ξ′, t) dξ′︸                                  ︷︷                                  ︸
Formation of pairs at displacement ξ due to the movement of individuals that form a pair at displacement ξ+ξ′

+2µp(−ξ)P1(t)Z1(t).︸                   ︷︷                   ︸
Formation of pairs at displacement ξ due to the placement of a daughter individual at a displacement -ξ′

Since the event rates in Equations (5.17)-(5.18) depend on the third-order moment, Z3(ξ, ξ′, t),
we need some expression for the third moment to solve the system, and we anticipate that the
dynamics of the third moment will depend upon higher moments. To deal with this hierarchy
of equations we use the Power-2 asymmetric moment closure approximation (Law et al., 2003;
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(a) (b) (c)

+ ‘
‘

-

Figure 5.3: Possible events leading to a change in pair density. Red dots represent existing individuals and
black open circles indicate potential locations of an individual after a movement or proliferation event. a A pair
separated by a displacement ξ. Movement or death of either individual destroys the pair. b A pair separated by
a displacement ξ + ξ′. A movement or placement of a daughter over a displacement of ξ′ creates a new pair
separated by displacement ξ. c A single individual where the placement of a daughter at displacement −ξ creates
a new pair with a displacement ξ.

Binny et al., 2016)

Z3(ξ, ξ′, t) =
4Z2(ξ, t)Z2(ξ′, t) + Z2(ξ, t)Z2(ξ′ − ξ, t) − Z2(ξ′, t)Z2(ξ′ − ξ, t) − Z4

1(t)
5 Z1(t)

, (5.20)

to approximately close the system in terms of the first and second moments only. Other closure
approximations, such as the power-1 closure, the symmetric power-2 closure and the Kirkwood
superposition approximation (Law et al., 2003; Murrell et al., 2004), are possible, and we com-
pare the accuracy of these four different closure approximations in Section 5A.6. Details about
the numerical methods involved in solving the dynamical equation for the second moment,
Equation (5.19) is provided in Section 5A.7 and MATLAB code to implement the algorithm is
available on Github.

5.6 Mean-field dynamics

Under the classical mean-field approximation, interactions between individuals occur in pro-
portion to the average density, and there is no spatial structure. These conditions correspond
to having long-range interactions between individuals. Comparing the solutions of the classi-
cal mean-field model, IBM simulations and the solution of the new spatial moment dynamics
model will provide insight into how spatial structure influences the population dynamics.

In terms of spatial moments, the mean-field implies that we have Z2(ξ, t) = Z2
1(t) (Binny

et al., 2016; Surendran et al., 2020a), which means that the expected death rate from Equation
(5.14) simplifies to,

D1(t) =d + Z2
1(t)

(∫
ωc(|ξ|) dξ

)2

+ Z1(t)
∫

ω2
c(|ξ|) dξ. (5.21)
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Similarly, the expected proliferation rate in Equation (5.15) simplifies to

P1(t) =p + Z1(t)
∫

ωp(|ξ|) dξ. (5.22)

Since the interaction kernels have the property that
∫
ωc(|ξ|) dξ = 2πγcσ

2
c and

∫
ω2

c(|ξ|) dξ =

πγ2
cσ

2
c , we substitute the mean-field death and proliferation rates in Equations (5.21)-(5.22) into

Equation (5.16) to give

d
dt

Z1(t) = (p − d)Z1(t) +
(
2πγp σ

2
p − πγ

2
cσ

2
c

)
Z2

1(t) − 4π2γ2
c σ

4
c Z3

1(t), (5.23)

which leads to three equilibrium densities:

Z
(1)
1 = 0,

Z
(2)
1 =

2γpσ
2
p − γ

2
cσ

2
c

8πγ2
cσ

4
c

−

√(
2γpσ2

p − γ
2
cσ

2
c

)2
+ 16γ2

cσ
4
c(p − d)

8πγ2
cσ

4
c

,

Z
(3)
1 =

2γpσ
2
p − γ

2
cσ

2
c

8πγ2
cσ

4
c

+

√(
2γpσ2

p − γ
2
cσ

2
c

)2
+ 16γ2

cσ
4
c(p − d)

8πγ2
cσ

4
c

,

(5.24)

where Z
(3)
1 > Z

(2)
1 > Z

(1)
1 for the parameters we consider in this study. In this classical mean-field

context, Z
(2)
1 is the Allee threshold and Z

(3)
1 is the carrying capacity density. The equilibrium

densities and dynamics associated with Equation (5.23) are depicted in Figure 5.2(e)-(f).
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5.7 Results and Discussion

We now present IBM simulation results together with numerical solutions of both the spatial
moment and the mean-field models to explore the influence of spatial structure on the popu-
lation dynamics. In each case that we consider (Figures 5.4–5.7) we plot the time evolution
of the average density of individuals from repeated, identically-prepared IBM simulations. In-
formation about the spatial structure of the population is given in terms of the pair correlation
function computed at the end of the simulation. Since the IBM is stochastic, there is a non-
zero probability that any individual simulation will lead to extinction, regardless of whether
the average outcome is that the population would survive. In the first set of results we present
we take care to choose parameters and initial conditions such that at least 99% of the 1000
identically prepared simulations leads to the same long-term population-level outcome (i.e. ex-
tinction or survival) and any outliers, if present, are excluded from the calculation of ensemble
averages. For each parameter combination, we consider three different initial conditions: (i)
Z

(1)
1 < Z1(0) < Z

(2)
1 ; (ii) Z

(2)
1 < Z1(0) < Z

(3)
1 ; and (iii) Z1(0) > Z

(3)
1 . In the IBM simulations we

control the initial density by choosing a different value of N(0).

As a starting point we consider a simple case with relatively weak long-range interactions
so that the mean-field approximation is valid in Figure 5.4. Choosing long-range dispersion and
competition kernels ensures that there is minimal correlation between the locations of agents
in the simulations. As expected, results with Z

(1)
1 < Z1(0) < Z

(2)
1 lead to extinction, and results

with Z
(2)
1 < Z1(0) < Z

(3)
1 and Z1(0) > Z

(3)
1 leads to the population eventually settling to the

carrying capacity density by t = 30. The comparison of the averaged IBM results, the mean-
field and spatial moment models in 5.4(g)-(i) shows that all three approaches are consistent
and the eventual long-time population contains no spatial structure since the pair correlation
function is unity in Figure 5.4(k)-(l). Note that we do not show the pair correlation function in
Figure 5.4(j) since, in this case, the long-time result is that the population goes extinct.

Having verified that both the IBM and spatial moment dynamics model replicate solutions
of the mean-field model for relatively weak long-range interaction and dispersal kernels, we
now focus on short-range interactions that can lead to spatial structure.
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Figure 5.4: Long-range interactions and dispersal kernels (σc = σp = σd = 4.0) with weak interaction strengths
(γc = 0.009 and γp = 0.009) lead to mean-field conditions. a-c initial locations of individuals (dots) for three
different initial population sizes, N(0) = 80, 240 and 400, respectively. d-f location of individuals at t = 30. g-i
density of individuals as a function of time. Black solid lines correspond to averaged results from 1000 identically-
prepared IBM realisations, red dashed lines correspond to the solutions of the spatial moment dynamics model
and green solid lines are the solution of the mean-field model. The cyan lines show the equilibrium densities. j-l
pair-correlation function, C(|ξ|, 30). Here we see that the simulation results from IBM and solutions of both spatial
moment model and mean-field models match well for all cases considered. Since the population extinction occurs
by t = 30 for the case with N(0) = 80, we do not show any individuals in d and any pair correlation function in j.
Parameter values are d = 0.4, p = 0.2,m = 0.1, µs = 0.4 and σs = 0.1.
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5.7.1 Short-range competition reduces the Allee threshold

Results in Figure 5.5 are presented in the same format as in Figure 5.4 except that we consider
short-range competition by setting σc = 0.5 without changing the cooperation or dispersal
kernels.
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Figure 5.5: Short-range competition (σc = 0.5 and γc = 0.448) reduces the Allee threshold. a-c initial locations
of individuals (red) for three different population sizes, N(0) = 80, 160 and 240, respectively. d-f location of
individuals at t = 30. g-i density of individuals as a function of time. Black solid lines correspond to the averaged
results from 1000 identically-prepared IBM realisations, red dashed lines correspond to the solutions of the spatial
moment dynamics model and green solid lines are the solution of the mean-field model. The cyan lines show the
equilibrium densities. j-l pair-correlation function, C(|ξ|, 30). Parameter values are d = 0.4, p = 0.2,m = 0.1, µs =

0.4 and σs = 0.1.
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Figure 5.5(a)-(c) shows the initial randomly-placed populations, N(0) = 80, 160 and 240,
respectively. Results in the left-most column with Z1(0) = 80/400 < Z

(2)
1 leads to extinction.

Results in the central column with Z1(0) = 160/400 < Z
(2)
1 are very interesting because the

initial density is below the classical mean-field Allee threshold and so standard models would
predict extinction, yet we see that the population grows to reach a positive carrying capacity
density. This difference is caused by the spatial structure, which we can see in Figure 5.5(k) is
segregated at short distances. When competition is short range and the population is segregated,
individuals in the IBM experience less competition that would be expected in a population with-
out spatial structure under mean-field conditions. This decrease in competition means that the
population increases despite the initial density being less than the mean-field Allee threshold.
These observations highlight the interplay between the competition and dispersal ranges. In
Figure 5.6, we present results when both competition and dispersal are short-range, and we
demonstrate that those results are entirely different from those in Figure 5.5. We observe a
discrepancy between the IBM and the spatial moment model results for the transient dynamics,
approximately between t = 10 and t = 20, in Figure 5.5(h). We attribute this discrepancy to
the accuracy of the moment closure approximation since similar results are observed in lattice-
based models [8].

Results in the right-most column in Figure 5.5 show that when the initial density is above
the mean-field Allee threshold, Z1(0) > Z

(2)
1 , we see that the population increases to reach the

same carrying capacity density is in Figure 5.5(h). Here we find that the carrying capacity
density reached by the IBM is much higher than the mean-field carrying capacity density. This
means that the classical mean-field model under-predicts the long-time density. In contrast,
the spatial moment dynamics model leads to an accurate prediction of the averaged density
from the IBM. This result, that the spatial structure can impact the carrying capacity density is
consistent with previous observations for the spatial logistic model (Law et al., 2003), but our
observation that spatial structure changes the Allee threshold has not been reported previously.

5.7.2 Short-range competition and dispersal encourage population ex-
tinction

Results in Figure 5.6 consider both short-range competition and short-range dispersal by setting
σc = σd = 0.5. The format of the results in Figure 5.6 is the same as in Figures 5.4-5.5. An
additional set of results in Section 5A.8 present some cases where we consider just short-range
dispersal.

IBM simulations in Figure 5.6 show that short-range dispersal and competition leads to
clustering and extinction. When the dispersal is short-range, daughter individuals are placed
in close proximity to the parent individual, which leads to the formation of clusters. Short-
range competition means that the competition within those clusters is strong, and significantly
increases the local death rate of individuals. In the classical mean-field model we expect ex-
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tinction to occur only when Z1(0) < Z
(2)
1 but our IBM results show that the population goes

extinct when we set Z1(0) > Z
(2)
1 in Figure 5.6(h), and even more surprisingly we see that the

IBM simulations lead to extinction even when Z1(0) > Z
(3)
1 in Figure 5.6(i). This means that

the spatial structure in this case leads the population to extinction. While the mean-field model
completely fails to predict the observed extinction in the IBM, we find that the spatial moment
model accurately reproduces the population dynamics of the IBM.
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Figure 5.6: Short-range competition and short-range dispersal drive the population to extinction. In this case
we consider short-range competition and dispersal (σc = σd = 0.5) with γc = 0.488. a-c initial locations
of individuals (red) for three different population sizes, N(0) = 80, 240 and 400, respectively. d-f location of
individuals at t = 30. g-i density of individuals as a function of time. Black solid lines correspond to the averaged
results from 1000 identically-prepared IBM realisations, red dashed lines correspond to the solutions of spatial
moment dynamics model and green solid lines are the solution of the mean-field model. The cyan lines show the
equilibrium densities. j-l pair-correlation function, C(|ξ|, 30). Parameter values are d = 0.4, p = 0.2,m = 0.1, µs =

0.4 and σs = 0.1.
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5.7.3 Short-range cooperation and intermediate-range dispersal promotes
population growth

We now consider a further case where IBM simulations are qualitatively different from the
classical mean-field model. Results in Figure 5.7 correspond to short-range cooperation (σp =

0.5) and intermediate-range dispersal (σd = 2.0).
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Figure 5.7: Short-range cooperation and dispersal promotes population growth. In this case we consider short-
range cooperation σp = 0.5 and an intermediate-range dispersal σd = 2.0 with γp = 0.576. a-c the initial locations
of individuals (red dots) for three different population sizes, N(0) = 105, 240 and 400. d-f show the location of
individuals at t = 30. g-i show the density of individuals as a function of time. Black solid lines correspond to
the averaged results from 1000 realisations of the IBM, red dashed lines correspond to the solutions of spatial
moment dynamics and green solid lines correspond to the solution of the mean-field model. The cyan lines show
the critical densities. j-l show the C(|ξ|, t) computed at t = 30 as a function of separation distance. Parameter
values are d = 0.4, p = 0.2,m = 0.1, µs = 0.4 and σs = 0.1.
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Some clustering in Figure 5.7(d)-(f) is evident, and this clustering is induced by the intermediate-
range dispersal and leads to enhanced proliferation because of strong short-range cooperation.
This case is very interesting because we observe population growth even when the initial den-
sity is below the classical mean-field Allee threshold in Figure 5.7(g). For all three choices of
initial density in Figure 5.7, the population survives and eventually reaches a carrying capacity
density that is greater than the carrying capacity density predicted by the classical mean-field
model.

5.7.4 Survival probability

We conclude our results by using the IBM to estimate the survival probability, P(survival), as
a function of initial density in Figure 5.8. To calculate P(survival), we perform a large number
of identically-prepared realisations over a sufficiently long period of time, t = 100. From these
simulations we record the fraction of realisations in which the population does not become
extinct in this time interval.
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Figure 5.8: Survival probability as a function of Z1(0) for: a short-range competition (σc = 0.5, γc = 0.488), and
b short-range cooperation and intermediate-range dispersal (σp = 0.5, σd = 2.0, γp = 0.576). Cyan lines show
the classical mean-field Allee threshold and black dots show P(survival) estimated from 100 identically-prepared
IBM realisations. Other parameter values are d = 0.4, p = 0.2,m = 0.1, µs = 0.4 and σs = 0.1.

Results in Figure 5.8(a) show P(survival) for a population with short-range competition.
The mean-field Allee threshold for this choice of parameters is Z

(2)
1 = 0.43. In contrast, we find

that a certain proportion of populations with Z1(0) < Z
(2)
1 can survive. This difference between

the classical mean-field result is due to the presence of spatial structure, and for this choice
of parameters we have a segregated population, as illustrated in Figure 5.5. Another factor
that influences the survival probability is the stochastic nature of the IBM. Even in the absence
of spatial structure, the stochasticity can lead to a continuous transition of P(survival) from
0 to 1 in the IBM, but possibly quite narrow and centred around the mean-field model Allee
threshold. The spatial structure can shift the transition left or right (depending on whether it
makes survival more or less likely) and potentially broaden the transition curve. Results in
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Figure 5.8(b) show P(survival) for a population with short-range cooperation and intermediate-
range dispersal where the classical mean-field Allee threshold is Z

(2)
1 = 0.3. Again we see

that populations with an initial density below the Allee threshold can survive. This difference
between the classical mean-field result is due to the presence of spatial structure, which in this
case leads to clustering, as shown in Figure 5.7, and the stochasticity of the IBM.

5.8 Conclusions

In this study we consider an IBM that describes population dynamics that incorporates short-
range interactions and spatial structure. The model construction allows us to incorporate a
strong Allee effect, and in particular to explore the impact of spatial structure on the Allee
threshold. Classical mathematical models of population dynamics that incorporate an Allee ef-
fect are based on making a mean-field approximation. This approximation implies that individ-
uals interact in proportion to their average density and leads to the neglect of spatial structure,
such as clustering and segregation.

We explore how short-range competition, short-range cooperation and short-range dispersal
leads to spatial structure in a dynamic population and we focus on examining how this spatial
structure influences the Allee threshold density. Overall, we find that the Allee threshold can be
very sensitive to the presence of spatial structure to the point that classical mean-field predic-
tions are invalid. For example, when we consider short-range dispersal and short-range compe-
tition we find that the population becomes extinct, despite the fact that the classical mean-field
model predicts that the population will always survive when Z1(0) > Z

(2)
1 . While our IBM re-

sults disagree with the classical mean-field prediction when the spatial structure is present, we
also derive and solve a novel spatial moment dynamics model that is able to accurately capture
how the Allee threshold depends upon spatial structure and we find that the spatial moment
model reliably predicts population dynamics when spatial structure is present. Our results on
the estimation of P(survival) show that a certain proportion of populations seemed to have non-
zero survival probability despite the fact that the initial population density is below the Allee
threshold due to the presence of spatial structure. Note that the spatial moment model devel-
oped in this study is deterministic and hence cannot be used to estimate P(survival). Instead, the
spatial moment model predicts a threshold initial density above which the population survives.
Overall our results show that the spatial moment model predicts this threshold more accurately
than the mean-field model.

There are many potential avenues to extend the features in this study. For example, in this
work we make the simplest possible assumption that agent movement is random and density-
independent. This feature could be refined. For example, if the model was applied to study
a population of biological cells, it might be more appropriate to consider a density-dependent
movement rate and some directional bias where individuals are either attracted to or repelled
from other agents in their neighbourhood (Cai et al., 2006; Binny et al., 2020). In this study,
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we restrict our exploration to a simple population where all individuals are of the same type.
Another interesting extension of the model would be to consider a multi-species where the total
population consists of individuals from various distinct species (Markham et al., 2013; Wittmer
et al., 2005). We leave both these extensions for future consideration.
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Chapter 5A

Additional results for Chapter 5

5A.1 Comparison of long-range and short-range competi-
tion

Here we present a second set of results comparing the impact of short-range and long-range
competition on the death rate, Dn, analogous to the results in Figure 5.1. These additional
results, in Figure 5A.1, are generated with precisely the same parameters and spatial arrange-
ment of individuals as those in Figure 5.1, with the exception that here we consider a quadratic
functional form for the death rate (F(Xn) = X2

n). Comparing the results in Figure 5.1 with the
additional results in Figure 5A.1 indicates that the choice of F(Xn) = X2

n , reduces the death
rates of individuals.

Similar to the results in Figure 5.1, the long-range competition leads toDn being influenced
by neighbours that are further apart, as shown in Figure 5A.1(a)-(b). But the difference here
is that overall we see a decrease in the death rate. For example, even though the death rate
of the relatively isolated individual shown with the green dot is non-zero due to the long-
range competition, the value of Dn = 0.076 here is lower than Dn = 0.275 computed using
F(Xn) = Xn in Figure 5.1. Under short-range competition, as shown in Figure 5A.1(c)-(d), only
the contribution from immediate neighbours is significant. As a result, the isolated individual
(green dot), does not experience competition from its neighbours, leading toDn = 0.
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Figure 5A.1: Visualisation of the impact of long-range and short-range neighbour-dependent interactions. Results
in a, c show the location of individuals (red dots) superimposed with the level curves of Dn for long-range and
short range-competition, respectively. Results in b, d show the long-range (σc = 4.0) and short-range (σc = 0.5)
competition kernel, respectively, where these kernels are centred at the origin. For the computation ofDn, we use
F(Xn) = X2

n and γc = 0.1.

5A.2 Numerical implementation of the individual-based model

Here we outline the numerical implementation of our individual-based model (IBM) using
the Gillespie algorithm (Gillespie, 1977). The codes used for the simulation of the IBM are
available on Github. In each simulation, we initially populate the computational domain, of
size L × L, with N(0) individuals placed at random. We use periodic boundary conditions
along all boundaries. For each potential event, we compute the death and proliferation rates of
individuals using Equation (5.3) and Equation (5.6). The movement of individuals is density
independent, and the constant intrinsic movement rate is m. The sum of event rates of all
individuals is given by,

λ(t) =

N(t)∑
n=1

(Dn + Pn + m) . (5A.1)

Each time the IBM is updated, one of the three possible events occurs, and the time interval be-
tween successive events is exponentially distributed with mean 1/λ(t). The probability for any
of the events to occur is proportional to the rate of the corresponding event. For a proliferation
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event, an offspring is placed at a displacement sampled from the dispersal kernel, µp(ξ), and
the population size increases by one. For a death event, the population size reduces by one. For
a movement event, an individual traverses a displacement that is sampled from the movement
displacement kernel, µm(ξ).

We compute the average density of individuals at a particular time by dividing the popula-
tion size, N(t), by the area of the computational domain, L2. To compute the pair-correlation
function, C(|ξ|, t), we consider a reference individual located at xn and calculate all distances
|ξ| = |xk − xn|, associated with the other N(t)− 1 individuals (Law et al., 2003; Surendran et al.,
2018). We repeat this process with each of the remaining individuals until every individual has
acted as the reference individual. The pair-correlation function is calculated by enumerating
the distances which fall into the interval,

[
|ξ| − δ|ξ|/2, |ξ| + δ|ξ|/2

]
. We normalise the bin count

by a factor of 2π|ξ|δ|ξ|N(t)(N(t) − 1)/L2 to ensure that C(|ξ|, t) = 1 in the absence of spatial
structure. The choice of bin width, δ|ξ|, is crucial in computing the pair-correlation function.
When δ|ξ| is very small, we obtain a noise dominated C(|ξ|, t). In contrast, very large δ|ξ| leads
to an overly smooth C(|ξ|, t) that fails to describe the effects of short-range interactions. In all
our simulations, we use an intermediate value of δ|ξ| = 0.2 which helps us to avoid the two
extremities.

5A.3 Definition of spatial moments

Here, we provide a more formal mathematical definition for the spatial moments (Plank and
Law, 2015; Law and Dieckmann, 2000; Binny et al., 2016). Let us suppose DδA(x) ⊂ R2 is a
disc of area δA centred at position x ∈ R2 and the number of individuals in the region DδA(x),
at a time t, is denoted by the random variable N(DδA(x), t). The first spatial moment, Z1(t), can
be computed by dividing the population size of individuals by the area of the domain. Hence
we have,

Z1(t) = lim
δA→0

1
δA
E
[
N
(
DδA(x), t

)]
. (5A.2)

The second spatial moment, Z2(ξ, t), is the average density of pairs of individuals separated by
a displacement ξ at time t. For a pair of individuals separated by a displacement ξ, we have,

Z2(ξ, t) = lim
δA→0

1
δA2E

[
N (DδA(x), t) N (DδA(x + ξ), t) − N (DδA(x) ∩ DδA(x + ξ), t)

]
. (5A.3)

The second term in the expectation in Equation (5A.3) is necessary to avoid counting self-pairs.
For non-overlapping regions DδA(x) and DδA(x + ξ), this term becomes zero as δA → 0. The
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third spatial moment is the density of triplets of individuals, and is similarly defined as,

Z3(ξ, ξ′, t) = lim
δA→0

1
δA3E

[
N(DδA(x), t) N(DδA(x + ξ), t) N(DδA(x + ξ′), t)

− N(DδA(x) ∩ DδA(x + ξ), t) N(DδA(x + ξ′), t)

− N(DδA(x) ∩ DδA(x + ξ′), t) N(DδA(x + ξ), t) (5A.4)

− N(DδA(x + ξ) ∩ DδA(x + ξ′), t) N(DδA(x), t)

+ 2N(DδA(x) ∩ DδA(x + ξ′) ∩ DδA(x + ξ), t)
]
.

Again, the extra terms in Equation (5A.4) are needed to avoid counting non-distinct triplets.

5A.4 Conditional probabilities for the presence of individu-
als

In this section we derive expressions for the probabilities of finding individuals at specific
displacements conditional on the presence of other individuals. In the limit, δA → 0, the
probability of having one individual in the region DδA(x) is given by,

P
[
N
(
DδA(x), t

)
= 1

]
= E

[
N
(
DδA(x), t

)]
. (5A.5)

Now, the probability of having two individuals located in non overlapping regions DδA(x) and
DδA(x + ξ), respectively, is given by,

P
[
N
(
DδA(x), t

)
= 1 ∩ N

(
DδA(x + ξ), t

)
= 1

]
= E

[
N
(
DδA(x), t

)
N
(
DδA(x + ξ), t

)]
. (5A.6)

Similarly, the probability for having three individuals at non overlapping regions DδA(x), DδA(x+

ξ) and DδA(x + ξ′), respectively, is given by,

P
[
N
(
DδA(x), t

)
= 1 ∩ N

(
DδA(x + ξ), t

)
= 1 ∩ N

(
DδA(x + ξ′), t

)
= 1

]
= E

[
N
(
DδA(x), t

)
N
(
DδA(x + ξ), t

)
N
(
DδA(x + ξ′), t

)]
.

(5A.7)

To compute the event rates, we need to find the probabilities of individuals being present at a
given displacement, conditional on the presence of other individuals. To compute the condi-
tional probabilities, we use the property that,

P[A | B] =
P[A ∩ B]
P[B]

. (5A.8)
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The conditional probability of finding an individual at a displacement x + ξ, given that the
reference individual is located at x, is,

P
[
N(DδA(x + ξ), t) = 1 | N(DδA(x), t) = 1

]
=
P
[
N(DδA(x + ξ), t) = 1 ∩ N(DδA(x), t) = 1

]
P
[
N(DδA(x), t) = 1

] .

(5A.9)
Using the definitions of probabilities in Equations (5A.5)-(5A.6) and the definitions of spa-
tial moments in Equations (5A.2)-(5A.3), we rewrite the the numerator and denominator of
Equation (5A.9) as,

P
[
N(DδA(x), t) = 1

]
= Z1(t) δA, (5A.10)

P
[
N(DδA(x + ξ), t) = 1 ∩ N(DδA(x), t) = 1

]
= Z2(ξ, t) (δA)2. (5A.11)

Hence the conditional probability of finding an individual at a displacement x + ξ from a refer-
ence individual at x is given by,

P
[
N(DδA(x + ξ), t) = 1 | N(DδA(x), t) = 1

]
=

Z2(ξ, t) δA
Z1(t)

. (5A.12)

Similarly, we compute the conditional probability of finding an individual at a displacement
x + ξ′, given that a pair of individuals where constituent individuals are located at x + ξ and x,
respectively, as

P
[
N(DδA(x + ξ′), t) = 1 | N(DδA(x + ξ), t) = 1 ∩ N(DδA(x), t) = 1

]
=
P
[
N(DδA(x + ξ′), t) = 1 ∩ N(DδA(x + ξ), t) = 1 ∩ N(DδA(x), t) = 1

]
P
[
N(DδA(x + ξ), t) = 1 ∩ N(DδA(x), t) = 1

] ,

=
Z3(ξ, ξ′, t) δA

Z2(ξ, t)
.

(5A.13)

5A.5 Computation of variance

Here we outline the steps involved in the derivation of expression for variance of the neigh-
bourhood density in Equation (5.13). The fundamental definition of the variance is,

Var [X] =Var

 M∑
k=1

ωc(|xk − xn|) IδA(xk − xn)

 ,
=

M∑
k=1

ω2
c(|xk − xn|) Var

[
IδA(xk − xn)

]
+

M∑
i=1, j=1

i, j

ωc(|xi − xn|)ωc(|x j − xn|) Cov
[
IδA(xi − xn), IδA(x j − xn)

]
.

(5A.14)
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Now, using the properties of indicator function, E
[
IδA(xk − xn)

]
= P

[
IδA(xk − xn) = 1

]
and

Var
[
IδA(xk − xn)

]
= P

[
IδA(xk − xn) = 1

]
−

(
P
[
IδA(xk − xn) = 1

])2
(Ross, 2009), we rewrite

Equation (5A.14) as,

Var [X] =

M∑
k=1

ω2
c(|xk − xn|)

(
P
[
IδA(xk − xn)

]
− P

[
IδA(xk − xn)

]2
)

+

M∑
i=1, j=1

i, j

ωc(|xi − xn|)ωc(|x j − xn|)× (5A.15)

(
P
[
IδA(xi − xn) = 1 ∩ IδA(x j − xn) = 1

]
− P

[
IδA(xi − xn) = 1

]
P
[
IδA(x j − xn) = 1

])
.

Using Equation (5A.8), we write,

P
[
IδA(xi − xn) = 1 ∩ IδA(x j − xn) = 1

]
=P

[
IδA(xi − xn) = 1 | IδA(x j − xn) = 1

]
× P

[
IδA(x j − xn) = 1

]
.

(5A.16)

These definitions allow us to rewrite Equation (5A.15) in terms of continuous variables by
multiplying the corresponding conditional probabilities for the presence of individuals with the
interaction kernels and summing over all possible displacements as,

Var [X] =

∫
ω2

c(|ξ|)
(Z2(ξ, t)

Z1(t)

)
dξ

+

"
ωc(|ξ′|)ωc(|ξ′′|)

(
Z3(ξ′, ξ′′, t)

Z1(t)
−

Z2(ξ′, t) Z2(ξ′′, t)(
Z1(t)

)2

)
dξ′ dξ′′.

(5A.17)

5A.6 Comparison of moment closure methods

The moment closure methods help to approximate the third-order spatial moments in terms of
the first and second spatial moments. In this section, we compare the performance of popular
moment closure methods. The closure methods considered are the power-1 closure (P1), the
symmetric power-2 closure (P2S), the asymmetric power-2 closure (P2A) and the Kirkwood
superposition approximation (KSA) (Law et al., 2003; Murrell et al., 2004).

The power-1 closure (P1) method use an approximation for the third moment, Z3(ξ, ξ′, t),
given by,

Z3(ξ, ξ′, t) = Z1(t)Z2(ξ, t) + Z1(t)Z2(ξ′, t) + Z1(t)Z2(ξ′ − ξ, t) − 2Z3
1(t). (5A.18)

The symmetric power-2 closure is given by,

Z3(ξ, ξ′, t) =
Z2(ξ, t)Z2(ξ′, t) + Z2(ξ, t)Z2(ξ′ − ξ, t) − Z2(ξ′, t)Z2(ξ′ − ξ, t) − Z4

1(t)
2 Z1(t)

. (5A.19)
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The asymmetric power-2 closure is given by,

Z3(ξ, ξ′, t) =
4Z2(ξ, t)Z2(ξ′, t) + Z2(ξ, t)Z2(ξ′ − ξ, t) − Z2(ξ′, t)Z2(ξ′ − ξ, t) − Z4

1(t)
5 Z1(t)

. (5A.20)

The Kirkwood superposition approximation (KSA) is given by,

Z3(ξ, ξ′, t) =
Z2(ξ, t) Z2(ξ′, t) Z2(ξ′ − ξ, t)

Z3
1(t)

. (5A.21)

To compare the accuracy of closure methods, we compute the solutions of the spatial mo-
ment model with each of the four closure methods and compare it with the averaged data from
the IBM simulation. We calculate the density dynamics and pair-correlation function for a
population with initial population size, N(0) = 150, and random initial arrangement of indi-
viduals. The density dynamics computed using all four closure methods, as well as from the
IBM simulations for this population, are shown in Figure 5A.2(a). Our results indicate that the
asymmetric power-2 closure provides the best match with the average results from the IBM.
Similarly, the pair-correlation function computed using the asymmetric power-2 closure most
accurately reproduces C(|ξ|, t) from the IBM, as shown in Figure 5A.2(b). While our results
suggest that the asymmetric power-2 closure provides the best approximation to IBM for the
parameters considered, the motive of this study is not to advocate for one particular closure
approximation over others. Instead, we provide a general moment dynamics model that can
be implemented using different closure methods if one particular closure approximation is pre-
ferred over others.
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Figure 5A.2: Comparison of moment closure methods. a shows the density of individuals as a function of time.
b shows the C(|ξ|, t) computed at t = 30 as a function of separation distance. Parameter values are σc = 0.5, γc =

0.448, σp = σd = 4.0, γp = 0.009, d = 0.4, p = 0.2,m = 0.1, µs = 0.4 and σs = 0.1.
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5A.7 Numerical methods for solving the moment dynamics
equation

Here we describe the numerical methods used for solving the dynamical equation for the second
spatial moment, Equation (5.19). Temporal derivatives are approximated using an explicit
Euler approximation implemented in MATLAB. The codes used are available on Github. The
numerical scheme involves spatial discretisation of the displacement, ξ = (ξx, ξy), over the
domain {−ξmax ≤ ξx, ξy ≤ ξmax} using a constant grid spacing of ∆ξ. We use a sufficiently large
ξmax such that Z2(ξ, t) = Z2

1(t) at the boundary since we anticipate that the usual mean-field
condition will hold for sufficiently large displacements. We approximate the integral terms in
Equations (5.17)-(5.19) using the trapezoid rule. The evaluation of these integral terms require
the values of Z2(ξ+ξ′, t) for all values of ξ and ξ′. A potential issue here is when both ξ and ξ′,
are large, there is a possibility that Z2(ξ+ξ′, t) lies outside of the computational domain. In such
cases, we replace those terms with the value of Z2(ξ, t) at the boundary, Z2((ξmax, ξmax), t). The

movement and dispersal kernels are normalised such that
∫

µm(ξ) dξ = 1 and
∫

µp(ξ) dξ = 1,

using the trapezoid rule.

Solving for the dynamics of the second spatial moment, Equation (5.19), requires the evalu-
ation of Z1(t). Since we consider a sufficiently large computational domain compared to the in-
teraction ranges, the usual mean-field condition, Z2(ξ, t) = Z2

1(t) will be valid at large displace-
ments. Using this property, we evaluate the first moments without actually solving the Equation
(5.16). At each time step, the first moment is computed using, Z1(t) =

√
Z2((ξmax, ξmax), t). To

compare the results from the spatial moment model with that of the IBM, we calculate the pair-
correlation function as, Z2(ξ, t)/Z2

1(t). We use an initial condition, Z2(ξ, 0) = Z2
1(0). In all of our

computation we use a constant time step, dt = 0.1, grid spacing, ∆ξ = 0.2 and ξmax = 16. We
find that these values of dt, and ∆ξ are sufficiently small to produce grid-independent results.
Further, we find that choosing larger values of ξmax does not affect our results.

5A.8 Effect of short-range dispersal

Here, we investigate the effect of short-range dispersal of offspring in Figure 5A.3. For these
suites of simulations, we consider long-range competition and cooperation among individuals
(σc = σp = 4.0) so that we can describe solely the dynamics resulting from the close dis-
persal of offspring (σd = 0.5). Again we consider three cases with initial population size,
N(0) = 80, 240 and 400, where individuals are randomly distributed over the domain, as shown
in Figure 5A.3(a)-(c). The three initial conditions considered here are the same as those con-
sidered in Figure 5.4.

148

https://github.com/Anudeep-Surendran/Allee_effect_2020


CHAPTER 5A. RESULTS 5A.8. SHORT-RANGE DISPERSAL

x
-10

0

10
y

-10 0 10

t=0, N(0)=80

x
-10

0

10

y

-10 0 10

t=0, N(0)=240

x
-10

0

10

y

-10 0 10

t=0, N(0)=400

-10

0

10

y

-10                0                10
x

t=30, N(30)= 0

(d)

(a) (b) (c)

-10

0

10
y

-10                0                10
x

t=30, N(30)=270 

(e)

-10

0

10

y

-10                0                10
x

t=30, N(30)=270 

(f)

t
0

Z 1(t
)

(g)
15 30

Z 1(t
)

t
0

(h)
15 30

0

0.5

1

Z 1(t
)

t
0

(i)
15 30

0
1

2

4

0
| |
2 4

C(
, t

)
|

|

0

1

2

4

0
| |
2 4

C(
, t

)
|

|

0
1

4

0
| |
2 4

C(
, t

)
|

|

(j) (k) (l)

2

MF
IBM
SMD

MF
IBM
SMD

MF
IBM
SMD

MF
IBM
SMD

MF
IBM
SMD

0

0.5

1

0

0.5

1

Figure 5A.3: Effect of short-range dispersal. In these set of simulations, dispersal range is lowered to σd = 0.5.
a-c show the initial locations of individuals (red dots) for three different population sizes, N(0) = 80, 240 and 400.
d-f show the location of individuals at t = 30. g-i show the density of individuals as a function of time. Black
solid lines correspond to the averaged results from 1000 realisations of the IBM, red dashed lines correspond to
the solutions of spatial moment dynamics and green solid lines correspond to the solution of the mean-field model.
The cyan lines show the critical densities. j-l show the C(|ξ|, t) computed at t = 30 as a function of separation
distance. Parameter values are d = 0.4, p = 0.2,m = 0.1, µs = 0.4 and σs = 0.1.

When Z1(0) < Z
(2)
1 , the population goes extinct since the total death rate is higher compared

to the proliferation rate. For the two cases where Z1(0) > Z
(2)
1 , the population survives, and the

locations of individuals at the final time are shown in Figure 5A.3(e)-(f). As time progresses,
individuals tend to be found in close groups corresponding to a clustered spatial structure. The
clustering arises in the population through short-range dispersal, where offspring are placed in
the close vicinity of parents. As time evolves, more and more individuals are placed in close
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neighbourhoods creating a strong clustering. Since we consider long-range competition, there
is no mechanism to counteract or reduce the magnitude of the cluster formation. The presence
of spatial clustering in the population is further confirmed by C(|ξ|, t) > 1 in Figure 5A.3(k)-
(l). Now the competition within these clusters enhances the net death rate. As a result, the
population grows to a carrying capacity that is lower than Z

(3)
1 . The spatial moment model

accurately captures cluster formation due to short-scale dispersal and the resulting reduction in
the carrying capacity.
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Chapter 6

Conclusions

In this chapter, we summarise our research findings and propose potential avenues for exten-
sions of this work.

6.1 Summary of the research

In this thesis, we develop new mathematical models that incorporate short-range interactions
and spatial structure of the population into the modelling framework. These models allow us
to explore how short-range interactions generate macro-scale spatial structures and enable us
to investigate the effect of spatial structure on the population dynamics. To consider the inter-
actions and events occurring at the individual level, we construct an IBM. In this framework,
the incorporation of localised interaction mechanisms helps us make various event rates of an
individual, such as motility and proliferation rates and the direction of motion, all to depend on
the extent of crowding around that individual. Another outcome of this thesis is that we derive
a mathematically tractable continuum description of the IBM using spatial moments. Spatial
moment models help us to capture population-level macroscopic behaviours of the population.
Unlike the traditional continuum models based on the mean-field assumption, the moment dy-
namics models account for the presence of spatial structure by describing the dynamics of the
average density of pairs of individuals.

The main objectives of this thesis were to:

1. Develop an IBM and spatial moment model of birth-death-movement processes for cells
in an obstacle field by incorporating the realistic effects of short-range interactions, crowd-
ing effects and spatial structure.

2. Extend the modelling frameworks developed in objective 1 to consider chase-escape in-
teractions observed in ecology and cell biology processes.

3. Develop an IBM that incorporates predator-prey dynamics and compare the simulation
results to the classical mean-field model’s solutions to gain insight into scenarios where
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mean-field approximation fails.

4. Develop an IBM and spatial moment model that incorporate the Allee effect and compare
the results to the classical mean-field model’s solutions to gain insight into how spatial
structure impacts the Allee kinetics.

We successfully address these objectives in the four journal publications presented in Chap-
ters 2-5 of this thesis. Now we provide a summary of the research outcomes here.

In Chapter 2, we construct an IBM describing birth-death-movement processes of cells
among a population of stationary and non-proliferative biological obstacles. The localised in-
teractions in between individual cells and between cells and obstacles are accommodated in
the modelling framework by defining interaction kernels. The incorporation of interactions be-
tween individuals through the interaction kernels also helps in modelling crowding effects such
as contact inhibition of proliferation, where the proliferation rate of an individual decreases
when it is in a crowded region. A continuum approximation of the stochastic dynamics arising
out of IBM is derived using the spatial moment framework. Our modelling framework allows
us to explore how different properties of obstacles such as density, size and interaction strength
influence the dynamics and emergence of spatial structure in the population. We see the de-
velopment of interesting spatial patterns through our exploration as we vary the properties of
obstacles. For example, our results show that the long time steady arrangement of cells is seg-
regated if the obstacle density is sufficiently low. In contrast, when the obstacle density is large
enough, we observe a clustered spatial structure of cells. Overall we see that the details of the
dynamics and the spatial structure of the population predicted using many identically prepared
realisations of the IBM is reasonably well approximated by the solution of the spatial moment
model.

In Chapter 3 we explore how the directional movement of individuals arising out of chase-
escape interactions leads to the development of the spatial structure. The most striking feature
of this analysis is that we find spatial structure formation driven purely by motility. Our study
is particularly interesting because most spatial moment models that have their origin in plant
ecology assume the birth and death mechanisms play the critical role in generating the spatial
structure rather than motility (Bolker and Pacala, 1997; Bolker and Pacala, 1999; Law and
Dieckmann, 2000; Law et al., 2003). Some of the recent moment dynamics models that mimic
cell biology experiments consider simultaneous movement and proliferation. These models at-
tribute spatial structure formation to the combined effects of motility and proliferation (Binny
et al., 2016b; Browning et al., 2018). In Chapter 3, we present the first study that applies spa-
tial moment analysis to a conservative community, composed of multiple distinct populations,
without birth or death events.

The IBM and spatial moment dynamics models developed in Chapter 3 is particularly rele-
vant for considering asymmetric interactions between distinct populations within a community.
For example, these models allow the interaction of chasers to the escapees to be attractive,
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while escapees to the chasers to be repulsive. We explore a range of complex spatial struc-
tures arising from the combined impacts of various intraspecies and interspecies interactions,
which involve different types of attractive or repulsive bias between individuals in a two-species
community. We study the important features of the interactions by systematically varying the
interaction strength, the spatial extent of interaction and relative densities of individuals. Our
investigation reveals several interesting and possibly counter-intuitive results. For example,
under self-repulsion of escapees and chase-escape behaviour, the increase in density of chasers
relative to escapees results in weakening of segregation between chasers and enhancement of
segregation among escapees.

In Chapter 4, we explore the impact of short-range interactions and spatial structure on
predator-prey dynamics. In this chapter, we construct an IBM describing the dynamics of a
community of consumers and resources by incorporating short-range interaction mechanisms
such as short-range predation, competition and dispersal of offsprings. The IBM simulation re-
sults are compared with solutions of a mean-field model constructed by invoking the mean-field
approximation. Our analysis reveals various situations in which the IBM suggests qualitatively
different outcomes compared to the solution of the mean-field model and emphasise the im-
portance of considering the role of spatial structure in community dynamics. By comparing
the IBM and mean-field model solutions, we find that the mechanisms leading to intraspecific
clustering and interspecific segregation, such as short-range predation and short-range disper-
sal, tend to increase the size of the resource relative to the mean-field prediction. Our results
also indicate that under specific parameter regimes, these mechanisms lead to the extinction
of consumers, whereas the classical mean-field model predicts the coexistence. In the mathe-
matical biology literature, the mean-field models are regularly invoked for exploring different
characteristics of predator-prey interactions. For instance, the mean-field models are used in the
prediction of coexistence versus extinct or in the prediction of stable versus oscillatory dynam-
ics in predator-prey systems (Kuperman et al., 2019). Our results suggest that the predictions
of the mean-field models in these scenarios could be inaccurate if the communities in question
exhibit significant spatial structure.

In Chapter 5, we explore the impact of short-range interactions and spatial structure on
Allee dynamics. We construct an IBM and spatial moment model that considers short-range
competition, short-range cooperation, and short-range dispersal and incorporates a strong Allee
effect. Similar to what we have done in Chapter 4, we compare the results of these new models
with the corresponding mean-field model solutions with a focus on examining how the spatial
structure influences the Allee threshold density. Our investigation reveals some interesting sce-
narios where spatial structure impacts the Allee dynamics. For instance, under the influence
of short-range dispersal and short-range competition, the population found to go extinct, even
though the classical mean-field model predicts the survival of the population for any initial
density above the critical Allee threshold. Overall, we find that the Allee threshold can be
very sensitive to the presence of spatial structure to the point that classical mean-field predic-
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tions are invalid. Again, the results in this chapter confirm that the spatial moment dynamics
framework can be a suitable method to replicate the population-level outcomes of the IBM.
While the mean-field prediction disagrees with the IBM simulation results, the spatial moment
model accurately captures how the Allee threshold depends upon the spatial structure of the
population.

6.2 Future work

While the modelling framework presented in this thesis is relatively general and considers
various scenarios where spatial structure plays a crucial role in determining the dynamics, there
are many ways that it could be extended. We now discuss these potential extensions.

6.2.1 Non-homogeneous models

In all of the cases considered in this thesis, we presented our models in a spatially homoge-
neous environment with randomly distributed initial arrangement of individuals. While these
considerations allow us to study the formation of spatial structure and its impact on population
dynamics, a generalisation to non-homogeneous environments would broaden potential appli-
cations. Non-homogeneous models would be of particular interest in the case of certain cell
biology experiments, such as scratch assays (Liang et al., 2007), as shown in Figure 6.1, that
are initiated by considering an initial density of cells that varies spatially.

Figure 6.1: An image showing the scratch assay of Rhabdomyosarcoma cancer cells (image by Dhifaf Zeki
reprinted from Wikipedia under CC BY-SA).

Also, such extensions are required to consider spatial processes such as moving fronts that
are relevant to many biological processes, including malignant invasion and developmental
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morphogenesis (Smith and Yates, 2018). The extension of IBM to a non-homogeneous set-
ting would be relatively straightforward. On the other hand, numerical computation of spatial
moments as a function of locations in space rather than as a function of separation displace-
ment can be computationally challenging. There have been some recent attempts at deriving
and numerically solving the spatial moment dynamics in a non-homogeneous setting (Omelyan
and Kozitsky, 2019). But these models consider relatively simple birth-death models in one-
dimensional space.

6.2.2 Three-dimensional models

In this thesis, we consider the movement of individuals in a two-dimensional (2D) spatial do-
main. The 2D models are suitable for modelling ecological systems where typical locations of
individuals are confined to 2D spaces and for many of the 2D cell biology experimental assays.
However, realistic modelling of in vivo cell migration and in vitro experiments that involve
movement of cells through 3D scaffolds (Wolf et al., 2009; Herrmann et al., 2014), such as
shown in Figure 6.2, requires consideration of three-dimensional (3D) space. While the exten-
sion of the IBM framework and moment dynamics analysis to 3D is relatively straightforward,
the numerical evaluation of moment dynamics in 3D can become increasingly complicated.

Figure 6.2: An image showing the movement of fibroblasts cells (green) through a three-dimensional highly
porous collagen-glycosaminoglycan scaffold. (reprinted from Harley et al., 2008, with permission from Elsevier).

6.2.3 Incorporation of experimental data and parameter estimation

The main focus of this thesis is on the development of stochastic and continuum models with
application in ecologically and biologically relevant scenarios. In each of the applications con-
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sidered, we varied various parameters such as different interaction ranges, over a range of values
and studied how this led to the generation of spatial structure and how that, in turn, influences
the population dynamics. While considering simulations over a range of parameter space and
elucidating the emergence of spatial structure is an important first step, the incorporation of
experimental data to validate the model predictions as well as for parameter estimation is an
interesting avenue for future research. An interesting extension here would be to work out how
to best design cell biology and ecology experiments that can get at the precise parameter values
that are critical to this modelling approach.

6.2.4 Higher order moment closure methods

The moment closure method is an important factor that influences the accuracy of the moment
dynamics model solutions. For all the cases considered in this thesis, we close the hierarchy
of moment dynamics equations at second order by approximating the third-order moments in
terms of first and second moments. While this second-order closure provides a reasonable ap-
proximation of the IBM, higher-order moments may retain some information about the spatial
structure of the population. The consideration of the dynamics of higher-order moments may
provide a better approximation to the simulation results of IBM.

6.2.5 Multi-species model of Allee effects

When we explore the impact of spatial structure on the Allee dynamics in Chapter 5, we restrict
our exploration to populations where all individuals are of the same type. An interesting exten-
sion of the model would be to consider a multi-species case where the total population consists
of individuals from various distinct species. The consideration of the Allee effect for multiple
species might be particularly useful for analysing the role of the Allee effect in predator-prey
systems.

6.2.6 Impact of directional bias on predator-prey dynamics and Allee ki-
netics

While developing the models for studying the effect of spatial structure on predator-prey dy-
namics in Chapter 4 and on Allee kinetics in Chapter 5, we make a simplifying assumption that
motility rate and direction of movement are independent of the local density. This feature could
be refined by considering the effects of neighbour-dependent directional bias on the movement
of individuals, which we incorporated in models presented in Chapters 2-3. Incorporating these
types of directional bias on movement may further influence the community dynamics beyond
the effects explored in those respective chapters.
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6.2.7 Eco-evolutionary dynamics

It has been recently shown that an emergent population spatial structure, together with evolution
acting on the range of a prey-predator interaction, may influence coexistence times in prey-
predator communities (Colombo et al., 2019). An interesting extension of the spatial predator-
prey model developed in Chapter 4 would be to consider the effect of evolution and examine
how the population dynamics predicted by our model differ in the presence of evolution.

6.3 Final remarks

In this thesis, we have explored the importance of considering the effect of short-range inter-
actions and spatial structure while developing mathematical models of population dynamics.
Through different examples from ecology and cell biology, we demonstrate that the classical
mean-field model solutions could be erroneous under various scenarios where short-range in-
teraction between individuals play a significant role in the population dynamics. Typically,
mathematical models of ecological and cell biology processes are employed to make useful
predictions on the system’s possible state over a period of time. For instance, in conservation
ecology, an important question can be how many individuals of an endangered species survive
over a specific time span considering various predatory and other interactions they face in the
ecosystem. For these types of applications, the accurate modelling of the population dynamics
is of paramount importance. The IBM and the spatial moment dynamics framework devel-
oped in this thesis can be of great help to accurately model many of these realistic scenarios in
ecology and cell biology.
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