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Abstract

Mathematical modelling is fast becoming pervasive throughout the life sciences. In biology and bioengineer-

ing, mathematical and statistical analysis is the basis for experimental design and interpretation, providing

an understanding of biological systems that enables their control and manipulation. Tailoring mathematical

and experimental complexity to the biological question of interest is crucial to avoid issues relating to

parameter identifiability. While tools to diagnose these issues are well-developed for ordinary differential

equation models, there is very little guidance for the stochastic models required to capture fundamental

elements of many biological processes.

In the first part of this thesis, we develop data-focused stochastic models to describe collective behaviour

in cell biology. Firstly, we apply a stochastic spatial model of cell motility to identify cell-to-cell interactions,

representing complex interactions using simple kernel functions that allow for parameter identifiability.

Secondly, we model bacteria populations exposed to environmental volatility, describing complex individual-

level decision making using control theory. Lastly, we review and develop parameter identifiability analysis

tools for stochastic differential equation models in biology.

Quantifying cell behaviour using mathematical modelling enables their control and exploitation in new

areas of application. In the second part of this thesis, we incorporate biological systems in newmaterials. First,

we develop and analyse a mathematical model that describes energy induction into a signal-transmitting

metamaterial through a biological subsystem. Secondly, we calibrate amathematicalmodel of tissue growth in

artificially constructed scaffolds to answer fundamental biological questions. Here, parameter identifiability

and model validation are essential to achieving control over cell behaviour in future medical applications

that replace synthetic grafts with bioengineered, patient-derived tissue.

Overall, this thesis develops newmethodologies across a range of applications in biology and bioengineering.

We conclude by discussing how we enable and inspire future research in mathematical and experimental

biology.
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Chapter 1

Introduction

1.1 Overview

Mathematical modelling is fast becoming pervasive throughout the life sciences. In biology and bioengin-

eering, mathematical and statistical analysis form the basis for experimental design, interpretation and

optimisation. Mathematical models provide an understanding of biological systems that enables their control

and manipulation in applications including drug development [1, 2], cancer therapies [3–6] and material

science [7–9].

Tailoring model complexity to the availability of experimental data and the biological questions of interest

is crucial. Typical modelling goals include predicting future outcomes and estimating parameters that cannot

be directly measured. Simply increasing the number of mechanisms captured by a model can often lead to a

quantitatively better fit, to the detriment of predictive power and mechanistic insight [10]. We illustrate

such issues of over-fitting in figure 1.1 by calibrating noisy data generated from the quadratic model~ = G2 to

a sixth-order polynomial~ =
∑6
8=0 28G

8 . Clearly, the higher-order polynomial—the more complex model—

produces an excellent fit, but any attempt to gain mechanistic insight or extrapolate to produce predictions

will fail. Parameter estimates and approximate confidence intervals in figure 1.1b reveal a high-level of

uncertainty in the calibrated model: our estimate of 22 = −10.4 is only identifiable to within several orders

of magnitude above and below the true value of 22 = 1 (95% confidence interval (−76.7, 55.9)). If we instead
work with a simpler model by constraining 28 = 0 for 8 > 2, precision in our estimate of 22 = 1.51 increases

(95% confidence interval: (0.96, 2.06)), as has the ability of the model to make predictions.
The question of model complexity in mathematical biology is particularly prevalent in the study of

collective behaviour, where behaviours of individual cells (or molecules) give rise to complex collective

dynamics. Collective dynamics underly many biological processes; from those that are beneficial to human

health, such as bone regrowth [11–13] and bacteria in the gut microbiota [14], to pathological processes

such as cancer progression [15] and bacterial infections [16]. Similar behaviours are seen in many other

phenomena outside biology: in economics, for example, the individual behaviours of investors aggregate

into forces that move the stock market [17]. Complicating analysis, phenomena that underly these processes

occur across many levels of organisation, from the single cell to the tissue level [18].

While advances in computational modelling for systems biology have recently made whole cell models

possible [19], obtaining reliable parameter estimates can require data from hundreds of experiments [20]. In

studying these dynamics, model complexitymust relate directly to the level of detail available in experimental

1
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data. For example, colonies of otherwise identical bacteria invest in a slow-growing subpopulation, called

persisters, that ensure the long-term survival of the colony in noisy environments (figure 1.2a). Bacteria

achieve this by entering the dormant persister state in response to environmental stimuli. At the molecular

level, this process is regulated by gene expression. Feng and colleagues [21] describe the production of

the two proteins present in high persistence (hip) Escherichia coli, HipA and HipB, encoded by the hipA and

hipB genes, respectively (figure 1.2b). These dynamics give rise to the ordinary differential equation (ODE)

model [21] 

d�)
dC

=
UV

1 +
(
�2+\�2�2
 �2

)4 51(�5 ) − W1�5 − 52(�5 )�)3,

d�)
dC

=
UV

1 +
(
�2+\�2�2
 �2

)4 51(�5 )# − W2�5 − 2W3�2 − 52(�5 )�)3.
(1.1)

Here,�) and �) are the total concentrations of HipA and HipB, which are related to the concentrations of

the complex�2�2 and the free molecules and dimers�5 , �5 ,�2 and �2 through a non-linear relationship

determined by two additional parameters � and �2�2 . Therefore, these dynamics are governed by a system

containing 11 unknown parameters and two unknown Hill functions 51 and 52.

Typical experiments of bacterial persistence report noisy measurements of the number of regular and

persister cells [16]—a statistic of the population, not themolecular dynamics beingmodelled. While equation (1.1)

describes the molecular dynamics that give rise to population-level behaviour, it is not clear whether the

parameters in equation (1.1) can be estimated from typically reported experimental data. The complex

molecular dynamics give rise to phenotypic switching at the population level, where regular cells enter a

dormant persister state with rateD, and revert with rate E . We denote the concentration of regular cells and

2
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(a) (b) J Figure 1.2. (a) Bacteria (blue) protect themselves
against environmental uncertainty by
maintaining a small subpopulation of dormant
persisters (red). (b) At the molecular level,
bacterial persistence is regulated by gene
expression [21].

persister cells as A (C) and ? (C), respectively. The far simpler system


dA
dC

= −DA + E?,

d?
dC

= DA − E?,
(1.2)

sacrifices molecular-level detail for parameter identifiability, and is routinely applied to interpret persister

dynamics in experimental studies [16, 22]. One drawback of this simpler model is that it does not allow for

the adaptive production of persisters, and we address this in this thesis.

While equation (1.1) and equation (1.2) both describe key elements of bacterial persistence, as mean-

fieldmodels both neglect the variability ubiquitous to many biological processes. In this example, such an

approximation is appropriate as a typical bacteria colony contains severalmillion bacteria and each bacterium

contains a similarly large number of proteins: the magnitude of noise is typically proportional to 1/
√
# ,

so for # � 1, noise is comparatively small in magnitude. However, in modelling the collective dynamics

of relatively small populations it is often the case that modelling noise provides the information needed

to identify parameters [23]. In other cases, variability is a key element in explaining a process; bacterial

persistence is thought to have evolved as a strategy for coping with environmental volatility, deterministic

models simply cannot capture this.

The question of whether to include variability—or further, spatial information—in models of collective

behaviour is as much a question of data availability as a trade-off with the computational cost. While

parameter identifiability of ODE models can be readily assessed using existing techniques [24–26], such tools

have only recently been developed for partial differential equation models [27] and stochastic models [28].

Therefore, it is not always clear at the outset whether the additional computational cost of a stochastic or

spatial model will result in additional insight.

Data available from two-dimensional cell-culture experiments, including proliferation and scratch assays

[31–35], often provides detailed information about individuals cells across both space and time (figure 1.3).

Provided the population is sufficiently large and the spatial distribution of cells is homogeneous (figure 1.3b),

spatial information can be neglected and the total populationmodelled using the logistic growth equation [36]

dD
dC

= _D

(
1 − D

 

)
, (1.3)

whereD (C) represents the population density at time C . We show the solution to equation (1.3) in figure 1.3d.

3
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distribution ofD (10).

This yields a system characterised by two parameters; a net population growth rate, _, and a carrying

capacity, or limiting population, . Therefore, information in the data relating to cell motility and cell-to-

cell interactions cannot be extracted, but such measurements of total population only are comparatively

straightforward to extract.

If the data are summarised with statistics that capture spatial information, such as measures of cell

location correlation (or pair correlation) [34] or measures of local density in a spatially heterogeneous

experiment (figure 1.3c), mathematical models can extract information relating to cell movement and

cell-to-cell interactions. A spatial analogue of equation (1.3) is the generalised Fisher-Kolmogorovmodel [36]

mD

mC
=
m

mG

(
D(D) mD

mG

)
+ _D

(
1 − D

 

)
, (1.4)

with solution shown in figure 1.3e. This model is routinely applied to interpret spatially heterogeneous

processes including wound healing [37–39] and tissue growth [13]. Locally, cell proliferation is governed by

logistic growth (equation (1.3)), but themodel accounts for spatial heterogeneity by describing cell movement

with a non-linear diffusion, D(D). While equation (1.4) describes cell motility, the choice to apply a spatial
model requires specification of the unknown functional D(D). The common choice D(D) = � (i.e. linear-
diffusion) can produce a fit with good agreement with experimental data, however for two-dimensional cell

4



1.1 Overview

culture, estimates of� vary significantly with cell density [40]. It is unclear whether motility is stimulated

by cell-to-cell interactions in high density regions, or whether it is reduced.

When the number of individuals is small (figure 1.3a), stochastic effects often dominate. One such stochastic

analogue of the equation (1.3) is the stochastic logistic equation [41],

dD = D

(
1 − D

 

)
(_dC + fd,C ). (1.5)

Here, the growth rate fluctuates according to a Wiener process,,C of intensity f with the property,C+ℎ −
,C ∼ Normal(0, ℎ). Fluctuations cease where D = 0 and D =  and are greatest in magnitude at D =  /2.
Other appropriate stochastic models for the data shown in figure 1.3a include Poisson processes [42] (that

neglect space), and individual based models (IBMs) (that include space) [34,43]. The solution to equation (1.5)

in figure 1.3f highlights the importance of modelling stochastic effects in cases where they are significant.

Here, it is often assumed that the deterministic, or mean-field, model (equation (1.3)) describes the mean of

the process. However, a Monte-Carlo estimate of the mean of the stochastic model in figure 1.3f shows a

significant difference with the ODE model. The parameters of the ODE model may well be identifiable, but

ignoring stochastic effects would, in this case, lead to inaccurate parameter estimates.

Developing mathematical models of an appropriate level of complexity to ensure parameter identifiability

allows experimentalists to accurately quantify cell behaviours. This quantification is essential to compare

behaviours across experimental conditions and to allow the exploitation and control of biological systems in

new areas of application. In medicine, tissues grown in artificial scaffolds are gradually replacing synthetic

grafts [11, 44–46]. To develop patient-specific tissue, bio-engineers must understand, control and predict

cell proliferation in artificially constructed three-dimensional environments. In materials science, so-called

metamaterials embed behaviours in their structure [47], allowing signal transmission [48, 49] and logical

computation [7, 50] by otherwise passive materials. Currently, a limitation of such materials is the induction

of energy. The introduction of biological subsystems can overcome this, by introducing and controlling cell

behaviours to introduce energy through chemical hydrolysis [9, 51, 52].

The overarching goal of this thesis is to interpret existing experimental data and enable newexperimentation

using mathematical models. The fundamental question of whether model parameters are identifiable is

routinely overlooked, meaning that many existing mathematical models cannot be parameterised using

typical experimental data. We address this question of model complexity and identifiability using a number

of approaches. In Chapter 2 and Chapter 3, we summarise complex molecular-level behaviour using control

theory (Chapter 3) and kernels, which summarise the net overall effect of cell-to-cell interactions (Chapter 2).

In Chapter 4, we explore formal identifiability analysis for stochastic differential equation (SDE) models. In

Chapter 5, we develop, simplify, and analyse a mathematical model for a biological sub-system that induces

energy into a mechanical metamaterial. Finally, in Chapter 6, we exploit identifiability to investigate the

effect of the initial condition and experimental geometry on cell behaviour in 3D printed scaffolds. Our

approach in this last chapter is motivated by the importance of the initial condition on mathematical and

statistical analysis that we bring to the literature in Chapter 2.

The layout of this thesis by publication is as follows. In Section 1.2 of this chapter, we list and introduce the

questions investigated in this thesis. In Section 1.3 we outline the main aims and outcomes of the research,

which includes five first-author publications. In Section 1.4 a statement of joint-authorship, including details

5



1 Introduction

of the contributions of the PhD candidate, is provided. These publications are provided verbatim in Chapters 2

to 6. As published research, each chapter stands as an independent piece of work and may be read as such.

Finally in Chapter 7 we outline the significant contributions made to the literature by research in this thesis,

and outline the opportunities for future work that we enable.

1.2 Research questions

1. Given highly detailed cell-positional information, can we identify the nature of cell-to-cell

interactions using a stochastic, spatial, mathematical model?

Simple two-dimensional cell culture experiments, such as scratch assays, are routinely used to study

collective cell behaviour. Typical mean-field mathematical models of scratch assays describe cell

motility and proliferation based on assumptions of linear diffusion and logistic growth. While these

models can capture results from experiments where the initial density of cells is fixed, it is clear that

they cannot describe data initiated across a range of initial densities [40].

This density-dependent cell behaviour is yet to be explicitly characterised. To address this, we

calibrate a stochastic individual-based model to scratch assay data across a range of initial densities.

Our approach takes advantage of the vast amount of detailed, cell-positional information available

from these experiments; information that existing modelling frameworks cannot incorporate. To

determine the nature of cell-to-cell interactions that give rise to the density-dependent behaviour in

the experiments, we perform model selection on a hierarchy of models where we systematically and

sequentially remove interactions. Our results provide evidence that motility is density-dependent in

these experiments. On the other hand, we do not see the effect of crowding on proliferation in these

experiments. These results are significant as they are precisely the opposite of the assumptions in

standard continuum models.

2. Can we model the complex individual-level behaviours in a population using control theory, to

ensure model simplicity?

Bacteria invest in a slow-growing subpopulation, called persisters, to ensure survival in the face of

uncertainty. This bet-hedging strategy is remarkably similar to financial hedging, where diversifying an

investment portfolio protects against economic uncertainty. This similarity suggests a new theoretical

foundation for understanding cellular hedging by unifying the study of biological population dynamics

and the mathematics of financial risk management through optimal control theory. By modelling

complex individual-level decisionmaking using control theory, we avoid the need tomodel the complex

molecular-level machinery that gives rise to strategic cellular decision making. The complexity of the

model, therefore, more closely matches the information available from typical experimental studies.

Given that environmental uncertainty is fundamental to the emergence of hedging strategies, we

describe the behaviour of bacteria in response to several novel models of environmental volatility

described by continuous-time stochastic processes. Analytical and simulation results probe the optimal

persister strategy, revealing results consistent with experimental observations. Our approach enables

new experimental studies that investigate and exploit the response of biological systems to uncertainty.

3. How can we determine whether model parameters in a stochastic model are identi�able?

Mathematical models are routinely calibrated to experimental data, with goals ranging from building

6



1.2 Research questions

predictive models to quantifying parameters that cannot be measured. Whether or not reliable

parameter estimates are obtainable from the available data can easily be overlooked. Such issues of

parameter identifiability have ramifications for both the predictive power of a model and themechanistic

insight obtainable. While tools to assess parameter identifiability in deterministic, ODE models are

plentiful, there are no commonly-adopted methods for analysing identifiability in stochastic models.

We study two techniques that bring existing tools for identifiability analysis of ODE models to

SDE models. Firstly, to assess the structural features of models that lead to non-identifiability, we

formulate a system of ODEs that describe the statistical moments of the SDE model. Secondly, we

study identifiability in the case of typical experimental data using Markov-chain Monte Carlo. Given

the scarcity of available techniques for identifiability analysis of SDE models, we review and discuss

alternative approaches and provide an outlook for future research in this area.

4. How can a biological sub-system be incorporated into a metamaterial?

Mechanical metamaterials are designed to enable unique functionalities, but are typically limited

by an initial energy state and require an independent energy input to function repeatedly. Our

study introduces a theoretical active mechanical metamaterial that incorporates a biological reaction

mechanism to overcome this key limitation of passivemetamaterials. Ourmaterial allows for reversible

mechanical signal transmission, where energy is reintroduced by the biologically motivated reaction

mechanism. By analysing a coarse-grained continuous analogue of the discrete model, we find that

signals can propagate through the material as a travelling wave. Analysis of the continuum model

reveals similarities with the well-known FitzHugh-Nagumo system. We also find explicit formulae

that approximate the effect of the time scale of the reaction mechanism on the signal transmission

speed, which is essential for controlling the material.

5. Can identi�ability techniques be applied to estimate and compare parameters in a spatial model

of cell growth in arti�cially constructed sca�olds?

Tissue growth in three-dimensional (3D) printed scaffolds enables exploration and control of cell

behaviour in more biologically realistic geometries than that allowed by traditional 2D cell culture.

Cell proliferation and migration in these experiments have yet to be explicitly characterised, limiting

the ability of experimentalists to determine the effects of various experimental conditions, such as

scaffold geometry, on cell behaviour.

We develop a mathematical model to describe tissue growth in melt electro-written scaffolds

that comprise thin square pores of various sizes. Calibrating the model to highly detailed temporal

measurements of the average cell density, tissue coverage, and tissue geometry reveals the information

required to identify parameters. Parameter estimates and uncertainty quantification through profile

likelihood analysis reveal consistency in the rate of cell proliferation and steady-state cell density

between pore sizes. We find that the Porous-Fisher model can capture features relating to the cell

density and tissue coverage but cannot capture geometric features relating to the circularity of the

tissue interface. Our analysis identifies two distinct stages of tissue growth, suggests several areas for

model refinement, and guides future experimental work.

7



1 Introduction

1.3 Objectives and Outcomes

This thesis comprises two main objectives:

1. Develop data-driven stochastic models of collective behaviour, and explore mathematical techniques

that diagnose parameter identifiability in stochastic models.

2. Apply mathematical models to develop and describe biological systems in bioengineering.

Objective (1) is addressed through three publications, provided in Chapters 2 to 4. We address objective (2)

through two publications, provided in Chapters 5 to 6.

This thesis is presented by published papers and comprises five peer-reviewed publications, all published

in international Q1 journals and provided verbatim in Chapters 2 to 6 [9, 23, 30, 53, 54]. The introduction and

conclusion chapters aside, each chapter can be read independently and contains an introduction section
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Chapter 2

Identifying density-dependent interactions in

collective cell behaviour
Published 2020 in Journal of the Royal Society Interface.

Scratch assays are routinely used to study collective cell behaviour in vitro. Typical experimental protocols do not vary
the initial density of cells, and typical mathematical modelling approaches describe cell motility and proliferation based
on assumptions of linear diffusion and logistic growth. Jin et al. (2016) find that the behaviour of cells in scratch assays is
density-dependent, and show that standard modelling approaches cannot simultaneously describe data initiated across
a range of initial densities. To address this limitation, we calibrate an individual basedmodel to scratch assay data across
a large range of initial densities. Our model allows proliferation, motility, and a direction bias to depend on interactions
between neighbouring cells. By considering a hierarchy of models where we systematically and sequentially remove
interactions, we perform model selection analysis to identify the minimum interactions required for the model to
simultaneously describe data across all initial densities. The calibrated model is able to match the experimental data
across all densities using a single parameter distribution, and captures details about the spatial structure of cells. Our
results provide strong evidence to suggest that motility is density-dependent in these experiments. On the other hand,
we do not see the effect of crowding on proliferation in these experiments. These results are significant as they are
precisely the opposite of the assumptions in standard continuum models, such as the Fisher-Kolmogorov equation and
its generalisations.
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2.1 Introduction

2.1 Introduction

Simple two-dimensional in vitro experiments, such as scratch assays, are commonly used to study collective

cell behaviour [31–35,40]. Scratch assays are conducted by placing a uniform monolayer of cells on a two-

dimensional substrate and creating an artificial wound, or scratch, in the monolayer (figure 2.1a–d) [40].

Typical experimental protocols do not vary the initial density of cells between experiments and, therefore,

provide no information on how the initial density affects cell migration or proliferation. In order to study

potentially density-dependent cell behaviour, we consider novel scratch assay datawherewe deliberately vary

the initial density of cells between experiments. The variation in the initial cell density in our experiments is

large: the initial population in the highest density experiment is greater than the final population in the

lowest density experiment.

Logistic growth and linear diffusion are often assumed to be the key mechanisms governing collective cell

behaviour in a range of in vitro and in vivo conditions [36–38,40,55–57]. Mean-field mathematical models that

incorporate one or both of these mechanisms are routinely used to model tumour spheroids [58]; cells in

living tissues [15,59]; and simple in vitro experiments such as scratch [40], migration [60], and proliferation [34]

assays. While calibrating these models to experimental data often leads to a good match [37], these models

make the standard assumption that the parameters are independent of both initial condition and cell density.

For example, the Fisher-Kolmogorov equation [61, 62]

m2

mC
= �

m22

mG2︸︷︷︸
Density-independent

motility

+ _2
(
1 − 2

 

)
︸       ︷︷       ︸
Contact inhibited
proliferation

, (2.1)

is commonly used to model scratch assay experiments [40,63], where 2 (G, C) is the cell density. Equation (2.1)
describes density-independent motility, characterised by a constant diffusivity� ; and density-dependent

proliferation, characterised by a constant proliferation rate _ and a constant carrying capacity . Jin et al. [40]

find that calibrating the solution of equation (2.1) to scratch assay data yields vastly different estimates of�

for each initial condition considered. In contrast to equation (2.1), some studies assume that cell motility is

density-dependent. However, the way in which this is modelled is inconsistent. For example, Cai et al. [64, 65]

model motility with a non-linear diffusivity term that decreases with density to simulate crowding. In direct

contrast, many other studies model motility using a non-linear diffusivity term that increases with density to

simulate contact stimulation [66–68]. These studies all calibrate their respective models to experimental data

with a single initial density [64–68]. In contrast, the approach that we take here is biologically significant

since we identify the nature of density-dependent interactions using experimental data initiated with a

range of initial cell densities.

In this work we describe the cell behaviour with a lattice-free individual based model (IBM) [34,43,69]. The

IBM represents cells as agents that take locations in continuous space, and so we can specify the initial agent

locations in the model to precisely match the initial cell locations in the experiments. This choice also allows

the model to capture local details—such as spatial structure and clustering—which are neglected by standard

continuummodelling approaches [38,40]. The agents in the IBM proliferate and move, the rates of which

we assume depend explicitly on interactions between neighbouring agents. We quantify these interactions

with kernels that depend on the distance between pairs of cells. Directional bias is also incorporated so
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N Figure 2.1. (a–d) Schematic of the experimental geometry. (a) 96 well plate. (b) Each assay was performed by distributing amonolayer
of cells in a well of diameter 9000µm. (c) An artificial wound (light region, not to scale) created within the monolayer of cells. (d)
Field-of-view of the experimental data, which is much smaller than each well (not to scale). (e),(j, o) Experimental data for the lowest
density experiment (where # (0) = 183) at 0 h, 18 h and 36 h, respectively. In (e, j) and (o) the green dash-dot line represents the
approximate centre of the scratch at C = 0 h; and, the white dashed lines represent the approximate edge of the scratch at C = 0 h.
Insets in (f, k) and (p) show the lower-left region of respective images in (e, j) and (o). The height and width of the field-of-view in
the insets is 500µm. Subsequent columns show insets for experimental data at increasing densities where # (0) = 354, 522 and 731.
In each image, the location of each cell is indicated with a yellow marker with diameter i = 24 µm (to scale). (t–w) Summary of
experimental data in each respective column showing # (C).
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2.2 Materials and Methods

that agents are more likely to move either away from, or towards, regions of high density [65, 69]. A key

advantage of the IBM is its flexibility: it is trivial to add and remove mechanisms, which we do to study the

interactions required for the model to simultaneously match all experiments. Finally, the IBM is stochastic

and so naturally describes the variation between experiments.

We aim to identify the nature of interactions which enable the model to simultaneously describe experi-

mental data across a wide range of initial cell densities. This study is the first time scratch assay data initiated

across a range of initial cell densities has been calibrated to an IBM.We take a Bayesian approach to parameter

estimation [34,70–72], and identify interactions using model selection [70]. We always force the model to

simultaneously match data from all nine experiments. The mathematical model is always initiated using the

initial configuration of cells in each experiment, and we compare simulated and experimental data at 18 h

and 36 h, the latter which corresponds to the duration of the experiment. The calibrated model is able to

replicate the experimental data, and we find evidence to suggest that motility is an increasing function of

density, which is contrary to both the common mathematical assumption of linear diffusion and work which

assumes motility decreases with density [64, 65]. Experimentation with summary statistics confirms the

importance of spatial structure, which is neglected by standard modelling and model calibration approaches.

2.2 Materials and Methods

2.2.1 Experimental methods

Our experimental model of cell migration and proliferation comprises a series of scratch assays using PC-3

prostate cancer cells [29]. We deliberately vary the initial number of cells in each experiment by seeding

approximately 8000, 10 000 and 12 000 cells in a 9000µm diameter well within a 96-well plate (figure 2.1a,b).

Cells are grown overnight to create a spatially uniform monolayer before a scratch is created (figure 2.1c).

Images of the central 1440 × 1900 µm of each well are captured over a period of 48 hours after the monolayer

is scratched (figure 2.1d). Full details of the experimental methods are provided in [40].

ImageJ [73] is used to determine the approximate coordinates of individual cells in each image, this data

is given as supporting material1. We exclude the first 12 hours of experimental data from our analysis [34]

to ensure that sufficient time has passed so that the cells are migrating and proliferating after the scratch

has been made. We then record experimental images and we treat this as the beginning of the experiment,

C = 0 h. The variability in initial cell number is high: despite an initial seeding density of approximately

8000–12000 cells per well, which corresponds to expected initial number of cells within the field-of-view of

344–516, we find that the initial number of cells within the field-of-view at C = 0 h ranges from 183 to 731

(figure 2.1f–i). This variation is also high between experiments of the same seeding density [74], due to the

fact that our field-of-view is relatively small so that fluctuations about the expected values are relatively

large. We demonstrate this variation in figure 2.1e–s.

2.2.2 Mathematical model

We use a lattice-free individual based model (IBM) [34,69] which we simulate with the Gillespie algorithm [42].

The model includes density-dependent proliferation and movement, but does not consider death, which is

1Available at https://github.com/ap-browning/scratchIBM
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2 Identifying density-dependent interactions in collective cell behaviour

not observed in the experiments. To be consistent with previous experimental observations [65], the model

incorporates a bias mechanism so that cells both move, and disperse daughter cells during proliferation, in a

direction either towards, or away from, crowded regions. Density dependence is incorporated into the model

through cell-to-cell interactions, so that behaviour is dependant upon local crowding.

The field-of-view of the experimental data is rectangular, with dimensions 1440 × 1900 `m (figure 2.1d),

and we replicate this by using the same geometry in the model. As the well in the tissue culture plate is much

larger than this field-of-view, we apply periodic boundary conditions [34] (indicated in blue in figure 2.1c,d).

Cells are modelled as agents that have a point location but no physical size. In our previous work we find that,

on average, these PC-3 prostate cancer cells have an area that corresponds to a disc of diameteri = 24 `m [34].

The interaction mechanisms we model are not based on volume exclusion or hard sphere interactions [43],

but rather depend on agent separation in such a way that configurations wherein two agent centres are very

close are unlikely. We denote the agent locations x= = (G=, ~=), = ∈ {1, ..., # (C)}, where # (C) denotes the
number of agents in the simulation. We specify the initial agent locations in each simulation to match the

experimental images at C = 0 h.

Directional bias

We quantify crowding by placing a bias kernel at the location of each agent to form a crowding surface, �(x), as
shown in figure 2.2c,d for the configuration of cells in figure 2.2a,b. Mathematically, this is given by

�(x) =
# (C )∑
8=1

F (1) (‖x − x8 ‖), (2.2)

and describes a measure of local crowding at x, whereF (1) (A ) is the bias kernel. The contributions of each
agent to �(x) depend on the distance between x and the location of the 8th agent, x8 , given by A = ‖x − x8 ‖.
There are many possible choices of kernel [75], however we find that the standard choice of Gaussian leads to

a good match with experimental data [34]. In this study, we chooseF (1) (A ) to be a Gaussian [76] of spread f
with an extremum of W1 so that

F (1) (A ) = W1 exp
(
− A

2

2f2

)
. (2.3)

For computational efficiency, we truncate the kernel to zero for A ≥ 3f [76]. This truncation means that

agents separated by a distance of more than 3f do not interact. Therefore, �(x) is a measure of local crowding.

For W1 > 0, agents prefer to move and disperse daughter agents in the direction of steepest descent on the

crowding surface, which corresponds to regions of lower density (setting W1 < 0 has the opposite effect).

This preference depends on the steepness, so that agents close to highly crowded regions are more likely to

move and disperse daughter agents in their preferred direction, demonstrated in figure 2.2e,f, where the red

agent has a stronger bias strength than the green agent. To do this, we define the bias vector of agent = as

B= = −∇�(x=), (2.4)

which gives the magnitude and direction of steepest descent. Therefore, B= is a simple measure of local

spatial structure at the location of agent =. The movement and proliferation directions are then sampled
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N Figure 2.2. (a)–(b) Experimental data at (a) low density; and, (b) high density. The location of each cell is indicated with a yellow
marker of diameter i = 24 `m (to scale). (c)–(d) Example crowding surface, where agent locations are taken from experimental data
in (a) and (b), respectively. (e) Two-dimension inset of experimental image in (c), showing the bias distribution for two agents in radial
coordinates centred at each agent. The off-centeredness of each circle therefore represents the strength of the bias, which is stronger
for the red cell than the green cell. (f) The bias distributions in (e) shown in Euclidean coordinates for clarity. (g)–(h) Schematic of cell
division (proliferation) and movement events, respectively, where the black arrow indicates the sampled direction of each cell. When
an agent proliferates, the daughter cell is placed a distance of i from the mother cell. When an agent moves, the agent is moved a
distance of i .

from the von Mises distribution [77]

von Mises(arg(B=), ‖B= ‖) . (2.5)

The expected andmost likely direction is, therefore, arg(B=). The direction distribution becomes increasingly
concentrated around arg(B=) as ‖B= ‖ becomes large, and approaches a uniform distribution on [0, 2c) as
‖B= ‖ → 0.

We illustrate the directional bias mechanism in figure 2.2c–f. The crowding surface is constructed by

placing a Gaussian kernel at the location of each agent (figure 2.2c,d). In figure 2.2e we show the bias

distribution and preferred direction for an agent in a low (green) and high (red) density region. For each

agent the arrow shows the preferred direction with the corresponding von Mises distribution plotted in
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2 Identifying density-dependent interactions in collective cell behaviour

radial coordinates centred at the location of each agent. In figure 2.2f we show these distributions are shown

as a function of the angle, \ ∈ [0, 2c), for clarity.

Proliferation and movement

Cell division (proliferation) and movement events occur according to a Poisson process [78] with density-

dependent rates %= ≥ 0 and"= ≥ 0, respectively. These rates comprise constant intrinsic rates ? > 0 and

< > 0, that are modified by interactions with neighbouring agents. These interactions result in a local

density dependence, so that agents in high density regions are able to behave differently to solitary agents,

or agents in low density regions [69].

We quantify these interactions using kernels, F ( ·) (A ), that depend on the separation distance, A ≥ 0,

between an agent and its neighbours, such that

%= = max

(
0, ? −

# (C )∑
8≠=

F (?) (‖x= − x8 ‖)
)
, (2.6)

and "= = max

(
0,< −

# (C )∑
8≠=

F (<) (‖x= − x8 ‖)
)
. (2.7)

Again, we choose the kernels to be Gaussian [76], with spread f , so that

F (?) (A ) = W? exp
(
− A

2

2f2

)
, (2.8)

and F (<) (A ) = W< exp
(
− A

2

2f2

)
. (2.9)

Here, W? and W< are the extrema of the proliferation and movement kernels, respectively. Setting W< < 0

(or W? < 0) means that crowding increases motility (or proliferation); setting W< > 0 (or W? > 0) means

that crowding decreases motility (or proliferation); and, setting W< = 0 (or W? = 0) means that motility (or

proliferation) is independent of local density. Again, we truncate the kernels to zero for A ≥ 3f [76].

When an agent at x= proliferates, the daughter agent is dispersed a distance i (approximately one cell

diameter) from x= , with the direction sampled from the bias distribution for that agent (figure 2.2e,f). This

is demonstrated in figure 2.2g. When an agent at x= moves, it is moved to a location of distance i from x= ,

with the direction sampled from the bias distribution for that agent (figure 2.2e,f). This is demonstrated in

figure 2.2h.

2.2.3 Summary statistics

To match model simulations to the experimental data, we record the locations of agents at both C = 18 h and

C = 36 h. We denote the experimental data at both time points from experiment 8 ∈ {1, ..., 9} as X(8)obs, and

simulation data from experiment 8 as X(8)sim. In this section, we detail how we summarise the high dimensional

data X into lower dimensional summary statistics. This allows us to define a distance function, 3 (Xobs, Xsim),
that represents the distance between experimental and simulation data.

We aim to capture three key pieces of information in the experiments: (1) the population size; (2) the

spatial structure; and, (3) the density profile. The first two pieces of information are related to the first two

spatial moments [76], and the last piece of information relates to the wound closure, total population and
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N Figure 2.3. (a) Experimental image. The location of each cell is indicated with a yellow marker of diameter i = 24 `m (to scale).
(b) Pair correlation function calculated from the distribution in cells in (a). P is the average ofP! andP' , calculated using the
agents in the 400 `m to the far-left and far-right (red region) of the experimental data in (a), respectively. Therefore,P contains
information about the spatial distribution of cells, but not about the scratched region. Pair correlation functions for all experimental
images are provided in Appendix A (figure A.8 and figure A.10). (c) The density profile, calculated by counting the number of cells in
subregions of width 1900/80 `m and dividing by the area of each subregion. The sub-regions are indicated as the axis ticks in (a). Only
the central 41 bins are used to compare experimental and simulated data. Green dash-dot lines in (a) and (c) indicate the approximate
centre of the scratch at C = 0 h and dashed lines indicated the approximate boundary of this region at C = 0 h.

the spatial distribution of cells. The first spatial moment, the average density, is the number of agents in the

population,# (C). The second spatial moment describes the spatial distribution of agents, often characterised
by a pair correlation function [33,69,76]. In summary, the pair correlation function describes the density

of pairs of agents separated by a distance A , relative to the expected density of pairs if the population were

uniformly distributed [33]. Since the data is discrete, we define the pair correlation,P( 9, C), 9 ∈ ℕ, which
describes the relative number of pairs separated by a distances ranging from ( 9 − 1)ΔA < A < 9ΔA , given by

P( 9, C) = !,

# (C)2cΔA (2 9 + ΔA )

# (C )∑
==1

# (C )∑
8=1
8≠=

1( 9−1)ΔA ≤‖x=−x8 ‖< 9ΔA , (2.10)

where ! and, are length and width, respectively, of the region and 1 is the indicator function. In this study,

we choose ΔA = 5 `m, and consider the pair correlation up to a distance of 100 `m such that 9 ≤ 20. Smaller

values of ΔA lead to a noisier pair correlation function, and larger values of ΔA smooth the pair correlation,

potentially hiding information [79].

In a scratch assay the central region of the experimental field-of-view is initially devoid of agents (figure 2.3a).

To account for this, we calculate pair correlation functions for sub-region of width 400 `m in the far-left, and

far-right, of the domain (figure 2.3a, indicated in red) denotedP(!) ( 9, C) andP(') ( 9, C), respectively. The
width of this region is chosen so it does not overlap with the region devoid of cells in the experimental images.

We apply periodic boundary conditions on these sub-regions, so that the separation of a pair of agents is the

smallest possible distance accounting for the periodic boundary conditions. The pair correlation function

that summarises the entire experiment isP( 9, C) = (P(!) ( 9, C) +P(') ( 9, C))/2 (figure 2.3b). Results in
figure 2.3b also confirm our assumption that a typical cell diameter is approximately 24 `m [34]. Results

in Appendix A (figure A.8 and figure A.10) show the pair correlation function for all experimental images,

where clustering at short distances is observed for earlier time data, for lower cell densities.

The final piece of information, the density profile, describes the wound closure, total population and
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2 Identifying density-dependent interactions in collective cell behaviour

): Density Dependence

Model 1 (<, ?,W<, W? , W1) Proliferation, Motility and Direction

Model 2 (<, ?,W? , W1) Proliferation and Direction

Model 3 (<, ?,W<, W?) Proliferation and Motility

Model 4 (<, ?,W?) Proliferation only (Fisher-Kolmogorov [61, 62])

Model 5 (<, ?) None (Skellam [80])

N Table 2.1. The hierarchy of models considered. The full model (Model 1) contains a parameter governing the: motility
rate,<; proliferation rate, ? ; motility interaction strength, W< ; proliferation interaction strength, W? ; and, directional
bias strength,W1 . In subsequentmodels, we restrict various combinations of the parameters to zero, effectively removing
them from the model.

spatial structure. We subdivide the field-of-view in figure 2.3a into 80 vertical sub-regions, each of width

ΔG = 1900/80 = 23.75 `m. We define the density profile D( 9, C) to be the number of agents with an
G-coordinate between ( 9 − 1)ΔG and 9ΔG , divided by the area of the sub-region, giving the density. This
density profile is shown in figure 2.3c. To avoid capturing excessive noise in our measurement of wound

closure, we do not include the entire density profile in the distance metric. Rather, we manually approximate

the G-coordinate of the centre of the scratch at C = 0 h for each experiment, denoting � (8)mid as the bin index

of the centre the scratch in experiment 8 . We include the central 41-subregions which, in effect, surround

the initially scratched region of each experiment. This region is indicated in figure 2.3c and avoids the

fluctuations in density outside this region.

The distance metric, 3 (Xobs, Xsim), is given by

3 (Xobs, Xsim) =
∑

C ∈{18,30}

(
[#sim(C) − #obs(C)]2

#obs(C)2

+
∑20
9=1 [Psim( 9, C) −Pobs( 9, C)]2∑20

9=1 Pobs( 9, C)2

+
∑�mid+20
9=�mid−20 [Dsim( 9, C) − Dobs( 9, C)]2∑�mid+20

9=�mid−20 Dobs( 9, C)2

)
,

(2.11)

and includes information from all three summary statistics, at C = 18 h and C = 30 h. Therefore, 3 (Xobs, Xsim)
is the relative square error of the simulation from the experiment. For P and D, the contributions to

3 (Xobs, Xsim) approximate the relative square error in the integral of each summary statistic, given the spatial
discretisation we have applied to each.

2.2.4 Approximate Bayesian computation and model selection

We consider a hierarchy of models. The full model, which we denote as Model 1, contains the five unknown

parameters ) 1 = (<, ?,W<, W? , W1). Models 2 to 5 are subsets of the full model, where we progressively
restrict various combinations of the interaction strength parameters W< , W? and W1 to be zero, effectively

removing them from the model. We summarise these five models in table A.2, where we denote ): as the

unknown parameter combination for Model : .

We treat the unknown parameters in each model as a random variable, ) . In the absence of experimental
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2.2 Materials and Methods

observations, our knowledge of) is characterised by specifiedprior distributions. When included in themodel,

the priors were chosen to be independent and are as follows: c (<) = * (0, 10) h−1; c (?) = * (0.02, 0.05) h−1;

c (W<) = * (−2, 2) h−1; c (W?) = * (0, 0.02) h−1; and c (W1) = * (0, 100) `m. In this context, c (·) represents
a probability distribution. In Appendix A, we show that widening these priors has negligible effect on the

results. Initially, we also treat f as an unknown parameter where c (f) = * (2, 30) `m. This initial analysis
provides strong evidence for the value of f , so we set f = i/2 = 12 `m to decrease the dimensionality of

the parameter space. In Appendix A, we also investigate f = i = 24 `m, since this is a natural choice in

a lattice-based framework where the migration distance and dispersal distance are also the same as the

average agent diameter. We apply approximate Bayesian computation (ABC) [34, 59, 70, 72] to update our

knowledge of the parameters using experimental observations,Xobs, from all nine experiments, to produce

posterior distributions, c () |Xobs). Since this model is known to be computationally expensive [34] and
we have a high-dimensional parameter space, we apply an ABC method based on sequential Monte-Carlo

(SMC) [70, 72, 81].

In this study, we aim to find parameter combinations that simultaneously match all nine experimental

data sets, such thatXobs = {X(8)obs}
9
8=1. For each prior sample in the ABC rejection algorithm we simulate a

model realisation using each experimental initial condition, to obtainXsim = {X(8)sim}98=1. We then compare

observed data,Xobs, to simulated data,Xsim, using the discrepancy measure

d (Xobs,Xsim) =
9∑
8=1

3

(
X(8)obs, X

(8)
sim

)
, (2.12)

where 3 (·, ·) is given in equation (A.1). In ABC techniques, we accept a proposal as a posterior sample if
d (Xobs,Xsim) < Y for some threshold Y. As 3 (·, ·) ≥ 0, the sum in equation (2.12) is non-decreasing in 8 .

We therefore implement early rejection [82] by sequentially producing model realisations for 8 ∈ {1, ..., 9}.
If, at any time, the partial sum up to a value 8 exceeds the threshold Y, we immediately reject the sample.

In practice, this saves considerable computation time by reducing the number of times the model must be

simulated using high-density initial conditions.

The principle behind ABC SMC is to propagate a series of prior samples, called particles, through a sequence

of distributions c () |d (Xobs,Xsim) < YD),D = {1, ...,* } [70, 72, 81]. The thresholds YD satisfy YD > YD+1, so

that the distribution gradually evolves to the target distribution c () |d (Xobs,Xsim) < Y* ) ≈ c () |Xobs).
To obtain a sequence of thresholds, and an estimate of the smallest discrepancy possible in all models, we

first perform a pilot run using ABC rejection [34, 72] with Model 1 (Appendix A, Section A.2). From 100,000

prior samples, this provides an estimate of the probabilities Pr(d (Xobs,Xsim) < YD), given ) is simulated
from the prior. We choose the sequence {YD}*D=1 by examining a quantile plot (Appendix A, Section A.5). We

choose Y* to corresponds to an acceptance rate of approximately 1% under ABC rejection. The sequence of

discrepancies, and details of the ABC rejection and SMC algorithms are given in Appendix A.

We follow the ABC SMC algorithm of Toni et al. [70] to perform parameter inference and model selection.

Under this algorithm, we place a prior distribution on the model index, c (": ), which we choose to be a
discrete uniform distribution so that each model is equiprobable. ABC SMC is then used to estimate the

posterior probability of each model, c (": |Xobs). We detail this algorithm in Appendix A. A key feature of
this technique is to implicitly penalise models with a higher number of parameters. We compare models by

computing the Bayes factor,B: [83], which describe the evidence in favour of Model : over the full model,
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2 Identifying density-dependent interactions in collective cell behaviour

Model 1. As a uniform prior is placed on the model index, the Bayes factor is given by

B: =
c (": |Xobs)
c ("1 |Xobs)

. (2.13)

Here,c (": |Xobs) denotes themarginal posterior density of": (Model:). A valueB: > 1 indicates evidence

in favour of Model : compared to the full model, and vice-versa forB: < 1. The Bayes factor is therefore

simply the ratio of the posterior density for Models : and 1, and provides evidence to compare models in a

similar way to that used in frequentist hypothesis testing.

2.3 Results and Discussion

Common mean-field models, such as the Fisher-Kolmogorov equation [62] and its generalisations, are not

able to simultaneously describe collective cell behaviour in scratch assay experiments across a range of

initial densities [40]. This suggests density-dependent behaviour in these experiments. Our model allows

interactions between cells to affect proliferation, movement and direction. To identify the importance of

each of these interactions, we simultaneously calibrate our model to nine scratch assay experiments which

we initiate across a wide range of initial densities. We always initiate the IBM using the initial configuration

of cells in the experiments and perform inference using data at an intermediate time point, C = 18 h, and at

the conclusion of the experiment, C = 36 h. In a set of preliminary results (not shown) we only included data

at the last time point, C = 36 h, and the inclusion of the intermediate time point made negligible difference

to the results. Therefore, we do not expect the results to change significantly should more than two time

points be considered.

Our first result is to identify the distance over which these interactions occur. We quantify interactions

using Gaussian kernels dependent on the distance between pairs of agents [76], and characterised by a spread

parameterf (equations (2.3), (2.8) and (2.9)). The interaction between a pair of agents separated bymore than

approximately 3f is, therefore, negligible. We expect f to be of the same order of magnitude as i = 24 µm,

which is the approximate cell diameter [34]. We perform ABC rejection where f is sampled from the prior

* (2, 30) (Appendix A, Section A.4.1). These results suggest that f ≈ i/2 = 12 µm, and we fix this for the rest

of the study to reduce the number of unknown parameters. This result suggests that interactions between

cells occurs over a relatively short distance, since the model predicts interactions between cells separated by

more than 3f = 36 µm is negligible.

One of the most important aspects of the lattice-free IBM is its ability to describe, in fine detail, the

spatial structure of cells in the experiments, which we quantify using the pair correlation function. In

contrast, mean-field models consider only average properties of the cell population [63] and lattice-based

methods [43, 71] are not able to precisely capture the initial agent configuration from the experiments.

Lattice-based methods also, by definition, constrain the separation of agents to take discrete values, and

typically agents in these models cannot lie closer than one cell diameter. The pair correlation describes

the probability of finding pairs of agents separated by each distance, and hence can provide information

about the effect of interactions on the dynamics. To show this, we repeat ABC rejection but exclude the

pair correlation function from the distance metric (Appendix A, Section A.4.3). These results show that the

posterior distributions change significantly in this case, verifying that the pair-correlation function contains
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N Figure 2.4. (a) Posterior for the model index, c (": |Xobs), showing that Model 1 (the full model) is the posterior mode. (b–f)
Marginal posterior distributions for each parameter in Model 1, shown as weighted histograms. In all cases, the posterior mode is
indicated in dark blue.

a significant amount of information about these interactions.

To quantitatively determine the importance of each interaction, we consider a hierarchy of models where

we successively set interaction strength parameters (W< , W? and W1) to zero to remove the corresponding

interaction from the model. We use the model selection algorithm of Toni et al. [70], and compare the

evidence in favour of each model over the full model (Model 1) using Bayes factors [70, 83]. We show the

posterior density for each model in figure 2.4a, and summarise the Bayes factors and evidence in table A.3.

Overall, we find that Model 1 has the highest posterior density (figure 2.4a). We find positive evidence in

favour of Model 1 over Model 2 (where W< = 0 and so motility is density-independent); and weak evidence

in favour of Model 1 over Model 3 (where W1 = 0 and so there is no directional bias). Importantly, we find

that Models 4 and 5, where W<, W1 = 0 and W<, W? , W1 = 0, respectively, cannot match the experimental data

(B4 = B5 = 0). Contrary to assumptions that are commonly made in models such as the Fisher-Kolmogorov

equation, these results provide evidence to suggest that motility is density-dependent, as either a density

dependent movement rate must be included (Models 1 and 3) or a directional bias (Models 1 and 2).

Bayes factor,B: Evidence in favour of Model 1

Model 1 1.000 −
Model 2 0.248 Positive

Model 3 0.482 Weak

Model 4 0.000 Very Strong

Model 5 0.000 Very Strong

J Table 2.2. Bayes factor for each model, which
describes the evidence in favour of Model
1 over Model : . A Bayes factor close to 1
indicates limited evidence in favour of Model
1 over Model : , and a Bayes factor close to 0
indicates very strong evidence in favour of
Model 1 over Model : [70].
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2 Identifying density-dependent interactions in collective cell behaviour

Wenow focus on results for the full model (Model 1), which has the highest posterior density. In figure 2.4b–

f we show marginal posterior distributions for each parameter in Model 1, and in figure 2.5 we compare

the experimental data from four of the nine experiments to the calibrated model (in Appendix A.4.3, we

show these results for all nine experiments). Overall, we find an excellent match between the model and

experimental data, which has not been seen across a range of initial densities for this kind of experimental

data. In addition to matching the density profile (figure 2.5m–p) and population (figure 2.5u–x), we find that

the calibrated IBM is able to capture information about the spatial structure of cells, specifically, the pair

correlation function (figure 2.5q–t). We perform a posterior predictive check for each summary statistic

by producing 50% and 95% prediction intervals (PI) that characterise both the parameter uncertainty and

stochasticity described by the model. The summary statistics produced from the experimental data almost

always lie completely within the 95% PI, further indicating that the calibrated model is consistent with the

experimental data across the range of initial densities. While we have not presented these results for Models

2 and 3, which have non-zero posterior density, the nature of ABC means that all accepted samples lie a

similar distance to the experimental data.

Results in figure 2.4d suggest that W< < 0, so that crowding increases motility. This is consistent with

mean-field models such as the porous Fisher equation [84] where the diffusivity increases with local density,

but contrasts to other non-linear diffusion models where cell motility decreases with crowding [85]. This

observation also explains why model realisations with small values of the motility rate, <, are able to

match the data (this is seen in figure 2.4b), since a value W< < 0 allows motility in crowded regions if

< � 1. Interestingly, these results are less clear in the case where the pair correlation function is neglected

(Appendix A, Section A.4.3), which highlights the importance of considering spatial structure when studying

these interactions. The increase of motility due to crowdingmay correspond tomechanical interactions, such

as volume exclusion, in regions of very high cell density. It is trivial to add mechanisms to the IBM, and future

work may examine W< in the case volume exclusion [43], or other kinds of mechanical interactions [86–88],

are included as additional mechanisms. Alternatively, the inclusion of non-monotonic interaction kernels [89]

may allow movement to increase for agents close together, and decrease in crowded regions.

An interesting result is that the directional bias is included in the models with the highest posterior density

(Models 1 and 3), but examining themarginal posterior forW1 (figure 2.4f), we see that the strength of this bias

may not be identifiable: the posterior distribution is relatively flat without a clear mode. These results might

suggest that, past a certain point, increasing the strength of the directional bias has negligible effect. We

verify these observations Appendix A.4.3. To obtain more information about the strength of the directional

bias, more detailed data, such as time-lapse cell tracking data, may be required [88].

Results in figure 2.4e indicate that the proliferation interaction strength parameter, W? , appears to be

unidentifiable [27], since the posterior distribution contains no well defined maxima. Figure 2.5u–x shows

that population growth in both the experiments and calibrated model appears to be exponential, so we do

not see crowding effects on proliferation in these experiments [71, 90]. We verify this by performing model

selection with three additional models (Models 6–8) that respectively correspond to Models 1–3 with W? = 0

(Appendix A, Section A.6). These additional results show that the distributions for Models 6–8 are similar

to those for Models 1–3 and confirm that crowding effects on proliferation, such as contact inhibition, are

simply not seen in these experiments. Early-time data often illustrates exponential growth for a variety of

growth laws and experiments must be conducted over a longer period of time to identify the appropriate
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2 Identifying density-dependent interactions in collective cell behaviour

growth function [71].

2.4 Conclusion

The ability of commonmean-field models, such as the Fisher-Kolmogorov equation and its generalisations, to

match experimental data across a range of densities is rarely tested as typical experimental protocols do not

vary the initial number of cells. Thesemodels typically assume either or both density-dependent proliferation

and density-independent motility [36–38,40,55–57]. By modelling density-dependent interactions which

affect motility, proliferation and directional bias, we calibrate a mathematical model that simultaneously

describes scratch assay data across a range of densities. Usingmodel selection, we quantitatively assess which

interactions are most important. Our results provide an indication of how density affects the behaviour

cells in our experiments. In opposition to common modelling assumptions [37], proliferation appears to be

unaffected as density increases whereas cells become more motile as density increases. This information

provides a hint about the kind of partial differential equation that is most appropriate, such as

m2

mC
=
m

mG

(
� (2) m2

mG

)
︸           ︷︷           ︸
Contact stimulated

motility

+ _2,︸︷︷︸
Density-independent

proliferation

� ′(2) > 0. (2.14)

may be a more appropriate mean-field model for this kind of experimental data. Our findings agree with

some areas of the literature [66–68], but contrast with studies that suggest density decreases motility [64,65],

or that motility is independent of density [40,63]. Our finding that exponential growth describes the data

is consistent with observations by Vittadello et al. [91], who point out that a loss of contact inhibition is a

hallmark of cancer [92]. Despite this, the assumption of logistic growth is common in the mathematical

modelling literature [74, 93, 94]. Our study demonstrates that exponential and logistic growth are not always

distinguishable from typical experimental data [71]. Parameter identifiability [27] should be considered

when calibrating logistic growth models to scratch assay data.

We study collective cell behaviour using a mathematical model which incorporates density-dependent

interactions affecting proliferation, motility and directional bias. Applying SMC, which penalises models

with high dimensionality of the unknown parameters, our study suggests the minimal model required to

match the experimental data. Two of the primary advantages of our IBM approach is the ability to precisely

replicate the experimental initial condition; and, the ease of which newmechanisms can be incorporated into,

and removed from, the model. Our approach can, therefore, be applied to quantify experimental evidence

for more complex mechanisms including chemotaxis [59, 95], mechanotaxis [96], and generalised growth

laws [93], as well as comparing more complicated choices of interaction kernel [75]. Cell aspect ratio [67]

can be incorporated into the model using asymmetric choices of interaction kernels, however would require

more detailed experimental data, such as that provided by machine vision. We do not pursue such extensions

here since we find that our simpler modelling framework already provides a good match to experimental

data across a range of densities.
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Chapter 3

Persistence as an optimal hedging strategy
Published 2021 in Biophysical Journal.

Bacteria invest in a slow-growing subpopulation, called persisters, to ensure survival in the face of uncertainty. This
hedging strategy is remarkably similar to financial hedging, where diversifying an investment portfolio protects against
economic uncertainty. We provide a new theoretical foundation for understanding cellular hedging by unifying the
study of biological population dynamics and the mathematics of financial risk management through optimal control
theory. Motivated by the widely accepted role of volatility in the emergence of persistence, we consider several novel
models of environmental volatility described by continuous-time stochastic processes. This allows us to study an
emergent cellular hedging strategy that maximises the expected per-capita growth rate of the population. Analytical
and simulation results probe the optimal persister strategy, revealing results that are consistent with experimental
observations and suggest at new opportunities for experimental investigation and design. Overall, we provide a new
way of conceptualising and modelling cellular decision-making in volatile environments by explicitly unifying theory
from mathematical biology and finance.
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3.1 Introduction

3.1 Introduction

Shortly after the clinical introduction of penicillin, Bigger noticed a resistance in a small subpopulation of

Staphylococcal pyogenes [97]. The resistant cells, termed persisters, are a genetically identical, slow-growing,

phenotypic variant. Bacteria invest in persisters to ensure survival: persisters are less proliferative than

regular cells in a nutrient rich environment but can withstand adversity [98]. These strategies are akin

to financial hedging, where diversifying an investment portfolio protects against economic uncertainty

[17, 99–101]. This similarity is widely acknowledged: parts of the biology and ecology literature refer to this

phenomena as bet-hedging [98, 100, 102–104]. In this work, we introduce the concept of cellular hedging, where

we explicitly model bacterial persistence using techniques from mathematical finance, including stochastic

differential equations (SDEs) and stochastic optimal control theory.

Bacterial persistence poses a significant clinical challenge and is highly advantageous to bacteria. For

example, persisters are less sensitive to antibiotic treatment [16, 105–108], are undetectable in routine

clinical tests [109], and are thought to be responsible for the formation [110] and incurability [111] of many

infections. Antimicrobial treatments will, therefore, benefit from an understanding of how persisters arise

and function [112]. The similarity between bacterial persistence and financial hedging strategies suggests a

new pathway to investigate persister dynamics. In this study, we provide a novel, quantitive understanding

of persister strategies using techniques from financial mathematics and stochastic optimal control theory.

Persister production is known to depend on the environment [16, 113, 114] and our mathematical modelling

approach allows us to unearth how various optimal persister strategies depend upon environmental volatility.

Persisters can be revealed experimentally by disinfecting a population of Escherichia coli (E. coli) with

ampicillin, which targets proliferative cells [16]. The initially rapid reduction in population size eventually

slows, revealing a small subpopulation that is less sensitive to the treatment. Experimental investigations

are complicated by the extreme scarcity of persister cells: typically less than 1 in 105 cells are persisters in

wild type E. coli [115]. For subpopulations of this size, stochastic effects are significant [22, 116].

In producing persisters, bacteria allocate resources to hedge against environmental volatility for the

purpose of survival. We assume that these processes occur in much the same way that a financial investor

hedges a portfolio to protect from, and take advantage of, economic volatility [117]. The archetypal example

of portfolio diversification in finance is Merton’s portfolio problem (MPP) [17]. Here, an investor allocates

a fraction of their wealth in a high-yield volatile asset, such as stocks; and a low-yield stable asset, such as

government bonds. Analogously, we suppose that bacteria have evolvedmechanisms to regulate an allocation

of their total population as proliferative although susceptible, and some as persisters. In the finance problem,

market volatility is modelled such that the underlying price of each asset can be described as an Itô SDE

driven by Wiener noise [17, 118], similar to models of noisy exponential growth proposed for biological

problems [119]. More complicated models of market volatility have been extensively explored in the finance

literature, such as those that incorporate Poisson jump noise to describe market shocks [120]. In Merton’s

original work, stochastic optimal control theory [118] is used to maximise the investors wealth by modelling

the proportion allocated to each asset as a control. Merton revealed that it is not advantageous to possess the

low-yield asset in the absence of uncertainty, or when the growth of the high-yield asset is deterministic.

MPP revolutionised the field of mathematical finance, and many of the ideas in MPP formed the basis of

Merton’s later work on options pricing with Black and Scholes [121, 122] that led to the the 1997 Nobel Prize

31



3 Persistence as an optimal hedging strategy

in Economics.

Current mathematical models of persistence typically describe environmental volatility with a growth rate

that transitions through finitely many states (such as a growth and stress state). Transitions between these

states are assumed to occur either periodically [22,103,123] or stochastically [99, 100,124]. Many existing

studies maximise somemeasure of the long-term growth rate of the population and probe the environmental

conditions under which persistence is advantageous using, for example, Lyapunov exponents [124]. A

limitation of these existing modelling approaches is their inability to capture more general models of

environmental volatility. We leverage an explicit connection with mathematical finance to study optimal

cellular hedging strategies using stochastic optimal control theory [118, 125]. This approach has several

advantages. First, we can probe cellular hedging strategies under more complex models of environmental

volatility. Second, we can model the emergence of an environment-dependent persister strategy.

In our study, we first model persistence in a population where the growth rate is subject to continuous

stochastic fluctuations in the form of Wiener noise [116, 118, 126]. We posit that, in many cases, this is

a more appropriate model of environmental volatility than the discrete transitions, or shocks, that are

currently commonplace in mathematical models of persistence [22,103,123,124]. Through this model, we

draw a direct connection with mathematical finance and demonstrate how MPP can be applied directly

to the biological problem. Next, we expand on this simplistic model through an environment-dependent

hedging strategy under more complex models of environmental volatility. We include in our analysis a

model that uses Poisson jump noise [125], to capture the aforementioned existing models of environmental

volatility [22,99, 100,103,124] where transitions in the growth rate occur due to, for example, shocks. Our

modelling framework is readily extensible to any form of environmental volatility that can be described

using an Itô SDE.

Our goal is to develop a new framework for studying cellular hedging in response to environmental

volatility by unifying the study of biological population dynamics with techniques financial mathematics. It

is for this reason we use the term cellular hedging, instead of the term bet-hedging [98, 100, 102–104]. Despite

the established importance of volatility in elucidating bacterial persistence, we find there is currently a

scarcity ofmethods available to describe cellular hedging strategies under environmental volatility. Ourmath-

ematical framework demonstrates the importance of considering more complex models of environmental

volatility, and we lay theory to complement future experimental studies that probe emergent persister

strategies in response to continuously varying stochastic environments. Our new model and approach leads

to mathematical results that are consistent with observations from several existing experimental studies,

and provides new insights into bacteria dynamics in the face of environmental volatility.

3.2 Methods

3.2.1 Stochastic model of bacteria growth

We describe population-level bacteria dynamics in a volatile environment with a system of SDEs driven by

Wiener noise [116,119,126]. This choice ofmodel can be thought of as a bridge betweendiscreteMarkovmodels

[22,117], and deterministic ordinary differential equation (ODE) models [16]. In addition, our population-level

model of bacterial persistence complements stochastic gene expressionmodels that describe the regulation of

persister strategies [101,127]. Further, our modelling approach can be generalised to can capture many other
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J Figure 3.1. Schematic of the bacteria growth
model with regular cells, AC , and persisters, ?C .
Switching from persisters to regular cells is
constant, E . Switching from regular cells to
persisters is taken to be the sum of a constant
rate, D, and a variable rate, qC , that depends
upon environmental volatility.

forms of environmental noise. For example, we model the dynamics of bacteria in a volatile environment by

coupling the growth rate to a stochastic process representing the environment [128].

We model exponential growth in a population composed of regular (non-persister) cells, AC , and persisters,

?C . Here, a subscript C indicates that each stochastic processes depends on time. The net growth rate of

regular cells is a stochastic process with expectation `C and amplitude f . The quiescence of persisters

manifests as slow metabolic activity, so we assume the expected growth rate of persisters is some small

proportion, Y � 1, of regular cells. The net persister growth rate is, therefore, a stochastic process with

expectation Y`C and amplitude [ = Yf . In the absence of subpopulation switching, these dynamics give rise

to the system of differential equations [119, 126]

dAC
dC

=

(
`C + fb (1)C

)
AC , (3.1a)

d?C
dC

=

(
Y`C + [b (2)C

)
?C . (3.1b)

Here, b (1)C and b (2)C are independent Gaussian white noise processes. The expected growth rate of regular

cells is given by `C , which may be constant, or itself a stochastic process. We interpret Equation 3.1 in the Itô

sense for two reasons. First, the properties of the Itô integral make it well suited to models in population

biology [119, 129]. Second, Itô SDEs are widely applied in mathematical finance, including in MPP [17], where

the property E
[∫
GC d,C

]
= 0, in the Itô sense, is vital.

The current literature classifies two types persister production in a population: variable and environment

dependent, commonly referred to as Type I; or constant, commonly referred to as Type II [16] (figure 3.1). It

is understood that constant production of persisters, which results in an approximately constant proportion

in a growing population, may be regulated by stochastic gene fluctuation on a single cell level [130–132]. In

addition, a growth feedback mechanism [21] — possibly regulated by quorum sensing [133] and intercellular

signalling [134] — may enable cells to respond and vary the persister production rate. In our model, regular

cells switch to persisters at a rate ofD + qC , where: D ≥ 0 is the constant rate [16]; and qC ≥ 0 is the variable,

environment-dependent, rate. Persisters revert to regular cells at a constant rate E ≥ 0. Our model can,

therefore, describe both Type I and Type II strategies.

Incorporating subpopulation switching into the growth equations (equations (3.1)) yields

dAC = `CAC dC + fAC d, (1)
C −

[
(D + qC )AC − E?C

]
dC, (3.2a)

d?C = Y`C?C dC + [?C d, (2)
C︸                    ︷︷                    ︸

Subpopulation growth

+
[
(D + qC )AC − E?C

]
dC︸                    ︷︷                    ︸

Phenotype switching

. (3.2b)

Such a system of equations is said to be in the form of multiplicative Wiener noise [125]. We note that
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3 Persistence as an optimal hedging strategy

in removing variability from the model by setting f = [ = 0, we recover the ODE model of Balaban et

al. [16]. Many other choices for a stochastic population dynamics model exist [116], such as models that

consider intrinsic noise caused by subpopulation switching [135]. However, the focus of the current work is

on fluctuations in the environment and growth rate, which we assume to be independent of the population

size.

We find it natural to consider the variable transformation

=C = AC + ?C , \C =
?C

=C
, (3.3)

such that =C represents the population size and \C represents the proportion of persisters. Following Itô’s

lemma [118], the transformed state equations are

d=C =
[
1 − \C (1 − Y)

]
`C=C dC (3.4a)

+ f=C (1 − \C ) d, (1)
C + [=C\C d, (2)

C ,

d\C =
[
(1 − \C ) (D + qC ) − \CE − (1 − \C )\C

(
(1 − Y)`C (3.4b)

− f2(1 − \C ) + [2\C
) ]

dC

− (1 − \C )\Cf d, (1)
C + [ (1 − \C )\C d, (2)

C ,

revealing that the dynamics of the persister proportion, \C , are independent of the population size, =C .

Stochastic model environmental volatility

We model environmental volatility by assuming `C =<(ZC ), where ZC is a stochastic process that represents
a volatile environment. There are many appropriate choices for<(·) and ZC , but we focus our analysis on
three environments, samples paths of each shown in figure 3.2a–c. These are

1. Constant. (figure 3.2a) We set<(Z ) ∈ {`� , `( }, such that `C is constant. Here `� represents a colony
during growth; and `( represents a colony under stress or antimicrobial treatment. For numerical

results, we choose `� = 2 h−1 and `( = −2 h−1 to match experimental data for E. coli during growth

and ampicillin treatment [16].

2. Monod. (figure 3.2b) Monod kinetics are commonly used to model the growth of bacteria [136–138],

and feature dynamics with an asymptotic upper bound on the growth rate, but no lower bound. We

describe this environment by a mean-reverting Ornstein-Uhlenbeck process [118] and couple the

growth rate using a Monod equation [136],

<(ZC ) =
`maxZC

 Z + ZC
− X, (3.5a)

dZC = W ( Z − ZC ) dC + ^ d, (3)
C , (3.5b)

where, (3)
C is a Wiener process independent of both, (1)

C and, (2)
C . Here, ZC experiences fluctuations

proportional to ^ and a reversion force to the state ZC =  Z of strength proportional to W . The Monod
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coupling features an asymptotic upper-bound on the growth rate of `C = `max and no lower bound.

Unfavourable environmental changes have, therefore, a larger effect on the growth rate than those

that are favorable, and the growth rate experiences reversion to a growth rate `C = `max/2 − X , where
X represents the natural death rate. For numerical results, we choose W = 0.1 h−1,  Z = 1, Z0 = 1,

^ = 0.3, `max = 8 h−1 and X = 2 h−1. For this choice of parameters the growth rate experiences

reversion to a growth rate of `� = 2 h−1, which corresponds to the constant environment. To deal

with the discontinuity at Z = − Z , we truncate equation (3.5a) so that<(Z ) =<(−0.5) for Z < −0.5.

3. Poisson. (figure 3.2c) An existing class of mathematical models describe environmental uncertainty

using alternating periods of growth and stress [22,99,100,103,124]. We reproduce this type of environ-

ment in a stochastic model by assuming that the environment switches between growth and stress

according to a Poisson process. We consider that<(Z ) = `� for Z ≥ 0;<(Z ) = `( for Z < 0; and

model the environment as the jump or telegraph process [125]

dZC = d (ZC ) d%C , d%C ∼ Po(dC _(ZC )), (3.6a)

where d (ZC ) =
{
−2, ZC = +1,

+2, ZC = −1,
(3.6b)

and _(ZC ) =
{

1/g� , ZC = +1,

1/g( , ZC = −1.
(3.6c)

Here, %C is a Poisson process with intensity _(ZC ). This formulation allows for a mean time of g� in the
growth phase, where `C = `� , and a mean time of g( in the stress phase, where `C = `( . For numerical

results in this study, we choose g� = 9.5 h, g( = 0.5 h, Z0 = 1, `� = 2 h−1 and `( = −2 h−1. This model

of environmental volatility can be readily extended to capture more general forms of Poisson noise

leading to discontinuous fluctuations in the environment due to, for example, shocks.

These choices represent environments in which changes happen gradually (Monod environment) or

abruptly (Poisson environment), as demonstrated in figure 3.2b and figure 3.2c, respectively. For comparative

purposes, we demonstrate results using realisations of each environment that are similar, and choose

the initial condition for all environments to correspond to the initial growth rate `0 = `� = 2 h−1. In

Appendix B.2, we explore results for two other models of environmental volatility: (4) an Ornstein-Uhlenbeck

process without a Monod coupling (figure B.1d) and, (5) a Duffing oscillator (figure B.1e).

3.2.2 Optimal persister production strategies

Our ideas of cellular hedging suggest that a cell population has developed a persister production strategy

S = {D, E, qC } that is optimal in some way. Mathematically, we define optimality as the strategy that
maximises some fitness measure, which we now construct. We assume that there is no explicit cost to

producing persisters with constant rates D and E ; but that there is a quadratic running cost to produce

persisters with a variable rate qC . The cost of applying a non-zero qC accounts for the sensing mechanisms

that cells must use to respond to the environment.
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3 Persistence as an optimal hedging strategy

N Figure 3.2. Optimal persister production in cell populations under various types of environment. (a–c) Growth rates,
`C , sampled from each environment to simulate bacteria growth in the rest of each column. (d–f) The optimal variable
persister production rate, q∗C . (g–i) The population, =C , in multiples of the original population (blue, left scale) and
persister proportion, \C , (red, right scale), for a single realisation of the model. The seeds used to generate the Wiener
processes, (1)

C and, (2)
C are identical for all environments. Also shown are five additional, independent, realisations

(semi-transparent).

We choose a fitness measure, commonly referred to as a payoff in optimal control theory, as

�S = E

[ ∫ )

0
Uq2

C dC︸        ︷︷        ︸
Sensing

+ loge(=) )︸    ︷︷    ︸
Growth

]
, U < 0. (3.7)

Here) denotes a terminal time, so that the maximisation is carried out on the interval C ∈ [0,) ]; U < 0

characterises a trade-off between growth and operating the sensing mechanisms required to vary the

persister production rate; and the expectation is taken with respect to the stochastic processes governing

subpopulation growth, =C , and the environment, ZC . In this work, we consider a finite terminal time since we

model an exponentially growing population. It is not obvious how to incorporate stationary phase dynamics

into the stochastic environment model. Future work is needed to explore the infinite time-horizon problem

in conjunction with environmental volatility and a logistic growth term [119]. We interpret the terminal

time,) , as either the duration of the growth phase of the population [16], or the duration of an experiment.

Maximising the logarithmic term in equation (3.7) can be interpreted as cells maximising their per-capita

growth rate over the interval C ∈ [0,) ], since
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loge(=) ) = loge(=0) +
∫ )

0

1
=C

d=C
dC

dC ,

and loge(=0) is constant [139]. Our choice of fitness measure corresponds to evolutionary mechanisms that
perpetuate highly productive populations [22], meaning cells that implement the optimal strategy carry an

evolutionary advantage over those that do not. There are many other choices of fitness, such as resource

allocation based on a maximum entropy principle [140]. We expect our methodology to carry across to these

more complicated choices of fitness measure.

Together with the state equations (equation (3.4)), maximising equation (3.7) corresponds to an optimal

control problem. We apply Hamilton-Jacobi-Bellman (HJB) optimal control theory [125, 141, 142] to

reformulate the optimal control problem as a partial differential equation (PDE) problem. We now review

essential elements of HJB optimal control theory.

Review of optimal control theory

A stochastic control problem may be stated as

max
lC ∈U

E

(∫ )

0
L(xC , lC , C) dC + Φ(x) )

)
︸                                    ︷︷                                    ︸

Payoff

, (3.8)

where lC is a time-dependent control from the set of allowable controls, U. The payoff contains terms

L(xC , lC , C), which represents cumulative value (in our case, the sensing mechanisms), and Φ(x) ), which
represents the terminal value (in our case, the final population size). For a stochastic problem, the payoff

involves an expectation, which is taken with respect to the stochastic process xC , representing the system

state. The goal is to find the so-called optimal control, denotedl∗C , that maximises the payoff.

The state equations are given by the three-dimensional stochastic process, xC = (=C , \C , ZC ), governed by
the three-dimensional Itô SDE

dxC = M(xC , lC , C) dC + �(xC , lC , C) dWC , (3.9)

whereM ∈ ℝ3 is a vector valued function containing the drift for each state; dWC ∈ ℝ3 is a Wiener process

of the same dimension as xC with independent constituents; and, ��tr ∈ ℝ3×3 describes the covariance of

the Wiener process (superscript tr denotes the matrix transpose). In our study, xC comprises the stochastic

processes governing the growth of the bacteria population, (=C , \C ), in addition to the independent stochastic
process for the environment, ZC . We also study a form of xC that includes Poisson jump noise, and we include

details of optimal control theory in this case in Appendix B.4.2.

To solve the optimal control problem we define a value function,+ (x, B), as the optimal payoff obtainable
were the system to be at state x at time B . That is,

+ (x, B) = max
lC ∈U

E

(∫ )

B

L(xC , lC , C) dC + Φ(x) )
)
,

subject to xB = x.

(3.10)
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3 Persistence as an optimal hedging strategy

HJB optimal control theory then describes the time-evolution of+ as the solution of a partial differential

equation (PDE) [141, 142], given by

0 = max
lC ∈U

(A+ +L(xC , lC , C)) , (3.11)

whereA is the stochastic generator for the process governing xC . For the three-dimensional system given by

equation (3.9), the stochastic generator is given by

A+ =
m+

mB
+

3∑
8=1

(
M8

m+

mG8
+ 1

2

3∑
9=1

(��tr)8 9
m2+

mG8mG 9

)
(3.12)

whereM8 denotes the 8th element ofM(xC , lC , C), and (��tr)8 9 denotes the element in the 8th row and 9th
column of ��tr, for � = �(xC , lC , C). Therefore, mixed partial derivatives are only included in equation (3.12)
in the case where the stochastic processes are correlated. The idea behind HJB optimal control theory

is that + (x, B) is known at time B = ) . Therefore, equation (3.11) is coupled to the terminal condition

+ (x,) ) = Φ(x) ), and solved backwards in time [143].
In certain cases, the argmax(A+ + L) term in equation (3.11) may be found analytically through

differentiation. This yields both an expression for the optimal control,l∗C ; and a three-dimensional, non-

linear, PDE coupled to a terminal condition. In the case of MPP, where the volatility appears only as geometric

Brownian motion in the state equations for (=C , \C ), and not in an independent equation for the envir-
onment, equation (3.11) has an analytical solution [17]. In most cases, however, we are required to solve

equation (3.11) numerically. To obtain an optimal trajectory starting at state x0, we solve the state equations

(equation (3.9)), coupled to the solution of the HJB PDE (equation (3.11)), forward in time using the Euler-

Maruyama algorithm [144]. Full details of the numerical techniques are provided in Appendix B.5.

Numerical methods to solve the SDEs

We integrate the SDE models using the Euler-Maruyama algorithm [144] with time step ℎ = 2 × 10−3. To

compare results between environments, we fix the seeds used to generate the Wiener processes, (1)
C and

,
(2)
C when simulating different models. Full details of the numerical method used to solve the SDEs are

given in Appendix B.5.

Constant persister production

We first examine a population that can only produce persisters at a constant rate, so we fix the variable rate,

qC = 0. In this case, we only assume the constant environment so `C = `� .

AsD and E only appear in the optimal control problem linearly, the solution is not finite unless a bound

is enforced on D and E [4]. The unbounded problem corresponds to a cell population that is able to move

itself instantaneously to anywhere in the state space. To address this, we assume that the constant switching

ratesD and E are chosen by the population to control the steady-state persister proportion, which we denote

\̂C ∈ [0, 1]. Taking the drift term in the state equation for \C (equation (3.4b)) to be zero, we see thatD and E

are related to \̂C by

D = \̂C

(
E

1 − \̂C
+ [2\̂C − (1 − \̂C )f2 + (1 − Y)`�

)
. (3.13)
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At this point, we note that equation (3.13) is only consistent if \̂C is constant, and we address this shortly.

Allowing \̂C to be a control, the state equation for =C (equation (3.4a)) becomes

d=C
=C

= (1 − \̂C (1 − Y))`� dC +
√
(1 − \̂C )2f2 + \̂ 2

C[
2 d,C , (3.14)

since 0 d, (1)
C + 1 d, (2)

C can be considered as
√
02 + 12 d,C . Assuming that \̂C is chosen to maximise the

fitnessmeasure (equation (3.7)) reveals a problem closely related toMPP [17]. The problems differ intrinsically

in that an investor is able to reallocate assets within a financial portfolio instantaneously [117] and without

cost — though variations of MPP address this — whereas the cell colony comprises finitely many cells that

act heterogeneously using finite switching rates to produce persisters.

We apply stochastic optimal control theory [118,125] and exploit the similarity between this formulation

of the persister problem and MPP [17] to obtain an analytical solution, in which the optimal control, denoted

\̂ ∗C ∈ [0, 1], is given by

\̂ ∗C = max
[
0,min

(
1,
f2 − (1 − Y)`�

[2 + f2

)]
. (3.15)

Full details of this analytical solution are given in Appendix B.3. As is the case with MPP, \̂ ∗C is constant, so the

strategy is independent of the current time, the terminal time, and the system state. Solving equations (3.13)

and (B.8) simultaneously gives \̂ ∗C = 1.19× 10−5 with f = 1.414222 which matches experimental observations

for wild type E. coli bacteria where `� = 2 h−1, Y = 0, [ = Yf = 0, D = 1.2 × 10−6 h−1 and E = 0.1 h−1 [16].

Here, we note that f2 ≈ `� , since \̂ ∗C � 1.

For numerical results in the rest of this study, we fix f , Y, [,D and E to the aforementioned values, and set

the initial persister proportion \0 = 1.19× 10−5. We set =0 = 1, such that the population is measured relative

to the initial population. In practise, these parameters would be obtained by calibrating the stochastic model

to experimental data, where we expect f , and, therefore,D and E , to depend upon the stochastic environment

induced by the experimental conditions. Further, setting f = [ = 0 would recover a model in which ZC is the

only source of environmental volatility.

Variable persister production

We now consider a cell colony that is able vary persister production in response to their environment. In

this case, qC ∈ ℝ+, can be thought of as a Markovian control [118], or a control that is chosen based on

information that includes the current state and time, but does not carry a memory about the past state. For

numerical stability, we place an upper-bound on the control such that qC ≤ 0.1 h−1.

To solve the control problem, we define the value function,+ , by

+ (G,~, I, B) = max
qC

E

[∫ )

B

Uq2
C dC + loge(=) )

]
, (3.16a)

where (=B , \B , ZB) = (G,~, I) . (3.16b)

HJB optimal control theory describes+ with a PDE, expressed in this case as

0 = max
qC

(
Uq2

C +
m+

m~
(1 − ~)qC +H★

)
, (3.17)

39



3 Persistence as an optimal hedging strategy

whereH★ represents a collection of terms independent of the control, qC . As equation (3.17) is quadratic in

qC , we can carry out the maximisation by setting the derivative to zero to find the optimal control, denoted

q∗C ∈ [0, 0.1], as

q∗C = max
[
0,min

(
0.1,− 1

2U
m+

m~
(1 − ~)

)]
. (3.18)

Here,~ = \C is the current persister proportion. Since~ ∈ [0, 1], an interpretation of equation (3.18) is that
the population uses q∗C to steer the population toward the optimal persister proportion, where m+ /m~ = 0.

As environmental triggers only create persisters (we assume the quiescent state of persisters means they are

unable to react to the environment), q∗C > 0, and so q∗C is only active if the current proportion is less than

the optimal proportion. Finally, q∗C → 0 as U → −∞, which represents the sensing mechanisms becoming
prohibitively expensive.

Substituting equation (3.18) into the HJB equation leads to a non-linear PDE for+ that must be solved

backward in time. Full details of this equation are given in Appendix B.4. In summary, the variable

transformation G → loge(G) removes all terms containing the independent variable G (representing the
current population size) from the equation. Therefore, we find that the ansatz

+ (G,~, I, B) = Ψ(~, I, B) + loge(G), (3.19)

is consistent with the system. This result reveals that the optimal control (equation (3.18)) is independent of

the population size since m+ /m~ = mΨ/m~. This gives an optimal strategy of the formq∗C = q∗(C, \C , ZC ). These
results suggest that bacteria can implement an optimal variable persister strategy using only information

about the proportion of persisters (through, for example, quorum-sensing [133] or intercellular signalling

[134]), and the environment (through, for example, a growth feedback mechanism [21]). Therefore, the

persister strategy is dependent upon stochastic fluctuations in both the proportion of persisters and the

environment.

In figure 3.2 we show dynamics for cell colonies in all three environments for U = −100 h. For these

results, we solve for Ψ numerically. As expected, we find that unfavorable environments trigger variable

persister production (figure 3.2e,f), without any additional persister production for the constant environment

(figure 3.2d). This suggests that a constant persister production strategy is sufficient for an environment

with a constant expected growth rate. On the other hand, additional persister production is seen in response

to environmental cues for more volatile environments (figure 3.2e,f). An interesting result in figure 3.2e is

that the peak variable production rate under the Monod environment lies before the minimum growth rate.

This suggests that the model implicitly incorporates mechanisms that allow cells to respond to features of

the stochastic environment, to the extent that they may be able to anticipate environmental changes based

upon their own current growth rate.

Behaviour under unfamiliar environments and antimicrobial treatment

By assuming that cells monitor their growth rate, `C , we can explore how bacteria that are specialised to one

environment (i.e. implement the optimal persister strategy) behave under an unfamiliar environment. We

couple the growth rate to the optimal control by considering q∗C = q
∗(\C , ZC ) where ZC =<−1(·) denotes the

inverse of the growth rate coupling function<(Z ). In otherwords, the cellsmeasure the current environment
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J Figure 3.3. Single realisations of the
model showing the behaviour of a cell
population under antibiotic treatment.
(a) Shows the population, =C , in
multiples of the original population;
(b) shows the persister proportion, \C ;
and, (c) shows the variable persister
production rate, q∗C . In all cases,
the cells experience a growth rate
`C = −2 h−1 and implement: the
variable strategy optimal under either
the Monod environment (green) or the
Poisson environment (red); constant
switching only optimal under the
constant environment (black); or do
not produce persisters (grey).

state using the growth rate.

Persisters are revealed experimentally by exposing the population to antibiotics and monitoring the

population size [16]. We simulate this process to examine how bacteria specialised to each environment

behave when exposed to a constant expected decay rate. Simulation results in figure 3.3a, for a population

that can only produce persisters at a constant rate, are similar to experimental results for wild-type E. coli [16].

In comparison, we find that colonies that implement a strategy optimal under a more volatile environment,

such as the Poisson and Monod environments, produce persisters using the variable rate (figure 3.3c) reach

saturation of persisters more quickly (figure 3.3b) and have a higher long term population (figure 3.3a).

These qualitative observations suggest that high persistence bacteria strains [16, 22] could arise in response

to highly volatile environments. In Appendix B.2, we apply the same methodology to simulate bacteria

specialised to each environment under other, unfamiliar, environments. These results demonstrate the

potential of our work to model, for example, how an optimal persister strategy interacts with therapeutic

interventions such as drug sequencing [145, 146].

3.3 Discussion

We describe persister dynamics with a stochastic model and introduce the idea of cellular hedging to study an

optimal persister production strategy. By applying cross-disciplinary ideas from mathematical finance to the

persister problem, we provide several analytical and simulation results that elucidate bacterial persistence

under several novel models of environmental volatility.

Our results conform to the consensus view that it is detrimental to produce persisters in the absence of

volatility [22,104,117,147]. In examining the optimal strategy for constant persister production, we reveal

the proportion of persisters that must be maintained to maximise the expected growth of the population

(equation (B.8)). Removing volatility from the model by setting f = 0 recovers the deterministic model of
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Balaban et al. [16] and reveals an optimal persister proportion of zero. Therefore, our model predicts that

producing persisters in the absence of environmental volatility is suboptimal and, therefore, leads to a lower

expected per-capita growth rate. In contrast, the straightforward assumption of a growth rate driven by

Wiener noise reveals a small proportion of persisters (approximately 1 in 105) — consistent with experimental

observations of Balaban et al. [16] — that maximises the expected per-capita growth rate. Our results contrast

with previous mathematical studies that assume external factors, such as antibiotic treatment, to explain

persistence [22].

Compared with hedging strategies in finance, that often rely on complex, market-level information, a

cellular hedging strategy must be limited in complexity. A key result of the direct comparison between

bacterial persistence and MPP is to reveal a constant optimal proportion of persisters that should be

maintained in an environmentwith a constant expected growth rate. This result is significant for the persister

problem as, unlike in MPP, the cell population cannot directly control the proportion of persisters. This key

difference between the biological and financial hedging problems is widely understood in the literature [117].

However, we show how a population can maintain a constant expected proportion of persisters, regulated by

constant switching propensities,D and E .

The mechanisms that enable cells to implement environment-dependent cellular hedging strategies are

unknown [148], but must come at a cost to the cells—in terms of additional genetic machinery—and rely

on the limited information available to individual bacteria. Our study reveals an optimal variable persister

production strategy that depends only on the time, persister proportion and the environment, but not on

the the population size. Additional results in Appendix B.6 (figure B.6) indicate that these strategies become

time-independent far from the terminal time,) . If an infinite terminal time problem was studied, necessarily

with a growth model that incorporated crowding effects (such as logistic growth), we expect the optimal

strategy to be independent of time. Furthermore, the optimal environment-dependent strategy revealed in

equation (3.18) is not complex. Analysis of equation (3.18) suggests that bacteria increase persister production

when the persister proportion for a given growth rate is less than optimal. This kind of information could be

genetically encoded as an evolutionary adaptation to a particular environment. The parameter U , therefore,

specifies the rate at which the population is able to respond to changes in the environment: if variable

switching is expensive (U � 1), the population will respond more slowly than if variable switching is

relatively cheap. These results are surprising as optimal control theory only provides the strategy that

maximises the payoff, and does not necessarily enforce any level of complexity in the cellular hedging

strategy.

In figure 3.3, we simulate a persister producing bacteria colony under antibiotic treatment, demonstrating

the distinct advantage persisters afford bacteria [16,109,112]. Our stochasticmodel of persister production can

be used to improve the efficacy of antimicrobial therapies using optimal control from an optimal treatment

perspective [4, 149–151]. Furthermore, recent experimental and mathematical work examines the potential

of so-called evolutionarily informed therapy or drug sequencing [145, 146, 152], where a sequence of drugs

is administered to sequentially induce susceptibility and overcome drug resistance. As demonstrated in

figure 3.3 and figure B.2, our model allows simulation of how a population specialised to one environment

could behave under another. Therefore, our framework may naturally extend to predict how a persister

strategy optimal under one type of drug behaves under another. Our results already suggest new ways to

design treatment strategies. Additional results (figure B.6) suggest that, for all environments we model,
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persister production decreases monotonically with the growth rate. Temporarily exposing the cell colony

to favorable conditions will decrease variable persister production, lowering the proportion of persisters,

potentially making the population more susceptible to antibiotics. This is consistent with existing experi-

mental observations where exposing a colony to a fresh growthmedium before applying antibiotics decreases

persistence [153], and is a simplistic example of drug sequencing.

We focus on a large, exponentially growing population in a homogeneous, temporally fluctuating, envir-

onment. Our framework is readily extensible to more complex growth models (such as logistic growth);

heterogeneous populations containing more than two phenotypes; and the inclusion of demographic noise.

We have not, however, considered spatial effects such as those corresponding to a spatially fluctuating envir-

onment or local crowding effects. A stochastic partial differential equation (SPDE) model would also allow

for direct modelling of the chemical signals that regulate quorum sensing [154] allowing for population-level

cooperation, however applying optimal control to these SPDE models is not straightforward. Further work

is needed to elucidate the effect of demographic or sensor noise on a population’s ability to regulate the

optimal persister proportion through subpopulation switching [117,155]. In large exponentially growing

populations, we expect deterministic switching rates are an appropriate model of subpopulation switching.

For small populations, our optimal control approach can be applied to study the effects of demographic noise

by incorporating intrinsic noise into the stochastic growth model through the chemical Langevin equation.

Rapid evolution of cellular hedging strategies is experimentally reproducible [156]: Van den Bergh et

al. [109] found that exposing E. coli to daily antibiotic treatments increased survival by between three and

300-fold after just three treatments, and Rodriguez-Beltran et al. [157] study induced evolutionary changes in

bacteria behaviour through repeated application of antibiotics. Evolutionary adaption of organisms such as

bacteria within a fitness landscape is an active area of research [110], with an understanding that stochasticity

plays a vital role [146]. Financial mathematics techniques and cellular hedging can also be applied to study

the evolutionary process as it occurs. For example, policy adjustment models [158] quantify the cost of

strategy change, and can be compared to mutation costs in a rapidly-evolving cell colony. Our framework

can be directly applied in this context to model the adaption of a simple hedging strategy to an unfamiliar

environment by modelling the time-derivative of the constant switching rates as a control.

Our analysis suggests important experimental avenues to further elucidate bacterial persistence.

Alternating periods of growth and stress is still a common model of environmental volatility both [157] and

in theoretical studies [104]. We provide a new theoretical foundation for studying any Markovian model of

environmental volatility. Additional results in Appendix B.2 (figure B.2) show a diversity in optimal responses

when a strategy optimal under one type of environment reacts to another. An experimental study where

bacteria are repeatedly exposed to a known volatile environment, potentially based upon the novel models of

environmental volatility that we study, will provide insight into how bacteria adapt to a form of uncertainty

that can be quantified. Our modelling framework can then predict both the emergent strategy, and how

the population might behave when exposed to interventions such as antibiotics. Furthermore, sensitivity

analysis on parameters in the environmental volatility model can aid experimental design by revealing what

features of an environment have the largest effect on any optimal strategy. We expect, for instance, different

responses to environments where changes happen continuously (for example, the Monod environment),

compared to where changes are due to shocks (for example, the Poisson environment).
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3.4 Conclusion

We provide new insight into cellular hedging through an explicit connection between the study of biological

population dynamics and the mathematics of financial risk management. We present a new stochastic

model of bacteria growth in a volatile environment and apply optimal control theory to probe the persister

strategy that maximises the per-capita growth rate. A fundamental result of our study is to provide a

solid theoretical understanding of why persistence is only advantageous in the presence of environmental

volatility, demonstrating that the study of bacterial persistence must take a stochastic perspective. Our

model of cellular hedging has clinical significance and can be applied to improve the efficacy of antimicrobial

therapies. Furthermore, the framework we develop can be applied to more complex models of bacterial

population dynamics, and offers an opportunity for future generalisations to explore cellular decisionmaking

in a broader context, including in cases where sensor or demographic noise are significant. Many seemingly

complex cellular phenomena from bet-hedging in cancers [102, 159, 160], herpes viruses [161] and HIV [162]

to decision making in the epithelial-mesenchymal transition [163] can be modelled using ideas from cellular

hedging and by furthering the unification of mathematical finance and biology.
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Chapter 4

Identi�ability analysis for stochastic di�erential

equation models in systems biology
Published 2021 in Journal of the Royal Society Interface.

Mathematical models are routinely calibrated to experimental data, with goals ranging from building predictive models
to quantifying parameters that cannot be measured. Whether or not reliable parameter estimates are obtainable from
the available data can easily be overlooked. Such issues of parameter identifiability have important ramifications for
both the predictive power of a model, and the mechanistic insight that can be obtained. Identifiability analysis is
well-established for deterministic, ordinary differential equation (ODE) models, but there are no commonly-adopted
methods for analysing identifiability in stochastic models. We provide an accessible introduction to identifiability
analysis and demonstrate how existing ideas for analysis of ODEmodels can be applied to stochastic differential equation
(SDE) models through four practical case studies. To assess structural identifiability, we study ODEs that describe the
statistical moments of the stochastic process using open-source software tools. Using practically-motivated synthetic
data and Markov-chain Monte Carlo (MCMC) methods, we assess parameter identifiability in the context of available
data. Our analysis shows that SDE models can often extract more information about parameters than deterministic
descriptions. All code used to perform the analysis is available on Github.

https://github.com/ap-browning/SDE-Identifiability
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4.1 Introduction

4.1 Introduction

Stochasticmathematical models are rapidly becoming an essential tool for interpreting biological phenomena

[164–170]. These models are necessitated, in part, by increasing experimental interest in capturing finer-

scale time-series observations [171–175] as well as spatial information [30, 176–180] rather than coarse-

scale deterministic trends (figure 4.1). As computational inference techniques for stochastic models have

improved [70, 181–184], a fundamental question that often remains overlooked is whether or not model

parameters can be confidently estimated from the available data. Drug development, for example, often

relies on the quantification of cell growth rates from a proliferation assay (figure 4.1a–d) [185]. If a mean-

field model is applied to interpret the most frequently reported observation—cell count data—only the net

growth rate is identifiable, not the proliferation and death rates [186, 187]. Establishing the identifiability of

model parameters is critical as predictions, and parameter estimates, from a non-identifiable model may be

unreliable [24,188–190], with further analysis required to quantify prediction uncertainty in non-identifiable

models [191–193]. Identifiability should always, therefore, be established before parameter estimation is

attempted. Such identifiability analysis is well-established for deterministic ordinary differential equation

(ODE) models [24, 194–201], but there is a scarcity of methods available for the stochastic models that are

becoming increasingly important.

Stochasticity is fundamental to many processes [53, 165, 202–207]. Diabetic patients, for example, rely on

the rapid interpretation of highly volatile blood glucosemeasurements to determine insulin input (figure 4.1f)

[208,209]. Data from the COVID-19 pandemic [164] is also volatile (figure 4.1e), and inferences of epidemic

data must often be drawn from a single, stochastic, time-series. Finally, for systems at equilibrium in

the mean-field, such as ion-channel data, models that account for system noise are required to establish

parameters [210, 211]. Stochastic differential equation (SDE) models of the Itô form are widely applied

in systems biology to describe stochastic phenomena [119, 212–214]. SDE models can describe intrinsic

noise in, for example, gene expression [165, 172, 184] or a bio-chemical reaction network [215]; extrinsic

noise describing volatility in the environment [53,119,126,216]; and model approximations and unknown

effects in so-called grey-boxmodels [217, 218]. Explicitly modelling this variability in biological systems can

often capture more information about a process than a deterministic model is able to [219–222]. Further,

SDE models can account for the correlations inherent to time-series data and account for noise that might

otherwise obscure parameters. We demonstrate how to establish parameter identifiability for SDE models

that encode information about the intrinsic noise of the process [219]. Our focus is on SDE state-space models

that can be formulated through the chemical Langevin equation (CLE), although our analysis is applicable to

any SDE of the Itô form. While simulation [72], inference [223, 224], and identifiability analysis [225] can,

for many stochastic systems, be conducted for discrete Markov models, SDE approximations can offer a

significant computational advantage and have a long and extensive history of use in the systems biology

literature. Further, use of reflected SDEs [226] can guarantee good agreement with their discrete counterparts

at boundaries [226, 227].

A prerequisite for parameter estimation is that model parameters be structurally identifiable [2, 24, 194–196,

230,231]. Structural identifiability refers to the question of whether a parameter can be identified given an

infinite amount of noise-free data. A state-spacemodel is said to be structurally identifiable if distinct values of

the parameters imply distinct observed model outputs (or in the case of a stochastic model, distinct observed
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N Figure 4.1. (0–3) Cell proliferation and death observed in vitro over 36 hours in a proliferation assay [34]. Each snapshot
has a field-of-view of 1440 × 1440µm and the location of each cell is indicated with a yellow marker. (4) Data from the
early stages of the coronavirus pandemic comprising the observed number of (8) infected individuals, deaths, and (88)
daily new case count in Australia [228]. (5 ) Continuous glucose monitoring data from a single individual over three
consecutive days [229].

output distributions [232]), and vice versa [233–235]. Techniques such as differential algebra [198, 236, 237]

and transfer function approaches [194, 195] can establish structural identifiability in ODE models. These

approaches are also used to establish identifiable relationships between parameters [195, 238]—for example,

the net growth rate in a proliferation assay—which can aid model design and model reduction [238–240].

Many of these techniques have accessible implementations in symbolic computation packages [198,241–244],

meaning structural identifiability analysis does not require a detailed understanding of the, often complex,

underlying mathematical analysis [198].

When experimental data is considered, a more useful question is that of practical identifiability or estimability

[24, 235, 241, 245]. That is, can parameters in the model be accurately estimated given a finite amount

of noisy experimental data? This kind of analysis is routinely used in the field of experimental design

to assess the nature of data required to adequately identify biophysical parameters [27, 90, 189, 210, 213,

246]. Practical identifiability is established in conjunction with an inference technique, such as profile

or maximum likelihood [27, 247–249] or Markov-chain Monte-Carlo (MCMC) [189, 210]. These techniques

provide information about the flatness (or otherwise) of the likelihood function—in the Bayesian case,

the posterior distribution—that describes knowledge about the parameters after the experimental data is

taken into consideration. For deterministic and simple stochastic models, this information can be obtained

directly from the Fisher information matrix [249, 250]. Compared with structural identifiability, which is

a property of the model, practical identifiability is more nuanced and additionally dependent upon prior

knowledge; the experimental data; and consequentially, the experiment itself [189, 241]. For example,

should the model and data provide no more information about a parameter than that already established in
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previous studies, the parameter may be classified as practically non-identifiable from the data and model

in question. For this reason, we take a Bayesian approach to parameter estimation and encode existing

knowledge about the parameters in a prior distribution. Therefore, we classify a model parameter as practically

non-identifiable if it cannot be uniquely established within a level of confidence not already established from

prior knowledge [24,189]. This question of practical identifiability has not yet been demonstrated for SDE

models in systems biology.

Computational inference for stochastic models is a significant challenge [183]. Unlike approaches to

parameter estimation for deterministic models, the likelihood function for a realistic stochastic model is,

generally, intractable [183]. Techniques based on approximations, such as a linear noise approximation [249]

or approximate Bayesian computation [70,251–255], are available for SDEs but are, naturally, approximations.

Pseudo-marginal methods [256,257], developed relatively recently, are computationally costly, but provide an

unbiased estimate of the true likelihood function for partially observed time-series described by non-linear

stochastic models. In this chapter, we utilise a pseudo-marginal MCMC approach, where we estimate the

likelihood with a particle filter, which we refer to as particle MCMC [258–260]. There are many excellent

articles and reviews of inference for stochastic models in systems biology [70,183,260,261], so we do not focus

on the details our out implementation here. Despite the established importance of identifiability, it is all too

common in parts of the inference literature to draw the standard assumption that the model parameters

are identifiable: we note that all the aforementioned review articles make no mention of identifiability. The

computational cost of inference for stochastic models, in itself, motivates us to consider identifiability. For

example, identifiability can guide model selection: if both a deterministic and stochastic description of a

process are practically non-identifiable, the cheaper deterministic model may, in some cases, be adequate

for parameter estimation. Where structural non-identifiability is detected, practical non-identifiability

necessarily follows and does not need to be established separately.

The focus of this chapter is to provide an accessible guide to establishing identifiability in SDE models in

biology. To do this, we analyse identifiability in SDE descriptions of four case studymodels, shown in figure 4.2.

The simplest model we consider is a birth-death process (figure 4.2a) that is routinely used to describe cell

proliferation and death in a range of in vitro and in vivo biological systems, such as that shown in figure 4.1a. We

demonstrate that, from cell count-data, the cell proliferation and death rates are structurally non-identifiable

for a routinely employed ODEmodel, but can be identified for an SDEmodel. Next, we consider twomulti-state

models where only partial observations of the system are available. First, a two-pool model (figure 4.2b) that

can describe, for example, the decay of human cholesterol whilst it transfers between two organs [195, 262].

We assume that data from the two-pool model comprises several time-series observations of the substance

concentration in a single pool. Second, an epidemic model (figure 4.2c) [263–265] describes individuals

infected due to interactions between susceptible and infectious individuals. We model a testing procedure

such that unknown proportions of the number of infectious and recovered individuals are observed, and

inferences are drawn from a single time-series. The last model we consider is a non-linear SDE model for

insulin regulation by V-cells (figure 4.2d) [266, 267]. This type of model can describe the volatility associated

with data from a continuous glucose monitoring device (figure 4.1f) [229]. The equivalent ODE description of

the V-insulin-glucose circuit is not structurally or practically identifiable [268], and we demonstrate how the

analysis for the ODE description can inform a parameter transformation to aid identifiability analysis for the

SDE model.

49



4 Identifiability analysis for stochastic differential equation models in systems biology

(a)
Birth-death process

(b)
Two-pool model

(c)
Epidemic model

(d) β-insulin-glucose
circuit

J Figure 4.2. We demonstrate identifiability in
an SDE CLE description of four models: (0) a
birth-death process; (1) a two-pool model; (2)
an epidemic model; and (3) a V-insulin-glucose
circuit. The coloured boxes indicate the observed
quantity, which is coupled to a noisy observation
process.

We demonstrate two main approaches to assess identifiability in SDE models. First, we assess structural

identifiability through a surrogate model, taken to be a system of ODEs that describe the time-evolution of

the statistical moments of the SDE [269–273]. This allows us to apply the established open-source structural

identifiability software package DAISY (written for the freeware REDUCE software) to the SDEmodels through

the moment equations. We repeat this analysis in the more recent open-source software package GenSSI2

[25,274], written for MATLAB, which can bemore efficient for non-linear systems. We interpret these results as

a proxy for identifiability of the SDE model itself. While this approach is not always conclusive, it can provide

a rapid preliminary screening tool and allows direct comparison of identifiability for an SDE model, which

contains information about the mean, variance and higher moments; to identifiability for a corresponding

ODE model that is typically assumed to describe an approximation of the mean. We only apply this approach

where an exact system of moment equations can be derived, which occurs when the reaction rates are

polynomial. For more complex stochastic models containing terms such as Hill functions, as found in the

V-insulin-glucose circuit model, an exact system of moment equations cannot be derived, we do not apply

the moment dynamics approach in this case. Second, we assess practical identifiability using the full SDE

models through MCMC [189,210], first demonstrating how practical identifiability can be cheaply established

from a naïve proposal kernel. To compute credible intervals for each parameter, and visualise potential

correlations between parameters, we produce results using a tuned proposal kernel where we can be more

certain of convergence.

The outline of this chapter is as follows. In Section 4.2, we establish the types of SDEmodels and observation

processes that we consider, and then outline the techniques used to generate synthetic data. Following this,

in Section 4.2.2, we summarise moment closure techniques for SDEs and describe how we implement the

software tools DAISY and GenSSI to assess for structural identifiability. Next, in Section 4.2.3, we provide

a brief overview of our implementation of the particle MCMC algorithm. Full details of particle MCMC for

SDE models can be found in the existing literature [260,261] and as supporting material. In Section 4.3, we

use these tools to assess identifiability using an SDE description of four models. In Sections 4.4 and 4.5, we

discuss our results and provide an outlook on the future of identifiability for stochastic models in biology.

Specifically, we discuss alternative approaches, including those based upon approximations, to perform

practical identifiability analysis in light of the computational challenges of working with SDE models. To aid

in the accessibility of the techniques we review, we provide our MCMC code in the form of a module1 for the
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open-source, high-performance Julia programming language [275].

4.2 Mathematical techniques

In this section, we outline the mathematical and statistical techniques we use to perform identifiability

analysis. Full details of all algorithms used are provided as supporting material.

4.2.1 Stochastic models in biology

We consider Itô SDE state space models of the form

dXC = " (XC , C ;) ) dC + 2 (XC , C ;) ) dWC , (4.1)

YC ∼ 6(YC |XC , C ;) ) . (4.2)

Here, the state is described by XC = (-1,C , -2,C , . . . , -#,C ) ∈ ℝ# , WC ∈ ℝ& is a &-dimensional Wiener

process with independent components; " (·) maps to an # -dimensional vector; and 2 (·) maps to an # ×&
matrix. The observables, YC = (.1,C , .2,C , . . . , .",C ) ∈ ℝ" , are connected to the state variables according

to an observation process with probability density function 6(YC |XC , C ;) ). We consider several forms of
observation function, including partial observations of the state with both additive and multiplicative

Gaussian noise with unknown variance f2
err. In equations (C.2) and (4.2), ) is a vector of unknown parameters

to be determined through inference. In this chapter, all variables and parameters are dimensionless.

The focus of this chapter is on Itô SDE models that are formulated through the CLE description of a system

of bio-chemical reactions [215, 276, 277]. Therefore, additional information about rate parameters is encoded

in the noise of the process. The first three models we consider (figure 4.2a–c) can be expressed directly as a

network of reactions. As the V-insulin-glucose circuit model (figure 4.2d) involves state variables modelled

as concentrations, not individual counts, we derive a stochastic description from the CLE but scale the noise

term in proportion to the concentration of each species.

In summary, a bio-chemical reaction network comprises # species,-1,-2, . . .,-# , that interact through

& reactions [28, 72, 278]. The population of each species is given by XC = (-1,C , -2,C , . . . , -#,C ) ∈ ℝ# . By the

law of mass action [215, 279], each reaction occurs with a rate described by a propensity function, 0: (XC , C ;) ),
which is equal to the product of the reactants and the rate constant. The net effect of the :th reaction is

described by the stoichiometry .: such that, should reaction : occur in [C, C + dC),

XC+dC = XC + .: . (4.3)

For bio-chemical reaction networks without an explicit time-dependent input, the propensity functions

will be independent of C and the system can be simulated exactly using an event-driven stochastic simulation

algorithm (SSA) [168,279–281]. The principle behind an exact SSA is that reactions can be modelled by an

inhomogeneous Poisson process. The time interval between reactions, ΔC , is exponentially distributed such

that

ΔC ∼ Exp

(
&∑
:=1

0: (XC ;) )
)
. (4.4)

1Code available on Github at https://github.com/ap-browning/SDE-Identifiability
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A single reaction occurs at each time-step; the :th reaction occurs with probability proportional to 0: (XC ;) ).
A typical implementation of the SSA first samples a time-step using equation (4.4); then samples the next

event to occur; and finally updates the state. Full details of our implementation of an SSA are given as

supporting material, and the reader is directed to [278] for a comprehensive review of simulation algorithms

for bio-chemical reaction networks. We generate synthetic data for the first three models, for which the

propensity functions are independent of C , using the SSA. In figure 4.3a–c we show 100 realisations of the SSA

for the birth-death process, two-pool model and epidemic model, respectively.

When the population of each species is large and reactions sufficiently frequent, the dynamics of a bio-

chemical reaction network can be approximated using the CLE [186,276,278]. Such an approximation is widely

applied in systems biology [282,283], and it is often necessary as the SSA quickly becomes computationally

expensive as the populations become large and reactions are frequent enough [284]. The CLE is an Itô SDE of

the form

dXC =
&∑
:=1

.:0: (XC , C ;) )︸                ︷︷                ︸
" (XC ,C ;) )

dC +
&∑
:=1

.:
√
0: (XC , C ;) )d,:,C .︸                          ︷︷                          ︸
2 (XC ,C ;) )dWC

(4.5)

Here WC = (,1,C ,,2,C , . . . ,,&,C ) is a &-dimensional Wiener process with independent components. In
this study, we derive an SDE description for each model using the CLE, and we calibrate this SDE to the

synthetic data to approximate the parameters in each model. For the first three models, where data is

generated using the SSA, not the SDE, this means that identifiability analysis is conducted in such a way

that model misspecification could potentially arise. This pragmatically mirrors experimental data, where

any model (including an ODE and SDE description) is an approximation. The forward simulation for each

SDE is approximated using the Euler-Maruyama algorithm [285], where we apply reflected SDEs to ensure
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positivity [226]. Full details of the numerical algorithm are given as supporting material.

4.2.2 Moment dynamics

To enable the application of established methods for structural identifiability analysis to SDE models, we

formulate a system of ODEs that describe the statistical moments of the random variable XC ∈ ℝ# . We

denote<8182 ...83 (C) as a raw moment of XC , such that [270–272,277]

<8182 ...8# (C) =
〈
#∏
9=1

-
8 9
9,C

〉
, (4.6)

where 〈·〉 indicates the expectation taken with respect to the probability measure of the random variable XC .

Here, � =
∑#
9=1 8 9 is the order of the moment. For example, the first order moments correspond to the mean

of each dimension of XC , the second order moments relate to the variances and covariances, and so forth.

We apply the software packages DAISY [198] and GenSSI2 [274] to establish structural identifiability of

the resultant system of moment equations. The software package takes a system of ODEs describing the state

equations—in our case, the moment equations—in addition to an explicit algebraic relationship between the

observables and the state. We, therefore, provide the moments of the observables, YC , in the noise-free limit,

which we denote

=8182 ...8" (C) = lim
f2
err→0

〈
"∏
9=1

.
8 9
9,C

〉
. (4.7)

In many cases, the observation distribution, 6(YC |XC , C ;) ), will depend upon the unknown parameters, ) , if,
for example, an unknown proportion of the state is observed. This is captured in the structural identifiability

analysis as the equations derived for the observedmoments,=, may depend on) . We providewell commented

input and output obtained using DAISY on Github as supporting material.

An expression for the time derivative of each moment can be found using Itô’s lemma (supplementary

material). When each component of 2)2 is an analytic function, which occurs when all the propensity

functions in the bio-chemical reaction network are also analytic functions, we obtain [286]

d<8182 ...8# (C)
dC

=

〈
" (XC , C ;) ) · ∇

(
#∏
9=1

-
8 9
9,C

)
+ 1

2
Tr

(
2) (XC , C ;) )H

(
#∏
9=1

-
8 9
9

)
2 (XC , C ;) )

) 〉
,

(4.8)

where H(·) denotes the # × # Hessian matrix of its argument and ∇ =

(
m
m-1
, m
m-2
, . . . , m

m-#

)
. In the case

that # = 1, equation (4.8) reduces to

d<8 (C)
dC

=

〈
8- 8−1
C U (-C , C ;) ) + 8 (8 − 1)- 8−2

C

f2(-C , C ;) )
2

〉
,

where U and f are now scalar functions.

When each component of " and 2)2 are polynomials in XC , the expectation in equation (4.8) can be

carried through to replace powers of XC with appropriate moments. This, in general, provides an infinite
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system ODEs that exactly describe the time evolution of the moments. In practice, we consider a finite system

of moments, up to and including moments of order � . We express this now finite system of ODEs as

dm≤� (C)
dC

= f≤� (m≤� (C),m>� (C)), (4.9)

where m≤� (C) is a vector containing all the moments up to, and including, order � ; and m>� (C) is a vector
containing all moments of order � + 1 and above. In the case that f≤� (·) depends only on moments up to
order � , the system is said to be closed at order � . That is, the infinite system of equations can be truncated at

order � and solved directly to obtain an exact solution for the moments. This is the case if " and 2)2 are

linear in XC , which occurs in SDEs derived from the CLE if each propensity is linear in XC , as is the case for

the first two models we consider (figure 4.2a,b).

For more complicated models, including the epidemic model (figure 4.2c), the system will not, in general,

be closed. We must, therefore, apply amoment closure approximation to express moments of order higher

than � in terms of lower order moments [205]. Moment closures typically make an a priori assumption about

the distribution of the random variable XC . For example, assuming components of XC are independent or

normally distributed is a common approach. In this chapter, we consider three common moment closures:

(1) a mean-field closure [271]; (2) a pairwise closure [271]; and (3) a Gaussian closure [270].

The mean-field closure we consider makes the approximation

<8182 ...8# ≈
#∏
9=1

〈
-
8 9
9,C

〉
. (4.10)

This closure is derived from the assumption that components of XC are weakly correlated [271] and is also

referred to as the covariance closure [287]. In the case a closure is drawn at � = 1, the mean-field closure

often corresponds to an ODE description of the process. For our analysis of the epidemic model, we find

that the mean-field closure behaves poorly, suggesting that an assumption that the components of XC are

independent may not be appropriate (Appendix C, figure C.1).

While the mean-field closure is commonly drawn at order � = 1, it is more common for the pair-

approximation closure to be applied for second and higher order closures [271]. The pair-approximation

closure assumes that a third order moment can be expressed as

〈
-0,C-1,C-2,C

〉
≈

〈
-0,C-1,C

〉 〈
-1,C-2,C

〉〈
-1,C

〉 ,
〈
-1,C

〉
≠ 0. (4.11)

The Gaussian closure approximates higher order moments to match those of the normal distribution,

and gives a closure in terms of the mean and covariances. Higher order moments can be approximated

with [270, 288]

<̂8182 ...8# (C) ≈
{

0, if � =
∑#
9=1 8 9 is odd,∑

B

∏
( 9,:) ∈�B Cov(- 9,C-:,C ), otherwise.

(4.12)

Here, <̂8182 ...8# (C) =
〈∏#

9=1(- 9,C −
〈
- 9,C

〉
)8 9

〉
denotes a central moment; Cov(- 9,C-:,C ) denotes the
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covariance between- 9,C and-:,C ; and �B are the sets formed by partitioning the set

{1, 1, . . . , 1︸     ︷︷     ︸
81

, . . . , # , # , . . . , #︸         ︷︷         ︸
8#

}

into unordered pairs, where B is the number of sets. The raw moments,<8182 ...8# (C) can then be solved
from the expressions for the central moments obtained from equation (4.12). For a practical example of the

Gaussian closure, see [270].

Other choices of moment closure are routinely used in systems biology, such as those based upon a

multivariate lognormal distribution [270] or a derivative matching scheme [289]. However, more complex

closures add further complexity to the moment equations, which is a significant computational disadvantage

for automated assessment of structural identifiability in software packages such as DAISY and GenSSI2.

Furthermore, an approximate system of moment equations (which must then also be closed) could be obtained

by applying a series expansion approximation, or an approximation similar to the mean-field closure, to

systems containing non-polynomial analytic functions; this is the case for the fourth model we consider

(figure 4.2d). We do not consider the moment dynamics approach for such non-polynomial models in this

chapter as there are difficulties in determining how approximations of different types of non-linearities

impinge on identifiability. This is beyond the scope of this chapter.

4.2.3 Inference with MCMC

We take a Bayesian approach to parameter estimation to update our knowledge about the parameters, ) ,

from a set of observations, D, using the likelihood function,L, such that [290]

? () |D) ∝ L(D|) )? () ) . (4.13)

Here, ? () ) is the prior distribution, and represents our knowledge of) before consideration of the observations
D. The prior distribution may encode information from, for example, previous experiments, established

knowledge, or physical restrictions on the parameters. In the context of practical identifiability, our goal is to

significantly increase our understanding of ) from our prior knowledge. We specify ? () ) to be a truncated
uniform distribution: all parameters within a specified region of realistic parameter values (the support)

are considered equally likely [189]. An advantage of a uniform prior in the context of identifiability is that

the posterior corresponds to the truncated likelihood function, and, therefore, high density regions of the

posterior correspond to regions of high likelihood. Further, should an improper, unbounded uniform prior

be considered, the posterior will be directly proportional to the likelihood. Thus, our methodology can also

be applied to assess parameter identifiability using a purely likelihood-based approach.

We use an MCMC technique, based on the Metropolis-Hastings algorithm, to sample from the posterior

distribution [290–293]. The principle behind MCMC in Bayesian inference is to construct a Markov chain,

{)<}<≥0, with a stationary distribution equal to ? () |D). We make a standard choice to initiate the chain
from a prior sample, ) 0 ∼ ? () ). At each iteration of the algorithm, a new state is proposed, ) ∗ ∼ @() ∗ |)<),
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where @ is termed the proposal kernel. The proposal is accepted, )<+1 ← ) ∗, with probability

UMH() ∗, )<) = min
(
1,
@()< |) ∗)? () ∗)L(D|) ∗)
@() ∗ |)<)? ()<)L(D|)<)

)
, (4.14)

else the proposal is rejected, )<+1 ← )< . Full details of our implementation are provided in Appendix C. In

this chapter, we use a multivariate normal proposal so that @()< |) ∗) = @() ∗ |)<). An interpretation of the
Metropolis choice of acceptance probability, equation (4.14), where the proposal is normal and, therefore,

symmetric, is that proposals that increase the posterior density are always accepted, whereas proposals that

decrease the posterior density are accepted with some reduced probability [189].

We refer to the first set of MCMC chains for each problem as pilot chains [294]. The proposal distribution for

each pilot chain is set to be a multivariate normal distribution with independent components and variances

equal to one-tenth the corresponding prior variance for each parameter, a typical choice. We always produce

four pilot chains, each of 10,000 iterations, which we find to be sufficient to indicate identifiability for our

models. These pilot chains are then used to tune the MCMC proposal kernel [295]. We then produce four

tuned chains, which can be reliably used to estimate credible intervals and other features of the posterior

distribution. The proposal distribution for each tuned chain is chosen to be multivariate normal, with

covariance given by [294]

�opt =
2.382

dim() ) �̂. (4.15)

Here, dim() ) is the number of unknown parameters, and �̂ is the covariance matrix for the pooled samples
from the four pilot chains (a total of 28,000 samples after 3,000 samples are discarded as burn-in from each

pilot chain). To assess convergence, we calculate the commonly used '̂ [296] and =eff (effective sample

size) [290] diagnostics. In summary, '̂ measures the ratio of between-chain and within-chain variance; and

=eff measures the effective number of independent samples drawn from the posterior. To draw reliable

inferences, Gelman et al. [290] suggest ensuring that '̂ < 1.1. Full details of these convergence statistics are

available in [290].

The primary challenge with performing inference for SDE models, with time-series data, is computing the

likelihood function. In this chapter, we consider synthetic data from � independent experiments, each with

#� time-series observations. The data are denoted

D =
{
{C=,8 , Y=,8obs}

#�
==1

}�
8=1, (4.16)

and correspond to the likelihood function

L(D|) ) =
�∏
8=1

#�∏
==1

? (Y=,8obs |Y
1,8
obs, . . . , Y

=−1,8
obs ). (4.17)

In most cases, the likelihood for noisy time-series data modelled by an SDE will be intractable [260]. This

contrasts with data modelled by a deterministic model, which are typically assumed to be independent

and normally distributed about the model output [189]. Likelihood free methods, such as ABC [70,254] and

pseudo-marginal approaches [257], are routinely used in systems biology to calibrate complex stochastic

models to experimental data by approximating equation (4.17). In this study, we apply a pseudo-marginal
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approach based on a bootstrap particle filter to approximate the likelihood and calibrate each SDE model to

synthetic experimental data [260]. In summary, the bootstrap particle filter approximates equation (4.17) by

L̂(D|) ) =
�∏
8=1

#�∏
==1

1
'

'∑
A=1

6(Y=,8obs |X
8,A
C=
, C ;) ) . (4.18)

Here, the observation probability density,6 (equation (4.2)), is averaged over' samples from the SDE, X8,AC= |X
8,A
C=−1

to approximate the likelihood. The bootstrap particle filter then resamples from the set of weighted samples,

{(6(Y=,8obs |X
8,A
C=
), X8,AC= )}

'
A=1, at each time-step to form the starting locations for each SDE sample to sample

forward to C=+1. This process is repeated for each independent experiment, and the result is an unbiased

Monte Carlo estimate of the likelihood function, L̂(D|) ), that replacesL in the Metropolis acceptance

probability (equation (4.14)). Full details of the particle MCMC algorithm, including an implementation for

an ODE model used in one case study, are provided in Appendix C, and for further information the reader is

directed to [260, 261].

4.3 Case studies

Using the moment equations and MCMC, we provide a practical guide for assessing parameter identifiability

in SDE CLE models through four case studies. We generate synthetic data for each model using the SSA

when the propensity functions are time-independent (the birth-death process, two-pool model and epidemic

model), and the corresponding CLE when the propensity functions are time-dependent (the V-insulin-glucose

circuit). In practice, we would first assess practical identifiability using the experimental data available.

However, working with synthetic data provides the means to evaluate the effect of different experiment

designs, and observation protocols, on practical identifiability. Our focus is on data comprising partial

observations of the process that realistically captures potential experimental data.

4.3.1 Birth-death process

The first model we consider is a birth-death process (figure 4.2a). The birth-death processes can describe,

for example, the growth of a well-mixed cell population where individuals proliferate and die according

to rates \1 and \2, respectively. We consider practical identifiability for synthetic data comprising noisy

measurements of the cell count at 10 equally spaced times in 10 identically prepared experiments. Such data

are typical for in vitro cell proliferation experiments [185,297], an example of which is shown in figure 4.1a–d.

Model formulation and moment equations

The birth-death process can be expressed as the bio-chemical reaction network

-
\1→ 2-︸    ︷︷    ︸
birth

, -
\2→ ∅︸ ︷︷ ︸

death

,

with stoichiometries a1 = 1 and a2 = −1; and propensities 01(-C ) = \1-C and 02(-C ) = \2-C . Here, we

denote-C as the number of individuals in the population. The observed number of individuals,.C , is described
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4 Identifiability analysis for stochastic differential equation models in systems biology

by the noise model

.C = bC-C , bC ∼N(1, f2
err). (4.19)

Here, we consider a noise process that scales with the total population, that is, multiplicative Gaussian noise.

We show 100 realisations of the SSA for the birth-death process in figure 4.3a, and the synthetic data used for

practical identifiability analysis in figure 4.3e. The data are generated using the initial condition-0 = 50 and

target parameter values \1 = 0.2, \2 = 0.1 and ferr = 0.05. Here, ferr � 1, which ensures that .C remains

positive.

The CLE for the birth-death process is

d-C = (\1 − \2)-C dC +
√
(\1 + \2)-C d,C , (4.20)

and the first and second order moment equations are

d<1

dC
= (\1 − \2)<1,

d<2

dC
= 2(\1 − \2)<2 + (\1 + \2)<1.

(4.21)

The moment equations for the SDE description of the birth-death model above are identical to the moment

equations for the discrete Markov model that we simulate using the SSA [41]. The moments of the observable

(in the noise-free limit) are given to second order by =1 =<1 and =2 =<2. As U (·) and f2(·) are linear in-C ,
the moment equations of the birth-death process are closed at every order and so equations (4.21) are exact.

Further, we note that the common mean-field model for the birth-death process,

d-̃
dC

= (\1 − \2)-̃ , (4.22)

corresponds to the first moment, and describes the average behaviour of-C . The solution to equation (4.22)

is

-̃ (C) = -̃ (0) exp
{
(\1 − \2)C

}
. (4.23)

Here, the population, -̃ (C), undergoes exponential growth with a net-growth rate of \1 − \2. Therefore,

intuitively, it is not possible to identify \1 and \2 if only average growth behaviour is observed [186].

Structural identi�ability

We first assess structural identifiability of the moment equations in DAISY [198]. If only the first moment, =1,

is observed, the system is structurally non-identifiable, meaning the model parameters cannot be uniquely

estimated with any amount of data. However, the system becomes structurally identifiable if =2 is also

observed. As the moment equations are closed at every order, and therefore exact, this analysis indicates that

the ODE model (equation (4.22), corresponding to the first moment equation) is structurally non-identifiable,

while the SDE model is structurally identifiable.

These structural identifiability results can be intuitively understood through re-parameterisation [200].

The first moment equation (or the ODE model) can be re-parameterised with \̃1 = \1 − \2 where \̃1 is

the sole parameter in the model. Therefore, for a fixed \̃1, all values on the line \1 = \̃1 + \2 produce
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N Figure 4.4. MCMC results for (0–8) an ODE and ( 9–A ) an SDE description of the birth-death process. (0,2 ,5 ) and ( 9 ,; ,>) show trace plots for
the ODE and SDE models, respectively. Kernel density estimates of the posterior for each parameter ((1,4 ,8) and (: ,=,A )), and bivariate scatter
plots ((3 ,6,ℎ) and (<,? ,@)), are produced by thinning the MCMC chains by using every 100th sample from four independent MCMC chains,
after burn-in.

indistinguishable behaviour in the first moment,<1, and hence in the observation, =1. On the other hand,

when re-parameterised the second moment equation contains a second, linearly independent, parameter

\̃2 = \1 + \2. For the birth-death process, the second moment provides enough additional information to

uniquely identify both parameters \1 and \2, provided enough data is available. Thus, the birth-death process

is structurally identifiable from the first two moments.

Practical identi�ability

We assess practical identifiability of the parameter vector ) = (\1, \2, ferr) for the ODE and SDE models using
MCMC. We place independent uniform priors on each parameter so that ? (\1) = ? (\2) = U(0, 0.6) and
? (ferr) = U(0, 0.3). If prior knowledge about the population (i.e., the cell line) is available, perhaps based
upon previously conducted experiments, this can be incorporated into the analysis through an informative

prior. For example, upper bounds that define reasonable values for biological parameters are routinely

applied in this context [27].

In figure 4.4a–i, we show MCMC results for the birth-death process using the ODE model. Based on the

structural identifiability results, we expect the likelihood (and for a uniform prior, the posterior density)

to be constant along the identifiable parameter combination \̃1 = \1 − \2, and we see this in figure 4.4d.

These results also suggest that, should one of \1 or \2 be known (for example, if the cells are treated with

an anti-proliferative drug that enforces \2 = 0 [298]) the other be identifiable. However, lower and upper

bounds for \1 and \2, respectively, are able to be established as a direct consequence of the prior assumption

that all parameters are strictly positive. Examination of univariate credible intervals, shown in table 4.1,

reveals that each parameter cannot individually be identified within 3–4 orders of magnitude, a hallmark of

non-identifiability [189]. We note that ferr is practically identifiable (figure 4.4i, 95% CrI: (0.1448,0.1907))
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ODE SDE

True 95% CrI '̂ (eff 95% CrI '̂ (eff

\1 0.2 (0.1276,0.5891) 1.00056 2292 (0.1609,0.4059) 1.01068 104

\2 0.1 (0.0130,0.4744) 1.00056 2300 (0.0477,0.3016) 1.01107 107

ferr 0.05 (0.1448,0.1907) 1.00242 2254 (0.0270,0.0667) 1.00079 364

N Table 4.1. 95% credible intervals, and diagnostics, for the parameter estimates for the birth-death process. Credible
intervals are approximated using the MCMC quantiles after burn-in.

from the ODE model, however it will always be overestimated as the observation model for the ODE model

must also account for the intrinsic noise of the process.

We repeat the analysis for the SDE model, results of which are shown in figure 4.4j–r. For the prior support

chosen, both \1 and \2 are practically identifiable, as seen in figure 4.4k,n. Further, 95% credible intervals

identify each parameter within a single order of magnitude (table 4.1). While structural identifiability

analysis revealed that the SDE model is identifiable in the limit of infinite, noise-free data, it is not necessarily

so for data with a realistic signal-to-noise ratio, characterised by the noise model parameter ferr. In our

case, if prior knowledge provided an upper bound for \1 and \2 at, for example, 0.3, conclusions of practical

identifiability may be analogous to those of the ODE model. We see this in table 4.1, where the upper bounds

of the credible intervals for \1 and \2 extend beyond 0.3. This is also evident from both the bivariate scatter

plot (figure 4.4m) and MCMC trace plots (figure 4.4j,l), where posterior samples above 0.3 are regularly drawn

for both \1 and \2. As the SDE explicitly accounts for intrinsic noise, ferr is identifiable with estimates close

to the true value, in contrast to results from the ODE model.

4.3.2 Two-pool model

Next, we consider partial observations of a process governed by a two-pool model, describing the decay of a

substance that is able to transfer between two pools (figure 4.2b). Identifiability of a two-pool model was

first examined in the fundamental study of Bellman and Åström [194] as they introduced the concept of

structural identifiability. The model can represent, for example, human cholesterol distribution dispersed

through two-pools (for example, two organs), where measurements are taken from a tracer in the first

pool [262]. Bellman [194] and later Cobelli [195] show that, for an ODE model, the pool transfer and decay

rates are not structurally identifiable. We consider practical identifiability for synthetic data comprising

noisymeasurements of the first pool at 10 equally spaced time points in five identically prepared experiments.

Although measurements of the second pool are not taken, we assume, for demonstration purposes, that the

initial concentration in each pool is zero before a known amount is introduced to the first pool, thus the full

initial condition is known. In practice, the initial condition may also depend on a set of unknown parameters,

and we focus on this with the epidemic model.

Model formulation and moment equations

The two-pool model can be expressed as the bio-chemical reaction network

-1
\1→ ∅, -2

\2→ ∅, -1
\3


\4

-2,
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with stoichiometries .1 = (−1, 0)) , .2 = (0,−1)) , .3 = (−1, 1)) and .4 = (1,−1)) ; and propensities
01(XC ) = \1-1, 02(XC ) = \2-2, 03(XC ) = \3-1 and 04(XC ) = \4-2. Here, we denote XC = (-1,C , -2,C )) as the
concentration of cholesterol in the first and second pools, respectively. The observed concentration,.C , is

described by the noise model

.C = -1,C + bC , bC ∼N(0, f2
err), (4.24)

in which we consider that the data are subject to measurement error in the form of additive Gaussian

noise [172, 258, 299]. We show 100 realisations of the SSA for the two-pool model in figure 4.3b, and the

synthetic data used for practical identifiability analysis in figure 4.3f. The data are generated using the initial

condition X0 = (100, 0)) and target parameter values \1 = 0.1, \2 = 0.2, \3 = 0.2, \4 = 0.5 and ferr = 2.

Here, we note that ferr � -C (figure 4.3c), which ensures.C > 0.

The CLE for the two-pool model is

dXC =

(
\4-2,C − (\1 + \3)-1,C

\3-1,C − (\2 + \4)-2,C

)
dC

+
(
−
√
\1-1,C 0 −

√
\3-1,C

√
\4-2,C

0 −
√
\2-2,C

√
\3-1,C −

√
\4-2,C

)
dWC ,

(4.25)

and the moment equations are given to second order by

d<10

dC
= \4<01 − (\1 + \3)<10,

d<01

dC
= \3<10 − (\2 + \4)<01,

d<20

dC
= \4(<01 + 2<11) + (\1 + \3) (<10 − 2<20),

d<02

dC
= \3(<10 + 2<11) + (\2 + \4) (<01 − 2<02),

d<11

dC
= −(\1 + \2)<11 − \4(<01 −<02 +<11)

− \3(<10 +<11 −<20) .

(4.26)

The moments of the observed cholesterol concentration are given in the noise-free limit by =1 =<10 and

=2 =<20. As with the birth-death process, all elements of" (·) and2 (·)2 (·)) are linear in XC , so themoment

equations are closed at every order and, therefore, exact.

Structural identi�ability

The two-pool model provides an archetypical example of structural non-identifiability in an ODE model

[194, 195]. Unless a restriction is placed on one of the parameters (for example, if decay of the substance

can only occur from the first pool so \2 = 0), the model parameters are structurally non-identifiable: many

parameter combinations give identical behaviour in the ODE model. Therefore, the model parameters cannot

be uniquely determined from any amount of noise-free experimental data if observations are made from

only the first pool.

We assess structural identifiability of an SDE description of the two-pool SDE model using DAISY with
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the system of moment equations up to second order (equation (4.26)). While the ODE model is structurally

non-identifiable, the SDE model is structurally locally identifiable: the parameters identifiable, but non-

uniquely. For the parameter values considered, which are rates and, by definition, positive, DAISY indicates

that the parameters are uniquely identifiable. Therefore, in the limit of infinite, noise-free data, the model

parameters can be determined from an SDE description of the two-pool model.

Practical identi�ability

To assess practical identifiability of the two-pool model, we apply MCMC to infer ) = (\1, \2, \3, \4, ferr).
Initially, independent uniform priors are chosen such that ? (\1) = U(0, 0.5), ? (\2) = U(0, 2), ? (\3) =
U(0, 1), ? (\4) = U(0, 0.5), and ? (ferr) = U(0, 10). The support of each prior is chosen to cover a range of
magnitudes over the target parameter values. Results from four independent pilot chains, each initiated at a

random sample from the prior, are shown in figure 4.5a–f. In figure 4.5a we see that the log-likelihood estimate

rapidly stabilises, indicating that the chain has moved to a high-likelihood region of the parameter space.

Results for ferr and \3 also rapidly stabilise, indicating that these parameters are practically identifiable [189].

Results for the remaining three kinetic rate parameters in figure 4.5c,d,f indicate that \1, \2 and \4 are

practically non-identifiable. In particular, chains for \1 and \2 spend a non-negligible time near zero,

indicating that the model may be indistinguishable (using the available data) from a model where removal

only occurs from a single pool.

We next repeat the analysis using MCMC to infer ) ∗ = (log\1, log\2, log\3, log\4, ferr). Inferring the
logarithm of rate parameters will provide more detailed information about the magnitude of rate parameters

potentially close to zero [260]. This transformation provides an excellent example of why even a uniform prior

is informative, since a uniform prior placed on the linear-scale is not uniform on the log-scale. A uniform

prior on the linear-scale makes parameters of a smaller magnitude less likely than a larger magnitude. The

priors are again chosen to be independent and uniform (on the log-scale), such that ? (log\8) = U(−7, 2)
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True 95% CrI '̂ (eff

\1 0.1 (0.0042,0.1503) 1.0024 510

\2 0.2 (0.0307,1.0699) 1.0014 456

\3 0.2 (0.1356,0.4857) 1.0023 515

\4 0.5 (0.4372,1.9585) 1.0004 741

ferr 2.0 (0.5715,2.8773) 1.0089 409

J Table 4.2. 95% credible intervals, and diagnostics, for
the parameter estimates (on the linear-scale) for the
two-pool model. Credible intervals are approximated
using the MCMC quantiles after burn-in.

for all 8 and ? (ferr) = U(0, 10) as before. The support of each prior is chosen, again, to cover a range of
magnitudes above and below that of the target parameter values. Results in figure 4.5k confirm that \3 is

practically identifiable, while \2 and \4 are practically non-identifiable. From results in figure 4.5l we term

\4 one-sided identifiable: the parameter has an identifiable lower bound, and is distinguishable from zero.

To visualise correlations between inferred parameters, we tune the proposal kernel (equation (4.15)) and

run the MCMC algorithm for 30,000 iterations, results are shown in figure 4.6 and table 4.2. If only the

univariate marginal distributions are considered, all parameters except for \4 may be classified as practically

identifiable. However, our analysis shows that \1 and \2 are distinguishable only within a large range of

magnitudes. A strong correlation is seen between \1 and \2, indicating that the total substance exit rate,

\1 + \2, may be practically identifiable. If one of \1 or \2 were known in advance, perhaps based on past

experimental knowledge, the other may become practically identifiable. Further, results from the tuned

chains verify that \3 is practically identifiable (95% CrI (0.1356,0.4857)) and \4 is distinguishable from zero.

4.3.3 Epidemic model

Here, we consider a four-compartment epidemic model — the SEIR model [263–265, 300] (figure 4.2c). In

this model, susceptible individuals, ( , are infected due to interactions with infectious individuals, � , and

undergo an unknown period of time during which they have been exposed, �, but are not themselves

infectious. Infectious individuals either recover or are removed from the total population, '. A noisy

unknown proportion, b , with mean `obs, of the number of infectious and recovered individuals is monitored.

This captures a testing regime where not all infectious or recovered individuals are tested. We supplement

these results by considering a scenario where the same unknown proportion of the exposed individuals is

also monitored during the early part of the epidemic.

The kind of data available for the epidemic model differs significantly from that for the experiment-based

models we have considered thus far: we are interested in a practical identifiability problem where data from

only a single time-series is available, which mirrors data available from an actual epidemic [301]. We first

consider practical identifiability using data from the early part of the epidemic, before the number of cases

is observed to decrease. Next, these results are compared to a case where data further through the course of

the epidemic is considered (figure 4.3g). Initially, 10 infected individuals and 10 recovered individuals are

detected. For simplicity we assume there is no noise in these initial observations, so the number of infected

and recovered individuals is given by 10/`obs. An unknown number of individuals, �0, are initially exposed.

In our analysis, we assume that �0 is not of direct interest, and we class it a nuisance parameter.
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N Figure 4.6. Tuned MCMC results for the two-pool model with a parameters on the linear-scale. The left-most column
shows an MCMC trace from a single chain. Kernel density estimates of the marginal posterior for each parameter
and bivariate scatter plots are produced using every 300th sample from four independent MCMC chains, after burn-in.
The autocorrelation function for a single chain is shown in (2), indicating that every 300th sample is approximately
independent.
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Model formulation and moment equations

The SEIR model can be represented by the following bio-chemical reactions

(
\1�→ �, �

\2→ � , �
\3→ ',

with stoichiometries.1 = (−1, 1, 0, 0)) , .2 = (0,−1, 1, 0)) and.3 = (0, 0,−1, 1)) ; and propensities 01(XC ) =
\1(C �C , 02(XC ) = \2�C and 03(XC ) = \3�C . Here, we denote XC = ((C , �C , �C , 'C )) as the number of individuals
in each compartment. Two observations are made,

.1,C = b1,C �C , b1,C ∼N(`obs, f2
err), (4.27)

.2,C = b2,C'C , b2,C ∼N(`obs, f2
err) . (4.28)

Here,.1,C and.2,C describe the observednumber of infected individuals and recovered individuals, respectively.

We further assume that `obs, the average observed proportion; and ferr, the observation error, are unknown

and must be estimated. We show 100 realisations of the SSA for the epidemic model in figure 4.3c, and

synthetic data used for practical identifiability analysis in figure 4.3g. The data are generated using the initial

condition X0 = (500 − �0, �0, 10/`obs, 10/`obs)) and target parameter values \1 = 0.01, \2 = 0.2, \3 = 0.1,

�0 = 20, `obs = 0.5 and ferr = 0.05. Here, we note that ferr � `obs, ensuring that .1,C and .2,C remain

positive.

The moment equations differ from the previous two models considered in that they are not closed.

Therefore, the first order moment equations are not equivalent to those for the corresponding ODE model

[190], unless a mean-field closure is drawn at first order. To make progress, we close the moment equations

after second order to form an approximate system of moment equations for the first two moments. We

give the system of 14 moment equations, under all three moment closures considered, in Appendix C. The

moments of the observation variables are given in the noise-free limit by

=8 9 (C) = `8+9obs<008 9 (C), 8 + 9 ≤ 2. (4.29)

In Appendix C, we produce numerical solutions to the moment equations for the epidemic model for

each closure considered (figure C.1). All closures predict visually identical behaviour at first order, and the

pair-approximation and Gaussian closures are in agreement at second order. For the target parameters we

consider, the mean-field closure does not agree at second order with the more advanced closures. Whereas a

numerical solution to the moment equations for the pair-approximation and Gaussian closures is readily

obtainable from a standard solver in Julia [302], the mean-field closure required a positivity-preserving

Patankar-type method [303] to avoid blow up.

Structural identi�ability

We assess structural identifiability of the approximate system of moment equations in DAISY and GenSSI2,

results are shown in table 4.3. The ODEmodel, equivalent to amean-field closure (equation (4.10)) drawn after

the first moment, is structurally non-identifiable. The second-order systems, for all closures, are structurally

identifiable (table 4.3). As the second-order systems are approximate, this analysis is not conclusive for the
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Model Structure identifiability
Runtime

DAISY GenSSI2

ODE Non-Identifiable 5 seconds 5 seconds

SDE (mean-field closure) Identifiable 5 minutes 2 seconds

SDE (pair-wise closure) Identifiable 16 hours 2 seconds

SDE (Gaussian closure) Identifiable 7 hours 2 seconds

N Table 4.3. Structural identifiability of the partially observed SEIR model assessed in DAISY and GenSSI2. Structural
identifiability of the SDE is assessed using each closure method for third and higher order moments. Note that the
ODE model is equivalent to the SDE model with a mean-field closure for second and higher order moments. Runtimes
correspond to a 3.7GHz quad-core i7 desktop machine running Windows 10.

SDE. However, we can conclude that if the mean and variance of the epidemic model (the first two moments)

are modelled using the system of moment equations, and data is available accordingly, the parameters

are identifiable in the limit of infinite, noise-free data. We highlight the computational cost in DAISY of

introducing complexity into the moment equations through the closure methods. The pair-wise closure,

equation (4.11), which introduces a quotient, and the Gaussian closure, equation (4.12), which introduces a

cubic, take significantly longer using DAISY to assess than the mean-field closure, equation (4.10), yet give

the same result. However, unlike MCMC, we note that structural identifiability results are deterministic, and

independent of user choices such as prior, number of particles, and generated or real synthetic data.

Practical identi�ability

We assess practical identifiability of the epidemic model using MCMC to infer ) = (\1, \2, \3, �0, `obs, ferr).
Independent uniform priors are placed on each parameter so that ? (\1) = U(0, 0.1), ? (\2) = U(0, 1),
? (\3) = U(0, 0.5), ? (�0) = U(0, 20), ? (`obs) = U(0.2, 1) and ? (ferr) = U(0, 0.2). Results are shown in
figure 4.7, where we initiate each chain at the same location for all forms of data we consider.

First, we assess identifiability when only early-time data is available. The log-likelihood estimate rapidly

stabilises (figure 4.7a), indicating that the chains have moved to a high-likelihood region of the parameter

space [189]. Results for \3, the recovery rate, also stabilise, indicating that \3 is structurally identifiable.

Eventually, we see the estimate for \2 stabilises in all chains, however they under-estimate the target value,

although proposals equal to and greater than the target value \2 = 0.2 are occasionally accepted. To

compensate, the estimate of \1 stabilises, and covers a region an order of magnitude greater than the target

(\1 = 0.01). Therefore, although \1 is practically identifiable to a large, but finite, range of values, we classify

\1 as non-identifiable from the short-time data. Estimates for �0 and `obs in figure 4.7m,p do not stabilise,

and are practically non-identifiable.

Next, we consider a scenario where long-time data are available, such that the number of infected

individuals is observed to eventually decrease. The log-likelihood estimate (figure 4.7b) and chains for all

parameters, except �0, are observed to stabilise, indicating that all parameters of interest are now practically

identifiable. We supplement these results by considering a third scenario, where only early-time data are

available, but the same unknown proportion of the number of exposed individuals is also monitored. As with

the long-time data, all parameters of interest are now practically identifiable.

We perform a posterior predictive check [290] of the epidemic model to compare the model prediction—
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N Figure 4.7. Pilot MCMC trace plots, and log-likelihood estimate, of four chains for the epidemic model. We consider
data comprising noisy observations of an unknown proportion of the number of infected and recovered individuals
during the early part of the epidemic (first column) and throughout the epidemic (second column). We supplement
these results by considering the case we are also able to observe the same unknown proportion of the number of exposed
individuals during the early part of the epidemic (third column). Priors for each parameter are uniform with support
corresponding to the respective axis limits. The target parameter set, used to generate synthetic data, are indicated
(black dashed line).
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N Figure 4.8. Posterior predictive distribution for the epidemic model using (0) short-time data; (1) long-time data;
and (2) short-time data where observations are also made of the number of exposed individuals. In (0,2), the dashed
line indicates the last observation point used for inference. The first 3,000 samples from each pilot chain is discarded
as burn-in. We resample 10,000 parameter combinations (with replacement) and solve the SDE model to estimate
posterior predictive intervals (PIs). Shown are 50% (darker) and 95% (lighted) prediction intervals computed from the
quantiles of the posterior predictive distribution.

which accounts for parameter uncertainty, intrinsic noise and observation error—to the synthetic data used

for inference. We discard the first 3,000 samples from each pilot chain as burn-in, and resample 10,000

parameter combinations for each data type considered. Results in figure 4.8 show that, in all cases, the model

predictions are in agreement with the full time-course (although, we note, the long-time data is only used to

calibrate parameters in figure 4.8b). Results in figure 4.8a, for the short–time data, highlight how practical

non-identifiability affects model predictions. These results predict an epidemic size at C = 30 is noticeably

wider and higher than those for the data types where \1 is practically identifiable. Further, the lower 95%

credible interval for the observed number of infected individuals reduces much faster than that predicted by

the other data types.

4.3.4 V-insulin-glucose circuit

Finally, we consider a non-linear model of glucose homeostasis, the V-insulin-glucose circuit [266, 267]

(figure 4.2d). Parameterising mathematical models of glucose homeostasis is important for the development

of patient-specific insulin delivery for type 1 diabetics [208]. Time-series data of blood glucose concentration

is available from continuous glucosemonitoring sensors, a critical component of type 1 diabetes management

[209,229], an example of which is shown in figure 4.1f. The model describes the regulation of blood plasma

glucose by insulin secreted by pancreatic V cells. Glucose is introduced into the system through a base

production plus a meal intake,D (C), and decays linearly according to the insulin concentration. Insulin is
secreted by V cells at a rate given by a non-linear Hill function [267]. V cells are produced and decay in a

non-response to the glucose concentration. We consider identifiability for synthetic data comprising noisy

measurements of the V cell and glucose concentrations, but not the insulin concentration. The data consists
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of five independent experiments, each comprising 15 time-series observations following a meal intake. We

only consider inference for two biophysical parameters: \1, the insulin secretion rate; and \2, the insulin

sensitivity. The non-linearities in the model mean that the moment equation approach is not available,

and inference using MCMC is computationally expensive. We demonstrate how structural identifiability

analysis of the corresponding ODE system [26] can guide analysis of the SDE system and alleviate some of the

computational challenges.

Model formulation

We consider a stochastic analogue of the model presented by Karin et al. [267]. Denoting XC = (VC , �C ,�C )) as
the concentrations of V cells, insulin and glucose, respectively, the propensity functions and corresponding

stoichiometries are given by

01(XC , C) = V (C)_+(�C ), .1 = (1, 0, 0)) ,

02(XC , C) = �C_−(�C ), .2 = (−1, 0, 0)) ,

03(XC , C) = \1VCd (�C ), .3 = (0, 1, 0)) ,

04(XC , C) = W�C , .4 = (0,−1, 0)) ,

05(XC , C) = D0, .5 = (0, 0, 1)) ,

06(XC , C) = D (C), .6 = (0, 0, 1)) ,

07(XC , C) = 2�C , .7 = (0, 0,−1)) ,

08(XC , C) = \2�C�C , .8 = (0, 0,−1)) ,

where

_+(�C ) =
`+

1 +
(

8.6
�C

)1.7 , _−(�C ) =
`−

1 +
(
�C

4.8

)8.5 ,

d (�C ) =
�2
C

[2 +�2
C

, D (C) =
{

0.2, C < 50,

0, C ≥ 50.
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Since VC , �C and�C denote the concentrations of each substance, and not the population counts, we scale the

diffusion term in the CLE to represent the relative concentrations of each substance [226]. Denoting #V , #�
and #� the relative concentration of V cells, insulin and glucose, respectively, we write

dXC =
8∑
:=1

.:0: (XC , C ;) )dC + diag
(

1√
#V
,

1
√
#�
,

1
√
#�

)
8∑
:=1

.:
√
0: (XC , C ;) )d,:,C . (4.30)

Two observations are made,

.1,C = VC + b1,C , b1,C ∼N(0, f2
err),

.2,C = �C + b2,C , b2,C ∼N(0, f2
err),

such that .1,C and .2,C are the observed V cell and glucose concentrations, respectively. We show 100

realisations of the SSA for the V-insulin-glucose circuit in figure 4.3d, and the synthetic data used for practical

identifiability analysis in figure 4.3h. The data are generated using the initial condition X0 = (322, 10, 5))

with fixed parameters, `+ = 0.021/(24 × 60), `− = 0.025/(24 × 60), [ = 7.85, W = 0.3,D0 = 1/30, 2 = 10−3,

#V = 1, #� = #� = 20, and target parameters \1 = 0.03, \2 = 0.0005 and ferr = 1 [267]. Here, we note

ferr � VC ,�C (figure 4.3d), which ensures that.1,C and.2,C remain positive.

Parameter transform

Villaverde et al. [304] study structural identifiability of the corresponding ODE model using differential

geometry. In the ODE model, \1 and \2 are structurally non-identifiable, unless the insulin concentration

is also observed or one of these two parameters is known. We demonstrate this using MCMC in figure 4.8a,

where the marginal posterior for (\1, \2) covers a hyperbolic region of the parameter space of equal posterior
density. In the ODE model, the product \1\2 is structurally identifiable. To demonstrate this, we perform

MCMC on the ODE model with transformed variables \̃1 = \1\2 and \̃2 = \1/\2, results shown in figure 4.8b.
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N Figure 4.11. Tuned MCMC results for the V-insulin-glucose circuit in the transformed parameter space.
The left-most column shows an MCMC trace from a single chain. Kernel density estimates of the marginal
posterior for each parameter and bivariate scatter plots are produced using every 100th sample from four
independent MCMC chains, after burn-in. The autocorrelation function for a single chain is shown in (2),
indicating that every 20th sample is approximately independent.

These results also show how inefficient a naïve MCMC proposal can be when correlations between posterior

parameters are non-linear. Structural identifiability analysis [304] indicates that the hyperbolic region

defined by \̃1 = \1\2 (for a fixed \̃1) produces indistinguishable behaviour, corresponding to a flat posterior

when a uniform prior is applied. Despite this, the tail regions in figure 4.8a are rarely sampled, which could

give the impression that the parameters are practically identifiable.

As the propensity functions for the V-insulin-glucose circuit model contain non-polynomial functions,

we cannot produce an exact expression for the moment equations. Therefore, we only study practical

identifiability using MCMC, and do not consider structural identifiability of the SDE for the V-insulin-glucose

circuit using the moment equations. Motivated by the structural identifiability analysis of the ODE model,

we use MCMC to infer ) = (\̃1, \̃2, ferr), where we only consider the transformed variables \̃1 = \1\2 and

\̃2 = \1/\2.

Practical identi�ability

We show MCMC results from four pilot chains in figure 4.10. The log-likelihood estimate rapidly stabilises

(figure 4.10a), as do results for \̃1 andferr (figure 4.10b,d). As with the ODEmodel, \̃1 is practically identifiable,

but \̃2 is not. To visualise possible correlations between inferred parameters, we tune the proposal kernel
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(equation (4.15)) and run the MCMC algorithm for 10,000 iterations. The univariate marginal distributions,

andMCMC trace plots, show that \̃1 (95% CrI: (1.34, 1.67)×10−5) andferr (95% CrI: (0.812,1.049)) are practically

identifiable, whereas \̃2 is not (95% CrI: (8.21,97.79)). No large correlations are seen between the parameters

(d (\̃1, \̃2) = 0.10), and \2 is clearly practically non-identifiable as samples cover the entire range of the prior.

4.4 Discussion

Mathematical models are routinely calibrated to experimental data, with goals ranging from building a

predictive model to quantifying biophysical parameters that cannot be directly measured. Much of the

usefulness of calibratedmodels hinges on an assumption thatmodel parameters are identifiable. Heavily over-

parameterised models, with large numbers of practically non-identifiable parameters, are often referred to as

sloppy in the systems biology literature [231,305–308]. Worryingly, these issues of parameter identifiability can

often go undetected: models with non-identifiable parameters can still match experimental data (figure 4.8),

but may have poor predictive power and provide little or no mechanistic insight [24]. Identifiability analysis

is well-developed for deterministic ODE models, but there is little guidance in the literature to conducting

such analysis for the stochastic models that are often vital for interpreting complex experimental data. In

this chapter, we demonstrate how existing techniques can be applied to assess both structural and practical

identifiability of SDE models in biology.

4.4.1 Moment dynamics approach

We demonstrate how existing ODE identifiability techniques can be applied directly to stochastic problems by

formulating a system of moment equations. In the birth-death process and the two-pool model, the derived

moment equations are closed and, therefore, exactly describe the time-evolution of the moments of the

SDE. In these two case studies we find that the moment equations are structurally identifiable. This implies

structural identifiability of the corresponding SDE model, and parameters can be uniquely estimated in the

limit of infinite, noise-free data. For an SDE model this implies an infinite number of observation-noise free

trajectories of the SDE, since the variability, which relates to higher-order moments, contains information.

While we find that the two-pool model of cholesterol distribution is not practically identifiable, establishing

structural identifiability is useful as it suggests to the practitioner that the observation process (i.e. observe

cholesterol in the first pool) is sufficient, in principle, to fully parameterise the model.

For the epidemicmodel, themoment equations are not closed, so we study structural identifiability through

an approximate system of second-order moment equations. The idea of studying identifiability through

an approximate system was first suggested by Pohjanpalo [233], who studies identifiability of ODE systems

through a power series expansion. The closed system of moment equations suggest the epidemic SDE model

could be structurally identifiable, and these results agree, in our case, with practical identifiability detected

usingMCMC.More research is needed to establish how identifiability is affected when closing, or truncating, a

system of moment equations. For example, if information required to identify model parameters is contained

in third or higher order moments, results suggesting that a model is practically non-identifiable from a

second order closure will not be indicative of non-identifiability in the SDE model. Furthermore, if structural

identifiability differs between moment closures, such a preliminary screening tool needs to be interpreted

with caution. If this were the case, a conclusion of structural identifiability is indicative of the model under a

72



4.4 Discussion

particular closure. Recent work suggests that a finite number of moments often contain the information

required to identify parameters [309], even for a bimodal distribution and if a closure is applied [310].

Due to the computational constraints placed on analysing structural identifiability of non-polynomial ODE

models, we do not attempt to apply themoment dynamics approach to the stochastic V-insulin-glucose circuit

model. However, for many models, a mean-field closure corresponds to an ODE description of the system, and

studying identifiability of this ODE model can aid practical identifiability analysis of the corresponding SDE.

In our case, the corresponding ODE model is structurally non-identifiable due to a hyperbolic relationship

between the two parameters of interest: for a fixed \1\2, model outputs are indistinguishable [304]. The

question of whether an SDE description can provide enough information to practically identify \1 and \2 can

be answered through MCMC, however simple variants of MCMC can struggle when correlations between

parameters are strong and non-linear. Therefore, we work in a transformed parameter space where, for the

ODE model, \̃1 = \1\2 is identifiable but \̃2 is not (figure 4.8). This analysis provides a better sense of whether

the SDE model captures enough information to identify the parameters, and provides more robust results

that are less dependent upon choices made in the MCMC algorithm.

4.4.2 Particle Markov-chain Monte Carlo

We demonstrate practical identifiability by calibrating each model to synthetic data using particle MCMC.

We observe the MCMC chains to stabilise in a region of high posterior density, after which time transitions

produce samples from the posterior distribution [189]. By visualising MCMC trace plots, we see that estimates

of practically identifiable parameters also stabilise, but those of practically non-identifiable parameters do

not. These results also demonstrate that, although estimates made of practically identifiable parameters

are precise (that is, within a reasonable level of confidence), they are not necessarily accurate. For example,

in figure 4.7g, the rate at which exposed individuals become infectious is practically identifiable, but it is

underestimated compared to the target value, which could hint at model misspecification.

Given that particle MCMC is computationally expensive, our implementation of a standard technique to

detect identifiability from pilot chains carries several advantages. First, pilot chains are regularly generated in

the early stages of many inference procedures to establish efficient proposal kernels. Practical identifiability

can, therefore, be established as part of an existing workflow. Second, more sophisticated methods are by

their very nature more difficult to implement and dependent on practitioner choices, which could obscure

results and require more algorithmic experimentation. In comparison, we take an automated approach:

aside from the model and choice of prior, the procedure to perform MCMC for each model we consider is

identical. Once identifiability is established, the computational cost of MCMC can be alleviated to some

extent by adopting a more efficient inference technique. For example, adaptive MCMC [311], sequential

Monte-Carlo [312], multi-level methods [313–315], sub-sampling techniques [316] and model-based proposal

methods [317] provide significant performance improvements over the standard technique we employ.

Further, we expect applying higher-order SDE simulation algorithms, such as a Runge-Kutta method [318], or

considering GPU approaches to particle MCMC [319], to improve performance.

As we calibrate to synthetic data for the purpose of a didactic demonstration, we take a pragmatic approach

by treating the true values as unknown. Hence, we initiate each chain as a random sample from the prior

distribution. This involves a burn-in phase before the MCMC chain settles in an area of high posterior density.

For computationally expensivemodels, such as those found in the cardiacmodelling literature [320], synthetic
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data can be used with pilot chains initiated at the target values. If models have have already been calibrated

to experimental data using, for example, maximum likelihood estimation, the chain can be initiated at the

calibrated values. MCMC then, relatively cheaply, provides information about the posterior distribution

about this point, akin to the Fisher information for models where it can be calculated [201].

MCMC can be applied to detect identifiability for any stochastic model provided an approximation to the

likelihood is available. Recent developments to particle MCMC have seen its adoption for more complicated

SDE models, such as SDE mixed effects models [321]. For systems with relatively small populations, it may be

more appropriate to work directly with an SSA with, for example, a tau-leap method [212,276]. Alternative

approximations to the likelihood, such as those employed by ABC, may be necessary if model complexity

requires; for example, should the model include spatial effects [30]. A major drawback of ABC in the context

of identifiability is that one must typically decide a priori which features of the model and data to match.

Common applications of ABC for SDE models match the mean and variance of system [261] or the mean

square error between simulations and data [322]. Estimating the likelihood directly, as particle MCMC does,

is advantageous when assessing identifiability as it is not clear a priori which features of the data and model

are significant. For example, some systems might contain the information required for identifiability in

higher-order moments or auto-correlations between time-series observations. If ABC is used, a variant that

preserves features of the model distribution might be desirable [323].

4.4.3 Modelling noise

In contrast to many studies of identifiability analysis for ODEs, we do not pre-specify parameters in the

observation distribution. In a deterministic modelling framework, it is common to assume that all the

variability in the data is uncorrelated and sourced from the observation process [27, 201, 324]. Therefore, for

an ODE model, the observation parameters can be reliably estimated using the pooled sample variance. For

inference on the birth-death ODE model (figure 4.4), we see that, because the observation variance must now

also account for intrinsic noise, the identified value of ferr is significantly larger than the target value. For

an ODE model with additive homoscedastic Gaussian noise, the posterior mode (in the case of an improper

uniform prior), maximum likelihood estimate and least-squares estimate are identical and are independent

of the choice of the observed variance. For an SDE model, this is not the case as the intrinsic component of

the noise is also modelled implicitly. Therefore, pre-specifying the observation variance could lead to biased

estimates and obscure parameter identifiability. We account for this by treating the observation distribution

variance as a nuisance parameter that we infer using MCMC, finding it to be identifiable in every case-study

considered.

We have focussed our analysis on SDEs derived through the CLE, where the intrinsic noise can provide

more information about the process. However, for large populations, the information contained in higher-

order moments dissipates: to leading order,
〈
- 2

〉
→ 〈- 〉2 as- → ∞. We see this in the epidemic model

(figure 4.3c), where the variance is small compared to the scale of the mean. This loss of information in

higher-order moments will not be detected by structural identifiability analysis of the moment equations,

which is independent of the relative sizes of each moment. As populations become large, the information

tends towards that obtained from the equivalent ODE system: this is the assumption behind many mean-

field models. There are, however, many other models that contain sources of variability in their own right.

For example, Mummert and Otunuga [216] study identifiability of an epidemic model where the infection
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rate varies according to a white noise process. Other external effects, such as seasonal effects, are often

incorporated into epidemic models [325, 326]. In other systems, extrinsic noise describing, for example, the

environment, forms a core part of the process and is described by an SDE independent of the population

size [53]. Grey-box models use a diffusion term to characterise uncertain physiological effects [218] that

could obscure inference, rather than contain information. Making high-level assumptions about which noise

process contains information can help with some of the computational challenges by formulating hybrid

models containing a mixture of ODEs and SDEs. Particle MCMC carries across, trivially, to any Itô SDE, and

the moment equation approach can be applied provided a system of moments be constructed. We have not

considered identifiability of SDE models containing non-diffusion noise, such as coloured noise or jump noise.

These models lend themselves to different inference techniques, such as forms of rejection sampling [327].

4.4.4 Approaches to computational challenges

The primary computational cost of working with SDE models stems from the need to simulate a suite

of trajectories at each iteration of the particle MCMC algorithm. This cost increases not only with the

dimensionality of the problem (as for deterministicmodels) but alsowith the amount of data, since thenumber

of particles required for an unbiased likelihood estimate increases with the sample size [186,257]. We see this,

in particular, when conducting practical identifiability analysis of the two-pool and V-insulin-glucose models.

These issues have important ramifications for identifiability, as it may not always be feasible to increase the

amount of experimental data to rectify practical non-identifiability. Working with a surrogate model, such

as a system of moment equations, can help alleviate some of these challenges. For example, establishing

structural identifiability—which is requisite for parameter estimation [24]—indicates that the computational

investment is worthwhile. Furthermore, such surrogate models can also form a computationally efficient

alternative for assessing practical identifiability and performing inference [249,310,328], while still capturing

more information than a purely deterministic description. The linear noise approximation (LNA) [329]

captures information about the mean and variance of a process through a linear SDE. Although the LNA

neglects higher order behaviour, a tractable likelihood function allows practical identifiability analysis

directly through the Fisher information matrix (in the frequentist context) or through likelihood-based

MCMC techniques (in the Bayesian context). As there is an extensive body of work analysing inference and

identifiability using the LNA [186,249,330], we do not consider this approach here. However, conclusions of

practical identifiability analysis drawn throughMCMC are independent of whether the likelihood is calculated

analytically (as through the LNA) or estimated through the a particle filter approach.

A large class of high-dimensional stochastic models lend themselves to structural identifiability analysis

through moment equations. For example, CLE descriptions of multi-state ion-channel systems [226] and

cascades with many bimolecular reactions [331], can be analysed in terms of a surrogate model using moment

equations. This approach can be used because the propensity functions are often polynomial. However, the

systems of moment equations are often infinite and require a moment closure approximation to facilitate

this analysis. When a moment closure assumption is required, we find that newer software, such as GenSSI2

in Matlab, is computationally advantageous over DAISY (table 4.3). Further, for larger systems, it may not

be necessary to consider a full system of second-order moments: a closed system that neglects covariances is

also a potentially useful surrogate model.

Many stochastic problems are both computationally expensive to assess using particle MCMC and may
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not directly permit moment dynamics analysis. The V-insulin-glucose model comprises eight reactions and

takes approximately 30 hours to perform 10,000 iterations of a pilot chain2. These issues are magnified by

the quantity of data we consider in this example: five time-series of 15 observations each. Non-polynomial

propensity functions mean that an exact expression for the moment equations cannot be derived, so it

may not be possible to pre-detect structural non-identifiability through the moment dynamics approach.

Fortunately, other approaches, such as those that use polynomial chaos [332], Gaussian processes [333], or the

LNA [249] can provide alternative means of deriving surrogate models. This kind of approximation is already

routine in the field of uncertainty quantification, which has deep connections to identifiability [334, 335]. In

the future, many of these ideas could allow tractable structural and practical identifiability analysis of large

systems of SDEs and, by extension, analysis of spatial problems described by stochastic partial differential

equations (SPDEs).

The computational cost of MCMC, in particular for stochastic models with many parameters, has spurred

the development of alternatives to explore and exploit the geometry of the likelihood near parameter

estimates. The concept of information geometry [307,336] generalises Fisher information and can be applied to

detect identifiability through local information [337], and improve the performance ofMCMC algorithms [338].

For SDE models in particular, variational Bayesian techniques provide an efficient alternative to MCMC for

parameter estimation [339]. In many cases, mathematical models are calibrated to experimental data to

establish the value of a biophysical parameter, not to fully parameterise a model. Profile likelihood [248,340]

is widely applied to assess identifiability in ODE models by maximising out parameters that are not of direct

interest to reduce the dimensionality of the analysis. Since the bootstrap particle filter that we employ

estimates the likelihood function, profile likelihood could be applied to SDE problems.

4.5 Conclusion

It is essential to consider identifiability when performing inference. Yet, there is a scarcity of methods

available for assessing identifiability of the stochastic models that are becoming increasingly important. We

have provided, through this chapter, an introduction to identifiability and a guide for performing identif-

iability analysis of SDE models in systems biology. By formulating a system of moment equations, we show

how existing techniques for structural identifiability analysis of ODE models can be applied directly to SDE

models [24, 26, 194, 195]. Through synthetic data and particle MCMC, we have demonstrated how to establish

practical identifiability for SDE models from data [189, 210].

The analysis we demonstrate is critical for tailoring model complexity to the available data [24]. When a

structurally identifiable model is found to be practically non-identifiable, identifiability analysis can guide

experiment design to discern the quality and quantity of data required to estimate model parameters [341].

On the other hand, models found to be structurally non-identifiable should be re-parameterised, reduced in

complexity, or changed [245,342]. Moving from an ODE to an SDEmodel can often provide enough information

to render an otherwise structurally non-identifiable parameter identifiable: we demonstrate this with the

birth-death process. As increasing computing power facilitates inference of complex stochastic models, we

expect identifiability to become ever more relevant.

2Runtimes for all results produced are available on Github at https://github.com/ap-browning/SDE-Identifiability
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Chapter 5

Reversible signal transmission in an active

mechanical metamaterial
Published 2019 in Proceedings of the Royal Society A.

Mechanical metamaterials are designed to enable unique functionalities, but are typically limited by an initial energy
state and require an independent energy input to function repeatedly. Our study introduces a theoretical active
mechanical metamaterial that incorporates a biological reaction mechanism to overcome this key limitation of passive
metamaterials. Our material allows for reversible mechanical signal transmission, where energy is reintroduced by
the biologically motivated reaction mechanism. By analysing a coarse-grained continuous analogue of the discrete
model, we find that signals can be propagated through the material by a travelling wave. Analysis of the continuum
model provides the region of the parameter space that allows signal transmission, and reveals similarities with the
well-known FitzHugh–Nagumo system. We also find explicit formulae that approximate the effect of the time scale of
the reaction mechanism on the signal transmission speed, which is essential for controlling the material.
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5.1 Introduction

5.1 Introduction

Mechanical metamaterials are artificially constructed and have mechanical properties defined by their

structure [47]. Simple metamaterials consist of a one, two, or three-dimensional array of elements connected

by links [47, 343,344] that may be elastic [7, 345–347], magnetic [348, 349] or electrostatic [345]. Mechanical

metamaterials are highly tuneable [350–352] and by altering the structure of these elements, and the

properties of the links, materials have been developed that selectively transmit signals [48, 49], behave

as logic gates [7, 50] or buckle after the application of external stimulus [343]. There are many recent studies

that experimentally realise simple mechanical metamaterials [49, 346, 353–356]. An advantage of these

designs is that they are often well suited to utilise three-dimensional printing technology [7,344,353,355,357],

however a common theme among existing metamaterials is that they generally require an external source of

energy be provided in order to power their functions [7,358]. Many existing technologies can be thought

of as static or inactive in the sense that they are limited by a fixed initial energy state, and are only able to

respond to a finite number of stimuli before the manual introduction of external energy.

Recent mathematical and experimental work examines properties of a class of one-dimensional bistable

metamaterials [7,345]. These systems comprise elements, each consisting of a mass connected to an external

wall by a set of elastic elements that produce a bistable elastic potential. Individual elements are arranged in

a one-dimensional lattice and interconnected by linear springs (figure 5.1a). These elements may be tuned

so that the elastic potential energy function is asymmetric, resulting in both a high and low potential energy

stable configuration for each element (figure 5.1b). The system can therefore be designed so that an external

stimulus, for example the change of a single node from the high to low potential energy stable state, can

trigger a change in element configuration through the entire lattice [7]. This change is the transmission of a

mechanical signal powered by stored elastic potential energy.

A limitation of this mechanical regime is that the system must receive an external energy input before the

transmission of an additional signal [7, 344]. Stiffness grading has been shown to overcome this limitation by

exploiting a symmetric potential function [344], however these techniques may not allow the propagation of

waves in systems with nonzero damping. The material in its current state is reset by manually moving each

element back into its high potential energy configuration [7]. Our study introduces a theoretical biologically

inspired mechanism that automatically resets each element to a high potential energy state, allowing the

transmission of further signals. Many recent studies introduce the idea ofmanipulating biological subsystems

in materials [359–361], or discuss behaviours that arise in active matter systems, where biological systems

exert mechanical forces [362]. Some systems are biologically inspired [358, 360, 361] where properties of the

metamaterial are designed to mimic a biological phenomenon, and some systems exploit the properties of

biological subsystems to produce new behaviours in the material [359]. One possibility for our mechanism is

to exploit actin filaments in eukaryotic cells [363–366] to convert energy provided to the cells as nutrients

through chemical hydrolysis [51] into mechanical energy which can reset the bistable elements to a high

potential energy configuration. The application of actin filaments in nanotechnology is well studied [365]

and their exploitation in metamaterials has been previously suggested [51, 366].

The biological reaction mechanism we introduce is designed to react to changes in the displacement of

individual elements and respond by inducing elastic potential energy back into each element. Mathematically,

the effect of this process is to reset the potential function so that each element eventually reverts to a high

79



0

300

600

900

t

1 20 40 60 80 100
i

(a)

(e) (f)

(b) (c) (d)

Active

Inactive

−5

0

5

10

0

1

2

3

4

5

ui 
−1 +1 ui 

−1 +1 ui 
−1 +1

V

u i a i 

1 20 40 60 80 100
i

0

300

600

900

t

+1

−1

+0.5

−0.5

ui ∆

N Figure 5.1. (a) Schematic of the one-dimensional metamaterial [7]. Each element (red), of mass<, has a
natural spacing of Δ. Each mass is connected to an external wall by a bistable elastic element (green) and to
neighbouring elements by linear elastic springs (blue). The inset shows both stable states for each element,
D8 (C) = ±X where 8 is the mass index. (b) An example of bistable potential function (red) and its derivative (blue)
for 08 = −0.5 and X = 1 in the inactive model, or the active model at C = 0. (b–d) The effect of the reaction
mechanism, which resets the potential function. Note that (d) corresponds to a reflection of (b) aboutD8 = 0. For
each plot, the stable steady states (dashed grey) and unstable steady state (dotted grey) are shown. (e, f) Signal
propagation through this material showing (e) the displacement of each element,D8 (C), and (f) the biological
reaction, 08 (C). The signal was initiated by moving the first element from a displacement of −X to X at C = 0, and
was retransmitted by moving the last element from a displacement of X to −X at C = 400. We note the original
signal could also be initiated from the right boundary by moving the last element from a displacement of −X
to X or indeed anywhere in the domain. Parameters used are< = 1 g, : = 1 g m s−2, W = 1 g s−2, Δ = 0.002 m,
X = 1 m, Y = 0.01 s−1, [ = 2, E = 1 g m−2 s−2 and # = 101 masses.



5.2 Mathematical model

potential energy state, as shown in figure 5.1b-d. We present a mathematical characterisation of this reaction

mechanism and explore how the timescale of the reaction mechanism affects the ability of the system to

transmit signals. We find that signal transmission through a coarse-grained description of the material

takes the form of a travelling wave. Using a travelling wave model, we find explicit formulae that bound

the parameter space for which signal transmission can occur, and approximate the effect the timescale of

the reaction mechanism has on the signal transmission speed. We lay the foundation for future work on

this system where the metamaterial can be tuned to produce useful new behaviours. The results we provide

quantify the trade-off between the signal transmission speed and the timescale of the biological response,

which are essential for control and tuning of the material. For clarity, throughout this work we refer to the

system without the reaction mechanism as the inactive system, and the system that includes the biological

reaction mechanism we introduce as the active system.

In Section 5.2 we present a mathematical model that describes the discrete active mechanical system.

Following this, we take a continuous limit of the discrete model [345] with which we qualitatively explore the

effect of the reactionmechanism on the ability of the system to transmitmechanical signals. We find evidence

of travelling waves in the continuous model, where the wavespeed corresponds to the signal transmission

speed. In Section 5.3 we solve for the wavespeed and shape in the case where the reaction mechanism

is excluded. This analysis is then extended to explore the effect that the reaction mechanism has on the

wave speed and shape by taking a singular perturbation expansion (Section 5.4) and applying an energy

conservation argument (Section 5.5). Finally, in Section 5.6 we discuss and summarise our results, and outline

future work involving our active metamaterial.

5.2 Mathematical model

The metamaterial presented by Raney et al. [7] consists of # bistable elements of mass<, interconnected by

# − 1 linear springs of stiffness : , and to two external walls by a pair of elastic elements, with a separation

of Δ. A schematic of this physical system is shown in figure 5.1a. Denoting the displacement of the 8th mass

relative to the mean of its two steady states asD8 (C), the state of the discrete system is governed by

0 =<
d2
D8

dC2 − : (D8+1 − D8 − Δ) + W
dD8
dC
+ m+
mD8

, 8 = 1,

0 =<
d2
D8

dC2 − : (D8+1 − 2D8 + D8−1) + W
dD8
dC
+ m+
mD8

, 8 = 2, ..., # − 1,

0 =<
d2
D8

dC2 − : (D8 − D8−1 + Δ) + W
dD8
dC
+ m+
mD8

, 8 = #,

(5.1)

where W is a damping parameter and+ (D8 , 08) describes the potential energy of the bistable elements that
connect each mass to the external wall [7, 345].

In this study, we choose+ (D8 , 08) to be a quartic [345] defined in terms of its derivative,

m+

mD8
= E (D2

8 − X2) (D8 − 08), (5.2)

where E describes the stiffness of the bistable elements and relates to the size of the energy gap between high

and low potential energy configurations,D8 = ±X are the stable fixed points of+ (D8 , 08) andD8 = 08 ∈ [−X, X]
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is the unstable fixed point which governs the symmetry of+ (D8 , 08) (figure 5.1b). For this choice of potential
energy function,D8 = sign(08)X corresponds to an element in the high potential energy configuration and
D8 = −sign(08)X corresponds to an element in the low potential energy configuration (figure 5.1b).

In our study we allow the symmetry of the potential function to vary in reaction to changes in the

displacement,D8 (C), by allowing 08 = 08 (C) and enforcing

d08
dC

= n

(
D8

[
− 08

)
. (5.3)

Physically, 08 represents a biological subsystem that receives energy from external sources and induces it

into the material at a rate proportional to n . The parameter [ > 1 determines the extrema of the reaction

parameter so that 08 (C) ∈ [−X/[, X/[]. This implementation means that if a user transmits a signal through
the material by changing the displacement of a node (figure 5.1e), and waits a period of time of O(n−1)
after the signal reaches the end of the domain, all elements of the system will have reverted to their high

potential energy states. This resetting process of 08 (C), and by extension+ (D8 , 08), is shown for a single
element figure 5.1b-d, and throughout the material in figure 5.1f. The discrete system is similar to other

fast-slow bistable systems, such as the FitzHugh-Nagumo model [367–369]. In this context, we consider that

the displacement function,D8 (C), undergoes an excitable excursion in phase space in response to an external
stimulus, and the variable representing the biological response, 08 (C), behaves as a linear recovery variable.
In addition to the results in figure 5.1e, we reproduce results in the Appendix D in the case the second signal

is initiated too early, so propagation can’t occur.

If the length of the material is large relative to the separation of each mass, Δ, we can describe the material

with a coarse grained continuous model [370]. To derive a continuous description of the system described by

equations (5.1), we consider a material of fixed length, ! = (# − 1)Δ, and take the limit # → ∞ so that
Δ→ 0. Following this, we define field functionsD (G, C) and 0(G, C) that describeD8 (C) and 08 (C), respectively,
for G = (8 − 1)Δ ∈ (0, !). When taking a continuous limit of the discrete system we require that the

macroscopic quantities in the discrete model remain O(1) for physical reasons [345]. To do this, we replace
unit quantities<, E and W with density quantities, d =</Δ, Ê = E/Δ and Ŵ = W/Δ, and scale the connecting
spring force, :̂ = Δ: .

Dividing equation (5.1) by Δ and taking the limit Δ→ 0 results in the continuous model,

0 = d
m2D

mC2 − :̂
m2D

mG2 + Ŵ
mD

mC
+ Ê (D2 − X) (D − 0) = 0, (5.4)

0 =
m0

mC
− n

(
D

[
− 0

)
. (5.5)

A no flux boundary condition mD/mG = 0 is applied at G = 0 and G = !.

A key aspect of this study is to investigate the signal transmission speed through the parameter space,

particularly as n increases. We therefore non-dimensionalise equations (5.4) and (5.5) by scaling C = ) Ĉ ,

G = -Ĝ ,D = *D̂ and 0 = �0̂, where hat notation represents dimensionless variables. Choosing* = � = X ,
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N Figure 5.2. Numerical solutions to the non-dimensional continuous model (equations (5.6) and (5.7)) showing
(a) the displacement field, D̂ (Ĝ, Ĉ); and, (b) the biological reaction, 0̂(Ĝ, Ĉ). Parameters used are a = 4, [ = 2 and
^ = 0.01. The signal is initiated using the initial condition described by equations (5.8) and (5.9) with& = 1.

) 2 = d/Ŵ and- 2 = :̂) 2/d , gives

0 =
m2D̂

mĈ2
− m

2D̂

mĜ2 +
mD̂

mĈ
+ a (D̂2 − 1)

(
D̂

[
− 0̂

)
, (5.6)

0 =
m0̂

mĈ
− ^

(
D̂

[
− 0̂

)
, (5.7)

where ^ = )n ≥ 0, a = ÊX2d/Ŵ2 > 0, [ > 1 and Ĝ ∈ (0, !̂). The behaviour of the system can now be

studied through the three-dimensional parameter space (a, [, ^) where: a > 0 is the relative strength of the

potential function; [ > 1 describes the steady state locations of 0̂(Ĝ, Ĉ); and ^ ≥ 0 is the relative timescale of

the reaction mechanism. In this non-dimensional regime, the stable states are located at D̂ = ±1 where the

high potential energy state is always given by sign(0̂).

Previous studies provide evidence to suggest that the transmitted energy is input-independent [8], so we

do not expect the initial condition to affect the transmission speed in the centre of the domain. A signal is

initiated in the continuous model using a Heaviside initial condition for the displacement where

D̂ (Ĝ, 0) =
{

1, 0 ≤ Ĝ < &,

−1, & ≤ Ĝ ≤ !̂,
(5.8)

and the biological response is kept as it was before the signal was initiated by setting

0̂(Ĝ, 0) = −1/[. (5.9)

In figure 5.2a numerical solutions to the continuous model show that the transition of the displacement

variable, D̂ (Ĝ, Ĉ), is carried by a wave which appears to approach a constant shape and speed. figure 5.2b
demonstrates the slow biological response where 0̂(Ĝ, Ĉ) also undergoes a slow transition in response to
changes in D̂ (Ĝ, Ĉ). Results in figure 5.3 illustrate the dependence of the transmission speed on the timescale
of the response, ^ . These results indicate a negative monotonic relationship between ^ and the transmission

speed. Full details of the numerical scheme used to solve the continuous model are provided in Appendix D.
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5 Reversible signal transmission in an active mechanical metamaterial

5.3 Travelling wave model

Figure 5.2 suggests that signals are propagated through the system by waves which appear to approach a

constant shape and speed. Motivated by this, we now look for a travelling wave solution to the continuous

model by extending the domain to represent a material of infinite length, so that Ĝ ∈ ℝ+ [36,344,345,368,
369, 371–376]. We define the wavespeed, 2 , and without loss of generality enforce 2 > 0 by investigating

travelling waves that are initiated at the left boundary and move in only the positive Ĝ direction. In reality,

we expect symmetry in these solutions as a travelling wave may also travel in the negative Ĝ direction if the

signal is initiated in the centre of the domain.

Substituting travelling wave variables 5 (I) = D̂ (Ĝ, Ĉ) and ℎ(I) = 0̂(Ĝ, Ĉ), where I = Ĝ − 2Ĉ ∈ ℝ, into

equations (5.6) and (5.7), and dividing by 22 − 1, gives the travelling wave model:

0 =
d2 5

dI2 +
2

1 − 22

d5
dI
− a

1 − 22 (5
2 − 1) (5 − ℎ), 5 (±∞) = ∓1, (5.10)

0 =
dℎ
dI
+ ^
2

(
5

[
− ℎ

)
, ℎ(∞) = − 1

[
, (5.11)

which, in physical coordinates, corresponds to a wave profile connecting D̂ = −1 to D̂ = 1 as C →∞.

In figure 5.3 numerical solutions of the continuous model show that increasing the response speed ^

typically reduces the wavespeed from a maximum which occurs when ^ = 0. We therefore denote a fast wave

as a travelling wave solution at, or near, ^ = 0, and a slow wave as a travelling wave solution in the limit, or

near, 2 = 0. Removing the active component of the system from the model by setting ^ = 0 (and defining 20

(a) (b) (c) (d)

(e) (f) (g) (h)

10000100001000010000

0

1000

0

1000

−0.5

+0.5

−1

+1

N Figure 5.3. The solution to the continuous model, equation (5.6), shown as kymographs where colouring
represents (a–d) the displacement function, D̂ (Ĝ, Ĉ); and, (e–h) the biological response, 0̂(Ĝ, Ĉ), for increasing
values of ^. Parameter values used are a = 4 and [ = 2. Each signal is initiated using the initial condition
described by equations (5.8) and (5.9) with& = 1.
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0−5 5−1020−2 −1 1
−1

+1

−0.5

+0.5
(a) (b)

N Figure 5.4. Approximate numerical solutions to the travelling wave model, formulated from numerical
solutions to the continuous model, for (a) the displacement function, 5 (I); and, (b) the biological reaction, ℎ(I).
Results are shown for various values of the response parameter, ^ , with a = 4 and [ = 2. Additionally, (a) shows
the exact solutions to the travelling wave model, equations (5.10) and (5.11), for ^ = 0 (black dashed-dot) and
^ = ^∗ = 1.6 (black dashed).

as the corresponding wavespeed) gives:

0 =
d2 50

dI2 +
20

1 − 22
0

d50
dI
− a

1 − 22
0
(5 2

0 − 1)
(
50 +

1
[

)
, 50(±∞) = ∓1, (5.12)

0 =
dℎ0

dI
, ℎ0(∞) = −

1
[
, (5.13)

where 50(I) will correspond to the solution to the fast wave. Under certain parameter transformations,
equation (5.12) is analogous to the well-studied bistable equation, that arises from analysis of the FitzHugh-

Nagumo model [367–369,372]. The solution of equations (5.12) and (5.13) is therefore

50(I) = − tanh (`0I) , (5.14)

ℎ0(I) = −
1
[
, (5.15)

where

`0 =

√
a2

[2 +
a

2
and 20 =

√√√ 1
[2

2a
+ 1

. (5.16)

For physically realistic parameter combinations, equation (5.16) suggests that 20 < 1.

5.4 Perturbation solution for the fast wave

An exact solution in the limiting case ^ = 0 (equation (5.14)) allows the formulation of a perturbation

solution for 0 < ^ � 1 [372, 373, 377]. Figure 5.5 shows an approximation to the wave profiles 5 (I) and
ℎ(I) for ^ = 0.01. A fast transition region is seen in 5 (I) around I = 0 (figure 5.5a) suggesting behaviour

necessitating a singular perturbation analysis [373, 377]. For I ∼ O(`−1
0 ) the solution appears to match a

solution for ^ = 0, since, at this scale, ℎ(I) is approximately constant (figure 5.5b). In figure 5.5a we show
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N Figure 5.5. Approximation of the travelling wave profile using a solution to the continuous model for (a) the
displacement function, 5 (I); and, (b) the biological reaction, ℎ(I). Parameters used are a = 4, [ = 2 and ^ = 0.01. In
(a) the horizontal axis is scaled to show both outer regions where I ∼ O(^−1), which is the rate of change of ℎ(I). In
(b) the horizontal axis is scaled to show the inner region where I ∼ O(`−1

0 ), which is the rate of change of 5 (I).

that ℎ(I) is not constant but rather a slow reaction of O(^−1) which transitions ℎ(I) = −1/[ to ℎ(I) = 1/[
as I → −∞. This observation further suggests a singular perturbation analysis, since the behaviour of the
response mechanism ℎ(I) varies significantly for 0 < ^ � 1 compared to ^ = 0.

We propose a three-part perturbation solution about ^ = 0 and define independent variables I ∼ O(`−1
0 )

to correspond to an inner region, and / = ^I for I ∼ O(^−1), to correspond to two outer regions. These three
regions are shown in figure 5.5a. This regime requires the fast process, which occurs in the inner region, to

be much faster than the slow process, which occurs in the outer region. That is, we require ^ � `0.

Our aim in looking for a perturbation solution is to determine the effect of small perturbations in ^ on 2 .

To do this, we pose a perturbation expansion for the wavespeed through the entire domain,

2 = 20 + 21^ + O(^2), (5.17)

where 20 is given by equation (5.16).

In the inner region, we pose a perturbation solution of the form

5 (I) = 50(I) + 51(I)^ + O(^2), (5.18)

ℎ(I) = ℎ0(I) + ℎ1(I)^ + O(^2), (5.19)

where 50(I) andℎ0(I) correspond to the shape of the fast wave at^ = 0, given by equation (5.14). Full details

of the perturbation solution in the inner region are given in Appendix D. In summary, the solution is given by

5 (I) = − tanh(`0I) + 51(I)^ + O(^2), (5.20)

ℎ(I) = − 1
[
+ 1
20`0[

(
log(cosh(`0I)) − `0I + log(2)

)
^ + O(^2), (5.21)

where 51(I) and 21 are defined by the solution of a second-order boundary value problem, which can be
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N Figure 5.6. Comparison of the wave shape from a numerical solution to continuous model (coloured solid curves), to
the perturbation solution (black dotted and dotted-dashed curves) for (a) the displacement function, 5 (I), to O(1) and
(b) the reaction mechanism, ℎ(I), to O(^). The inset (c) shows the crossover between the inner and outer perturbation
solutions to ℎ(I) in further detail, showing an excellent match to the wave shape from the continuous model, and
between inner and outer solutions.

solved numerically. Full details of this numerical scheme are given in Appendix D. These solutions are shown

in figure 5.6, and the wavespeed correction, 21, is summarised for various parameter combinations in table D.2

in Appendix D.

In the outer region we denote solutions to the slow system using uppercase variables, � (/ ) and � (/ ).
We expect the outer solution to apply for / ∼ O(1) ⇒ I ∼ O(^−1) and as I, / → ∞. In the outer region,
equation (5.10) becomes

0 = ^2 d2�

d/ 2 +
2^

1 − 22

d�
d/
− a

1 − 22 (�
2 − 1) (� − � ), � (±∞) = ∓1, (5.22)

which has the solution

� (/ ) = −sign(/ ). (5.23)

This agrees with the sharp transition region seen at this scale in figure 5.5a. Substituting equation (5.23) into

equation (5.11) we see that

0 =
d�
d/
− 1
2

(
sign(/ )
[

+ �
)
, � (∞) = − 1

[
. (5.24)

Full details of perturbation solution in the outer region are given in Appendix D. In summary, the solution to

equation (5.24) is given by

� (/ ) =


1
[
− 2
[

exp
(
/

20

)
− 221

[22
0
/ exp

(
/

20

)
^ + O(^2), / < 0,

− 1
[
, / > 0.

(5.25)

Figure 5.6b-c shows a comparison between solutions for the reaction mechanism in the inner and outer

regions (given by equations (5.20) and (5.25), respectively), to an approximation of the wave shape formed

form the numerical solution to the continuousmodel. We see an excellentmatch between both the continuous
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5 Reversible signal transmission in an active mechanical metamaterial

model and the perturbation solutions, as well as between the inner and outer regions of the perturbation

solution. These results provide excellent information about the behaviour of ℎ(I) for 0 < ^ � 1, and are

particularly important as the behaviour for 0 < ^ � 1 varies significantly from the behaviour at ^ = 0.

5.5 Energy transport

To determine information about the slowwave, and to obtainmore information about the fast wave, we follow

Nadkarni et al. [345,375] to derive an integrability condition – that is, a necessary condition for existence of a

solution with given boundary conditions – to investigate the transported energy. Multiplying the travelling

wave model, given by equation (5.10), by d5 /dI and integrating gives

0 =

∫ ∞

0

d2 5

dI2

d5
dI

dI + 2

1 − 22

∫ ∞

0

(
d5
dI

)2

dI − a

1 − 22

∫ ∞

0
(5 2 − 1) (5 − ℎ) d5

dI
dI . (5.26)

For a parameter regime where the transition wave exists, the velocity will vanish in the far field so that

5 → ∓1 and d5 /dI → 0 as I → ±∞. Therefore some components of equation (5.26) vanish:∫ ∞

0

d2 5

dI2

d5
dI

dI =
[

1
2

(
d5
dI

)2]∞
−∞

= 0,

and
∫ ∞

0
(5 2 − 1) (5 − ℎ) d5

dI
dI = −

∫ ∞

0

d5
dI
ℎ dI .

Under the assumption |2 | ≠ 1, equation (5.26) becomes an integrability condition,

2

∫ ∞

0

(
d5
dI

)2

dI = −a
∫ ∞

0

d5
dI
ℎ dI . (5.27)

It is useful to note that, for 5 = − tanh(fI), for some f , which occurs as ^ → 0 with f = `0,

(5 2 − 1) d5
dI
ℎ ∝ sech4(fI)ℎ. (5.28)

This suggests that only the component of ℎ(I) near I = 0 is important in gaining any approximation from

the integrability condition, provided 5 (I) has the form of a hyperbolic tangent function. Since a travelling
wave connecting 5 (I) = 1 to 5 (I) = −1 as I →∞will always have a sigmoidal form (figure 5.4), we expect
this observation to apply for all regions of the parameter space where a travelling wave exists.

In the inactive model, where ^ = 0, Nadkarni et al. [345] show that the integrability condition reduces to

�: =
2Δ+

2W
, (5.29)

where �: represents the total kinetic energy per density transported by the transition wave, and Δ+

represents an energy gap or difference the potential energy between the high and the low potential energy

states. This result can be used to find an upper bound for 2 for ^ > 0: Since |ℎ(C) | ≤ 1/[, and Δ+ is a
monotonically decreasing function of ℎ(C), the available kinetic energy in the system is always bounded

above by that which occurs when ℎ(C) ≡ 1/[, which occurs for ^ = 0. This suggests that 2 (^) ≤ 20 < 1

and substantiates numerical evidence seen in figure 5.3 which suggests a decreasing monotonic relationship
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5.5 Energy transport

between 2 and ^ .

In the following Sections we apply the integrability condition to obtain approximations to 2 (^) while
holding a and [ constant. We also find the region of the parameter space that allows signal transmission.

The advantage of these approximations is that they avoid numerical solutions to the continuous model to

approximate the wavespeed. Numerical solutions to this model are not computationally inexpensive and it is

generally difficult to obtain and verify the results.

5.5.1 Energy transport in the fast wave

For ^ � 1 it is reasonable to assume that 5 ≈ − tanh(`I) where ` depends on ^, and ` → `0 as ^ → 0.

By assuming 5 (I) has a similar form to 50(I) for ^ � 1, it is reasonable to use the perturbation solution

(equation (5.21)) as an approximation for ℎ(I). Since the integrability condition (equation (5.27)) depends
only on the component of ℎ(I) near I = 0, we use only equation (5.21). Allowing `0 = ` (0) and 20 = 2 (0)
where ` = ` (^) and 2 = 2 (^) depend on ^ , we assume that

ℎ(I) ≈ − 1
[
+ ^

2`[

(
log(cosh(`I)) − `I + log(2)

)
, ^ � 1. (5.30)

Equation (5.30) corresponds to the smoothed piecewise-defined function where growth is equal to 2^/(2[)
for I < 0, and zero for I > 0. This function corresponds exactly to an O(1) approximation to ℎ(I) which
uses 5 (I) = −sign(I). Substituting equation (5.30) into the integrability condition (equation (5.27)) provides
the relationship

422`2

3
=

2a (62` − 5^)
9[

. (5.31)

This result does not allow 2 and ` to be determined independently, so we consider a far field expansion of the

travelling wave [371], that is, an expansion about q ≈ 0, where q = 4−`I :

5 (I) = − tanh(`I) = 4−2`I − 1
4−2`I + 1

=
q2 − 1
q2 + 1

= −1 + 2q2 + O(q4). (5.32)

Substituting q = 4−`I and equation (5.32) into the travelling wave equation for ℎ(I) (equation (5.11)) gives

5 (I) ∼ −1 + 24−2`I, |I−1 | � 1,

ℎ(I) ∼ − 1
[
+ 2^
[ (^ + 22`) 4

−2`I, |I−1 | � 1.
(5.33)

Substituting equation (5.33) into equation (5.10) provides a far-field relationship,

0 =
a

[
− 2` − a + 2`2(1 − 22) . (5.34)

To obtain a useful analytical expression for 2 and `, we pose a perturbation solution to equations (5.31)

and (5.34) around ^ = 0, such that

2 = 20 + 2̃1^ + O(^2), (5.35)

` = `0 + ˜̀1^ + O(^2), (5.36)
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5 Reversible signal transmission in an active mechanical metamaterial

where 20 and `0 are given by equation (5.16). We note that 2̃1 approximates 21, the gradient of 2 (^) at ^ = 0,

where 21 is defined exactly by the solution of the perturbation problem. Substitution into equations (5.31)

and (5.34) gives

2̃1 =
5a

(
422

0`0 + 20 − 4`0
)

24`2
0 (220[`0 − a)

. (5.37)

We compare this estimate of 21 from that calculated numerically by solving the boundary value problem that

comes from the singular perturbation expansion, and that estimated from the continuous model, in table D.2

(Appendix D). In figure 5.7, we show that, for ^ � 1,

2 (^) ∼ 20 + 2̃1^, (5.38)

matches numerical results for 2 (^).

5.5.2 Energy transport in the slow wave

We denote 5∗(I) andℎ∗(I) as the shape of the slow wave, which occurs as 2 → 0, and^ → ^∗, where^∗ is yet

to be determined. In addition, we expect the curve 2 (^) to be perpendicular to the ^ axis at ^∗ to maintain
continuity in the symmetry of the problem where solutions with a negative wavespeed are equally valid. To

determine a governing equation for the slow wave, we take 2 → 0, so that equations (5.10) and (5.11) become

0 =
d2 5∗
dI2 − a

(
1 − 1

[

)
5∗(5 2
∗ − 1), 5∗(±∞) = ∓1, (5.39)

0 =
5∗
[
− ℎ∗, (5.40)

which have the analytical solution
5∗(I) = − tanh (`∗I) ,

ℎ∗(I) = −
1
[

tanh (`∗I) ,
(5.41)

where

`∗ =

√
a

2

(
1 − 1

[

)
. (5.42)

Direct substitution of 5∗(I) and ℎ∗(I) into the integrability condition (equation (5.27)) causes all terms to
vanish, so higher-order behaviour ofO(2) as2 → 0 is important. To allow for this, we note that equation (5.11)

can be solved, for all ^ , to give

ℎ(I) = ^

2[

∫ ∞

I

5 (B) exp
[^
2
(I − B)

]
dB . (5.43)

Equation (5.43) shows that ℎ(I) depends the product of 5 (B) and a function that decays rapidly as I moves
away from B . Expanding 5 (B) in a Taylor series about I gives

ℎ(I) ≈ ^

2[

∫ ∞

I

[ ∞∑
==0

(B − I)=
=!

d= 5
dI=

]
exp

(^
2
(I − B)

)
dB =

1
[

∞∑
==0

2=

^=
d= 5
dI=

. (5.44)

Assuming that 5 ∼ tanh(` (^)I) provided 2 � 1, where ` (^∗) = `∗, and truncating the infinite series
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N Figure 5.7. Comparison between the wavespeed as a function of ^, from the continuous model (circles) to:
the analytical expression at ^ = 0, given by equation (5.16) (diamonds); the analytical expression for ^∗ at
2 = 0, given by equation (5.46) (squares); the analytical approximation given by equation (5.38), which applies
for ^ � 1 (dashed-dotted curve); the analytical approximation given by equation (5.50), which applies for
2 � 1 (dashed-curve); the combined approximation given by equation (5.51) which applies everywhere (dotted
curve); and, the approximation given by equation (5.53) which applies everywhere (solid curve).

given by equation (5.44) after = = 3, the integrability condition (equation (5.27)) gives the relationship

4^3

3
=

16a
(
7^2 − 822`2)

105[
. (5.45)

For [ and a fixed, 2 → 0 only as ^ → ^∗. Substituting 2 = 0 into equation (5.45) gives

^∗ =
4
5
a

[
. (5.46)

Under the assumption that 2 (^) is monotonically decreasing, the result in equation (5.46) provides an
analytical expression for the region of the parameter space where we expect signal transmission. In figure 5.7

we show that this expression matches the numerical results. Interestingly, equation (5.46) depends only on

the ratio of the other parameters, a/[. The scales of the horizontal axes for figure pairs figure 5.7a,c and
figure 5.7b,d have been chosen to highlight this.

To gain information about the shape of 2 (^) near 2 = 0, we pose a perturbation solution around ^ = ^∗ to
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the system governed by equation (5.45) and the far-field relationship, equation (5.34), where

2 = 2∗ + 2 1
2

√
^∗ − ^ + O (^∗ − ^) , (5.47)

` = `∗ + ` 1
2

√
^∗ − ^ + O (^∗ − ^) , (5.48)

where `∗, given by equation (5.42), and 2∗ = 0 apply at ^ = ^∗. Substitution of these expansions into

equations (5.34) and (5.45) gives

2 1
2
=

√
7

5([ − 1) , (5.49)

so that, for ^ ≈ ^∗,

2 (^) ∼

√
7(^∗ − ^)
5([ − 1) . (5.50)

Figure 5.7 shows that equation (5.50) matches numerical results for 2 (^) for a surprisingly wide range of
^ < ^∗, especially for larger [. This result is particularly important as we have not constructed a full

perturbation solution to the travelling wave model about 2 = 0.

5.5.3 Combined approximation

We can combine the approximations to 2 (^) from the slow and the fast wave to obtain a curve that behaves
like equation (5.38) for ^ → 0 and like equation (5.50) as ^ → ^∗. To do this, we propose a form like

2 (^) ≈ U1 + U2^ + U3
√
^∗ − ^, (5.51)

where we choose

U1 = −(20 + 22̃1^∗), U2 =
20

^∗
+ 22̃1, U3 =

2(20 + 2̃1^∗)√
^∗

(5.52)

where 20 is given by equation (5.16); 2̃1 is given by equation (5.37); and, ^∗ is given by equation (5.46). In

figure 5.7 we show that this combined approximation provides a reasonable approximation to 2 (^) for
^ ∈ [0, ^∗].

5.5.4 Whole domain ansatz

Results in equations (5.14) and (5.41) show that 5 (I) is described exactly by a hyperbolic tangent at both
^ = 0 and ^ = ^∗, and figure 5.4a suggests that 5 (I) remains sigmoidal. Therefore, it may be reasonable
to approximate 5 (I) ≈ tanh(` (^)I) for ^ ∈ [0, ^∗], where ` (^) depends on ^. Additionally assuming that
` (^) decays linearly from ` = `0 at ^ = 0 to ` = `∗ at ^ = ^∗, we obtain an approximation to 5 (I) for all ^ :

5 (I) ∼ − tanh (` (^)I) , ` (^) = `∗ − `0

^∗
^ + `0. (5.53)

Substituting the approximation for ` (^) given by equation (5.53) into the far-field matching condition
(equation (5.34)) gives an approximation to 2 (^) which can apply for ^ ∈ [0, ^∗]. We show that this

approximation is reasonably accurate throughout^ ∈ [0, ^∗] in figure 5.7, however it is clear from numerical
results in figure 5.4, when ^ = 0.4, that the solution does not have the symmetry of a hyperbolic tangent

function.
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5.6 Discussion and Conclusion

Currently, the inactive metamaterial described mathematically by Nadkarni et al. [345] and experimentally

realised by Raney et al. [7] is able to transmit mechanical signals by the release of stored potential energy.

A limitation of this design is that mechanical energy must be manually introduced into the system before

additional signals can be transmitted. Our study presents a novel biologically inspired metamaterial that

incorporates a theoretical biological mechanism that harvests energy to reset the system to a high potential

energy state, allowing the transmission of additional signals. Energy may be induced into the active

metamaterial through a biological process, such as actin filaments in eukaryotic cells [363–365]. That said, our

analysis does not necessarily require this mechanism to have a biological origin: the reactionmechanismmay

also represent a mechanical system where energy is added through other electrochemical [378], photovoltaic,

thermodynamic [357] or pneumatic [358] subsystems.

By finding evidence of travelling wave solutions, we are able to analyse limiting behaviour describing the

signal transmission speed and wave shape. We provide a detailed analysis to qualitatively and quantitatively

understand the effect of our reaction mechanism on signal transmission abilities of the material. Our main

results consist of a set of analytical approximations that quantify the signal transmission speed as a function

of the parameters which describe the physical properties of the material. Results in figure 5.7 show that

the approximation we develop to apply through the whole domain, given by equation (5.51), provides an

excellent match to the numerical results, particularly for large [. In addition, our approximation for the

wavespeed near the slow wave, given by equation (5.50), is able to provide excellent information about the

shape of 2 (^) as 2 → 0, which we find is difficult to obtain numerically. This approximation is also able

to provide a region of the parameter space for which signal transmission can occur, given by ^ < 4a/(5[)
(equation (5.46)). This understanding of the effect of our mechanism on the signal transmission speed is

useful as it allows our active metamaterial to be tuned to produce desirable new behaviours. For example, our

results allow quantification of the trade-off between signal transmission speed and the response time, which

is essential for controlling the material. These insights are also essential for building a material containing

a biological mechanism that induces energy into the system. Decreasing a and [ in the same proportion

increases the transmission speed at the cost of increased sensitivity to noise-induced misfiring, but may be

essential if the energy budget is small.

A key aspect of our study is to follow Nadkarni et al. [345] by representing the bistable potential energy

function as a quartic (equation (5.2)). This approach leads us to obtain numerous analytical approximations

that characterise the effect of the biological mechanism on the transmission speed which, although qualitat-

ively reliable, may not always be quantitatively appropriate for particular systems [7]. In fact, the analytical

expression for the transmission speed is a result of the similarity between our model and the well-studied

bistable equation [372]. These choices mean that our system has mechanical and algebraic properties that

are similar to other bistable systems, such as the FitzHugh-Nagumo model [367,369]. That said, we do not

assume that the timescale of the response is significantly slower than the timescale of the excitement, as

is often the case in analysis of such models. Indeed, our aim is to develop an intelligent biomechanical

material that has tuneable properties. In some sense, it is desirable that the response is as fast as possible to

allow for a short period of time between signal reception and retransmission. Future work may examine the

role of heterogeneities in the properties of the material [86, 344]. Such features could allow the material to
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selectively transmit signals by creating energy barriers that interact with signals of certain properties [48] .

The travelling wave analysis we conduct assumes a material of infinite length over a large period of time.

However, applications of our material will a have finite length and may have properties not suitable for

a continuum model. For example, in a material where the spacing between elements is not significantly

different to the length of the material, a discrete travelling wave analysis may be more appropriate. The

discrete problem is known to be substantially more difficult that the continuous problem [372], so the

limiting transmission speed our analysis provides may still be useful. Furthermore, the inclusion of our

biologically inspired mechanism can be incorporated into passive metamaterials of higher dimensions to

enable new behaviours and the travelling wave analysis can be extended to investigate two-dimensional

signal propagation. In Appendix D, we produce results which show the transmission of concurrent signals

(figures D.1 and D.2) and interacting signals initiated from both ends of the material (figure D.3). Further

analysis is needed to examine the behaviour of these types of interacting waves [379] and the material’s

ability transmit oscillatory or concurrent signals.

To conclude, we have presented a novel, biologically inspired, active metamaterial that can reversibility

transmit mechanical signals. This work provides an analytical expression that describes the mechanical

properties of the material required for signal transmission. We also provide numerous approximations

that quantify the effect of the mechanical properties, and the timescale of the biological response, on the

transmission speed. This work demonstrates how a new class of biologically inspired metamaterials are able

to produce useful new functionalities. The type of analysis we present is invaluable for tuning and controlling

the active metamaterial.
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Chapter 6

Model-based data analysis of tissue growth in thin

3D printed sca�olds
Published 2021 in Journal of Theoretical Biology.

Tissue growth in three-dimensional (3D) printed scaffolds enables exploration and control of cell behaviour in more
biologically realistic geometries than that allowed by traditional 2D cell culture. Cell proliferation and migration in
these experiments have yet to be explicitly characterised, limiting the ability of experimentalists to determine the
effects of various experimental conditions, such as scaffold geometry, on cell behaviour. We consider tissue growth by
osteoblastic cells in melt electro-written scaffolds that comprise thin square pores with sizes that were deliberately
increased between experiments. We collect highly detailed temporal measurements of the average cell density, tissue
coverage, and tissue geometry. To quantify tissue growth in terms of the underlying cell proliferation and migration
processes, we introduce and calibrate a mechanistic mathematical model based on the Porous-Fisher reaction-diffusion
equation. Parameter estimates and uncertainty quantification through profile likelihood analysis reveal consistency in
the rate of cell proliferation and steady-state cell density between pore sizes. This analysis also serves as an important
model verification tool: while the use of reaction-diffusion models in biology is widespread, the appropriateness of
these models to describe tissue growth in 3D scaffolds has yet to be explored. We find that the Porous-Fisher model is
able to capture features relating to the cell density and tissue coverage, but is not able to capture geometric features
relating to the circularity of the tissue interface. Our analysis identifies two distinct stages of tissue growth, suggests
several areas for model refinement, and provides guidance for future experimental work that explores tissue growth in
3D printed scaffolds.
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6.1 Introduction

6.1 Introduction

Cell culture scaffolds provide biomimetic experimental models to explore tissue growth in essential biological

processes such as bone remodelling and development [12, 44, 380]. Achieving control over tissue growth

through these scaffolds has clinical applications such as replacing synthetic graftswith artificially regenerated

tissues [11, 44–46]. Three-dimensional (3D) printing technology [381–384] enables precise control of scaffold

geometry, including the size and shape of the pores that comprise each scaffold. Despite these technological

advances, the effects of scaffold geometry on scaffold-level properties of tissue growth, such as the time

for tissue to close or bridge scaffold pores, and individual-level properties, such as cell proliferation and

migration rates, are yet to be explicitly understood.

A preference to move away from traditional in vitro 2D culture and towards mimicking biological features,

such as the bone micro-environment, through 3D scaffolds has been aided by more accurate 3D printing

processes [381,382]. Technologies based on melt electrowriting [383,384] enable precise control of scaffold

geometry, ensuring consistency and reproducibility, whilst printing fibres that are significantly smaller than

traditional 3D printing processes enabling us to create more biologically relevant structures. There is a

significant body of research that guides the material and physical properties of scaffold construction, but a

comparative scarcity on the influence of scaffold architecture on cell and tissue behaviour. In fact, several

recent studies suggest that tissue growth in pore infilling experiments is strongly curvature controlled

[385–388], which implies that pore shape and size play a significant role in tissue growth [386, 388] since the

average curvature of a pore is a function of its size [13].

In this work, we consider tissue growth by osteoblastic cells in a 3D printed scaffold formed of thin square

pores with depth ≈100µm and side lengths ranging from 300 to 600µm (figure 6.1a–d). This thin geometry

means that we can approximate the three-dimensional tissue growth as a depth-averaged two-dimensional

phenomena [389]. Initially located only on the scaffold fibres, cells migrate and proliferate to form new tissue

that bridges each pore over an experimental duration of 28 days (figure 6.1e–h). Scaffolds are systematically

harvested and stained to obtain fluorescent microscopy images that provide highly detailed information

about the pore bridging progress (which we measure as the proportion of the pore containing tissue) and the

cell density within each pore. The variability in pore bridging we see in the experimental data is striking:

smaller pores appear, on average, to bridge at earlier times (figure 6.1e–f) [13]; and some, but not all, larger

pores are bridged at the conclusion of the experiment (figure 6.1g–h). While we expect larger pores—which

require the development of a larger amount of tissue and cells to migrate a greater distance—to bridge more

slowly [13], it is unclear whether there are also changes in cell behaviour between pore sizes. We aim to

determine whether there are fundamental differences in cell proliferation and migration between different

pore sizes while demonstrating the value of collecting experimental data relating to both tissue coverage

and cell population.

To disentangle the effects of cell proliferation and migration on tissue growth, we perform model-based

data analysis using a deterministic, continuum, process model [390]. Existing continuummodels of tissue

growth within porous scaffolds typically neglect information relating to properties such as cell count or

density [391,392]. Instead, the time-evolution of tissue interfaces are described using techniques ranging from

continuum mechanics [12, 392, 393] to curvature flow [385,387, 394–398]. While these models often provide

good agreement with geometric features in experimental data, they yield parameter estimates that are purely
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N Figure 6.1. Sca�old geometry and experimental data. (a–e) Scaffolds comprise a grid of square pores with lengths
ranging from 300 to 600µm. (a) 3D graphical render of the scaffold structure. (b–e) An 800 × 800µm DIC image taken
from the central region of a scaffold for each pore size. (f–i) Composite fluorescence microscopy images of pore bridging
experiments. Cell nuclei, stained with DAPI, are shown in the blue channel; tissue and cytoskeleton, stained with phalloidin,
are indicated in the green channel. Scale varies between pore sizes, but is identical within a pore size and is indicated
in day 28 images. It is important to note that scaffolds are fixed to obtain images: data from successive time-points are
independent experiments.
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phenomenological and lack a clear biophysical interpretation. We describe pore bridging using a relatively

simple two-dimensional reaction-diffusion equation, often referred to as the Porous-Fisher model [13, 68].

This choice naturally accounts for density-dependent behaviour expected in these experiments: contact

inhibition limits cell proliferation in high-density regions, and contact stimulates cell migration, leading to

co-operative tissue growth that is limited in regions of low cell density.

We take a summary statistic and likelihood-based approach to parameter inference [15] to identify

parameters that characterise cell behaviour both individually within each pore size, and across all pore sizes

simultaneously. In comparison to our previous work [13], we consider a temporal dataset that includes inform-

ation about both cell density and bridging progress. To quantify the uncertainty associated with parameter

estimates—whichmay be non-identifiable from the available information in the experimental data [243,268]—

we perform profile likelihood analysis [399,400], which facilitates the computation of approximate confidence

intervals [24, 27, 401]. We compare parameter estimates that quantify cell proliferation and migration rates

across pore sizes to determine whether pore size, and by extension, curvature, influence cell behaviour. For

example, if pore size and, by extension, curvature, play a significant role in cell proliferation, we would

expect the estimates of the cell proliferation rate to vary significantly between pore sizes.

Compared to models of 2D culture, which are well developed and routinely applied in experimental

design [66, 246, 390, 402–404], there is limited data-based modelling guidance for tissue growth within

3D scaffolds. Development and verification of mechanistic models for pore bridging is essential: models

can guide engineering design choices in scaffold construction to optimise and control tissue growth [405].

Despite the widespread application of reaction-diffusion models in collective cell behaviour [36–38,66] and

biology more broadly [18,406–408], their suitability to describe geometrically-induced phenomena—such

as that arising from corners and the relatively small, constrained, domain in our experiments—remains

largely unexplored. Qualitatively, the Porous-Fisher model produces results that capture key behaviours

in the experimental data; namely both an increase in cell density over the duration of the experiment, and

sharp-fronted tissue growth that bridges each pore (figure 6.2). A key focus of our work is to further verify

the appropriateness of the Porous-Fisher model by comparing features not used for calibration to model

predictions, and comparing parameter estimate and model behaviour across pore sizes. Given that tissue

growth is thought to be curvature controlled [386], we focus on comparing geometric features in the data,

such as circularity, to model predictions. Comparing parameter estimates and model predictions across pore

sizes is crucial for model verification: if only a single experimental condition is considered, the model might

appear to match the experimental data but be incapable of matching data across multiple experimental

conditions without significantly varying the parameters [30, 403]. Through this analysis, we identify several

avenues for both future experimentation and model refinement.

The outline of the work is as follows. We first describe the experimental model and methods used

to summarise the data (Section 6.2.1). The data are available on GitHub as supplementary material. In

Section 6.2.2, we describe a two-component mathematical model comprising both a deterministic process

model that describes pore bridging dynamics and a probabilistic observation process that connects model

predictions to noisy experimental observations. Subsequently, we outline the techniques used to obtain

maximum likelihood estimates and likelihood profiles (Section 6.2.3). We present and discuss the results in

Section 6.3 before outlining future experimental and mathematical modelling recommendations in Section 7.

Code to reproduce all results are provided in the high-performance, open-source, Julia language on GitHub.
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cell nuclei, with the pore boundary and cell
locations superimposed. (c) Schematic of the
mathematical domain. Tissue growth in the pore
interior is described using the Porous-Fisher
reaction diffusion model, and tissue growth on the
fibres is described using logistic growth.

6.2 Methods

6.2.1 Pore bridging experiments

Polycaprolactone fibres of diameter 50µm are fabricated into a two-layer scaffold of size 7 × 7 mm through

melt electrospinning. The resultant scaffold has an overall thickness of approximately 100µm (two fibre
layers) and comprises square shaped pores of lengths 300, 400, 500 and 600µm (figure 6.1a–d). Prior to cell
seeding, scaffolds are sterilised and incubated in 5% CO2 overnight.

Murine calvarial osteoblastic cells (MC3T3-E1) [409] are cultured in U-MEM, 10% fetal bovine serum, and

1% penicillin-streptomycin (Thermo Fisher). Scaffolds are placed on top of non-adherent 2% agarose to

prevent cell-to-plate attachment within a 48-well plate. Cells are detached using 0.05% trypsin and seeded at

7500 cells in 250µL media onto each scaffold within a 48-well plate (Nunc, Thermo Fisher). Cells are allowed
4 h to attach to each scaffold before an additional 250µL of media is added. Cell-seeded scaffolds are cultured
in a humidified environment at 37 °C in 5% CO2 for 28 days. Media is changed every 2–3 days from day 1 to

14, every 1–2 days from day 15 to 21, then every day from day 22 to 28. Cell viability is assessed at day 10, 14

and 28 using calcein AM (to stain live cells) and ethidium homodimer (to stain dead cells).

Cell-seeded scaffolds are fixed with 4% paraformaldehye at day 4, 7, 10, 14, 18, and 28. Replicates are
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stained with both DAPI and Alexa FluorTM 488 Phalloidin (Thermo Fisher), which stain cell nuclei and actin

filaments, respectively. Fluorescent microscopy (Leica AF6000 LX) is used to capture high resolution images

of the centre of each scaffold. To accurately identify scaffold geometry, a differential interference contrast

(DIC) image is also captured. Fixation, staining and microscopy are repeated across two or three replicates for

each pore size and time point. Each experimental replicate yields information about 9 to 12 pores, providing

tissue growth data across days 4 to 28 from 618 pores in total. In figure 6.1e–h we show composite images of

four pores for each pore size, for each time point.

Data summarisation

The tissue growth data are processed in a semi-automated fashion using MATLAB [410] to obtain information

about the cell population and bridging progress in each pore (figure 6.3). First, the four corners of each pore

are identified manually from the DIC image and thresholding is applied to the phalloidin image to establish

the region in each pore containing tissue (figure 6.3a). Next, the location of the cells within each pore are

identified using the thresholded DAPI image, which colours cell nuclei (figure 6.3b). Data are discarded for

pores that are not deemed sufficiently regular in shape, or for which accurate measurements cannot be

taken.

We summarise the experimental data obtained from each pore with four summary statistics, denoting

~
!,C, 9

8
the 9th observation of the 8th summary statistic at time C for a pore of size length !. These are as

follows.

1. Average cell density:

~
!,C, 9

1 =
Cell count in pore
Area of pore

, 0 ≤ ~!,C, 91 < ∞. (6.1)

2. Coverage:

~
!,C, 9
2 =

Area of tissue
Area of pore

, 0 ≤ ~!,C, 92 ≤ 1. (6.2)

3. Edge density:

~
!,C, 9
3 =

Cell count on edge tissue
Area of edge tissue

, 0 ≤ ~!,C, 93 < ∞. (6.3)

Here, we define edge tissue as tissue located within approximately 20µm of the pore boundary

(figure 6.3a).

4. Circularity:

~̃
!,C, 9

4 =
4c × Area of tissue void
(Perimeter of tissue void)2 , c/4 / ~̃!,C, 94 / 1. (6.4)

~
!,C, 9

4 =
~̃
!,C, 9

4 − 1

1 − c/4 + 1, 0 / ~!,C, 94 / 1. (6.5)

Here, ~̃!,C, 94 represents the standard measure of circularity or roundness [410], which approaches unity

as the tissue void approaches a perfect circle. For a square shape, ~̃!,C, 94 = c/4. Since our experiments
consider a scaffold that is approximately square, we normalise ~̃!,C, 94 to obtain~!,C, 94 that still tends to

unity as the tissue void approaches a perfect circle, but tends to zero as the tissue void approaches a
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square. To smooth out small-scale irregularities in the identified tissue shape, the convex hull of the

largest contiguous tissue void is used to calculate the circularity [410].

6.2.2 Mathematical model

We interpret the pore bridging experiments with a deterministic spatio-temporal process model that aims to

capture the key biological processes involved in tissue growth. To account for variability in the experimental

data, we model experimental observations as normally distributed about predictions made through the

process model [189,411,412]. In this section, we describe the process model and the probabilistic observation

process used for analysis. A schematic of the mathematical domain is provided in figure 6.3c.

Process model

The substrate of the wells containing the scaffolds is coated with non-adherent agarose that does not allow

cell attachment, while cells are initially adhered to the scaffold fibres. Cells, therefore, cannot move freely

into the pore void. Rather, cells work together to bridge the pore through interconnecting material such

as extracellular matrix and intracellular actin filaments. Therefore, traditional models of cell migration

based upon linear diffusion, which do not capture the sharp tissue boundary seen in the experimental data

(figure 6.1e–h), are inappropriate.

In thiswork, we assume that cellsmove at a rate proportional to their owndensity andproliferate logistically

to a maximum density of , which we model with the Porous-Fisher [36] equation, given by

mD

mC
= �∇ ·

[( D
 

)
∇D

]
+ _D

(
1 − D

 

)
, x ∈ Ω. (6.6)

The vertical depth of the pores is small compared to the horizontal length scale (figure 6.1a), and we observe

that cells form a thin horizontal layer of tissue, approximately one cell thick. Therefore, we integrate out the

vertical dimension [389] so that x = (G,~) andD (x, C) is a depth-averaged density, which we refer to as the
cell density. In equation (6.6), Ω the interior of the pore (figure 6.3a) and \ = (�, _,  ) are parameters that
relate to the diffusivity, proliferation rate, and carrying capacity, respectively.

The pore is surrounded by a fibre on which cells are initially placed approximately uniformly so that, on

the fibre,D is homogeneous,D > 0, and ∇D = 0. We assume that both the proliferation rate and maximum

packing density of cells on the fibre is the same as in the pore interior and, therefore, assume that cell growth

on the fibres is logistic (figure 6.3c). Substituting ∇D = 0 into equation (6.6) recovers a time-dependent

Dirichlet boundary condition on the edge of the pore

dD
dC

= _D

(
1 − D

 

)
, x ∈ mΩ, (6.7)

where mΩ represents the pore boundary (figure 6.3a). In Appendix E.8, we investigate the application of

homogeneous Neumann (zero-flux) boundary conditions which can be derived through a symmetry argument

from themigration of adjoining pores. In summary, we find that such a boundary condition leads to behaviour

inconsistent with the experimental observations.

Initially, cells appear distributed exclusively on the fibre, and not in the interior of the pore. It is not until

after C0 = 4 d that cells visibly start the pore bridging process (figure 6.1a–d). We, therefore, assume that at
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C0 = 4 d, cells are distributed around the pore boundary (i.e., on the fibre) with an initial densityD0, which

we assume to be unknown and, therefore, estimate for each pore size. The initial condition is given by

D (x, C0) =
{
D0, x ∈ mΩ,
0, x ∈ Ω.

(6.8)

We solve equation (6.6)–(6.8) using a finite difference scheme based upon a discretisation with 101 × 101

mesh points for each pore size. Due to the symmetry of the problem, we only solve equation (6.6)–(6.8) on a

quarter-domain (figure 6.3c). To integrate the resultant system of ordinary differential equations, we apply

the standard Tsit5 routine in Julia [275,302]. Full details and verification that the spatial discretisation is

sufficient are available in the supplementary material.

Observation process

Whereas output from the mathematical model is deterministic and comprises the cell density,D (x, C), as a
function of space and time, the experimental observations comprise noisy observations of four summary

statistics, y!,C, 9 = (~!,C, 91 , ~
!,C, 9
2 , ~

!,C, 9
3 , ~

!,C, 9

4 ). To compare model realisations to experimental observations,
we define functions that map D (x, C) to summary statistics that correspond to those that summarise the
experimental data. These functions are as follows.

1. Average cell density:

`1(C) =
1
!2

∬
Ω
D (x, C) dx, 0 ≤ `1(C) ≤  . (6.9)

We approximate the integral in equation (6.9) numerically using the trapezoid rule.

2. Coverage:

`2(C) = 1 −
�void

(
D (x, C);g 

)
!2 , 0 ≤ `2(C) ≤ 1. (6.10)

Here, g represents a proportion of maximum cell density, , at which tissue becomes visible, so that

in regions whereD (C, G,~) > g , cells are considered part of the observed newly formed tissue and
�void

(
D (x, C);g 

)
is the area of the tissue void. In this work, we fix g = 0.5, so that the tissue boundary

in the model is assumed to be where the density is 50% of the maximum [13]. To calculate the area

of the tissue void, �void
(
D (x, C);g 

)
, we apply an interpolation method to approximate the tissue

boundary (supplementary material). This approach ensures that `2(C) remains a continuous function
in the parameter space, which is desirable for computational inference.

3. Edge density:

`3(C) = D (xb, C), 0 ≤ `3(C) ≤  . (6.11)

Here, xb is any point on the pore boundary (the modelled cell density is homogeneous on the pore

boundary); we set xb = (0, 0).
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4. Circularity:

˜̀4(C) =
4c�void

(
D (x, C);g 

)
%2
void

(
D (x, C);g 

) , c/4 ≤ ˜̀4(C) ≤ 1, (6.12)

`4(C) =
˜̀4 − 1

1 − c/4 + 1, 0 ≤ `4(C) ≤ 1. (6.13)

Here, %void
(
D (x, C);g 

)
is an interpolated approximation of the perimeter of the tissue boundary

(supplementary material). As for ~̃!,C, 94 , we normalise ˜̀4(C) to obtain 0 ≤ `4(C) ≤ 1 (equation (6.5)).

For simulations where the coverage exceeds 0.99, we set `4(C) = 1 for convenience.

To account for biological noise and measurement error, we assume that model realisations describe the

expected behaviour and that observations of the summary statistics are independent and normally distributed

[411]. Therefore,

~
!,C, 9

8
∼ Normal

(
`8 (C ;!, ) ), f2

8

(
`8 (C ;!, ) )

) )
. (6.14)

Here, we write `8 (C) = `8 (C ;!, ) ) to emphasise the dependence of model realisations on the pore size,
!, and set of unknown parameters, ) = (�, _,  ,D0). We observe in figure 6.4 that the variability in the
experimental data varies significantly between both summary statistics and observation times. Therefore, we

pre-estimate a variance function, f8 (`8) as a function of the mean [411]. Here, we take f8 (·) to be a quadratic,
with intercept of 10% of the maximum standard deviation observed for the summary statistic (supplementary

material).

6.2.3 Inference

We take a summary statistic, likelihood-based, approach to inference and sensitivity analysis. Given a set of

observations from pores of size !, Y! = {y!,C, 9 } 9,C , the log-likelihood function is given by

ℓ () ; Y!, !) =
∑
C ∈T

∑
9

∑
8∈S

logq
(
~
!,C, 9

8
; `8 (C ;!, ) ), f2

8

(
`8 (C ;!, ) )

) )
, (6.15)

where T = {7, 10, 14, 18, 28} is the set of observation times (C0 = 4 d is excluded from the analysis); S ⊆
{1, 2, 3, 4} is the set of summary statistics included in the analysis; and q (G ; `, f2) is the normal density
function.

Parameter bounds

The set of unknown parameters, ) = (�, _,  ,D0), carry a physical interpretation so we can formulate
realistic parameter bounds. The doubling time of MC3T3-E1 osteoblast cells in two-dimensional culture is

approximately 15 h [409], which corresponds to a proliferation rate of approximately _ ≈ 1.1 d−1. Analysis

based upon the overall bridging time of MC3T3-E1 osteoblast cells suggests� carries a magnitude of approx-

imately 100 µm2 d−1 [13]. Results in figure 6.4a,b suggest that cell density is bounded above by approxim-

ately 4 × 10−3 cellsµm−1, which corresponds to a packing density where a monolayer of cells occupy the

same amount of space as a disk with diameter of approximately 18µm. Based on these values, we choose
conservative bounds such that
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10 ≤ � ≤ 2000 µm2 d−1,

1 × 10−2 ≤ _ ≤ 2 d−1,

2 × 10−3 ≤  ≤ 5 × 10−3 cells µm−2,

1 × 10−5 ≤ D0 ≤ 2 × 10−3 cells µm−2.

(6.16)

Maximum likelihood estimation

We apply maximum likelihood estimation [413] to obtain a best fit parameter combination, )̂
!
, for each pore

size. The maximum likelihood estimate (MLE) is given by

)̂
!
= argmax

)
ℓ () ; Y!, !), (6.17)

subject to the bounds given in equation (6.16).

To compute a numerical approximate the solution to equation (6.17), we employ both a global and

local optimisation routine from the open-source NLopt optimisation library [414]. First, we run a global

optimisation routine, based on the DIRECT algorithm [415], for a fixed amount of time (chosen to be 6 hours).

This approach avoids the need to specify an initial guess of ) for the optimisation routine. We then use

the output from the global optimisation routine as the initial guess in a the local optimisation algorithm

BOBYQA [416]. We look for a maximum with absolute threshold of 10−4, several orders of magnitude below

the threshold of 1.92 for an approximate univariate 95% confidence interval from a normalised-log-profile-

likelihood [413].

Pro�le likelihood analysis

While point estimates provide a means of assessing the ability of the model to capture features in the data,

we are interested in establishing parameter uncertainties and comparing estimates across pore sizes. To do

this, we profile the log-likelihood function for each parameter [24, 401].

First, we partition the parameter space into a parameter (or group of parameters) of interest, k , and

nuisance parameters,$ , such that ) = (k,$ ). The profile log-likelihood for the parameterk is given by

ℓ? (k ; Y!, !) = sup
,
ℓ (k,,; Y!, !) . (6.18)

For example, to profile the diffusivity, we would specifyk = � and $ = (_,  ,D0). To obtain a value of
ℓ? (� ; Y!, !), we maximise the log-likelihood function in the case that� is fixed.
Likelihood-based confidence intervals can be defined from the profile log-likelihood by an asymptotic

approximation using the chi-squared distribution, for sufficiently regular problems [413,417]. 95% confidence

intervals and regions are given using the threshold values of 1.92 and 3.00 log-likelihood units below the

maximum for univariate and bivariate profiles, respectively [413,417,418]. It is convenient to work with a

normalised profile log-likelihood

ℓ̂? (k ; Y!, !) = sup
,
ℓ (k,,; Y!, !) − ℓ ()̂! ; Y!, !), ℓ̂? ≤ 0. (6.19)
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Here, a 95% confidence interval is given where ℓ̂? (k ; Y!, !) ≥ −1.92, for example [413].

To compute numerical approximations to each profile log-likelihood, we employ the local optimisation

routine BOBYQA [416]. The log-likelihood is profiled along a regular spaced grid, (k1,k2, ...,k" ), in series,
starting at the grid point closest to the MLE, using the MLE as the initial guess [401]. Subsequent grid points

use the output from the previous grid points as an initial guess. Again, we look for a maximum with absolute

threshold of 10−4.

6.3 Results and Discussion

We interpret spatially-detailed, temporal, pore bridging data from a range of pore sizes using a relatively

simple reaction-diffusion model. Our analysis considers data relating to the spatial characteristics of

tissue growth—specifically, the tissue coverage and circularity of the tissue void—in addition to typical

measurements, such as cell density. We aim to quantitatively determine whether there are fundamental

differences in cell behaviour and tissue growth between different pore sizes, and verify the appropriateness of

the reaction-diffusion model in explaining pore bridging, by comparing results across a series of experiments

with various pore size. In particular, applications of reaction-diffusion models to describe tissue growth

are typically limited to one-dimensional or unbounded geometries [36–38, 66, 246, 402–404, 406]; there is

comparatively little guidance on applying thesemodels to describe the geometrically constrained phenomena

we study.

In figure 6.1e–h, we show a subset of the experimental images obtained for each pore size over the duration

of the experiment, and in figure 6.4we show the summary statistics collected from the processed experimental

data for each pore size. As each scaffold is fixed prior to staining and imaging, we note that data collected

from successive time points are statistically independent. We work with average cell density (figure 6.4a–d)

instead of cell count to allow direct comparison between pore sizes. It is not until after day four that cells

migrate from the fibres into the pore void, so we exclude data collected at earlier time points from the

analysis, and calibrate the model with observations taken after day four. Observations from day four itself

are excluded as cells primarily occupy the fibres, which the model does not consider (figure 6.1e–f). By

the end of the experiment (28 days), the majority of the 300 and 400µm pores are bridged (85% and 100%,
respectively), and the cell density appears very close to a steady-state (the average cell densities are 102% and

93% of the edge density, respectively). In comparison, several of the 500 and 600µm pores do not bridge at
the conclusion of the experiment (70% and 60% bridged at day 28, respectively), and, for these pore sizes, cell

growth is more evident between days 18 and 28 (cell densities are 78% and 69% of edge density, respectively).

Using information about the cell density and tissue coverage, we calibrate the Porous-Fishermodel to obtain

a maximum likelihood estimate (MLE), )! , individually for each pore size (Table 6.1). We show the solution of

the model at the MLE, which we refer to as the best fit, along with the predicted tissue boundary in figure 6.2.

Qualitatively, the behaviour predicted by the model matches that seen in figure 6.1 for the experimental

data. First, the Porous-Fisher model predicts sharp-fronted migration, where regions ahead of the tissue

boundary are devoid of cells. Second, we see cell migration drive tissue growth that bridges each pore. Pore

bridging appears to occur at a slower rate for the larger pores, consistent with experimental observations. A

counter-intuitive result that highlights the variability in pore bridging we see in the experimental data is that

the 600µm pores are predicted to bridge faster than the 500µm pores: this is also seen in the experimental
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data, where at day 18 tissue coverage is greater in the 600µm than the 500µm pores (figure 6.1).

In figure 6.4, we overlay a time-series of the best fit for each summary statistic with the experimental

data, and in figure 6.5 we compare relationships between summary statistics predicted by the model to the

experimental data. In all cases, we interpret realisations of the deterministic process model as the expected

behaviour. To determine the distinct value of collecting information relating to the cell density and coverage,

we also calculate the MLE in the case where we calibrate the model using (i) the cell density alone, and

(ii) the coverage alongside day 28 observations of the cell density. Finally, to determine if the model can

simultaneously match data across all pore sizes, we calculate the MLE using both cell density and tissue

coverage information from all pore sizes (in this case, the initial density is allowed to vary between pore

sizes). We show the best fits in these three additional scenarios in figure 6.4 and figure 6.5.

Results in figure 6.4a–h show a clear value in considering information relating to tissue coverage. We see

an excellent match with experimental observations of cell density for all pore sizes (figure 6.4a–d), even

for cases where only tissue coverage and day 28 cell density observations are used for model calibration.

Overall, we also see an agreement with experimental observations of tissue coverage; however, when the

model is calibrated using cell density information alone, the best fit does not appear to capture early time

tissue formation correctly (figure 6.4e–h). The model also provides an excellent match to experimental

cell density and coverage observations when calibrated to all pore sizes simultaneously. These results are

important as the model does not explicitly incorporate geometric behaviour (aside from the initial and

boundary conditions) yet is still able to capture features relating to tissue coverage and cell density in the

experimental data. This agreement between the model and experimental data is not only the case when

parameter estimates are allowed to vary between pore sizes, but also when a single set of parameters is used

to describe data across all pore sizes.

Comparison between model fits and experimental observations in figure 6.4a–h highlight how variable

experimental observations are despite a large sample size of = = 618 pores: the average density and coverage

for the 400µmpores, for example, decreases by 12% fromday 7 to 10 (themodelmonotonically increases), and
observations at day 14 of the same pore size encompass observations at nearly every other time, (figure 6.4b,f).

For this reason, we have excluded day 7 observations of 400µm pores from results in the main text. In the
supplementary material, we demonstrate that including these observations leads to results inconsistent with

the other pore sizes. We address possible reasons for high levels of variability data later in the discussion.

A critical area in which the model fails to capture the experimental observations is in its ability to match

the circularity of the tissue boundary in the larger 500 and 600µm pores (figure 6.4k,l and figure 6.2c,d). We

� (µm2 d−1) _ (d−1)  ( cells/µm2)

300µm 397 (290,653) 0.561 (0.353,0.858) 0.00352 (0.00338,0.00361)

400µm 1030 (525,1690) 0.35 (0.191,0.694) 0.0033 (0.00314,0.00343)

500µm 117 (40.6,269) 0.497 (0.238,1.21) 0.00361 (0.00322,0.00401)

600µm 99.9 (54.7,240) 1.41 (0.621,2.0) 0.00294 (0.00271,0.00319)

All 426 (364,552) 0.339 (0.261,0.388) 0.00345 (0.00336,0.00355)

N Table 6.1. Maximum likelihood estimates obtained by calibrating the Porous-Fisher equation to information relating
to the cell density and tissue coverage. Asymptotic 95% confidence intervals, approximated using the profile likelihoods
(figure 6.6) are given in parentheses. All values are stated to three significant figures.
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further verify this by calibrating themodel to information that includes circularity, finding that themodel best

fit in this case does not match the circularity measurements seen in the experimental data (supplementary

material). In figure 6.5e–h we explore the relationship between tissue coverage and circularity, which we

note are both non-dimensional quantities and, therefore, can be directly compared between pore sizes. The

relationships observed in the experimental data are remarkably consistent both between and within pore

sizes, contrasting significantly to results in figure 6.4 that show highly variable observations. Comparing

the tissue boundaries predicted by the model (figure 6.2) to the experimental data (figure 6.1) reveals why

this may be the case. The model predicts initial tissue growth in both the corners and edge of the pore.

In comparison, tissue growth in the experiments appears to occur initially only in the corners: it is not

until the tissue boundary becomes almost completely circular, with a diameter equal to the pore size, that

tissue growth occurs on the pore edge. We confirm this in figure 6.5e–h by calculating the coverage for a

hypothetical, idealised, pore that forms a circular tissue void inscribed in the pore, equal to 100(1 − c/4)%
for all pore sizes (indicated in black). We note that since the manufacturing process never leads to pores that

are perfectly square, we do not expect to see a perfectly circular pore with coverage 100(1 − c/4)% in the
experimental data. This corner corner bridging stage of tissue growth is not included in or captured by the

Porous-Fisher model (figure 6.2). To develop a better understanding of corner bridging, we suggest future

mathematical and experimental work focussed on corner bridging using scaffolds with pores large enough

that tissues in adjacent corner tissues do not interact and start pore bridging [391, 396].

Point or maximum likelihood estimates for each parameter vary across pore sizes (Table 6.1), yet the model

is able to match experimental observations of cell density and tissue coverage across all pore sizes with a
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single set of parameters (figure 6.4). To allow for parameter uncertainty when comparing parameters across

pore sizes, we compute profile likelihoods (figure 6.6) and approximate confidence intervals (Table 6.1) for

each parameter. Although profile likelihoods must be interpreted with care given that they depend not only

on the process model but also the noise model, they provide valuable information about the sensitivity of the

likelihood estimates we obtain. This is important as the point estimates provided by the maximum likelihood

estimate give no information about parameter uncertainty, sensitivity or identifiability [24]. Although point

estimates for each parameter appear to vary between pore sizes (Table 6.1), confidence intervals (Table 6.1)

and likelihood profiles (figure 6.6) largely overlap, providing no evidence that these parameters vary across

pore sizes. MLEs obtained for the diffusivity,� , from cell density information alone are much larger than

we might expect, but examination of the profile likelihoods, which provide a lower, but no upper, bounded

confidence interval, indicates that� is cannot be established unless information relating to tissue coverage

is included. The largest discrepancy between pore sizes is seen in the diffusivity: estimates range from 400

to 1000µm2 d−1, for the 300 and 400µm pores, respectively (the larger variability and inconsistencies in

data for the 400µm pores leads to a much wider confidence interval than for the 300µm pores), to below
200µm2 d−1 for the 500 and 600µm pores. This variability is consistent with estimates for cell diffusivities in
two-dimensional culture, which often vary over several magnitudes across experimental conditions [65, 297].

Estimates, profiles and confidence intervals for the proliferation rate, _, are remarkably consistent between

pore sizes. While the model does not capture the shape of the tissue boundary, it does capture both the

cell density and tissue coverage, suggesting that the crowding effects which lead to logistic growth in the

experiments are also captured. In particular, our results in figure 6.6 suggest proliferation of MC3T3-E1 is

similar between scaffolds of different sizes and is lower than a rate of_ ≈ 1.1 d−1 observed in two-dimensional

culture [409] (this is also seen in figure 6.7). Another interesting result is the consistency in estimates of

carrying capacity,  , of approximately 0.00345 (95% combined CI: (0.00336,0.00355)), which corresponds

to an average packing density where cells occupy the same amount of space as a disc with diameter of

19µm, slightly lower than, and, therefore, consistent with a tissue comprising a monolayer of cells [419].
An exception is for the largest 600µm pore, which produces an estimate much lower than the other pores
(95% CI: (0.0027,0.0032)). While this lower estimate may be consistent with average cell density observations

(figure 6.4d), the higher estimate from the combined MLE is more consistent with behaviour at the edge of

the pore (figure 6.4p). In some cases, the assumption of a constant carrying capacity across the entire pore

may not be appropriate. It is not clear from the data alone whether this observation is due to actual variation

in carrying capacity within a pore, or because net cell growth in the centre of the pore has not yet plateaued

due to crowding effects. To answer this question, data must be collected over a longer experimental duration

for these larger pores.

In figure 6.7 we compute bivariate profiles to assess potential relationships between parameter estimates.

First, examining the bivariate profiles between the proliferation rate, _, and diffusivity,� , in figure 6.7a–d,

reveals a hyperbolic relationship. This result is consistent with previous studies that establish only the

product�_ using information about the position of the tissue interface [13,38], but that cannot establish

individual values for these parameters. In our work, by using information relating to both cell density and

tissue coverage, we are able to establish the individual values of� and _ within a region of compact support

(a 95% confidence region is shown in figure 6.7a–d). Second, examining the bivariate profiles between

the proliferation rate, _, and carrying capacity,  , highlights the information obtainable from the 28 day
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experiment for each pore size. On average, the larger 500µmand600µmpores donot bridge by the conclusion
of the experiment, and we see comparatively large uncertainties in both the estimated proliferation rate

and estimated carrying capacity (figure 6.7g,h). In contrast, results for the smaller 300µm and 400µm
pores—the majority of which bridge by day 18—show that we are able to establish these parameters with a

relatively small region (figure 6.7e,f). Although point estimates for the proliferation rate vary across pore

sizes (Table 6.1), the bivariate profiles show a significant overlap in possible parameter values, indicating

that these parameters are similar between pore sizes.

When the data are analysed as summary statistics that depend upon time, as in figure 6.4, we see a large

amount of variability that cannot be fully captured by the observation noise process we define in Section 6.2.2.

However, when relationships between summary statistics of each pore are analysed with respect to each

other, independent of time, we see notably less variability (figure 6.5). These results suggest that time alone

is a poor predictor of each summary statistic. In contrast, the dependence between summary statistics in

figure 6.5 suggests that summary statistics have well defined relationships with relatively little variability. In

the deterministic process model, the initial condition (which describes the expected value of each summary

statistic on day 4) is taken to be a fixed density of cells distributed around the fibres. The majority of the

variability in the temporal pore bridging data may be due to variability in the initial condition, which affects

initial pore formation. For example, we expect tissue growth to be slower, or stationary, for pores that

initially have a smaller density of cells distributed around the pore boundary at day 4. One way around

the limitation of providing a homogeneous initial distribution of the cells in the experiments is to collect

time-series data, where the same pore is imaged at multiple time points. There are two ways this information
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could be incorporated into the mathematical model. First, by including a time delay parameter for each data

point that describes the delay until tissue formation inside the pore begins, that can be profiled out as a

nuisance parameter in the analysis. Second, by capturing the variability directly by describing pore bridging

as a differential equation where the initial density at the pore boundaries is a random variable.

Our results do not suggest significant differences in cell behaviour between pore sizes. Despite the

Porous-Fisher model not explicitly incorporating geometric behaviour (aside from the initial and boundary

conditions), we can capture information relating to both tissue coverage and cell density even when

calibrated simultaneously to data from all pore sizes. By accounting for tissue coverage, we quantify a

similar proliferation rate for all sizes based on a logistic growth assumption. The relationship between tissue

boundary circularity and coverage is similar between all pore sizes. In all pores we see two stages of bridging:

first, the corners bridge—this takes longer in the larger pores—and form an approximately circular tissue

boundary; second, the pore closes and remains approximately circular in shape. These observations have also

been made for triangular and hexagonally shaped pores [394], and convex pores [386]. Further experimental

and modelling work is needed to disentangle the effect of each of these stages on overall pore bridging and

tissue growth. For example, we suggest experimental work that investigates corner bridging and tissue

establishment using non-constrained or “open” geometries [391, 396], rather than the current geometry

where tissue growth eventually closes a pore of finite size. To reduce overall variability in the data, variability

in the initial condition should be accounted for through time-series imaging, where information about each

pore is available at multiple time-points, and throughout each distinct stage.

In the present work we assume that motility is described by the non-linear diffusion term D(D) = �D/ ,
which ceases migration in regions whereD = 0 and increases to� asD →  . Identifying the dependence of

motility on cell density will allow for calibration of more general models of the form

mD

mC
= ∇ · [D(D)∇D] + _D

(
1 − D

 

)
, x ∈ Ω. (6.20)

For example, setting

D(D) = �D
(
1 − D

 

)
, (6.21)

captures inhibited migration as the tissue growth ceases whereD →  , so that migration is maximised at

intermediate densities. However, we note that it is often the case that, asD →  , ∇D ≈ 0 so we expect our

characterisation of diffusivity D(D) = �D/ to be sufficient in high-density regions.

With the information available, our work was not able to identify the mechanisms that lead to corner

bridging and the circular shape of the tissue boundary. The migration of cells from the fibres to the pore

interior may be captured more accurately through the generalised boundary conditions

0(D) + 1 (D)∇D · n̂ = 0, (6.22)

where n̂ is a unit vector normal to the fibre, and 0(D) and 1 (D) are functions that describe the behaviour of
cells at the pore boundaries. However, we expect parameter identifiability issues to becomemore pronounced

by the introduction of the functions0(D) and1 (D) that depend onD and, therefore, implicitly on both location
and time.

Our thin three-dimensional experimental framework, and two-dimensional depth-averaged mathematical
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modelling framework, carry several advantages over more complex alternatives. In addition to information

relating to tissue coverage, we are able to access detailed information about cell density, which we interpret

with a mathematical model that quantifies cell behaviour with biophysical parameters such as proliferation

and migration rates. This allows for comparison of cell behaviour between cell lines, allowing tissue growth

optimisation with respect to cell line in addition to scaffold geometry. Our modelling framework is also

extensible to co-culture systems that include multiple cell lines, which are more representative of in vivo

tissue growth, through a coupled system of partial differential equations. Additionally, working with a thin

three-dimensional experimental geometry reduces the need to account for additional extraneous factors

on cell growth, such as nutrient availability. For example, typical in vitro three-dimensional tissue culture

lack the vascular system that ensures homogeneous nutrient availability for in vivo tissue growth [12]. In

comparison, our geometry results in a monolayer of cells that are all in direct contact with growth medium.

We suggest, in future, a hybrid modelling framework to describe each stage of pore bridging, rather than

a single model that captures all stages of growth. While our analysis does not preclude generalisations of

the Porous-Fisher model from capturing geometric features like circularity, reaction-diffusion models alone

cannot account for both the corner bridging and pore closing stages of growth we see in the experimental

data. Models based on continuum mechanics or curvature control have been successful in recapturing the

initial stages of bridging seen experimental data [386, 394, 397], but typically neglect information relating to

cell density. Once a circular tissue boundary is established, tissue growth may be quantified using density-

dependent models such as those based on the Porous-Fisher equation, or agent based models [30, 420].

6.4 Conclusion and Outlook

We analyse experimental data from a series of pore bridging experiments using a relatively simple reaction-

diffusion model based on the Porous-Fisher equation. In addition to commonly reported tissue coverage

information, our model allows for the interpretation of information relating to cell density, and we see a

clear value in considering both measurements. For example, the cell migration rate is often unidentifiable

from information relating to cell density alone but becomes identifiable when information relating to tissue

coverage is included. Compared to existing models of tissue growth that are largely phenomenological

[391, 392], our framework characterises cell behaviour with parameters that carry a biologically meaningful

interpretation, such as cell proliferation and migration rates. We find no evidence to suggest that cell

behaviour is dependent upon pore size. The cell proliferation rates, which are lower than that observed

for two-dimensional culture, and carrying capacities are found to be remarkably similar across different

pore sizes. This outcome suggests that our experimental protocols lead to consistent, reproducible tissue

growth. This conclusion is not apparent without interpretation of the experimental data with a mechanistic

mathematical model.

Our analysis identifies two distinct stages of pore bridging that are consistent between pore sizes: an initial

corner bridging stage, and a latter hole closing stage. The Porous-Fisher model does not describe the initial

corner bridging stage and, therefore, does not reproduce the shape of the tissue boundary. However, the

model does match features relating to cell population and tissue coverage, thus capturing crowding effects

and providing confidence in the estimated cell proliferation rates. We suggest that a better understanding of

pore bridging can be formed through distinct theoretical models and experimental analysis that individually
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capture both the corner bridging and hole closing stages.

The experimental data used for model calibration suggests, at first, that pore bridging is a highly variable

process. However, analysis of the relationships between summary statistics reveals this may not be the case.

Rather, variability in both the initial distribution of cells on the scaffolds and corner bridging leads to a

time-delay that cannot be accounted for with the information available from our data-collection method.

These results highlight a potential value in designing an experiment to collect time-series observations,

which will provide information about cell density and tissue coverage of each pore at multiple time points.

This more detailed information will allow for the inclusion of more complicatedmechanisms, such as directed

migration through chemotaxis [18, 374], mechanical effects at the tissue boundary [86, 421], or the depletion

of nutrients available to the cell population. At present, we find the complexity of the mathematical model is

well suited to the level of information available in the experimental data, and we expect identifiability issues

to arise if we were to interpret the current data with a more complex model.

Many of our conclusions could not have been made without considering data from multiple experimental

geometries. The smaller pores, for example, give the impression that the model captures geometric features

of pore closing; the inability of the model to capture these features is only evident when we analyse data for

the larger pores. Comparing parameter estimates and profile likelihoods across experimental conditions

is essential for constructing and verifying theoretical descriptions of pore bridging. Typical applications

of mechanistic mathematical models to understand tissue formation usually involve working with a single

experimental geometry, most often in a one-dimensional setting. These approaches cannot provide insight

into the effect of high-dimensional geometric phenomena, such as corners, which we explore in our work.

In conclusion, our Porous-Fisher model successfully captures many of the key features of the experiments,

providing a straightforward means of interpreting experimental observations in terms of the underlying

cell proliferation and migration mechanisms that drive tissue growth. To the best of our knowledge, these

mechanisms have never before been explicitly characterised for tissue growth in 3D-printed scaffolds.
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Chapter 7

Conclusion

Mathematical models are routinely applied in biology and bioengineering to design experiments, interpret

experimental data, and achieve control over biological systems. Tailoringmodel complexity to the availability

of experimental data and the biological questions of interest is critical to avoid issues relating to parameter

identifiability.

In this thesis, we apply ordinary, partial and stochastic differential equations, along with individual-based

models and optimal control, to describe collective cell behaviour. The question of which model to select is

not—and likely never will be—clear. However, our choices are always pragmatic and motivated directly by

the availability of current or future experimental data. This approach avoids issues relating to parameter

identifiability, ensuring the validity of model predictions and enabling future experimental work.

In this chapter, we outline the primary outcomes of this thesis and how they contribute to the literature.

These outcomes relate to model choice and construction, to statistical techniques for application to experi-

mental data, and to experimental insights that guide experimental design and work.

7.1 Summary and Contribution

In Chapter 2, motivated by the availability of highly detailed cell-positional information, we develop and

calibrate an individual-based model. Our goals are to identify the nature of cell-to-cell interactions that give

rise to the density-dependent collective behaviour seen in the experiments. As our questions relate to the net

effect of interactions—whether they increase or decrease net motility or proliferation—we form a simplified

model where interactions are described using kernel functions. Calibrating our model to experimental data

allows us to identify both the strength and sign of these kernels, indicating with a single parameter whether

proliferation, motility or a directional movement bias increase or decrease with density. We apply model

selection to identify the simplest model that simultaneously matches several data sets, each initiated at a

different cell density. In opposition to many typical models of cell behaviour, our analysis suggests that

proliferation is relatively unaffected by cell density, whereas density-dependent motility is essential.

Overall, our analysis in Chapter 2 indicates that fundamentalmodelling assumptions relating to cell motility

must be revisited. Whereas it is routine for linear-diffusion to be applied to describe cell motility, we suggest
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a more appropriate model of cell motility is of the form

mD

mC
=
m

mG

(
D(D) mD

mG

)
︸            ︷︷            ︸
Contact stimulated

motility

, D′(D) > 0. (7.1)

where D(D) is an increasing function of cell density, D. These findings strongly influence our model of
cell motility in Chapter 6, where we set D(D) = �D (i.e., the Porous-Fisher equation) to describe contact-
stimulatedmotility. Another significant result in Chapter 2 is that even from the highly detailed experimental

data we consider, the effect of cell-to-cell interactions on proliferation is non-identifiable: models with

and without density-dependent proliferation match the data. While we cannot conclude from our analysis

what is required to identify the effect of interactions on proliferation, other studies suggest that experiment

duration significantly affects identifiability of growth parameters [71].

Typical experimental protocols do not vary the initial number of cells, so models that are calibrated to

experimental data are typically only done so with a single initial condition, leaving questions of over-fitting

and parameter identifiability unanswered. For example, Jin et al. [40] find that calibrating one of the most

commonmean-field models of cell migration—the Fisher-Kolmogorov equation—to experimental data across

a range of densities revealed discrepancies in estimates of cell motility, motivating our research in Chapter 2

and Chapter 6. Mathematically, it is typical for the initial condition to be modelled separately from the

transient dynamics. This approach implicitly assumes that the transient dynamics, and hence the model

parameters, are independent of the initial condition in the experiments. Therefore, it is important for

model validation to compare parameter estimates to experimental data initiated across a range of densities.

Consistency in parameter estimates indicates consistency in cell behaviour between initial densities and

provides evidence of model appropriateness or, in the case of the discrepancy noted by Jin et al., indicates

areas for model refinement.

The success of applying kernel functions to describe cell-to-cell interactions in Chapter 2 motivates us

to develop similar techniques to describe cellular decision making in a tractable modelling framework.

In Chapter 3, we apply optimal control theory to model cellular decision making by bacteria in volatile

environments, introducing our idea of cellular hedging to the literature. This approach invokes the assumption

that the strategic response of cells to volatility optimises their productivity. While this assumption has

been invoked in the literature before [22], our approach allows the characterisation of a genuinely adaptive

strategy that depends explicitly on the external environment. Moreover, the application of the control

alleviates the need to model the complex molecular-level mechanisms that give rise to decision-making

strategies, ensuring that the model remains identifiable while still providing biological insight.

A fundamental result of our analysis in Chapter 3 is to show that bacterial persistence is only advantageous

in the presence of environmental volatility. Yet, existing models of environmental variability in the literature

are deterministic or a random sequence of discrete shocks [22, 103, 123, 124]. In Chapter 3 and the associated

Appendix, we develop five unique models of volatility described using stochastic differential equations. We

show that continuously fluctuating environments produce qualitatively different optimal responses than a

sequence of discrete shocks. These observations draw parallels to so-called evolutionarily-informed therapies

such as drug sequencing [146] that exploit the natural adaption of cells to environmental conditions to
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7.1 Summary and Contribution

produce a more favourable clinical response to therapy. Given that bacterial persistence is thought to be

responsible for the formation and incurability of many infections [110,111], a better understanding of how

these strategies arise is vital to future clinical research.

A prerequisite for accurate parameter estimation is that model parameters be identifiable. Despite the

ubiquity of stochasticity in biology—including in the study of bacterial persistence in Chapter 3—there are

no commonly adopted methodologies to diagnose parameter identifiability in SDE models. Consequently,

it is rarely apparent at the outset of analysis that adding to complexity by modelling noise will be more

informative than a deterministic approach. In Chapter 4, we demonstrate how existing techniques for the

analysis of ODE models can be applied to SDE models in systems biology. This analysis is critical to model

and experimental design. For example, identifiability analysis can rapidly discern the quality and quantity

of experimental data required to adequately estimate model parameters. When model parameters are

structurally non-identifiable, it is often suggested in the literature that the model should be re-parameterised

or reduced in complexity [273,342]. Our analysis in Chapter 4 explicitly demonstrates that, in some instances,

non-identifiability can be rectified by leveraging information in the noise and moving from an ODE to an SDE

description. These insights are crucial for tailoring the mathematical model to the available data.

In Chapter 5 and Chapter 6, we apply mathematical models to two applications in bioengineering. In

this context, detailed quantification of cell behaviour through predictive models is paramount to allow for

exploitation and accurate control.

Our first application, in Chapter 5, is to introduce a theoretical biological subsystem that induces energy

into a mechanical metamaterial. This chapter addresses a significant limitation of current signal transmitting

metamaterials: limited by an initial energy state, these passive materials are single-use. In contrast, our

metamaterial allows for reversible mechanical signal transmission. Through model simplification and

travelling wave analysis, we identify the region of the parameter space that allows for signal transmission,

placing constraints on the biological subsystem. Aside from theoretical manufacturing outcomes, this work

yields mathematical analysis applicable more broadly to the mathematical biology community. For example,

our research of this material reveals parallels between other fast-slow systems, such as the FitzHugh-Nagumo

model for neuron excitation and relaxation [367–369,372], meaning our analysis is broadly applicable to these

systems. While work in Chapter 5 is purely theoretical, results demonstrate how a new class of biologically

inspired metamaterials can produce useful new functionalities.

Our second application, in Chapter 6, is to quantify collective cell behaviour in 3D printed scaffolds. Such

quantification is vital to answer key engineering questions to control and optimise tissue growth, allowing for

future clinical applications that replace synthetic grafts with artificially regenerated tissues. Motivated by

the findings in Chapter 2, we describe cell motility using the Porous-Fisher equation and validate themodel by

comparing parameter estimates across experimental conditions. These results suggest that cell proliferation

and the maximal cell packing density are relatively insensitive to physical changes in scaffold geometry.

Analogous to observations that motivate our study in Chapter 2 [40], we find and diagnose evidence of model

misspecification, observing that the Porous-Fisher model is unable to capture the shape of the growing

tissue. Our work, therefore, provides vital modelling guidance not only for the application to tissue growth

in these scaffolds but more generally for mathematical models of collective migration in high-dimensional

geometries.

Work in this thesis develops data-driven models in mathematical biology, with applications in biology
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and bioengineering. We demonstrate how models can identify cell-to-cell interactions and are the first to

bring stochastic optimal control theory to study decision making in biology. To guide model and experi-

mental design, we elucidate identifiability analysis techniques for the stochastic models that are fast

becoming commonplace through mathematical biology. Through two novel applications to bioengineering,

we demonstrate how collective cell behaviour can be exploited—guided by mathematical modelling—to

create functional new materials and synthetic skin grafts. Overall, we illustrate how mathematical models

can be applied to deal with complexity in biology and bioengineering.

7.2 Future work

The developments in this thesis enable several areas for new experimental and theoretical models in cell

biology that we now outline.

• Develop identi�ability analysis tools for partial di�erential equation models.

Two of the major themes in this thesis are spatial and stochastic models, yet, aside from our work in

Chapter 4, there is very little guidance on identifiability analysis for these two common classes ofmodel.

Recent theoretical work extends the differential algebra approach for structural identifiability analysis

of ODE models to age-structured PDE models [422]. Applying this work to reaction-diffusion-type PDE

models, such as that considered in Chapter 6, will allow for optimal experiment design and model

construction, with application in and beyond the mathematical biology modelling community. Since

structural identifiability is a prerequisite for practical identifiability [23], development of tools to

rapidly analyse identifiability of PDE models under various measurements will alleviate some of the

computational challenges in diagnosing these issues using inference techniques, as encountered in

Chapter 6.

Any development of identifiability analysis for PDE models has implicit outcomes for SDE models,

the transient behaviour of which can be described using the Fokker-Plank equation, a time-dependent

PDE. We expect, however, that dimensionality will remain a major challenge. Whereas structural

identifiability analysis tools for ODEs readily extend to large systems of equations, an =-dimensional

SDE can only be formulated into an =-dimensional PDE. Therefore, we expect the MCMC and moment-

dynamics approach to identifiability we explore in Chapter 4 to remain viable options.

• Exploit adaption of bacteria to environmental volatility to design antibiotic alternatives.

Optimal control is often applied from a clinician’s perspective to design therapies that combat

malignant growth [4]. These ideas show promise to build treatments that are highly effective,

personalised, and robust against the unexpected [5]. One point of criticism for the application of

optimal control in this context is model misspecification. For example, existing optimal control studies

for the disinfection of persister-producing bacteria colonies assume simple dynamics where the

bacteria do not adapt to the antibiotic treatment [149]. Analysis in Chapter 3 avoids this by describing

the optimal response of bacteria to treatment, i.e., a clinically worst-casemodel.

The understanding of how bacteria might respond to antibiotic treatment we provide in Chapter 3

forms the basis for further work that exploits the natural adaption of bacteria to create new types of

treatment. Drug sequencing therapies [152] apply multiple drugs in sequence to maintain antibiotic
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susceptibility in the colony. This parallels observations by Gefen et al. [153], who find that exposing a

colony to fresh media reduces persistence. Applying optimal control onto the dynamical model we

develop in Chapter 3 may reveal non-intuitive therapies that account for the adaptation of bacteria to

disinfect a colony through a combination therapy that controls both the growth rate and drug input.

• Model cell-to-cell interactions using optimal control.

In Chapter 2, we apply a deterministic kernel function to describe cell-to-cell interactions that affect

proliferation or motility, and in Chapter 3, we apply a control that determines the reaction of cells to

their external environment. In both cases, we develop an identifiable model by summarising complex,

molecule-level mechanisms using a function that describes the outcome. These studies raise the

possibility of modelling cell-to-cell interactions as a control to study the nature of mechanisms that

maximise or achieve an objective. For example, cancer cells may develop cell-to-cell interactions that

maximise the expected growth rate, whereas epithelial cells might interact in such a way as to optimise

the mechanical structure of the resultant tissue. So-called inverse optimal control can be applied to learn

the objective function from a model and experimental data [423], potentially providing additional

insight that can characterise why a particular cell population exhibits the behaviour that it does.

• Incorporate spatial e�ects in optimal control model of bacterial persistence.

In Chapter 3 we develop a space-averaged model to describe bacterial persistence using techniques

from control theory. Given the computational complexity and nature of typical experimental data,

in this initial piece of work we neglect spatial effects. In reality, spatial effects often play a crucial

role in mechanisms such as quorum sensing, which enables bacteria to communicate and collectively

respond to stimulus [154].

One approach is to describe the behaviour of bacteria in a spatially-fluctuating environment using a

stochastic PDE model, where chemical signals that regulate quorum sending and, hence, control signal

input, are explicitly modelled [424]. However, applying optimal control to stochastic PDE models is

not straightforward, and will come with a significant computational cost. An alternative approach is

to apply the identified population-level control to an individual-based model, such as that explored in

Chapter 2. The cell-to-cell interactions developed through kernel functions in Chapter 2 can be applied

to describe the local prevalence of persisters to inform the control. In this approach, a diffusible

chemical species, such as a species used for quorum sending, can be concurrently modelled [425].

• Apply optimal control theory to metamaterial model.

Crucial to any potential implementation of the activemetamaterial introduced in Chapter 5 is the ability

to control the behaviour. In our work, we demonstrate that the material can selectively transmit and

retransmit mechanical signals. However, it remains unclear whether concurrent or oscillatory signals

are transmissible, or even compatible with the energy reset provided by the biological subsystem.

Optimal control techniques (Chapter 3) can determine the required inputs to achieve, if possible, the

aforementioned behaviours. As such techniques are typically based around an objective, they can also

be applied to optimise energy expenditure and tune the material.

Aside from theoretical outcomes relating to thematerial itself, optimal control analysis of the system

studied in Chapter 5 has broader outcomes. For example, similar fast-slow systems are seen in neural
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Input
volatile environment

Monitor response

Computer-controlled
bioreactor

Bacteria population 
in controlled
growth medium

(b)
Design input to ensure parameter identi�ability

(c)
Model response using

stochastic optimal control theory

(a)
Combine experimental science with
mathematical modelling framework

N Figure 7.1. Combination of theoretical and experimental work to understand the adaption of biological systems to
uncertainty. A volatile environment described by a known stochastic process, I, is provided as the input to a bioreactor.
The response of the biological system is monitored and used to calibrate the mathematical model.

and cardiac excitation. In these systems, small perturbations and stochastic effects may play essential

roles that must be accounted for to enable robust control. Here, interdisciplinary ideas developed in

engineering [426] can be applied to study control in these biological systems.

• Design and conduct experimental study of bacterial persistence.

Recent experimental technologies, such as computer-controlled bioreactors [427], allow precise

control of the nutrient and drug inflow in experiments. Mathematical work by Treloar et al. [428],

for example, achieves control over bacteria growth in a bioreactor through reinforcement learning.

These technologies open interdisciplinary opportunities to study cellular decision making under true

uncertainty, quantified by the class of mathematical models developed in Chapter 3.

Bacteria are highly proliferative and rapidly adapt to environmental changes, including the

introduction of antibiotics. Van den Bergh et al. [109] demonstrate that daily exposure to antibiotics

increased colony survival by a factor of up to 300 after just three treatments. Exposing bacteria to a

truly volatile environment, but an environment with known mathematical properties, will reveal how

biological systems adapt to uncertainty. Work in Chapter 3 enables such studies, by providing math-

ematical tools to generate stochastic environments and the theory to predict an optimal evolutionary

response (figure 7.1). The advantage of applying this cellular hedging approach over models that

describe the molecular mechanisms that give rise to this behaviour [130–132] is model complexity

and identifiability: the optimal control framework adds only a single tuning parameter to the already

routine models of persistence [16]. Given that bacterial persistence is thought to be responsible for

the formation and incurability of many common infections, a comprehensive understanding of how

these cellular hedging strategies form will be of significant clinical importance.

• Incorporate stochastic e�ects in model of tissue growth.

A major conclusion of Chapter 6 is that much of the variability in pore bridging is due to the initial
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condition. This mirrors results from Chapter 2, where experiments seeded at the same seeding density

differ significantly in the initial number of cells. As the analysis in Chapter 2 concludes, this variability

in the initial condition can significantly affect the behaviour and should be accounted for. Provided that

time-lapse experimental data were available, there are two approaches to account for the variability

in the initial condition in the model. First, to model the initial condition as a random variable in the

existing, deterministic, PDE model. This approach neglects intrinsic variability in tissue growth and,

therefore, may only be appropriate for larger pores or experiments where the average seeding density

is higher. A second approach is to describe pore bridging using an individual-based model. Here, the

initial locations of cells in the experiments can specify the initial condition in the model. A secondary

advantage of this approach is to allow for the inclusion of more complex mechanisms, particularly at

the domain boundaries where cells first migrate off fibres into the pore.

7.3 Final remarks

Alan Turing is famously quoted “The model will be a simplification and an idealization, and consequentially

a falsification” [429]. The purpose of mathematical modelling is not to describe everything but to describe

enough given the questions posed. This thesis develops new mathematical models and statistical techniques

that enable future research and take full advantage of experimental data in biology and bioengineering.
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A.2 Experimental data

Experiment # (0) # (18) # (36) Fold change

1 183 322 652 3.56

2 299 528 927 3.10

3 354 549 893 2.52

4 404 636 1121 2.77

5 427 657 1077 2.52

6 522 849 1414 2.71

7 677 1200 2013 2.97

8 692 1285 1853 2.67

9 731 1155 1974 2.70

J Table A.1. Summary of experimental data showing
the cell count, # (C), and fold change, # (36)/# (0),
for all nine experiments.
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J Figure A.1. Summary of experimental data showing
the cell count, # (C), for all nine experiments.
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A.3 ABC algorithms

Here, we present the ABC rejection algorithm (algorithm A.1) and ABC SMC algorithm (algorithm A.2).

A.3.1 ABC rejection algorithm

H Algorithm A.1. ABC rejection sampling algorithm.

1: Draw parameter samples from the joint prior ) 9 ∼ c () ).
2: Set discrepancy of 9th sample ^ 9 = 0, experiment index 8 = 1.

2.1: Set agent locations, {x=}# (0)==1 , to match experimental data X(8)obs at C = 0.

2.2: Simulate model with parameters ) 9 for C ≤ 36, storing the agent locations at C = 18 h and C = 36 h,

denoted X(8)sim.

2.3: Update the discrepancy ^ 9 ← ^ 9 + 3 (X(8)obs, X
(8)
sim), where 3 (·, ·) is the discrepancy function.

2.4: Move to the next replicate by setting 8 = 8 + 1 and repeat steps 2.1–2.4 until 8 = 9.

3: Repeat steps 1–2 until 105 samples {) 9 , Y 9 }105

9=1 are simulated.

4: Order {) 9 , ^ 9 }105

9=1 by ^ 9 such that ^ 9 < ^ 9+1.

5: Retain the first 1% (U = 0.01) of prior samples ) 9 , as posterior samples, {) 9 }105U
9=1 .
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A.3.2 SMC algorithm

We apply the SMC model selection algorithm of Toni et al. [70], given in algorithm A.2. We choose the

perturbation kernel to be amultivariate Gaussianwith independent components and variances approximately

equal to the ABC rejection posterior variances [81].

H Algorithm A.2. ABC SMC sampling algorithm for model selection with uniform priors [70].

1: Choose Y1, ..., Y) such that Y: > Y:+1 and the desired total number of particles,#samples. Set the population

indicator : = 1.

2: Set the particle indicator 9 = 1.

2.1: Sample model indicator,"∗0 ∼ c ("0).
2.2: If : = 1, sample proposal ) ∗∗ ∼ c0 () ) where c0 () ) is the prior given model"∗0 . Go to step 2.4.
2.3: If : > 1, sample ) ∗ from the subset of the previous population of particles for"0 ,�

(0) (: − 1). If
population is empty, return to 2.1. Perturb ) ∗∗ ∼  () |) ∗), where (·, ·) is a symmetric perturbation
kernel. If c0 () ∗∗) = 0, return to step 2.1.

2.4: Set discrepancy ^ = 0, experiment index 8 = 1.

2.4.1: Set agent locations, {x=}# (0)==1 , to match experimental data X(8)obs at C = 0.

2.4.2: Simulate model"0 with parameters ) ∗∗ for C ≤ 36, storing the agent locations at C = 18 h and

C = 36 h, denotedX(8)sim.

2.4.3: Update the discrepancy ^ = ^ + 3 (X(8)obs, X
(8)
sim), where 3 (·, ·) is the discrepancy function.

2.4.4: If ^ > Y: , reject particle and go back to 2.1. Else, move to next replicate by setting 8 = 8 + 1 and

repeat steps 2.4.1–2.4.4 until 8 = 9.

2.5: Add ) ∗∗ to the population of particles�(0) (:) = {) 9 (:)}
#
(0)
samples
9=1 , and calculate its weight as

F
(0)
9
(:) =


1, : = 1,(∑#

(0)
samples
9=1 F

(0)
9
(: − 1) () ∗∗ |) 9 (: − 1))

)−1

, : > 1.

2.6: Set 9 = 9 + 1 and repeat steps 2.1–2.6 until 9 = #samples.

3. Set : = : + 1 and normalise the weights within each model. Repeat step 2 until : = ) .
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A.4 Pilot ABC results

A.4.1 Pilot ABC to determine f

In order to reduce the number of unknown parameters, we estimate and fix the kernel width parameter,

f . To do this, we perform a pilot run using ABC rejection, where c (f) = * (2, 30) using algorithm A.1, the
results of which are shown in figure A.2. These results show a posterior mode of approximately f ≈ 12 µm,

which we treat as constant for the rest of this study. In this appendix, we also produce some results for

f = 24 µm to explore the sensitivity of this choice (figures S4, S6, S9 and S10).
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A.4.2 Wider priors

We notice in figure A.2e,f that the posterior support appears to cover the prior support. To investigate this,

we widen the corresponding priors for W? and W1 by a factor of two and perform ABC rejection. The results

are shown in figure A.3. These results suggest that W? and W1 are non-identifiable since the re-calculated

posteriors are relatively flat and cover the same interval as the widened prior.
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A.4.3 ExcludingP from inference

To investigate the amount of information contained in the pair correlation function,P, we perform ABC

rejection in the caseP is removed from the distance metric so that

3 (Xobs, Xsim) =
∑

C ∈{18,30}

(
[#sim(C) − #obs(C)]2

#obs(C)2

+
∑�mid+20
9=�mid−20 [Dsim( 9, C) − Dobs( 9, C)]2∑�mid+20

9=�mid−20 Dobs( 9, C)2

)
.

(A.1)

The results are shown in figure A.4. We see a large reduction in information in the posteriors in figure A.4

compared to figure A.2. In particularly, the sign of W< is less clear in the case the pair correlation is excluded.
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N Figure A.4. Figure A.2 where summary statistics relating the the pair correlation,P are excluded.
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A.5 Quantile plots

To determine the appropriate ABC SMC sequence of thresholds, we produce a quantile plot of the distance

metric obtained from 100,000 prior samples where f = 12 µm (figure A.5a) and f = 24 µm (figure A.5b).

In each case, we choose the final discrepancy, Y* , to correspond to an ABC rejection rate of approximately

1%. We choose the sequence base upon acceptance probabilities of approximately 50%, 25%, 12.5%, 6.25%,

3.125%, 1.5625% and 1% [81]. The sequence of thresholds for results in the main chapter where f = 12 µm is

{9.6, 7.3, 6.3, 5.5, 4.9, 4.6, 4.4}; and the sequence of thresholds for results in this appendix where f = 24 µm is

{11.8, 9.7, 8.4, 7.5, 6.8, 6.3, 6.0}.
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N Figure A.5. Quantile plot of the distance metric from 100,000 prior samples with (a) f = 12 µm; and, (b) f = 12 µm. The final
discrepancy, Y* , is indicated by a horizontal line in each case.
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A.6 Exponential growth

A.6 Exponential growth

To explore the possibility thatW? = 0, which corresponds to exponential growth, we consider three additional

models: Models 6, 7 and 8, that correspond to Models 1, 2 and 3, with W? = 0.

): Density Dependence

Model 1 (<, ?,W<, W? , W1) Proliferation, Motility and Direction

Model 2 (<, ?,W? , W1) Proliferation and Direction

Model 3 (<, ?,W<, W?) Proliferation and Motility

Model 4 (<, ?,W?) Proliferation only (Fisher-Kolmogorov [61, 62])

Model 5 (<, ?) None (Skellam [80])

Model 6 (<, ?,W<, W1) Motility and Direction

Model 7 (<, ?,W1) Direction only

Model 8 (<, ?,W<) Motility only

N Table A.2. Here we consider three additional models: Models 6, 7 and 8 correspond to Models 1, 2 and 3, where
W? = 0.
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N Figure A.6. Figure 4 of the main chapter where we consider three additional models: Models 6, 7 and 8 correspond to
Models 1, 2 and 3 where we set W? = 0 to remove the proliferation interaction from the model.
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Bayes factor,B: Evidence in favour of Model 1

Model 1 1.000 −
Model 2 0.267 Positive

Model 3 0.467 Weak

Model 4 0.000 Very Strong

Model 5 0.000 Very Strong

Model 6 0.883 Weak

Model 7 0.179 Positive

Model 8 0.336 Weak

N Table A.3. Bayes factor for each model, which describes the evidence in favour of Model 1 over Model : . A Bayes
factor close to 1 indicates limited evidence in favour of Model 1 over Model : , and a Bayes factor close to 0 indicates
very strong evidence in favour of Model 1 over Model : [70]. Here, Models 6, 7 and 8 correspond to Models 1, 2 and 3,
where W? = 0.
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A.7 Model selection for f = 24 µm

A.7 Model selection for f = 24 µm

Here, we reproduce results from figure 5 of the main chapter, in the case we fix f = 24 µm.

Results in figure A.7a differ from those in the main chapter, in that Model 2 now has the highest posterior

density. We show the marginal distributions for each parameter in Model 2 in figure A.7b–f. These results are

consistent with the main chapter in showing that models without a density dependent motility mechanism

(Models 4 and 5) are unable to simultaneously match data from all nine experiments. Examining results

in figure A.11 shows that f = 24 µm is not able to match the spatial structure in the experimental data as

closely as f = 12 µm, results for which are shown in figure A.9.
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N Figure A.7. Reproduction of results in figure 6 of the main chapter, with f = i = 24 µm. (a) Posterior for the model index,
c (": |Xobs), showing that Model 2 (density-independent motility) as the posterior mode. (b)–(f) Marginal posterior distributions for
each parameter in Model 2, shown as weighted histograms.

A.8 Results for all nine experiments

In the main chapter, we show results for experimental replicates 1, 3, 6 and 9 at C = 36 h in figure 6. Here, we

reproduce figure 6 and show results for all nine experimental replicates at both C = 18 h and C = 36 h.

In figures A.8 and A.9 we show these results for f = 12 µm, the value from the main chapter. In figures A.10

and A.11 we show these results for f = 24 µm.
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Appendix B

Supplementary material for Chapter 3,

“Persistence as an optimal hedging strategy”
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B.5 Numerical techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
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B.1 Code availability

Code used in this work is available at https://github.com/ap-browning/persisters.

B.2 Additional environments

In Chapter 3, we present results for three stochastic environments (Constant, Monod and Poisson). In this

Appendix, we present and produce results for two additional environments. These environments are shown

in figure B.1a–e. In figure B.1 we reproduce results in figure 3.2including these two additional environments.

4. Ornstein-Uhlenbeck. (figure B.1d) By considering that the environment moves continuously around

`C = `� and always reverts to this value, we can model ZC as an Ornstein-Uhlenbeck process [118] with

<(Z ) = Z . In this case we have

dZC = W (`� − ZC ) dC + ^ d, (3)
C , (B.1)

where W and ^ represent the strength of the mean-reversion process and variability, respectively; and

d, (3)
C is a Wiener process independent to both d, (1)

C and d, (2)
C that satisfies, (8)

C+ℎ −,
(8)
C ∼N(0, ℎ)

whereN(0, ℎ) denotes a normal distribution with mean zero and variance ℎ. For numerical results,
we choose `� = 2 h−1, W = 1 and ^ = 0.1.
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5. Duffing. (figure B.1e)We canmimic the effects of the Poisson switching process using a Duffing oscillator.

We consider that the environment, ZC , switches randomly between two stable states at ZC = 0, 1. These

states are separated by an asymmetric instability, such that the state at ZC = 0 is rarer than that at

ZC = 1. We describe this with the Duffing oscillator

dZC = WZC (1 − ZC ) (ZC − 1) dC + ^ d, (3)
C , (B.2)

where W is the strength of the oscillator; 1 is the location of the instability, ^ represents the strength

of the fluctuations of the oscillator; and d, (3)
C is a Wiener process independent to both d, (1)

C and

d, (2)
C that satisfies, (8)

C+ℎ −,
(8)
C ∼N(0, ℎ) whereN(0, ℎ) denotes a normal distribution with mean

zero and variance ℎ.

We couple the dependence of the growth rate to the environment by setting<(ZC ) = `� + (`� − `( )ZC
so that for ZC ≈ 1,<(ZC ) ≈ `� and for ZC = 0, ` ≈ `( . We choose W = 20, 1 = 0.4, ^ = 0.5 and

`( = −2 h−1.

In figure B.2 we examine how a persister strategy that is optimal under one type of environment behaves

under another, unfamiliar environment. We assume that cells monitor their growth rate, `C , and couple the

growth rate to the optimal control by considering q∗C = q∗(\C , ZC ) where ZC = <−1(·) denotes the inverse
of the growth rate coupling function<(Z ). In other words, the cells measure the current environment
state using the growth rate. In figure B.2e–h we show how a persister strategy that is optimal under the

Monod environment behaves when exposed to a growth rate from: the Monod environment (figure B.2e);

the Poisson environment (figure B.2f); the Ornstein-Uhlenbeck environment (figure B.2g); and, the Duffing

environment (figure B.2h). In subsequent rows we repeat this for persister strategies optimal under: the

Poisson environment (figure B.2i–l); the Ornstein-Uhlenbeck environment (figure B.2m–p); and, the Duffing

environment (figure B.2q–t).

B.3 Constant persister production

Here, we assume that the cell population can use the switching rates, D and E , to steer the steady state

proportion, \̂C , based on an optimality assumption. We only consider this type of persistence in the presence

of a constant environment in growth, so that `C = `� . Allowing \̂C ∈ [0, 1] to be a control reduces the system
to a one-dimensional control problem with state equation given by the Itô form

d=C
=C

= (1 − \̂C (1 − Y))`� dC +
√
(1 − \̂C )2f2 + \̂ 2

C[
2 d,C , (B.3)

where \̂C is now a control. Setting E(d\C ) = 0 in equation (3.4b), reveals the relationship betweenD, E and \̂C :

0 = (1 − \C )D − \CE − (1 − \C )\C
(
(1 − Y)`C − f2(1 − \C ) + [2\C

)
,

⇒ D = \̂C

(
E

1 − \̂C
+ [2\̂C − (1 − \̂C )f2 + (1 − Y)`

)
.
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B.3 Constant persister production

N Figure B.1. Optimal persister production in cell populations under various types of environment showing: (a)-(e) the growth rates
produced by each environment; (f)-(j) the persister production; and, (k)-(o) the population (blue, left scale) and persister proportion
(red, right scale). The seeds used to generate the Wiener process were fixed for all environments. Also shown are five additional,
independent, realisations (semi-transparent).
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As qC = 0, the fitness measure (equation (3.7)) reduces to

�
\̂
= E

[
loge(=) )

]
,

where =C is described by equation (B.3), and =) represents =C at terminal time, C = ) .

We solve this optimal control problem using Hamilton-Jacobi-Bellman (HJB) optimal control theory [118,

125]. We define the value function

+ (G, B) = max
\̂C

E
[

loge(=) )
]
, where =B = G, (B.4)

and =C is described by equation (B.3). Therefore,+ describes the optimal payoff obtainable, starting at state

G at time B . HJB describes+ as the solution of a partial differential equation (PDE) [118, 125], given by

0 = max
\̂C

(
m+

mB
+ (1 − \̂B (1 − Y))`�G

m+

mG
+ 1

2
G2

(
(1 − \̂C )2f2 + \̂ 2

B[
2
) m2+

mG2

)
, + (G,) ) = loge(G) . (B.5)

Here, the terminal condition of the PDE is obtained by substituting B = ) in equation (B.4).

As equation (B.5) is quadratic in \̂C , we can carry out the maximization by setting the derivative to zero to

see that the optimal control, \̂ ∗C , is given by

\̂ ∗B =
(1 − Y)`�

m+

mG
+ Gf2 m

2+

mG2

G (f2 + [2) m
2+

mG2

. (B.6)

Substituting equation (B.6) into equation (B.5) gives a nonlinear PDE that can be solved to give+ (G, B) and
hence \̂ ∗C . Noting the form of the terminal condition, the ansatz

+ (G, B) = ℎ(B) + loge(G), ℎ() ) = 0, (B.7)

is consistent with the PDE, with

ℎ(B) = exp

(
() − B)

{
`�

[
(1 − Y)2`� + 2Yf2

]
+ [2(2`� − f2)

}
2(f2 + [2)

)
.

To obtain an algebraic expression for the optimal control strategy, we can substitute the analytical solution

for+ (G, B) (equation (B.7)) into equation (B.6) to obtain an expression for \̂ ∗C . Noting that \̂ ∗C ∈ [0, 1], we can
write this as

\̂ ∗C = max
(
0,min

(
1,
f2 − (1 − Y)`�

[2 + f2

))
. (B.8)

As equation (B.5) is quadratic in the control, we can verify the optimal solution is, indeed, a maximum by

examining the sign of the coefficient of \̂ 2
C . We see that

sign
(

1
2
G2[2 m

2+

mG2

)
= −1,

so we always obtain a maximum.
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B.4 Variable persister production

We first apply Itô’s lemma
1
[118] to the change of variables,

=̃C = log(AC + ?C ), \C =
?C

=C
,

giving

d

[
=̃C

\C

]
=

[
5 (=̃) (\C , ZC )
5 (\ ) (\C , ZC , qC )

]
dC + �(\C ) dWC , (B.9)

where dWC = [d, (1)
C , d, (2)

C ]tr denotes a two-dimensional Wiener process with independent components,

where superscript tr the matrix transpose, and

�(\C )�(\C )tr =
[
Σ(=̃=̃) (\C ) Σ(=̃\ ) (\C )
Σ(=̃\ ) (\C ) Σ(\\ ) , (\C )

]
, (B.10a)

5 (=̃) (\C , ZC ) = (1 − (1 − Y)\C )<(ZC ) −
f2(1 − \C )2

2
−
[2\ 2

C

2
, (B.10b)

5 (\ ) (\C , ZC , qC ) = (D + qC ) (1 − \C ) − E\C − (1 − \C )\C ([2\C +<(ZC ) (1 − Y) − (1 − \C )f2) (B.10c)

Σ(=̃=̃) (\C ) = f2(1 − \C )2 + [2\ 2
C , (B.10d)

Σ(\\ ) (\C ) = (f2 + [2) (1 − \C )2\ 2
C , (B.10e)

Σ(=̃\ ) (\C ) = (1 − \C )\C [[2\C − f2(1 − \C )] . (B.10f)

Here, ZC is described by a state equation that differs between environments and we express � = �(\C ) to
denote the dependence of, for example, � on only \C .

B.4.1 Continuous environments

For each continuous environment, we can express the state equation for ZC as

dZC = 5 (Z ) (ZC ) dB +
√
Σ(ZZ ) (ZC ) d, (3)

C . (B.11)

Here, d, (3)
C is a Wiener process scaled by an intensity

√
Σ(ZZ ) (ZC ), and is independent of both d, (1)

C and

d, (2)
C

To find the optimal control, we define the value function,+ (G,~, I, B), such that

+ (G,~, I, B) = max
qC ∈U

E

[∫ )

B

Uq2
C dB + G)

]
, (=̃B , \B , ZB) = (G,~, I), (B.12)

1Itô’s lemma. For the stochastic process given by dXC = M(XC ) dC +S(XC ) dWC —where XC ∈ ℝ2, M : ℝ2 → ℝ2, S : ℝ2 → ℝ2×2

and WC is a two-dimensional Wiener process — then Itô’s lemma states that

d5 (XC ) =
[
(∇X 5 )tr M(XC ) +

1
2
Trace(S(XC )tr (�X 5 )S(XC ))

]
dC + (∇X 5 )tr S(XC ) dWC .

Here,�X 5 denotes the Hessianmatrix for the function 5 ; superscript tr thematrix transpose; and Trace(·) thematrix trace. In our
study, the untransformed variables are denoted X = [AC , ?C ]tr and the transformed system denoted Y = [5 (AC , ?C ), 6(AC , ?C )]tr =

[=̃C , \C ]tr.
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where qC is the control.

HJB describes+ as the solution of PDE [118,143], given by

0 = max
qB ∈U

(
A+ + Uq2

C

)
= max
qC ∈U

H

whereA+ is the infinitesimal generator of+ with respect to the stochastic process given by corresponding

state equations, and we have definedH= A+ + Uq2
C for notational clarity. For the the continuous environ-

ment, the state equations are given by equations (B.9) and (B.11) so+ is described by the PDE

0 = max
qC ∈U

{
m+

mB
+ 5 (=̃) m+

mG
+ 5 (\ ) m+

m~
+ 5 (Z ) m+

mI
+ Σ(=̃=̃)

2
m2+

mG2 +
Σ(\\ )

2
m2+

m~2 +
Σ(ZZ )

2
m2+

mI2

+ Σ(=̃\ ) m
2+

mGm~
+ Uq2

C

}
,

+ (G,~, I,) ) = G .

As all of the coefficients, 5 ( ·) and Σ( ··) , do not depend onG , we introduce the ansatz+ (G,~, I, B) = Ψ(~, I, B) +
G , leading to a two-dimensional PDE

0 = max
qC ∈U

{
mΨ

mB
+ 5 (=̃) + 5 (\ ) mΨ

m~
+ 5 (Z ) mΨ

mI
+ Σ(\\ )

2
m2Ψ

m~2 +
Σ(ZZ )

2
m2Ψ

mI2 + Uq
2
C

}
, Ψ(~, I,) ) = 0. (B.13)

Note that in the main chapter, we do not apply the transformation G → loge(G), so the ansatz is equivalent
to+ (G,~, I, B) = Ψ(~, I, B) + loge(G).

For brevity, we expressHas

H= Hq (~, qC , B) +H★(~, I, B),

so that

argmax
qC ∈U

H= argmax
qC ∈U

Hq = q∗C ,

and

Hq = Uq2
C +

m+

m~
(1 − ~)qC ,

for all continuous environments. This gives the optimal control q∗C ∈ [0, 0.1],

q∗C = max
[
0,min

[
0.1,− 1

2U
m+

m~
(1 − ~)

] ]
. (B.14)

It is evident that m2Hq/mq2 = 2U < 0 (since U < 0), so we always obtain a maximum.

B.4.2 Poisson environment

We can replace the variable rate Poisson process, d%C (described by equation (3.6) in Chapter 3) with

dZC = d (ZC ) d%C = d1(ZC ) d% (1)C + d2(ZC ) d% (2)C , (B.15)
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where d% (1)C and d% (2)C have constant rates _1 = 1/g� and _2 = 1/g( , respectively, and jump distances

d1(ZC ) = −(ZC + 1) =
{
−2, ZC = +1,

0, ZC = −1,
d2(ZC ) = −(ZC − 1) =

{
0, ZC = +1,

+2, ZC = −1.

For the the Poisson environment, the state equations are given by equations (B.9) and (B.15) so + is

described by the PDE

0 = max
qC ∈U

{
m+

mB
+ 5 (=̃) m+

mG
+ 5 (\ ) m+

m~
+ Σ(=̃=̃)

2
m2+

mG2 +
Σ(\\ )

2
m2+

m~2 + _1

[
+
��
I=−1 −+ + (I + 1) m+

mI

]
+ _2

[
+
��
I=+1 −+ + (I − 1) m+

mI

]
+ Uq2

C

}
, + (G,~, I,) ) = G .

Introducing the ansatz+ (G,~, I, C) = Ψ(~, I, C) + G ; and, since<(ZC ) = sign(ZC ) so that m+ /mI = 0, we have

that

0 = max
qC ∈U

{
mΨ

mB
+ 5 (=̃) + 5 (\ ) mΨ

m~
+ Σ(\\ )

2
m2Ψ

m~2 +_1
[
Ψ
��
I=−1 − Ψ

]
+ _2

[
Ψ
��
I=+1 − Ψ

]
+ Uq2

C

}
, Ψ(~, I,) ) = 0.

(B.16)

As equation (B.16) and the state equations only depend on I spatially at I = ±1, we write equation (B.16)

as a coupled system of PDEs where Ψ+ denotes Ψ at I = 1; and Ψ− denotes Ψ at I = −1,

0 =
mΨ+

mB
+ 5 (=̃) (~, +1) + 5 (\ ) (~, +1, q∗C )

mΨ+

m~
+ Σ(\\ ) (~)

2
m2Ψ+

m~2 + _1
[
Ψ− − Ψ+

]
+ (q∗C )2U, (B.17a)

0 =
mΨ−

mB
+ 5 (=̃) (~,−1) + 5 (\ ) (~,−1, q∗C )

mΨ−

m~
+ Σ(\\ ) (~)

2
m2Ψ−

m~2 + _2
[
Ψ+ − Ψ−

]
+ (q∗C )2U. (B.17b)

Here, the optimal control, q∗C is given by equation (B.14).

B.5 Numerical techniques

To solve the HJB equation (equation (B.13)) we employ a numerical scheme with a logarithmically spaced

grid in~ near~ = 0 and~ = 1 (figure B.3a), and constant spacing in I. We use up-winding to approximate

derivatives in the ~ direction (figure B.3b). At the boundaries, we note that Σ(\\ ) (0, I) = Σ(\\ ) (1, I) = 0,

so we only need to approximate the first derivative on the boundaries in ~. For all other boundaries, we

linearly extrapolate the two nearest nodes to estimate the derivatives on the boundary (figure B.3c). We

use the explicit Euler method with ΔC = 1/30000 to integrate backwards time from the terminal condition

at C = ) to C = 0. To verify the accuracy of our solution, we compare the integral of the solution with both

ΔC = 1/30000 and ΔC = 1/60000, and find a negligible difference. We show the numerical solutions at C = 0

(the PDE is solved backwards in time from C = ) ), for each environment, in figure B.4.

We use the Euler-Maruyama algorithm to simulate the SDEs forward. In solving the HJB equation, we store

the discretized solution for the control, and interpolate using interpn in MATLAB [430] to get the control.

In figure B.5 we verify the accuracy of our numerical methods. The numerical solution to the HJB equation at
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C = 0 gives, by definition (equation (B.12)),

+ (G,~, I, 0) = E

[∫ )

0
Uq2

C dC + loge(=) )
]
, (B.18)

which we can compare to the ensemble average of 5000 realizations of the SDE. In figure B.5 we show both

our numerical solution and the ensemble average at `0 = 2 and =0 = 1.

In the following subsections we provide full details of our numerical solutions. Code used to produce the

numerical results is available on GitHub at github.com/ap-browning/persisters.

B.5.1 Spatial discretization

We note that~ ∈ [0, 1] and I ∈ ℝ, however typically we find that I ∼ O(1) in realizations of the SDE for all
the environments considered. We denote the discretized domain as~8 and I 9 , so that our finite difference

approximation of the solution at each grid point, Ψ(~8 , I 9 , B), is denoted by

Ψ(~8 , I 9 , B) ≈ Ψ8, 9 (B), 8 ∈ I= {1, 2, ..., � }, 9 ∈ J= {1, 2, ..., � }.

Discretization in~. We apply apply variable grid spacing in ~, demonstrated in figure B.3a,b. We set

~1 = 0 and~� = 1. For 10−5 ≤ ~ ≤ 0.1 and 0.9 ≤ ~ ≤ 1 − 10−5 we apply logarithmic grid spacing, such

that~50 = 0.1 and~81 = 0.9. For 0.1 < ~ < 0.9, we apply constant grid spacing. In this work, we find

� = 130 is sufficient under visual inspection.

Discretization in I. We apply constant grid spacing in I such that I 9 − I 9−1 = ΔI ∀ 9 . We solve over
a sufficiently large domain in the I direction to contain all realizations of corresponding SDE. In

this work, we find that � = 100 is sufficient under visual inspection, except the Ornstein-Uhlenbeck

environment where we set � = 200. The discretization in I is shown in figure B.3b.

B.5.2 Derivatives

We approximate derivatives in for central nodes using standard techniques, that we detail here. For the

boundaries, we linearly extrapolate using the two nearest nodes, as shown in figure B.3c.

Derivatives in~. We apply an up-winding scheme for the first derivative in ~. Accounting for the

variable mesh in the~ direction, on the interior nodes we define

mΨ8, 9

m~

forw

=
Ψ8+1, 9 (B) − Ψ8, 9 (B)

~8+1 − ~8
,

mΨ8, 9

m~

back

=
Ψ8, 9 (B) − Ψ8−1, 9 (B)

~8 − ~8−1
,

so that our finite difference approximation for the first derivative in~ is given by

mΨ(~8 , I8 , B)
m~

≈
mΨ8, 9

m~
= 1ℝ+

(
5 (\ ) (~8 , I 9 , (q∗C )8, 9 )

) mΨ8, 9
m~

forw

+ 1ℝ−
(
5 (\ ) (~8 , I 9 , (q∗C )8, 9 )

) mΨ8, 9
m~

back

.

(B.19)
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(a) Boundary layer
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(b) Spatial discretization
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N Figure B.3. Numerical scheme details. (a) and (b) demonstrate the spatial discretization. (a) is an inset of (b) (indicated in red)
showing the logarithmic spacing for ~ ≤ 0.1. (c) Linear extrapolation used to approximate the derivatives on the boundaries. A
linear function is fit to the nearest two inner nodes (blue circles outlined in red) to extrapolate the value of the derivative on the
boundary (red circle).

Here, 1ℝ+ (G) is an indicator function that takes the value 1 if G ∈ ℝ+, and 0 otherwise. equation (B.19)

applies for 8 ∈ I\{1, � } and 9 ∈ J. On the boundaries, where 8 = 1 and 8 = � , we linearly extrapolate

using the nearest two nodes (figure B.3c).

We apply a central difference for the second derivative in~, such that

m2Ψ(~8 , I8 , B)
m~2 ≈

m2Ψ8, 9

m~2 =
2(~8 − ~8−1) (Ψ8+1, 9 (B) − Ψ8, 9 (B)) − (~8+1 − ~8) (Ψ8, 9 (B) − Ψ8−1, 9 (B))

(~8+1 − ~8−1) (~8 − ~8−1) (~8+1 − ~8)
,

(B.20)

equation (B.20) applies for 8 ∈ I\{1, � } and 9 ∈ J. For 8 = 1 and 8 = � , the the coefficient of m2Ψ/m~2

in the PDE, Σ(\\ ) (~0) = Σ(\\ ) (~� ) = 0, so we do not need to extrapolate the second derivative in~.

Derivatives in I. On the interior nodes, we use central differences to approximate the first and second

derivative in I, such that

mΨ(~8 , I8 , B)
mI

≈
mΨ8, 9

mI
=
Ψ8, 9+1(B) − Ψ8, 9−1(B)

2ΔI
, (B.21)

m2Ψ(~8 , I8 , B)
mI2 ≈

m2Ψ8, 9

mI2 =
Ψ8, 9+1(B) − 2Ψ8, 9 (B) + Ψ8, 9−1

ΔI2 . (B.22)

equations (B.21) and (B.22) apply for 8 ∈ I and 9 ∈ J\{1, � }. For 9 = 1 and 9 = � , we linearly

extrapolate using the nearest two nodes (figure B.3c).

B.5.3 Time integration

We apply the first-order explicit Euler method to integrate in time. Whereas the continuous environments

involve solving a PDE for Ψ(~, I, B), the Poisson environment involves solving the system of PDEs given by
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N Figure B.4. Solution to the HJB equations, for each environment, at C = 0 h (the HJB equations are solved backwards
in time from) = 10 h), given by Ψ(~, I, 0). In each case, ~ = \C and I = ZC . The mesh for the Poisson environment
only has two grid points in the I direction, as the system corresponds to a system of two PDEs for I ≥ 0 and I < 0.
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(a)
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N Figure B.5. Verification of numerical solution to the HJB equations. For each environment in the main chapter, we show the
expected payoff,+ (x0, 0) (solid curve) as a function of the initial persister proportion, for `0 = 2 h−1 and =0 = 1. In (a), we show
the initial persister proportion in the linear scale; and in (b), we show the initial persister proportion in the log scale. We verify this
numerical solution by showing the mean payoff from 5000 realisations of the SDE (crosses) along with a 95% confidence interval,
assuming the payoff is normally distributed.

{Ψ+(~, B),Ψ−(~, B)}. Here, we describe our time-integration implementation separately for each type of
PDE.

Continuous environments. Following the substitution of the optimal control (equation (B.14)), we may

express the PDE (equation (B.13)) as

mΨ

mB
= �

(
B,~, I, q∗C ,

mΨ

m~
,
mΨ

mI
,
m2Ψ

m~2 ,
m2Ψ

mI2

)
, (B.23)

where we define

� := −5 (=̃) (~, I) − 5 (\ ) (~, I, q∗C )
mΨ

m~
− 5 (Z ) (I) mΨ

mI
− Σ(\\ ) (~)

2
m2Ψ

m~2 −
Σ(ZZ ) (I)

2
m2Ψ

mI2 − Uq
2
C .

Applying the spatial discretization, we may write equation (B.23) as the system of ordinary differential

equations (ODEs),

d
dB

Ψ8, 9 (B) = � 8, 9 (B) := �

(
B,~8 , I8 , (q∗C )8, 9 ,

mΨ8, 9

m~
,
mΨ8, 9

mI
,
m2Ψ8, 9

m~2 ,
m2Ψ8, 9

mI2

)
(B.24)

where

(q∗C )8, 9 = max

(
0,− 1

2U

mΨ8, 9

m~

)
,

which corresponds to the discretization of equation (B.14).

The ODE problem (equation (B.24)) is coupled to a terminal condition at B = ) . Therefore, we must

integrate backwards in time to B = 0. To integrate from B to B − ΔB , we apply the explicit Euler scheme,

154



B.5 Numerical techniques

so that

Ψ8, 9 (B − XB) = Ψ8, 9 (B) +
∫ B−ΔB

B

� 8, 9 (g) dg ,

≈ Ψ8, 9 (B) − ΔB � 8, 9 (B) .

Poisson environment. The system of PDEs for the Poisson environment (equations (B.17)) do not depend

on I, and so we only discretize the domain in the~ direction. We define	 = [Ψ+,Ψ−]tr for brevity.
Following the substitution of the optimal control (equation (B.14)), we may express the system

(equations (B.17)) as

m	

mB
= F

(
B,~, q∗C ,Ψ

+,Ψ−,
mΨ+

m~
,
mΨ−

m~
,
m2Ψ+

m~2 ,
m2Ψ−

m~2

)
, (B.25)

where we define

F :=


−5 (=̃) (~, +1) − 5 (\ ) (~, +1, q∗C )

mΨ+

m~
− Σ(\\ ) (~)

2
m2Ψ+

m~2 − _1
[
Ψ− − Ψ+

]
− (q∗C )2U,

−5 (=̃) (~,−1) − 5 (\ ) (~,−1, q∗C )
mΨ−

m~
− Σ(\\ ) (~)

2
m2Ψ−

m~2 − _2
[
Ψ+ − Ψ−

]
− (q∗C )2U.


(B.26)

Applying the spatial discretization, we may write equation (B.5.3) as the system of ordinary differential

equations (ODEs),

d
dB

	8 (B) = F8 (B) := F

(
B,~8 , (q∗C )8 ,Ψ+8 ,Ψ−8 ,

mΨ+8
m~

,
mΨ−8
m~

,
m2Ψ+8
m~2 ,

m2Ψ−8
m~2

)
(B.27)

where

(q∗C )8 = max

(
0,− 1

2U
mΨ8
m~

)
,

which corresponds to the discretization of equation (B.14).

The ODE problem (equation (B.24)) is coupled to a terminal condition at B = ) . Therefore, we must

integrate backwards in time to B = 0. To integrate from B to B − ΔB , we apply the explicit Euler scheme,
so that

	8 (B − XB) = 	8 (B) +
∫ B−ΔB

B

F8 (g) dg ,

≈ 	8 (B) − ΔB F8 (B) .

B.5.4 Solving the controlled SDE

We apply the Euler-Maruyama algorithm [144] to solve the SDE with the optimal control. The numerical

algorithm described above provides a discretized optimal control,

(q∗C )8, 9 = q∗C (~8 , I8) ≈ q∗C (~8 , I8) .
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To approximate q∗C (~, I) we interpolate the discretized function using interpn in MATLAB [430].
For all environments, the state equations for =̃C and \C are given by

d

[
=̃C

\C

]
= f

(
\C , ZC , q

∗
C (\C , ZC )

)
dC + �(\C ) dWC ,

where

f :=

[
5 (=̃) (\C , ZC )

5 (\ )
(
\C , ZC , q

∗
C (\C , ZC )

) ]
and 5 (=̃) , 5 (\̃ ) and �(\C ) are given in equation (B.10).
For all environments, we initialize the numerical results by setting =̃0 = 0, \0 = 1.19 × 10−5 and choose Z0

such that `C = <(Z0) = 2. To integrate =̃C and \C from C to C + ΔC , we use the Euler-Maruyama algorithm,
such that [

=̃C+ΔC

\C+ΔC

]
= f

(
\C , ZC , q

∗
C (\C , ZC )

)
ΔC + �(\C )

√
ΔC

[
Δ, (1)

C

Δ, (2)
C

]
.

Here, Δ, (8)
C ∼N(0, 1) for 8 = 1, 2. In our study, we fix ΔC = 0.002.

Continuous environments. To integrate ZC from C to C + ΔC , we use the Euler-Maruyama algorithm, such
that

ZC+ΔC = 5
(Z ) (ZC )ΔC +

√
Σ(ZZ ) (ZC )ΔCΔ, (3)

C .

Here, Δ, (3)
C ∼N(0, 1).

Poisson environment. Here, we integrate ZC from C to C + ΔC by considering

ZC+ΔC = d (ZC )Δ%C ,

where Δ%C ∼ Po(ΔC_(ZC )). Here, d (ZC ) and _(ZC ) are given in equation (3.6).
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B.6 Optimal persister proportion

The analytic expression for the optimal variable persister production (equation (B.14)) suggests that the

population uses q∗C to steer the population toward the optimal persister proportion, where m+ /m~ = 0. In

figure B.6 we approximate this optimal persister proportion using the numerical solution. To do this, we

find the persister proportion,~ that minimises the absolute value of the finite difference approximation to

m+ /m~ = mΨ/m~, given by equation (B.19). In figure B.6 we show this as a function of the time, B , and the
growth rate, `C =<(I).

0 1

Optimal persister proportion

G
ro

w
th

 ra
te

 (/
h)

3

–3

0

2

1

–1

–2

0 2 4 6 8 10
Time (h)

Constant Monod Poisson(a) (b) (c)

G
ro

w
th

 ra
te

 (/
h)

3

–3

0

2

1

–1

–2

0 2 4 6 8 10
Time (h)

0 2 4 6 8 10
Time (h)

Ornstein-Uhlenbeck Du�ng(d) (e)

All persistersNo persisters

N Figure B.6. Optimal persister proportion. The optimal persister proportion, as a function of time, C (horizontal axis), and growth
rate, `C , for each environment. For (a), the optimal persister proportion is given by the analytical expression calculated in the
main chapter. For (b)–(e), we consider the optimal persister proportion, \ ∗C to the value of~ that minimizes mΨ(~, I, C)/m~, which
we approximate using the numerical solution. In (c), the environment can only take two values Z ∈ {−1, 1}, which we assume
corresponds to `C ≥ 0 and `C < 0.

157





Appendix C

Supplementary material for Chapter 4,

“Identi�ability analysis for stochastic di�erential

equation models in systems biology”

C.1 Code availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C.2 Stochastic simulation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

C.3 Euler-Maruyama algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

C.4 MCMC algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

C.5 Moment equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

C.1 Code availability

This appendix is supplementary to, and refers to, code available on Github at github.com/ap-browning/SDE-
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C.2 Stochastic simulation algorithm

We simulate the first three models as bio-chemical reaction networks with an event-driven stochastic

simulation algorithm (SSA), developed by Gillespie [279]. Eachmodel comprises& reactions, with propensities

and stoichiometries denoted

{(0: (XC ;) ),.: )}&:=1, (C.1)

respectively. We simulate from the initial condition X0 at C = 0 to the final state XC5 at C = C5 . While

simulating from the SSA, XC ∈ ℤ# . We summarise the SSA in algorithm C.3 and provide our implementation

in Module/Models/SimulateSSA.jl.

Algorithm C.3 Stochastic simulation algorithm
1: Initialise by setting C = 0 and XC = X0.

2: Compute total event rate, 0(XC ) =
∑&

:=1 0: (XC ;) ).
3: Sample time-step ΔC ∼ Exp(0(XC )). If C + ΔC > C5 stop the algorithm. Else, set C ← C + ΔC .
4: Sample event, : , such that ℙ(:) = 0: (XC ;) )/0(XC ).
5: Update state, XC ← XC + .: .
6: Repeat steps 2 – 6.

C.3 Euler-Maruyama algorithm

We simulate Itô SDEs using the Euler-Maruyama algorithm [285] with reflecting boundaries at-8,C = 0 to

ensure positivity [226]. Each SDE is defined by

dXC = " (XC , C ;) ) dC + 2 (XC , C ;) ) dWC . (C.2)

Here XC is an # -dimensional vector; " (·) maps to an # -dimensional vector; 2 (·) maps to an # ×& matrix;
and WC is an&-dimensional Wiener process with independent components. We simulate from the initial

condition XC0 at C = C0 to the final state XC5 at C = C5 . We summarise the Euler-Maruyama algorithm in

algorithm C.4 and provide our implementation in Module/Models/EulerMaruyama.jl.

Algorithm C.4 Euler-Maruyama algorithm
1: Initialise by setting C = C0 and XC = XC0 . Choose time-step, ΔC .

2: Sample Wiener increment ΔW = (Δ,1,Δ,2, . . . ,Δ,& )) where Δ,: ∼N(0,ΔC).
3: Update state XC ← XC + " (XC , C ;) )ΔC + 2 (XC , C ;) )ΔW.

4: Set-8,C = |-8,C | where XC = (-1,C , -2,C , . . . , -#,C )) .
5: Update time, C ← C + ΔC .
6: Repeat steps 2 – 5 until C ≥ C5 .
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C.4 MCMC algorithms

C.4.1 Metropolis-Hastings algorithm

We simulate from the posterior distribution

? () |D) ∝ L(D|) )? () ), (C.3)

using the Metropolis-Hastings algorithm [291, 292] and Markov-chain Monte-Carlo (MCMC). In this work, we

employ a multivariate normal proposal kernel with covariance � such that

@() |)B−1) = MVN()B−1, �) . (C.4)

We summarise our implementation of the Metropolis-Hastings MCMC algorithm in algorithm C.5 and provide

our implementation in Module/Inference/MetropolisHastings.jl.

Algorithm C.5 Metropolis-Hastings algorithm with a symmetric proposal kernel.
1: Sample ) 0 ∼ ? () ) to initialise chain at B = 0. Choose desired number of iterations, ( .

2: Update iteration B ← B + 1.

3: Propose transition ) ∗ ∼ @() |)B−1), where @() |)B−1) is a multivariate Gaussian.
4: Calculate acceptance probability

UMH() ∗ |)B−1) = min
(
1,

? () ∗)L(D|) ∗)
? ()B−1)L(D|)B−1)

)
.

5: Accept proposal, )B ← ) ∗ with probability UMH() ∗ |)B−1); else, reject and set )B ← )B−1.

6: Repeat steps 2 – 5 until B = ( .

C.4.2 Particle MCMC algorithm

For most SDE models, the likelihood function,L(D|) ), is intractable. We approximate the likelihood using
a bootstrap particle filter in a particle MCMC algorithm [257], replacingL← L̂ in algorithm C.5.

The data are defined by D =

{{
C=,8 , Y

=,8

obs

}#�
==1

}�
8=1
, where

Y=,8obs ∼ 6(Y|X
8
C=
, C= ;) ) . (C.5)

Here,
{

X8C=
}#�
==1 are observations from experiment 8 = 1, 2, . . . , #� , modelled by a single trace of the SDE

(equation (C.2)) initiated at X0 = h8 () ). The vector-valued function h8 () ) captures the fact that the initial
condition may depend on unknown parameters, ) . This occurs in the epidemic model where only partial

observations of the state are made so that the full initial condition is unknown.

We summarise our implementation of bootstrap particle filter algorithm in algorithm C.6 and provide our

implementation in Module/Inference/PMLogLikeParticleFilter.jl.
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Algorithm C.6 Bootstrap particle filter

1: Initialise likelihood estimate, L̂ = 1, and experiment index 8 = 0.

2: Update experiment index 8 ← 8 + 1 and initialise ' particles for the 8th experiment, {XAC0
}'A=1, where

XA0 = h8 () ) and C0 = 0. Set observation index, = = 0.

3: Update observation index, = ← = + 1, and simulate all particles forward from C = C=−1 to C= using the

Euler-Maruyama algorithm (algorithm C.4) to obtain {XAC= }
'
A=1.

4: Compute weight of each particle, {, A
= }, such that, A

= = 6(Y=,8obs |X
A
C=
).

5: Update likelihood estimate,

L̂← L̂× 1
'

'∑
A=1

, A
= .

6: Resample ' particles from {XAC= }
'
A=1 with replacement according to weights {, A

= }.
7: Repeat steps 3 – 6 until = = #� .

8: Repeat steps 2 – 7 until 8 = �.

C.4.3 Likelihood for ODE models

When describing data using an ODE model, we make the typical assumption that residuals are independent.

The likelihood function is then tractable and given by

L(D|) ) =
�∑
8=1

#�∑
==1

6
(
Y=,8obs |X

8
C=
, C= ;)

)
. (C.6)

Here, {X8C= }
#�
==1 are observations from experiment 8 (8 = 1, 2, . . . , #�), modelled by the ODE model initiated at

X0 = h8 () ).
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C.5 Moment equations

In the main text, we define the raw moments,

<8182 ...8# (C) =
〈
#∏
9=1

-
8 9
9,C

〉
, (C.7)

of the random variable XC , which is itself described by the Itô SDE (equation (C.2)). Here, we derive the

equation describing the time-evolution of the moments.

First, we define qi(XC , C) =
∏#

9=1-
8 9
9,C
, where i = (81, 82, . . . , 8# ). By Itô’s lemma,

dqi(X, C) = 5q (XC , C ;) )dC +
#∑
8=1

gq (XC , C ;) )dWC , (C.8)

where

5q (XC , C ;) ) = " (XC , C ;) ) · ∇
(
#∏
9=1

-
8 9
9,C

)
+ 1

2
Tr

(
2) (XC , C ;) )H

(
#∏
9=1

-
8 9
9

)
2 (XC , C ;) )

)
, (C.9)

gq (XC , C ;) ) = ∇

(
#∏
9=1

-
8 9
9,C

))
2 (XC , C ;) ) . (C.10)

Our aim is to find an ODE describing the time evolution of 〈qi(X)〉, where 〈·〉 is the expectation taken with
respect to the probability measure of the random variable XC . Full details are available in [286].

Consider the expectation of equation (C.8) in integral form:

〈qi(X, C)〉 = 〈qi(X, 0)〉 +
〈∫ C

0
5q (XD, D;) )dD

〉
︸                     ︷︷                     ︸

(∗)

+
#∑
==1

〈∫ C

0
6
(=)
q
(XD, D;) )d,=,D

〉
︸                                ︷︷                                ︸

(∗∗)

. (C.11)

Here, we denote W = (,1,C ,,2,C . . . ,,#,C )) and gq (·) =
(
6
(1)
q
(·), 6 (2)

q
(·), . . . , 6 (# )

q
(·)

)) . Under certain
conditions, which are satisfied when all elements of gq are polynomial, the stochastic integrals in

equation (C.11)(∗∗) will vanish [431] due to the Itô formulation. This is the case for the SDEs we consider,
which are derived through the chemical Langevin equation with polynomial propensity functions, so that all

components of gq are also polynomials. Therefore, after interchanging the order of time-integration to that

of the expectation in (∗), we obtain

〈qi(X, C)〉 = 〈qi(X, 0)〉 +
∫ C

0

〈
5q (XD, D;) )

〉
dD. (C.12)

We note that, by definition,<8182 ...8# (C) = 〈qi(X, C)〉, and so

<8182 ...8# (C) =<8182 ...8# (0) +
∫ C

0

〈
5q (XD, D;) )

〉
dD, (C.13)
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which corresponds to the ODE
d<8182 ...8#

dC
=

〈
5q (XD, D;) )

〉
. (C.14)

We provide Mathematica scripts used to derive themoment equations for eachmodel in the Mathematica

folder on Github.
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C.5.1 Epidemic model

The CLE for the epidemic model is

dXC =

©­­­­­«
−\1-1,C-3,C

\1-1,C-3,C − \2-2,C

\2-2,C − \3-3,C

\3-3,C

ª®®®®®¬
dC +

©­­­­­«
−
√
\1-1,C-3,C 0 0√
\1-1,C-3,C −

√
\2-2,C 0

0
√
\2-2,C −

√
\3-3,C

0 0
√
\3-3,C

ª®®®®®¬
dWC . (C.15)

We denote

<81828384 (C) =
〈
-
81
1,C-

82
2,C-

83
3,C-

84
4,C

〉
. (C.16)

To second order, the unclosed moment equations are

d<1000

dC
= −\1<1010,

d<0100

dC
= \1<1010 − \2<0100,

d<0010

dC
= \2<0100 − \3<0010,

d<0001

dC
= \3<0010,

d<2000

dC
= −2\1<2010 + \1<1010,

d<0200

dC
= 2\1<1110 + \1<1010 + \2<0100 − 2\2<0200,

d<0020

dC
= \2<0100 + 2\2<0110 + \3<0010 − 2\3<0020,

d<0002

dC
= \3<0010 + 2\3<0011,

d<1100

dC
= −\1<1110 + \1<2010 − \1<1010 − \2<1100,

d<1010

dC
= −\1<1020 + \2<1100 − \3<1010,

d<1001

dC
= −\1<1011 + \3<1010,

d<0110

dC
= \1<1020 − \2<0100 − \2<0110 + \2<0200 − \3<0110,

d<0101

dC
= \1<1011 − \2<0101 + \3<0110,

d<0011

dC
= \2<0101 − \3<0010 − \3<0011 + \3<0020.



(C.17)

Here, we have indicated moments of order three and above in red font. To close the system, we approximate

the higher order moments using the following closures.

Mean-field. The mean-field closure approximates third order moments with the appropriate product of first

order moments. This results in the following approximations for each of the third-order raw moments in
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equation (C.17):

<2010 ≈<2
1000<0010, (C.18a)

<1110 ≈<1000<0100<0010, (C.18b)

<1020 ≈<1000<
2
0020, (C.18c)

<1011 ≈<1000<0010<0001. (C.18d)

Pair-wise. The pair-wise closure approximates third order moments with a product and quotient of first

and second order moments. This results in the following approximations for each of the third-order raw

moments in equation (C.17):

<2010 ≈
<2000<1010

<1000
, (C.19a)

<1110 ≈
<1100<0110

<0100
, (C.19b)

<1020 ≈
<1010<0020

<0010
, (C.19c)

<1011 ≈
<1010<0011

<0010
. (C.19d)

Gaussian. The Gaussian closure sets the third order centralmoments to zero. That is,

0 = <̂81828384 (C) =
〈

4∏
9=1

(
-8,C −

〈
-8,C

〉 )8 9 〉
.

This results in the following approximations for each of the third-order raw moments in equation (C.17):

<2010 ≈ −2<0010<
2
1000 + 2<1000<1010 +<0010<2000, (C.20a)

<1110 ≈ −2<0010<0100<1000 +<0110<1000 +<0100<1010 +<0010<1100, (C.20b)

<1020 ≈ −2<0010<
2
1000 + 2<0010<1010 +<0020<1000, (C.20c)

<1011 ≈ −2<0001<0010<1000 +<0011<1000 +<0010<1001 +<0001<1010. (C.20d)

Comparison of closures

In figure C.1 we compare the ODE model to the mean-field closure, pair-wise closure and Gaussian closure

for the epidemic model. The mean-field model was solved using the positivity-preserving Patankar-type

method [303] (of order one) with time-step ΔC = 0.001, the other closures and the ODE model using the

Tsit5 routine (a 4th and 5th order Runge-Kutte regime) in Julia [302].
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D.1 Numerical solution of the continuous model

In this section, we explain the numerical scheme used to solve the continuous model in the main chapter.

The non-dimensional continuous model is given by

0 =
m2D̂

mĈ2
− m

2D̂

mĜ2 +
mD̂

mĈ
+ a (D̂2 − 1)

(
D̂

[
− 0̂

)
,

0 =
m0̂

mĈ
− ^

(
D̂

[
− 0̂

)
,

(D.1)

where Ĝ ∈ (0, !), with no-flux boundary conditions on Ĝ ∈ {0, !̂}, and initial conditions given by

D̂ (Ĝ, 0) =
{

1, 0 ≤ Ĝ < &,

−1, & ≤ Ĝ ≤ !̂,

0̂(Ĝ, 0) =
{

1/[, 0 ≤ Ĝ < &,

−1/[, & ≤ Ĝ ≤ !̂.

(D.2)
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To solve the system given by equation (D.1), we employ a finite difference technique. We first introduce

F̂ =
mD̂

mĈ
, (D.3)

so that the system in equation (D.1) can be written as the first order system of partial differential equations

(PDEs),
mD̂

mC
= F̂,

mF̂

mC
=
m2D̂

mĜ2 − F̂ − a (D̂
2 − 1) (D̂ − 0̂),

m0̂

mĈ
= ^

(
D̂

[
− 0̂

)
.

(D.4)

Initially, the system is at rest, so that

F̂ (Ĝ, 0) = 0. (D.5)

Next, we divide the domain, Ĝ ∈ [0, !̂] into ( equally spaced subintervals, each of width XĜ = !̂/( . We
index the boundary of each subinterval with = ∈ {0, 1, ..., (}, such that D̂= (C) ≈ D̂ (=XĜ, Ĉ). Doing this, we
obtain the following system of first order, non-linear, ordinary differential equations,

dD̂=
dC

= F̂=, ∀=,

dF̂0

dC
=
D̂1 − D̂0

ΔG2 − F̂1 − a (D̂2
0 − 1) (D̂0 − 0̂0),

dF̂=
dC

=
D̂=+1 − 2D̂= + D̂=−1

ΔG2 − F̂= − a (D̂2
= − 1) (D̂= − 0̂=), 1 ≤ = ≤ ( − 1,

dF̂(
dC

=
D̂( − D̂(−1

ΔG2 − F̂( − a (D̂2
( − 1) (D̂( − 0̂( ),

d08
dC

= ^

(
D̂=

[
− 0̂=

)
∀=.

(D.6)

Next, we let X(C) = 〈D̂0, ..., D̂( , F̂0, ..., F̂( , 0̂0, ..., 0̂(〉 such that equation (D.6) can be written as X′ = f(X).
We can then integrate equation (D.6) using a second order trapezoidal rule,

X(C + ΔC) − X(C)
ΔC

≈ 1
2

(
f[X(C + ΔC)] + f[X(C)]

)
. (D.7)

We solve equation (D.7) using Picard iteration [432], where X(C), which is always known, is taken to be the
initial guess at each timestep. The initial conditions are chosen according to equations (D.2) and (D.5).

Unless specified otherwise, results in the main chapter are produced using a discretisation where XC = 0.01

and ( = 10000.

D.2 Signal initiation

In the main text, we focus on the materials ability to transmit signals that are initiated at the left boundary.

In addition to this, results shown in the main text allow sufficient time between signal reception at the right

boundary and retransmission. In figure D.1 we demonstrate how a second signal initiated from the right

boundary at C2 = 344 is unable to propagate, whereas a second signal initiated from the right boundary at
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C2 = 345 is able. In figure D.2 we demonstrate that a second signal initiated from the left boundary at C2 = 80

is unable to propagate, whereas those initiated at C2 = 90 and C2 = 100 are able, albeit with an initially slower

transmission speed. Finally, in figure D.3 we show how two signals initiated simultaneously from both the

left and right boundaries collide.

D.3 Wavespeed approximation technique

In this section, we detail the technique we use to approximate the wavespeed, 2 , from the solution of the

continuous model. The technique used to solve the continuous model numerically is described in section D.1.

The numerical parameters used to solve the continuous model: for the purpose of estimating the wavespeed

in table D.3, are shown in table D.1; and, for the purpose of estimating the wavespeed in figure 5.7 in the main

chapter, are shown in table D.2.

We first convert space-time data to wave-location time series data by defining the location of the front,

G0(C), where
Ĝ0(C) = Ĝ : D̂ (Ĝ, Ĉ) = 0. (D.8)

As our data is typically discrete, we find G0(C) using a linear interpolation. We now have discrete data for
Ĝ0(C) where 0 ≤ Ĉ ≤ Ĉmax. An example of this data is shown in figure D.2a.
Next, we determine a section of the wavefront curve that is at “late time” and sufficiently far from the

right boundary. In this study, we found an appropriate region, to be automatically determined as

Ĉ ∈ (Ĉlower, Ĉupper) = (0.8Ĉmax, 0.9Ĉmax) . (D.9)

This process gives us (approximately) linear data of the form {C (8) , G (8)0 }, where the slope is the estimate of
the wavespeed, 2 . An example of this (approximately) linear data is shown in figure D.2b.

To approximate 2 , we linearly interpolate the data {C (8) , G (8)0 }, and choose 2 to be the gradient of the

0
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900

1 20 40 60 80 100

(a)

1 20 40 60 80 100

(b)

–1

+1

N Figure D.1. Signal propagation through the material described by the discrete model showingD8 (C), the displacement,
where 8 is the mass index. The first signal was initiated by moving the first element from a displacement of −X to X at
C = 0, and was retransmitted by moving the last element from a displacement of X to −X at C = C2. In (a) the second
signal was not able to propagate for this value of n , in (b) the signal is able to propagate. Parameters used are< = 1 g,
: = 1 g m/s2, W = 1 g/s, Δ = 0.002 m, X = 1 m, n = 0.01 /s, [ = 2, E = 1 g/(m2s2) and # = 101 masses.
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(a) (b) (c) (d)
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N Figure D.2. The solution to the continuous model showing D̂ (Ĝ, Ĉ). The first signal is initiated by setting D̂ (Ĝ, Ĉ) = 1 for Ĝ < 1 at
C = 0. The second signal was initiated by setting D̂ (Ĝ, Ĉ) = −1 for Ĝ < 1 at C = C2. In (a) the second signal is not able to propagate
(signal initiation is shown in the inset (b)). In (c) and (d), the second signal is able to propagate.
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N Figure D.3. (a) The solution to the discrete model showing showingD8 (C), the displacement, where 8 is the mass index.
A signal is initiated simultaneously at each end of the domain by moving the first and last element toD8 = 1 at C = 0.
(b) The solution to the continuous model showing the displacement field, D̂ (Ĝ, Ĉ). A signal is initiated simultaneously at
each end of the domain by setting D̂ (Ĝ, Ĉ) = −1 for Ĝ ≤ 1 and Ĝ ≥ 499 at C = 0. The parameters used in the discrete
model are< = 1 g, : = 1 g m/s2, W = 1 g/s, Δ = 0.002 m, X = 1 m, n = 0.01 /s, [ = 2, E = 1 g/(m2s2) and # = 101
masses. The parameters used in the continuous model are a = 4, [ = 2 and ^ = 0.01.
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N Figure D.4. Example wave front time series data, produced using a solution to the continuous model for a = 4, [ = 2
and ^ = 0. Numerical parameters are detailed in table D.1. (a) Shows the front data for Ĉ ∈ [0, Ĉmax]. (b) Shows the
inset of (a) where Ĉ ∈ (Ĉlower, Ĉupper), which corresponds to data from which the wavespeed is approximated from.

regression line.

[ a Ĉmax Ĝmax XĈ (

1.5 1 500 500 0.01 10000

1.5 2 500 500 0.01 10000

1.5 4 500 500 0.01 10000

2 1 500 500 0.01 10000

2 2 500 500 0.01 10000

2 4 500 500 0.01 10000

3 1 500 500 0.01 10000

3 2 500 500 0.01 10000

3 4 500 500 0.01 10000

4 1 500 2000 0.01 20000

4 2 500 2000 0.01 20000

4 4 500 2000 0.01 20000

J Table D.1. Numerical parameters used
to solve the continuous model when
estimating the wavespeed for^ � 1 in
table D.3 of this appendix.

D.4 Perturbation solution

In this section, we present our method for finding a singular perturbation expansion to the travelling wave

model, given by the system

0 =
d2 5

dI2 +
2

1 − 22

d5
dI
− a

1 − 22 (5
2 − 1) (5 − ℎ), 5 (±∞) = ∓1, (D.10)

0 =
dℎ
dI
+ ^
2

(
5

[
− ℎ

)
, ℎ(∞) = − 1

[
, (D.11)

We pose a perturbation expansion for the wavespeed,

2 = 20 + 21^ + O(^2), (D.12)
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[ a Ĉmax Ĝmax XĈ (

1.5 1 500 10000 0.01 10000

1.5 2 500 1000 0.01 10000

1.5 4 500 1000 0.01 10000

2 1 500 10000 0.01 10000

2 2 500 1000 0.01 10000

2 4 500 1000 0.01 10000

3 1 500 10000 0.01 10000

3 2 500 1000 0.01 10000

3 4 500 1000 0.01 10000

4 1 500 10000 0.01 20000

4 2 500 10000 0.01 20000

4 4 500 10000 0.01 20000

J Table D.2. Numerical parameters used
to solve the continuous model when
estimating the wavespeed for ^ > 0 in
figure 5.7 in the main chapter.

where 20 is known. We take time to note that, for this expansion, we also have

1
2
=

1
20
− 21

22
0
^ + O(^2) .

2

1 − 22 =
20

1 − 22
0
+

(
21

1 − 22
0
+

222
021

(1 − 22
0)2

)
^ + O(^2),

a

1 − 22 = a

(
1

1 − 22
0
+ 22021

(1 − 22
0)2
^ + O(^2)

)
.

We now proceed to find perturbation solutions in the inner and outer regions. We denote solutions in the

inner region I ∼ O(`−1
0 ) using lowercase variables, 5 (I) and ℎ(I). We denote solutions in the outer region

/ = ^I ∼ O(^−1) using uppercase variables, � (!) (/ ), � (') (/ ),� (!) (/ ) and� (') (/ ), where a superscript,
(!) and ('), denotes solutions in left, / < 0 and right, / > 0 regions of the outer region, respectively.

Outer Region

Substituting / = ^I into equations (D.10) and (D.11) leads to a system described by

0 = ^2 d2�

d/ 2 +
2^

1 − 22

d�
d/
− a

1 − 22 (�
2 − 1) (� − � ),

0 =
d�
d/
+ 1
2

(
�

[
− �

)
,

(D.13)

The left and right solutions in the outer region will match the corresponding left and right boundary

conditions from equations (D.10) and (D.11), such that

� (!) (−∞) = 1, � (!) (−∞) = 1
[
, (D.14)

� (') (∞) = −1, � (') (∞) = − 1
[
. (D.15)
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Provided ^ � `0, for / ∼ O(1) the solution to the system for ^ = 0 is given by

5

(
/

^

)
= tanh

( `0

^
/

)
∼ −sign(/ ),

since `0/^ � 1. It is then trivial to see that the expansion for � (/ ) contains only the leading order term, so
that

� (/ ) = −sign(/ ) ⇒
� (!) (/ ) = 1, / < 0,

� (') (/ ) = −1, / > 0.
(D.16)

Therefore, the solution for� (/ ) where / > 0,� (') (/ ), is given by

� (') (/ ) = − 1
[
. (D.17)

To find the solution for� (/ ) where / < 0,� (!) (/ ), we pose a perturbation solution of the form

� (!) (/ ) = �0 + �1^ + O(^2) . (D.18)

Substituting this perturbation expansion into equation (D.13) gives

0 = � ′0 +
1
20

(
1
[
− �0

)
+

[
� ′1 −

1
20
�1 +

21

22
0

(
1
[
− �0

)]
^ + O(^2), (D.19)

where the boundary conditions are given by

lim
/→−∞

=


− 1
[
, 8 = 0,

0, 8 > 1.
(D.20)

The O(1) term in equation (D.19) gives the separable ordinary differential equation

0 = � ′0 +
1
20

(
1
[
− �0

)
, / < 0, lim

/→−∞
�0(/ ) =

1
[
, (D.21)

which has the solution

�0(/ ) = U1 exp
(
/

20

)
+ 1
[
,

where U1 is to be determined by matching solutions in the inner and outer regions to O(1).

The O(^) term in equation (D.19) gives the ordinary differential equation

0 = � ′1 −
1
20
�1 +

21

22
0
U1 exp

(
/

20

)
, / < 0, lim

/→−∞
�1(/ ) = 0, (D.22)

which has the solution

�1(/ ) =
(
U2 −

21

22
0
U1/

)
exp

(
/

20

)
, (D.23)

where U2 is to be determined by matching solutions in the inner and outer regions to O(^).
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Inner Region

In the inner region, we pose a perturbation solution of the form

5 (I) = 50(I) + 51(I)^ + O(^2), (D.24)

ℎ(I) = ℎ0(I) + ℎ1(I)^ + O(^2), (D.25)

where 50 and ℎ0 are the solutions for ^ = 0,

50(I) = − tanh(`0I), (D.26)

ℎ0(I) = −
1
[
. (D.27)

Substituting equations (D.24) and (D.25) into equations (D.10) and (D.11) gives

0 =
d2 50

dI2 +
1
20

d50
dI
− a

1 − 22
0
(5 2

0 − 1) (50 − ℎ0)

+
{

d2 51

dI2 +
1
20

d51
dI
− a

1 − 22
0

(
250(50 − ℎ0) + (5 2

0 − 1)
)
51

+
(
21

1 − 22
0
+

222
021

(1 − 22
0)2

)
d50
dI
− 2a2021

(1 − 22
0)2
(5 2

0 − 1) (50 − ℎ0)

+ a

1 − 22
0
(5 2

0 − 1)ℎ1

}
^ + O(^2),

(D.28)

0 =
dℎ0

dI
+

{
dℎ1

dI
+ 1
20

(
50

[
− ℎ0

) }
^ + O(^2) . (D.29)

The O(^) term in equation (D.29) is directly integrable. Consider

0 =
dℎ1

dI
+ 1
20

(
50

[
− ℎ0

)
, (D.30)

which has solution

ℎ1(I) =
1

20`0[

(
log(cosh(`0I)) − `0I + U3

)
, (D.31)

where U3 is to be determined by matching solutions in the inner and outer regions to O(^).

To solve for 51(I), we consider that the O(^) term in equation (D.28) can be written as

0 =
d2 51

dI2 + ? (I)
d51
dI
+ @(I) 51 + 21A (I) + B (I), lim

I→±∞
51(I) = 0, (D.32)
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where 21 is a yet undetermined correction term to the wave-speed, and

? (I) = 1
20
,

@(I) = − a

1 − 22
0

(
3 tanh2(`0I) −

2
[

tanh(`0I) − 1
)
,

A (I) = −sech2(`0I)
1 − 22

0

[
`0

(
1 +

222
0

1 − 22
0

)
+ 220a

1 − 22
0

(
tanh(`0I) −

1
[

)]
,

B (I) = − a sech2(`0I)
(1 − 22

0)20`0[
(log(cosh(`0I)) − `0I + log(2)) .

(D.33)

The boundary conditions are chosen so that 51(I) is able to match the correction term in the outer solution,

�1(/ ) ≡ 0. We describe the numerical technique we use to solve this boundary value problem in section D.6

of this appendix.

Matching

Here, we apply van Dyke’s matching rule [377] to determine the integration constants that have appeared in

each solution.

First, we match the fast solution to the slow right solution to O(^),

lim
^→0

� (') (^I) = lim
^→∞

[
ℎ0

(
/

^

)
+ ℎ1

(
/

^

)
^

]
,

− 1
[
= − 1

[
+ lim
^→∞

1
20`[

(
log

(
cosh

( `
^
/

))
− `
^
/ + U3

)
,

⇒ U3 = log(2).

Next, we match the fast solution to the slow left solution to O(1),

lim
^→0

�0(^I) = lim
^→∞

ℎ0

(
/

^

)
,

lim
^→0

(
U1 exp

(
2̄0^Z

:

)
+ 1
[

)
= lim
^→∞
− 1
[
,

⇒ U1 = −
2
[
,

and to O(^),

lim
^→0

�1(^I)^ = lim
^→∞

ℎ1

(
/

^

)
^,

lim
^→0

(
U2 −

221

[22
0
^I

)
exp

(
I

^20

)
^ = lim

^→∞
1

20`[

(
log

(
cosh

( `
^
/

))
− `
^
/ + log(2)

)
^,

⇒ U2 = 0.
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In summary, we have that

� (/ ) = −sign(/ ),

5 (I) = − tanh(`0I) + 51(I)^ + O(^2),

� (!) (/ ) = 1
[
− 2
[

exp
(
/

20

)
− 221

[22
0
/ exp

(
/

20

)
^ + O(^2),

� (') (/ ) = − 1
[
,

ℎ(I) = − 1
[
+ 1
20`0[

(
log(cosh(`0I)) − `0I + log(2)

)
^ + O(^2) .

D.5 Numerical solution of the boundary value problem

In section D.4 of this appendix, we find that 51(I) and 21 are described by the boundary value problem

0 =
d2 51

dI2 + ? (I)
d51
dI
+ @(I) 51 + 21A (I) + B (I), lim

I→±∞
51(I) = 0, (D.34)

where 21 is a yet undetermined correction term to the wavespeed, and

? (I) = 1
20
,

@(I) = − a

1 − 22
0

(
3 tanh2(`0I) −

2
[

tanh(`0I) − 1
)
,

A (I) = −sech2(`0I)
1 − 22

0

[
`0

(
1 +

222
0

1 − 22
0

)
+ 220a

1 − 22
0

(
tanh(`0I) −

1
[

)]
,

B (I) = − a sech2(`0I)
(1 − 22

0)20`0[
(log(cosh(`0I)) − `0I + log(2)) .

(D.35)

We approximate the solution to the infinite-domain boundary value problem given by equation (D.34) as

the solution to the finite domain problem,

0 =
d2.

dI2 + ? (I)
d.
dI
+ @(I). + 21A (I) + B (I), . (±!) = 0, (D.36)

where 51(I) = lim!→∞ . (I). We find that ! = 10 is sufficient to obtain accurate estimates of 51(I) and 21.

Next, we divide the domain I ∈ [−!, !] into ( equally space subintervals, each of with XI. We index the
boundary of each subinterval with = ∈ {0, 1, ..., (}, such that .= (I) ≈ . (=XI). Doing this we obtain the
following system of linear equations in terms of the unknowns.1, ....(−1, 21,

−B= =

(
1
XI2 −

?=

2XI

)
.=−1 +

(
− 2
XI2 + @=

)
.= +

(
1
XI2 +

?=

2XI

)
.=+1 + A=21,

1 ≤ = ≤ ( − 1,

(D.37)

where.0 = .( = 0 enforces the boundary conditions, B= = B (=XI), and similar for ? (I), @(I) and A (I).
Denoting the unknowns X = [.1, ..., .(−1, 21]) ∈ ℝ( , we may write the system as the under-determined
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matrix system

AX = B, (D.38)

where B = [B2, ..., B( ]) ∈ ℝ( and A ∈ ℝ(×((−1) . We obtain a solution X from the underdetermined system

using the Moore-Penrose pseudoinverse [433,434] with the pinv command in MATLAB [434], which gives

the solution with the smallest norm of all possible solutions [433,434]. We find that the component of the

normalised null-space relating to the free parameter, 21, is O(10−5), so solutions to the system of equations

that have. (/ ) small have similar values of the free parameter, 21. Because of this, we find that the solution

obtained from the pseudoinverse matches numerical results, obtained from the solution to the continuous

model, to two significant figures, providing confidence in the approximate solution to the travelling wave

obtained from the continuous model.
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D.6 Comparison of wavespeed calculations

( .
c0 c1

PDE Eq (3.5) PDE BVP Eq (3.26)

1.5 1 0.69 0.69 −0.26 −0.26 −0.30

1.5 2 0.80 0.80 −0.10 −0.10 −0.12

1.5 4 0.88 0.88 −0.03 −0.03 −0.04

2 1 0.58 0.58 −0.43 −0.43 −0.48

2 2 0.71 0.71 −0.20 −0.20 −0.22

2 4 0.82 0.82 −0.07 −0.08 −0.09

3 1 0.43 0.43 −0.67 −0.67 −0.73

3 2 0.55 0.55 −0.37 −0.37 −0.40

3 4 0.69 0.69 −0.17 −0.17 −0.19

4 1 0.33 0.33 −0.81 −0.81 −0.86

4 2 0.45 0.45 −0.49 −0.49 −0.52

4 4 0.58 0.58 −0.26 −0.27 −0.28

N Table D.3. Comparison of calculations of the wavespeed, 20, and the first correction term in a perturbation solution
in ^, about ^ = 0, 21, shown to two significant figures. Approximations to 21 using the PDE are performed by fitting a
fifth-order polynomial through estimates of 2 obtained for ^ ∈ {0, 0.01, ..., 0.05}. The numerical scheme, including
numerical parameters chosen, are outlined in this appendix. Equations refer to the main chapter.
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E.1 Code availability

This appendix is supplementary to, and refers to, code available on GitHub at github.com/ap-browning/Pore-

Bridging.
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E.2 Numerical solution of the PDE

We write the partial differential equation (PDE) model as

mD

mC
=
m

mG

(
D(D) mD

mG

)
+ m

m~

(
D(D) m~

mG

)
+ 5 (D), C > C0, x ∈ Ω,

dD
dC

= 5 (D), C > C0, x ∈ mΩ,

D (x, C) = 0 C = C0, x ∈ Ω,

D (x, C) = D0 C = C0, x ∈ mΩ.

(E.1)

Here, Ω represents the set of points inside the pore (such that 0 < G < ! and 0 < ~ < !) and mΩ represents

the set of points on the pore boundary (such that G ∈ {0, !} or ~ ∈ {0, !}). Due to the symmetry of the
problem, we solve the PDE on a quarter of the full domain (figure E.1c) and apply reflecting (symmetric)

boundary conditions on the interior boundary.

We used a method of lines based finite difference approach to approximate the solution of the PDE model,

D (x, C), with a system of ordinary differential equations (ODEs), {D8, 9 (C)}8, 9 . Our implementation is available
in Module/Functions/SolvePDE.jl on GitHub. We discretise the domain into a square mesh with # 2

nodes, denoting x8, 9 = (G8 , ~ 9 ) = ((8 − 1)Δ, ( 9 − 1)Δ) for 8, 9 = 1, 2, ..., # + 1 the location of points that

surround each element (figure E.1d). This yields

dD8, 9
dC

=
1

2Δ2

[ (
D(D8, 9 ) + D(D8+1, 9 )

)
(D8+1, 9 − D8, 9 ) −

(
D(D8, 9 ) + D(D8−1, 9 )

)
(D8, 9 − D8−1, 9 )

]
+ 1

2Δ2

[ (
D(D8, 9 ) + D(D8, 9+1)

)
(D8, 9+1 − D8, 9 ) −

(
D(D8, 9 ) + D(D8, 9−1)

)
(D8, 9 − D8, 9−1)

]
+ 5 (D8, 9 ),

(E.2)

which applies on the interior nodes, 8, 9 = 2, 3, ..., # (figure E.1d, grey markers). On the interior boundary

where 8 = # +1 or 9 = # +1 (figure E.1d, orangemarkers) we apply equation (E.2) and replaceD8+1, 9 = D#−1, 9

at 8 = # + 1,D8, 9+1 = D8,#−1 at 9 = # + 1, andD8+1, 9+1 = D#−1,#−1 at 8 = # + 1, 9 = # + 1. On pore boundary

nodes (figure E.1d, blue markers) 8 = 1 or 9 = 1, the boundary condition can be applied exactly

dD8, 9
dC

= 5 (D8, 9 ) . (E.3)

We apply the initial condition by setting

D8, 9 (C0) =
{
D0, 8 = 1 or 9 = 1,

0, otherwise.
(E.4)

We integrate the ODE system using the Tsit5 (a 4th and 5th order Runge-Kutta ODE solver with variable

timestep) in Julia [275, 302].
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Δ

Δ

L / 2 μm

Porous-Fisher
model

Logistic
growth

L / 2 μm

Simulated regionDIC Image(a)

Symmetric
boundary
conditions

(b) Fibres (c)

500 μm

Discretisation(d)

N Figure E.1. Computational domain and �nite di�erence discretisation.

E.3 Interpolating tissue void boundary from PDE solution

It is desirable, to ensure the optimisation routines used to calculate the maximum likelihood estimate

converge to a maxima, that all summary statistics are continuous functions of the parameter space, ) . While

the numerical solution of the PDE, {D8 9 (C)}#8,9=1 varies continuously in ) , the naive approximation of tissue

coverage calculated using nodes above the tissue boundary, {D8 9 (C) > g }#8,9=1, is not continuous. Therefore,

we apply a linear interpolation procedure to estimate the tissue area and perimeter contribution from

each finite element surrounded by nodes with tissue densities {D8, 9 , D8+1, 9 , D8, 9+1, D8+1, 9+1}, which we denote
�(D1, D2, D3, D4) and % (D1, D2, D3, D4). The area and perimeter of the tissue void, used in calculation of the
coverage and circularity summary statistics in the main chapter, are then given by

�void = 4
#−1∑
8=1

#−1∑
9=1

�(D8, 9 , D8+1, 9 , D8, 9+1, D8+1, 9+1), (E.5)

%void = 4
#−1∑
8=1

#−1∑
9=1

% (D8, 9 , D8+1, 9 , D8, 9+1, D8+1, 9+1). (E.6)

Note the factor of four as the numerical solution comprises a quarter of each pore.

The interpolation procedure is illustrated in figure E.2 and is implemented in Module/Functions/

SummaryStatistics.jl, available on Github. In summary, the number of corners above the threshold,
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Case 1(a) Case 5(e)Case 2(b) Case 3(c) Case 4(d)

Node below threshold (uij ≤ τK)

Node above threshold (uij > τK)

Calculated tissue perimeter

Calculated tissue area

N Figure E.2. Interpolation procedure to calculate the area covered by tissue and the perimeter of the tissue
void.

2above, is first determined. The finite element in question is, therefore, represented by Case (2above + 1) in
figure E.2. In our implementation, we rotate and/or reflect the element to match the configuration of the

corresponding case in figure E.2 exactly. We then linearly interpolate along the edges of the element to

approximate the contourD (C) = 0. The region containing tissue is then approximated as a polygon (yellow

region) formed by joining the interpolated points on the edges with a chord (black-dashed line). The area

of this polygon, and the length of the chord, approximate the area and perimeter contribution from this

element, giving�(·) and % (·).
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E.4 Noise model

We pre-estimate a noise model [411] of the form

f8 (`8) = max(0, 08`2
8 + 18`8 + 28), (E.7)

using the observed group standard deviations in the experimental data, pooled for all pore sizes figure E.3. In

equation (E.7),f8 (`8) is the standard deviation for the 8th summary statistic, where `8 is themean (equivalent
to the model prediction). In all cases, we fix the intercept 28 equal to 10% of the maximum standard deviation

observed in the experimental data, and estimate 08 and 18 by minimising the sum of squares of the residual.
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N Figure E.3. Pre-estmated noise model. Observed group standard deviations (black markers) and fitted noise model
(red dashed).
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E.5 Including all ! = 400 µm data

In figure E.4 we repeat results from the main chapter for the 400 µm pores in the case that all 400 µm data

is included. We see results inconsistent with the inferred results for the other pore sizes, seeing very low

estimates for the proliferation rate, _. When we exclude data from C = 7 d for the main results, we see

estimates for the proliferation rate that are similar to the other pore sizes, suggesting that these experimental

replicates may be outliers. As scaffolds are fixed prior to staining and imaging, data from these scaffolds

at earlier times is not available, and it is, therefore, difficult to ascertain why these scaffolds may exhibit

behaviour different to the others.
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E.6 Inference using circularity

In figure E.5 and figure E.6 we repeat results from themain chapter where the circularity is included alongside

cell density and tissue coverage information. We see that, even when we calibrate the model to circularity

data, we still do not match the circularity measurements seen in the experimental data, in particular for the

case where inference is performed on data from all pore sizes simultaneously.
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experimental data. In each case, a model prediction is shown based on a maximum likelihood estimate that includes the cell density, tissue
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E.7 Fisher-Kolmogorov model

In the main chapter, we note that cells cannot move freely on the experimental substrate. Rather, cells work

together to bridge the pore through interconnecting material such as extracellular matrix and intracellular

actin filaments. This assumption leads to a governing equation of the form

mD

mC
= �∇ ·

[( D
 

)U
∇D

]
+ _D

(
1 − D

 

)
, x ∈ Ω, (E.8)

where U = 1, often referred to as the Porous-Fisher equation. Here, we relax the assumption of collaborative

cell migration and reproduce the main results in the case where U = 0, i.e., cell migration is a linear diffusion

process. This choice recovers what is commonly referred to as the Fisher-Kolmogorov model [37], however does

not align with the collaborative migration process that gives rise to tissue growth in the experiments, and

will not yield a sharp-fronted tissue interface.

In figure E.7 and figure E.8, we compare experimental data withmodel best fits from the Fisher-Kolmogorov

model. In figure E.9 we show profile likelihoods for this model. As with results in the main chapter, we find

we are unable to match features in the experimental data relating to circularity. However, as we are able to

account for both cell density and tissue coverage, we are able to quantify cell proliferation rates for each

parameter, which we find to be similar to results in the main chapter.
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E.8 Boundary conditions

In the main chapter, we apply time-dependent Dirichlet boundary conditions to the edge of each pore. This

modelling assumption captures a source of cells from the fibres to the pore interior, where we assume that

growth on the fibres is logistic.

In figure E.10a–g we show the solution of the Porous-Fisher equation, using parameters from the combined

MLE (given in table 1 of the main chapter) in the 300µm pores. In figure E.10h–n we show the solution to the

model with homogeneous Neumann (zero normal derivative) boundary conditions applied using the same

parameter combination.

Compared to the time-dependent Dirichlet boundary condition, the homogeneous Neumann boundary

condition does not, initially, capture the behaviour seen in the experiments. In figure E.10o–u we show the

short period of time in which the tissue becomes visible and moves off the pore edge. Cell density aggregates

in the pore corners: we see a much nigher density of cells in the pore corner, always, compare to the rest

of the tissue (this is not seen in the experiments). Further, tissue first appears to be convex, not smooth,

in the corners. These observations, combined with the source of cells from the fibres, lead us to assume

time-dependent Dirichlet boundary conditions for our analysis.
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predicted tissue boundary using the reduced threshold of g = 0.1 (dashed).

193



E Supplementary material for Chapter 6

E.9 Numerical sensitivity

We solve the Porous-Fisher model numerically using a method of lines based finite difference approach

(Section E.2). To keep the computational cost of inference manageable, we choose a spatial discretisation

where # = 51 × 51 nodes are placed in the quarter domain, as shown in figure E.1. Note that we apply an

ODE solver with adaptive time-stepping to solve the resulting system of ordinary differential equations.

In figures E.11 and E.12 we compare the numerical solution of the model using # = 51 × 51 nodes to a

finer scheme where # = 151 × 151 nodes are used, using parameters from the combined MLE (given in

table 1 of the main chapter) for each pore size. While these results do not preclude a larger discrepancy

between discretisation in other regions of the parameter space, they confirm our choice of # = 51 × 51

nodes provides an acceptable level of accuracy, particularly compared to the variability in the data, without

a larger computational cost.

In figure E.11a–d we show density profiles at C = 14 d and C = 28 d across the centre of each pore (the

edge of the quarter-domain). While we don’t expect these curves to be identical, we don’t see any visual

difference. In figure E.11e–h and figure E.11i–l we show the tissue boundary at C = 14 d for using # = 51× 51

and # = 151 × 151 nodes, respectively. Visually, the choice of discretisation has minimal, if any, impact on

the shape of the tissue boundary.

In figure E.12 we compare the time-evolution of the summary statistics, for each pore size, for each

discretisation. In particular, results in figure E.12i–l confirm that the discretisation has minimal impact

on the shape (circularity) of the pore. The exception to this is a small, noticeable artefact in circularity

measurement right before pore closure.
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